Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 RAS changes from Ingo Molnar:
 "[ The reason for drivers/ updates is that Boris asked for the
    drivers/edac/ changes to go via x86/ras in this cycle ]

  Main changes:

   - AMD CPUs:
      . Add ECC event decoding support for new F15h models
      . Various erratum fixes
      . Fix single-channel on dual-channel-controllers bug.

   - Intel CPUs:
      . UC uncorrectable memory error parsing fix
      . Add support for CMC (Corrected Machine Check) 'FF' (Firmware
        First) flag in the APEI HEST

   - Various cleanups and fixes"

* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  amd64_edac: Fix incorrect wraparounds
  amd64_edac: Correct erratum 505 range
  cpc925_edac: Use proper array termination
  x86/mce, acpi/apei: Only disable banks listed in HEST if mce is configured
  amd64_edac: Get rid of boot_cpu_data accesses
  amd64_edac: Add ECC decoding support for newer F15h models
  x86, amd_nb: Clarify F15h, model 30h GART and L3 support
  pci_ids: Add PCI device ID functions 3 and 4 for newer F15h models.
  x38_edac: Make a local function static
  i3200_edac: Make a local function static
  x86/mce: Pay no attention to 'F' bit in MCACOD when parsing 'UC' errors
  APEI/ERST: Fix error message formatting
  amd64_edac: Fix single-channel setups
  EDAC: Replace strict_strtol() with kstrtol()
  mce: acpi/apei: Soft-offline a page on firmware GHES notification
  mce: acpi/apei: Add a boot option to disable ff mode for corrected errors
  mce: acpi/apei: Honour Firmware First for MCA banks listed in APEI HEST CMC
This commit is contained in:
Linus Torvalds 2013-09-04 11:07:04 -07:00
commit b20c99eb66
20 changed files with 523 additions and 135 deletions

View File

@ -176,6 +176,11 @@ ACPI
acpi=noirq Don't route interrupts
acpi=nocmcff Disable firmware first mode for corrected errors. This
disables parsing the HEST CMC error source to check if
firmware has set the FF flag. This may result in
duplicate corrected error reports.
PCI
pci=off Don't use PCI

View File

@ -86,6 +86,7 @@ extern int acpi_pci_disabled;
extern int acpi_skip_timer_override;
extern int acpi_use_timer_override;
extern int acpi_fix_pin2_polarity;
extern int acpi_disable_cmcff;
extern u8 acpi_sci_flags;
extern int acpi_sci_override_gsi;
@ -168,6 +169,7 @@ static inline void arch_acpi_set_pdc_bits(u32 *buf)
#define acpi_lapic 0
#define acpi_ioapic 0
#define acpi_disable_cmcff 0
static inline void acpi_noirq_set(void) { }
static inline void acpi_disable_pci(void) { }
static inline void disable_acpi(void) { }

View File

@ -32,11 +32,20 @@
#define MCI_STATUS_PCC (1ULL<<57) /* processor context corrupt */
#define MCI_STATUS_S (1ULL<<56) /* Signaled machine check */
#define MCI_STATUS_AR (1ULL<<55) /* Action required */
#define MCACOD 0xffff /* MCA Error Code */
/*
* Note that the full MCACOD field of IA32_MCi_STATUS MSR is
* bits 15:0. But bit 12 is the 'F' bit, defined for corrected
* errors to indicate that errors are being filtered by hardware.
* We should mask out bit 12 when looking for specific signatures
* of uncorrected errors - so the F bit is deliberately skipped
* in this #define.
*/
#define MCACOD 0xefff /* MCA Error Code */
/* Architecturally defined codes from SDM Vol. 3B Chapter 15 */
#define MCACOD_SCRUB 0x00C0 /* 0xC0-0xCF Memory Scrubbing */
#define MCACOD_SCRUBMSK 0xfff0
#define MCACOD_SCRUBMSK 0xeff0 /* Skip bit 12 ('F' bit) */
#define MCACOD_L3WB 0x017A /* L3 Explicit Writeback */
#define MCACOD_DATA 0x0134 /* Data Load */
#define MCACOD_INSTR 0x0150 /* Instruction Fetch */
@ -188,6 +197,9 @@ extern void register_mce_write_callback(ssize_t (*)(struct file *filp,
const char __user *ubuf,
size_t usize, loff_t *off));
/* Disable CMCI/polling for MCA bank claimed by firmware */
extern void mce_disable_bank(int bank);
/*
* Exception handler
*/

View File

@ -67,6 +67,7 @@ EXPORT_SYMBOL(acpi_pci_disabled);
int acpi_lapic;
int acpi_ioapic;
int acpi_strict;
int acpi_disable_cmcff;
u8 acpi_sci_flags __initdata;
int acpi_sci_override_gsi __initdata;
@ -1622,6 +1623,10 @@ static int __init parse_acpi(char *arg)
/* "acpi=copy_dsdt" copys DSDT */
else if (strcmp(arg, "copy_dsdt") == 0) {
acpi_gbl_copy_dsdt_locally = 1;
}
/* "acpi=nocmcff" disables FF mode for corrected errors */
else if (strcmp(arg, "nocmcff") == 0) {
acpi_disable_cmcff = 1;
} else {
/* Core will printk when we return error. */
return -EINVAL;

View File

@ -20,6 +20,7 @@ const struct pci_device_id amd_nb_misc_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) },
{}
};
@ -27,6 +28,7 @@ EXPORT_SYMBOL(amd_nb_misc_ids);
static const struct pci_device_id amd_nb_link_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
{}
};
@ -81,12 +83,19 @@ int amd_cache_northbridges(void)
next_northbridge(misc, amd_nb_misc_ids);
node_to_amd_nb(i)->link = link =
next_northbridge(link, amd_nb_link_ids);
}
}
/* GART present only on Fam15h upto model 0fh */
if (boot_cpu_data.x86 == 0xf || boot_cpu_data.x86 == 0x10 ||
boot_cpu_data.x86 == 0x15)
(boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model < 0x10))
amd_northbridges.flags |= AMD_NB_GART;
/*
* Check for L3 cache presence.
*/
if (!cpuid_edx(0x80000006))
return 0;
/*
* Some CPU families support L3 Cache Index Disable. There are some
* limitations because of E382 and E388 on family 0x10.

View File

@ -25,15 +25,18 @@ int mce_severity(struct mce *a, int tolerant, char **msg);
struct dentry *mce_get_debugfs_dir(void);
extern struct mce_bank *mce_banks;
extern mce_banks_t mce_banks_ce_disabled;
#ifdef CONFIG_X86_MCE_INTEL
unsigned long mce_intel_adjust_timer(unsigned long interval);
void mce_intel_cmci_poll(void);
void mce_intel_hcpu_update(unsigned long cpu);
void cmci_disable_bank(int bank);
#else
# define mce_intel_adjust_timer mce_adjust_timer_default
static inline void mce_intel_cmci_poll(void) { }
static inline void mce_intel_hcpu_update(unsigned long cpu) { }
static inline void cmci_disable_bank(int bank) { }
#endif
void mce_timer_kick(unsigned long interval);

View File

@ -97,6 +97,15 @@ DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
};
/*
* MCA banks controlled through firmware first for corrected errors.
* This is a global list of banks for which we won't enable CMCI and we
* won't poll. Firmware controls these banks and is responsible for
* reporting corrected errors through GHES. Uncorrected/recoverable
* errors are still notified through a machine check.
*/
mce_banks_t mce_banks_ce_disabled;
static DEFINE_PER_CPU(struct work_struct, mce_work);
static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
@ -1935,6 +1944,25 @@ static struct miscdevice mce_chrdev_device = {
&mce_chrdev_ops,
};
static void __mce_disable_bank(void *arg)
{
int bank = *((int *)arg);
__clear_bit(bank, __get_cpu_var(mce_poll_banks));
cmci_disable_bank(bank);
}
void mce_disable_bank(int bank)
{
if (bank >= mca_cfg.banks) {
pr_warn(FW_BUG
"Ignoring request to disable invalid MCA bank %d.\n",
bank);
return;
}
set_bit(bank, mce_banks_ce_disabled);
on_each_cpu(__mce_disable_bank, &bank, 1);
}
/*
* mce=off Disables machine check
* mce=no_cmci Disables CMCI

View File

@ -203,6 +203,10 @@ static void cmci_discover(int banks)
if (test_bit(i, owned))
continue;
/* Skip banks in firmware first mode */
if (test_bit(i, mce_banks_ce_disabled))
continue;
rdmsrl(MSR_IA32_MCx_CTL2(i), val);
/* Already owned by someone else? */
@ -271,6 +275,19 @@ void cmci_recheck(void)
local_irq_restore(flags);
}
/* Caller must hold the lock on cmci_discover_lock */
static void __cmci_disable_bank(int bank)
{
u64 val;
if (!test_bit(bank, __get_cpu_var(mce_banks_owned)))
return;
rdmsrl(MSR_IA32_MCx_CTL2(bank), val);
val &= ~MCI_CTL2_CMCI_EN;
wrmsrl(MSR_IA32_MCx_CTL2(bank), val);
__clear_bit(bank, __get_cpu_var(mce_banks_owned));
}
/*
* Disable CMCI on this CPU for all banks it owns when it goes down.
* This allows other CPUs to claim the banks on rediscovery.
@ -280,20 +297,12 @@ void cmci_clear(void)
unsigned long flags;
int i;
int banks;
u64 val;
if (!cmci_supported(&banks))
return;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
for (i = 0; i < banks; i++) {
if (!test_bit(i, __get_cpu_var(mce_banks_owned)))
continue;
/* Disable CMCI */
rdmsrl(MSR_IA32_MCx_CTL2(i), val);
val &= ~MCI_CTL2_CMCI_EN;
wrmsrl(MSR_IA32_MCx_CTL2(i), val);
__clear_bit(i, __get_cpu_var(mce_banks_owned));
}
for (i = 0; i < banks; i++)
__cmci_disable_bank(i);
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
}
@ -327,6 +336,19 @@ void cmci_reenable(void)
cmci_discover(banks);
}
void cmci_disable_bank(int bank)
{
int banks;
unsigned long flags;
if (!cmci_supported(&banks))
return;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
__cmci_disable_bank(bank);
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
}
static void intel_init_cmci(void)
{
int banks;

View File

@ -39,7 +39,8 @@
#include "apei-internal.h"
#define ERST_PFX "ERST: "
#undef pr_fmt
#define pr_fmt(fmt) "ERST: " fmt
/* ERST command status */
#define ERST_STATUS_SUCCESS 0x0
@ -109,8 +110,7 @@ static inline int erst_errno(int command_status)
static int erst_timedout(u64 *t, u64 spin_unit)
{
if ((s64)*t < spin_unit) {
pr_warning(FW_WARN ERST_PFX
"Firmware does not respond in time\n");
pr_warn(FW_WARN "Firmware does not respond in time.\n");
return 1;
}
*t -= spin_unit;
@ -186,8 +186,8 @@ static int erst_exec_stall(struct apei_exec_context *ctx,
if (ctx->value > FIRMWARE_MAX_STALL) {
if (!in_nmi())
pr_warning(FW_WARN ERST_PFX
"Too long stall time for stall instruction: %llx.\n",
pr_warn(FW_WARN
"Too long stall time for stall instruction: 0x%llx.\n",
ctx->value);
stall_time = FIRMWARE_MAX_STALL;
} else
@ -206,8 +206,8 @@ static int erst_exec_stall_while_true(struct apei_exec_context *ctx,
if (ctx->var1 > FIRMWARE_MAX_STALL) {
if (!in_nmi())
pr_warning(FW_WARN ERST_PFX
"Too long stall time for stall while true instruction: %llx.\n",
pr_warn(FW_WARN
"Too long stall time for stall while true instruction: 0x%llx.\n",
ctx->var1);
stall_time = FIRMWARE_MAX_STALL;
} else
@ -271,8 +271,7 @@ static int erst_exec_move_data(struct apei_exec_context *ctx,
/* ioremap does not work in interrupt context */
if (in_interrupt()) {
pr_warning(ERST_PFX
"MOVE_DATA can not be used in interrupt context");
pr_warn("MOVE_DATA can not be used in interrupt context.\n");
return -EBUSY;
}
@ -524,8 +523,7 @@ static int __erst_record_id_cache_add_one(void)
ERST_RECORD_ID_CACHE_SIZE_MAX);
if (new_size <= erst_record_id_cache.size) {
if (printk_ratelimit())
pr_warning(FW_WARN ERST_PFX
"too many record ID!\n");
pr_warn(FW_WARN "too many record IDs!\n");
return 0;
}
alloc_size = new_size * sizeof(entries[0]);
@ -761,8 +759,7 @@ static int __erst_clear_from_storage(u64 record_id)
static void pr_unimpl_nvram(void)
{
if (printk_ratelimit())
pr_warning(ERST_PFX
"NVRAM ERST Log Address Range is not implemented yet\n");
pr_warn("NVRAM ERST Log Address Range not implemented yet.\n");
}
static int __erst_write_to_nvram(const struct cper_record_header *record)
@ -1133,7 +1130,7 @@ static int __init erst_init(void)
goto err;
if (erst_disable) {
pr_info(ERST_PFX
pr_info(
"Error Record Serialization Table (ERST) support is disabled.\n");
goto err;
}
@ -1144,14 +1141,14 @@ static int __init erst_init(void)
goto err;
else if (ACPI_FAILURE(status)) {
const char *msg = acpi_format_exception(status);
pr_err(ERST_PFX "Failed to get table, %s\n", msg);
pr_err("Failed to get table, %s\n", msg);
rc = -EINVAL;
goto err;
}
rc = erst_check_table(erst_tab);
if (rc) {
pr_err(FW_BUG ERST_PFX "ERST table is invalid\n");
pr_err(FW_BUG "ERST table is invalid.\n");
goto err;
}
@ -1169,21 +1166,19 @@ static int __init erst_init(void)
rc = erst_get_erange(&erst_erange);
if (rc) {
if (rc == -ENODEV)
pr_info(ERST_PFX
pr_info(
"The corresponding hardware device or firmware implementation "
"is not available.\n");
else
pr_err(ERST_PFX
"Failed to get Error Log Address Range.\n");
pr_err("Failed to get Error Log Address Range.\n");
goto err_unmap_reg;
}
r = request_mem_region(erst_erange.base, erst_erange.size, "APEI ERST");
if (!r) {
pr_err(ERST_PFX
"Can not request iomem region <0x%16llx-0x%16llx> for ERST.\n",
(unsigned long long)erst_erange.base,
(unsigned long long)erst_erange.base + erst_erange.size);
pr_err("Can not request [mem %#010llx-%#010llx] for ERST.\n",
(unsigned long long)erst_erange.base,
(unsigned long long)erst_erange.base + erst_erange.size - 1);
rc = -EIO;
goto err_unmap_reg;
}
@ -1193,7 +1188,7 @@ static int __init erst_init(void)
if (!erst_erange.vaddr)
goto err_release_erange;
pr_info(ERST_PFX
pr_info(
"Error Record Serialization Table (ERST) support is initialized.\n");
buf = kmalloc(erst_erange.size, GFP_KERNEL);
@ -1205,15 +1200,15 @@ static int __init erst_init(void)
rc = pstore_register(&erst_info);
if (rc) {
if (rc != -EPERM)
pr_info(ERST_PFX
"Could not register with persistent store\n");
pr_info(
"Could not register with persistent store.\n");
erst_info.buf = NULL;
erst_info.bufsize = 0;
kfree(buf);
}
} else
pr_err(ERST_PFX
"Failed to allocate %lld bytes for persistent store error log\n",
pr_err(
"Failed to allocate %lld bytes for persistent store error log.\n",
erst_erange.size);
return 0;

View File

@ -409,6 +409,34 @@ static void ghes_clear_estatus(struct ghes *ghes)
ghes->flags &= ~GHES_TO_CLEAR;
}
static void ghes_handle_memory_failure(struct acpi_hest_generic_data *gdata, int sev)
{
#ifdef CONFIG_ACPI_APEI_MEMORY_FAILURE
unsigned long pfn;
int sec_sev = ghes_severity(gdata->error_severity);
struct cper_sec_mem_err *mem_err;
mem_err = (struct cper_sec_mem_err *)(gdata + 1);
if (sec_sev == GHES_SEV_CORRECTED &&
(gdata->flags & CPER_SEC_ERROR_THRESHOLD_EXCEEDED) &&
(mem_err->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS)) {
pfn = mem_err->physical_addr >> PAGE_SHIFT;
if (pfn_valid(pfn))
memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
else if (printk_ratelimit())
pr_warn(FW_WARN GHES_PFX
"Invalid address in generic error data: %#llx\n",
mem_err->physical_addr);
}
if (sev == GHES_SEV_RECOVERABLE &&
sec_sev == GHES_SEV_RECOVERABLE &&
mem_err->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS) {
pfn = mem_err->physical_addr >> PAGE_SHIFT;
memory_failure_queue(pfn, 0, 0);
}
#endif
}
static void ghes_do_proc(struct ghes *ghes,
const struct acpi_hest_generic_status *estatus)
{
@ -428,15 +456,7 @@ static void ghes_do_proc(struct ghes *ghes,
apei_mce_report_mem_error(sev == GHES_SEV_CORRECTED,
mem_err);
#endif
#ifdef CONFIG_ACPI_APEI_MEMORY_FAILURE
if (sev == GHES_SEV_RECOVERABLE &&
sec_sev == GHES_SEV_RECOVERABLE &&
mem_err->validation_bits & CPER_MEM_VALID_PHYSICAL_ADDRESS) {
unsigned long pfn;
pfn = mem_err->physical_addr >> PAGE_SHIFT;
memory_failure_queue(pfn, 0, 0);
}
#endif
ghes_handle_memory_failure(gdata, sev);
}
#ifdef CONFIG_ACPI_APEI_PCIEAER
else if (!uuid_le_cmp(*(uuid_le *)gdata->section_type,

View File

@ -36,6 +36,7 @@
#include <linux/io.h>
#include <linux/platform_device.h>
#include <acpi/apei.h>
#include <asm/mce.h>
#include "apei-internal.h"
@ -121,6 +122,41 @@ int apei_hest_parse(apei_hest_func_t func, void *data)
}
EXPORT_SYMBOL_GPL(apei_hest_parse);
/*
* Check if firmware advertises firmware first mode. We need FF bit to be set
* along with a set of MC banks which work in FF mode.
*/
static int __init hest_parse_cmc(struct acpi_hest_header *hest_hdr, void *data)
{
#ifdef CONFIG_X86_MCE
int i;
struct acpi_hest_ia_corrected *cmc;
struct acpi_hest_ia_error_bank *mc_bank;
if (hest_hdr->type != ACPI_HEST_TYPE_IA32_CORRECTED_CHECK)
return 0;
cmc = (struct acpi_hest_ia_corrected *)hest_hdr;
if (!cmc->enabled)
return 0;
/*
* We expect HEST to provide a list of MC banks that report errors
* in firmware first mode. Otherwise, return non-zero value to
* indicate that we are done parsing HEST.
*/
if (!(cmc->flags & ACPI_HEST_FIRMWARE_FIRST) || !cmc->num_hardware_banks)
return 1;
pr_info(HEST_PFX "Enabling Firmware First mode for corrected errors.\n");
mc_bank = (struct acpi_hest_ia_error_bank *)(cmc + 1);
for (i = 0; i < cmc->num_hardware_banks; i++, mc_bank++)
mce_disable_bank(mc_bank->bank_number);
#endif
return 1;
}
struct ghes_arr {
struct platform_device **ghes_devs;
unsigned int count;
@ -227,6 +263,9 @@ void __init acpi_hest_init(void)
goto err;
}
if (!acpi_disable_cmcff)
apei_hest_parse(hest_parse_cmc, NULL);
if (!ghes_disable) {
rc = apei_hest_parse(hest_parse_ghes_count, &ghes_count);
if (rc)

View File

@ -123,7 +123,7 @@ static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
u32 reg = 0;
amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
reg &= 0xfffffffe;
reg &= (pvt->model >= 0x30) ? ~3 : ~1;
reg |= dct;
amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}
@ -133,8 +133,9 @@ static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
{
u8 dct = 0;
/* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
if (addr >= 0x140 && addr <= 0x1a0) {
dct = 1;
dct = (pvt->model >= 0x30) ? 3 : 1;
addr -= 0x100;
}
@ -202,11 +203,11 @@ static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x5;
if (boot_cpu_data.x86 == 0xf)
if (pvt->fam == 0xf)
min_scrubrate = 0x0;
/* F15h Erratum #505 */
if (boot_cpu_data.x86 == 0x15)
/* Erratum #505 */
if (pvt->fam == 0x15 && pvt->model < 0x10)
f15h_select_dct(pvt, 0);
return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
@ -218,8 +219,8 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
u32 scrubval = 0;
int i, retval = -EINVAL;
/* F15h Erratum #505 */
if (boot_cpu_data.x86 == 0x15)
/* Erratum #505 */
if (pvt->fam == 0x15 && pvt->model < 0x10)
f15h_select_dct(pvt, 0);
amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
@ -335,7 +336,7 @@ static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
u64 csbase, csmask, base_bits, mask_bits;
u8 addr_shift;
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow];
base_bits = GENMASK(21, 31) | GENMASK(9, 15);
@ -343,10 +344,11 @@ static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
addr_shift = 4;
/*
* F16h needs two addr_shift values: 8 for high and 6 for low
* (cf. F16h BKDG).
*/
} else if (boot_cpu_data.x86 == 0x16) {
* F16h and F15h, models 30h and later need two addr_shift values:
* 8 for high and 6 for low (cf. F16h BKDG).
*/
} else if (pvt->fam == 0x16 ||
(pvt->fam == 0x15 && pvt->model >= 0x30)) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow >> 1];
@ -367,7 +369,7 @@ static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
csmask = pvt->csels[dct].csmasks[csrow >> 1];
addr_shift = 8;
if (boot_cpu_data.x86 == 0x15)
if (pvt->fam == 0x15)
base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
else
base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
@ -447,14 +449,14 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
struct amd64_pvt *pvt = mci->pvt_info;
/* only revE and later have the DRAM Hole Address Register */
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
edac_dbg(1, " revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
}
/* valid for Fam10h and above */
if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
return 1;
}
@ -486,10 +488,8 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
*hole_base = dhar_base(pvt);
*hole_size = (1ULL << 32) - *hole_base;
if (boot_cpu_data.x86 > 0xf)
*hole_offset = f10_dhar_offset(pvt);
else
*hole_offset = k8_dhar_offset(pvt);
*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
: k8_dhar_offset(pvt);
edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
pvt->mc_node_id, (unsigned long)*hole_base,
@ -663,7 +663,7 @@ static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
u8 bit;
unsigned long edac_cap = EDAC_FLAG_NONE;
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
? 19
: 17;
@ -675,7 +675,7 @@ static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
{
edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
@ -686,7 +686,7 @@ static void amd64_dump_dramcfg_low(u32 dclr, int chan)
edac_dbg(1, " PAR/ERR parity: %s\n",
(dclr & BIT(8)) ? "enabled" : "disabled");
if (boot_cpu_data.x86 == 0x10)
if (pvt->fam == 0x10)
edac_dbg(1, " DCT 128bit mode width: %s\n",
(dclr & BIT(11)) ? "128b" : "64b");
@ -709,21 +709,21 @@ static void dump_misc_regs(struct amd64_pvt *pvt)
(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
amd64_dump_dramcfg_low(pvt->dclr0, 0);
amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
pvt->dhar, dhar_base(pvt),
(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
: f10_dhar_offset(pvt));
(pvt->fam == 0xf) ? k8_dhar_offset(pvt)
: f10_dhar_offset(pvt));
edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
amd64_debug_display_dimm_sizes(pvt, 0);
/* everything below this point is Fam10h and above */
if (boot_cpu_data.x86 == 0xf)
if (pvt->fam == 0xf)
return;
amd64_debug_display_dimm_sizes(pvt, 1);
@ -732,17 +732,20 @@ static void dump_misc_regs(struct amd64_pvt *pvt)
/* Only if NOT ganged does dclr1 have valid info */
if (!dct_ganging_enabled(pvt))
amd64_dump_dramcfg_low(pvt->dclr1, 1);
amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
}
/*
* see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
* See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
*/
static void prep_chip_selects(struct amd64_pvt *pvt)
{
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
} else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
} else {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
@ -768,7 +771,7 @@ static void read_dct_base_mask(struct amd64_pvt *pvt)
edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
cs, *base0, reg0);
if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
continue;
if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
@ -786,7 +789,7 @@ static void read_dct_base_mask(struct amd64_pvt *pvt)
edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
cs, *mask0, reg0);
if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
continue;
if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
@ -800,9 +803,9 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
enum mem_type type;
/* F15h supports only DDR3 */
if (boot_cpu_data.x86 >= 0x15)
if (pvt->fam >= 0x15)
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
if (pvt->dchr0 & DDR3_MODE)
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
else
@ -835,14 +838,13 @@ static int k8_early_channel_count(struct amd64_pvt *pvt)
}
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
u64 addr;
u8 start_bit = 1;
u8 end_bit = 47;
if (c->x86 == 0xf) {
if (pvt->fam == 0xf) {
start_bit = 3;
end_bit = 39;
}
@ -852,7 +854,7 @@ static u64 get_error_address(struct mce *m)
/*
* Erratum 637 workaround
*/
if (c->x86 == 0x15) {
if (pvt->fam == 0x15) {
struct amd64_pvt *pvt;
u64 cc6_base, tmp_addr;
u32 tmp;
@ -916,15 +918,15 @@ static struct pci_dev *pci_get_related_function(unsigned int vendor,
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
{
struct amd_northbridge *nb;
struct pci_dev *misc, *f1 = NULL;
struct cpuinfo_x86 *c = &boot_cpu_data;
struct pci_dev *f1 = NULL;
unsigned int pci_func;
int off = range << 3;
u32 llim;
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
if (c->x86 == 0xf)
if (pvt->fam == 0xf)
return;
if (!dram_rw(pvt, range))
@ -934,15 +936,17 @@ static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
/* F15h: factor in CC6 save area by reading dst node's limit reg */
if (c->x86 != 0x15)
if (pvt->fam != 0x15)
return;
nb = node_to_amd_nb(dram_dst_node(pvt, range));
if (WARN_ON(!nb))
return;
misc = nb->misc;
f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
: PCI_DEVICE_ID_AMD_15H_NB_F1;
f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
if (WARN_ON(!f1))
return;
@ -1089,7 +1093,7 @@ static int f1x_early_channel_count(struct amd64_pvt *pvt)
int i, j, channels = 0;
/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
return 2;
/*
@ -1173,7 +1177,7 @@ static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
}
/*
* F16h has only limited cs_modes
* F16h and F15h model 30h have only limited cs_modes.
*/
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode)
@ -1190,7 +1194,7 @@ static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
static void read_dram_ctl_register(struct amd64_pvt *pvt)
{
if (boot_cpu_data.x86 == 0xf)
if (pvt->fam == 0xf)
return;
if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
@ -1217,6 +1221,29 @@ static void read_dram_ctl_register(struct amd64_pvt *pvt)
amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
}
/*
* Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
* 2.10.12 Memory Interleaving Modes).
*/
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
u8 intlv_en, int num_dcts_intlv,
u32 dct_sel)
{
u8 channel = 0;
u8 select;
if (!(intlv_en))
return (u8)(dct_sel);
if (num_dcts_intlv == 2) {
select = (sys_addr >> 8) & 0x3;
channel = select ? 0x3 : 0;
} else if (num_dcts_intlv == 4)
channel = (sys_addr >> 8) & 0x7;
return channel;
}
/*
* Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
* Interleaving Modes.
@ -1366,6 +1393,10 @@ static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
(in_addr & cs_mask), (cs_base & cs_mask));
if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
cs_found = csrow;
break;
}
cs_found = f10_process_possible_spare(pvt, dct, csrow);
edac_dbg(1, " MATCH csrow=%d\n", cs_found);
@ -1384,11 +1415,9 @@ static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
{
u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
if (boot_cpu_data.x86 == 0x10) {
if (pvt->fam == 0x10) {
/* only revC3 and revE have that feature */
if (boot_cpu_data.x86_model < 4 ||
(boot_cpu_data.x86_model < 0xa &&
boot_cpu_data.x86_mask < 3))
if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
return sys_addr;
}
@ -1492,20 +1521,143 @@ static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
return cs_found;
}
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
int *chan_sel)
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
u64 sys_addr, int *chan_sel)
{
int cs_found = -EINVAL;
int num_dcts_intlv = 0;
u64 chan_addr, chan_offset;
u64 dct_base, dct_limit;
u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
u64 dhar_offset = f10_dhar_offset(pvt);
u8 intlv_addr = dct_sel_interleave_addr(pvt);
u8 node_id = dram_dst_node(pvt, range);
u8 intlv_en = dram_intlv_en(pvt, range);
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
range, sys_addr, get_dram_limit(pvt, range));
if (!(get_dram_base(pvt, range) <= sys_addr) &&
!(get_dram_limit(pvt, range) >= sys_addr))
return -EINVAL;
if (dhar_valid(pvt) &&
dhar_base(pvt) <= sys_addr &&
sys_addr < BIT_64(32)) {
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
sys_addr);
return -EINVAL;
}
/* Verify sys_addr is within DCT Range. */
dct_base = (u64) dct_sel_baseaddr(pvt);
dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
if (!(dct_cont_base_reg & BIT(0)) &&
!(dct_base <= (sys_addr >> 27) &&
dct_limit >= (sys_addr >> 27)))
return -EINVAL;
/* Verify number of dct's that participate in channel interleaving. */
num_dcts_intlv = (int) hweight8(intlv_en);
if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
return -EINVAL;
channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
num_dcts_intlv, dct_sel);
/* Verify we stay within the MAX number of channels allowed */
if (channel > 4 || channel < 0)
return -EINVAL;
leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
/* Get normalized DCT addr */
if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
chan_offset = dhar_offset;
else
chan_offset = dct_base << 27;
chan_addr = sys_addr - chan_offset;
/* remove channel interleave */
if (num_dcts_intlv == 2) {
if (intlv_addr == 0x4)
chan_addr = ((chan_addr >> 9) << 8) |
(chan_addr & 0xff);
else if (intlv_addr == 0x5)
chan_addr = ((chan_addr >> 10) << 9) |
(chan_addr & 0x1ff);
else
return -EINVAL;
} else if (num_dcts_intlv == 4) {
if (intlv_addr == 0x4)
chan_addr = ((chan_addr >> 10) << 8) |
(chan_addr & 0xff);
else if (intlv_addr == 0x5)
chan_addr = ((chan_addr >> 11) << 9) |
(chan_addr & 0x1ff);
else
return -EINVAL;
}
if (dct_offset_en) {
amd64_read_pci_cfg(pvt->F1,
DRAM_CONT_HIGH_OFF + (int) channel * 4,
&tmp);
chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
}
f15h_select_dct(pvt, channel);
edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
/*
* Find Chip select:
* if channel = 3, then alias it to 1. This is because, in F15 M30h,
* there is support for 4 DCT's, but only 2 are currently functional.
* They are DCT0 and DCT3. But we have read all registers of DCT3 into
* pvt->csels[1]. So we need to use '1' here to get correct info.
* Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
*/
alias_channel = (channel == 3) ? 1 : channel;
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
if (cs_found >= 0)
*chan_sel = alias_channel;
return cs_found;
}
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
u64 sys_addr,
int *chan_sel)
{
int cs_found = -EINVAL;
unsigned range;
for (range = 0; range < DRAM_RANGES; range++) {
if (!dram_rw(pvt, range))
continue;
if ((get_dram_base(pvt, range) <= sys_addr) &&
(get_dram_limit(pvt, range) >= sys_addr)) {
if (pvt->fam == 0x15 && pvt->model >= 0x30)
cs_found = f15_m30h_match_to_this_node(pvt, range,
sys_addr,
chan_sel);
else if ((get_dram_base(pvt, range) <= sys_addr) &&
(get_dram_limit(pvt, range) >= sys_addr)) {
cs_found = f1x_match_to_this_node(pvt, range,
sys_addr, chan_sel);
if (cs_found >= 0)
@ -1554,7 +1706,7 @@ static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
if (boot_cpu_data.x86 == 0xf) {
if (pvt->fam == 0xf) {
/* K8 families < revF not supported yet */
if (pvt->ext_model < K8_REV_F)
return;
@ -1624,6 +1776,17 @@ static struct amd64_family_type amd64_family_types[] = {
.read_dct_pci_cfg = f15_read_dct_pci_cfg,
}
},
[F15_M30H_CPUS] = {
.ctl_name = "F15h_M30h",
.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f16_dbam_to_chip_select,
.read_dct_pci_cfg = f15_read_dct_pci_cfg,
}
},
[F16_CPUS] = {
.ctl_name = "F16h",
.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
@ -1860,7 +2023,7 @@ static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
memset(&err, 0, sizeof(err));
sys_addr = get_error_address(m);
sys_addr = get_error_address(pvt, m);
if (ecc_type == 2)
err.syndrome = extract_syndrome(m->status);
@ -1921,10 +2084,9 @@ static void free_mc_sibling_devs(struct amd64_pvt *pvt)
*/
static void read_mc_regs(struct amd64_pvt *pvt)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
unsigned range;
u64 msr_val;
u32 tmp;
unsigned range;
/*
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
@ -1985,14 +2147,14 @@ static void read_mc_regs(struct amd64_pvt *pvt)
pvt->ecc_sym_sz = 4;
if (c->x86 >= 0x10) {
if (pvt->fam >= 0x10) {
amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
if (c->x86 != 0x16)
if (pvt->fam != 0x16)
/* F16h has only DCT0 */
amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
/* F10h, revD and later can do x8 ECC too */
if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
pvt->ecc_sym_sz = 8;
}
dump_misc_regs(pvt);
@ -2086,7 +2248,7 @@ static int init_csrows(struct mem_ctl_info *mci)
bool row_dct0 = !!csrow_enabled(i, 0, pvt);
bool row_dct1 = false;
if (boot_cpu_data.x86 != 0xf)
if (pvt->fam != 0xf)
row_dct1 = !!csrow_enabled(i, 1, pvt);
if (!row_dct0 && !row_dct1)
@ -2104,7 +2266,7 @@ static int init_csrows(struct mem_ctl_info *mci)
}
/* K8 has only one DCT */
if (boot_cpu_data.x86 != 0xf && row_dct1) {
if (pvt->fam != 0xf && row_dct1) {
int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
@ -2333,13 +2495,14 @@ static bool ecc_enabled(struct pci_dev *F3, u16 nid)
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
int rc;
rc = amd64_create_sysfs_dbg_files(mci);
if (rc < 0)
return rc;
if (boot_cpu_data.x86 >= 0x10) {
if (pvt->fam >= 0x10) {
rc = amd64_create_sysfs_inject_files(mci);
if (rc < 0)
return rc;
@ -2350,9 +2513,11 @@ static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
amd64_remove_sysfs_dbg_files(mci);
if (boot_cpu_data.x86 >= 0x10)
if (pvt->fam >= 0x10)
amd64_remove_sysfs_inject_files(mci);
}
@ -2387,10 +2552,14 @@ static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
*/
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
{
u8 fam = boot_cpu_data.x86;
struct amd64_family_type *fam_type = NULL;
switch (fam) {
pvt->ext_model = boot_cpu_data.x86_model >> 4;
pvt->stepping = boot_cpu_data.x86_mask;
pvt->model = boot_cpu_data.x86_model;
pvt->fam = boot_cpu_data.x86;
switch (pvt->fam) {
case 0xf:
fam_type = &amd64_family_types[K8_CPUS];
pvt->ops = &amd64_family_types[K8_CPUS].ops;
@ -2402,6 +2571,12 @@ static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
break;
case 0x15:
if (pvt->model == 0x30) {
fam_type = &amd64_family_types[F15_M30H_CPUS];
pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops;
break;
}
fam_type = &amd64_family_types[F15_CPUS];
pvt->ops = &amd64_family_types[F15_CPUS].ops;
break;
@ -2416,10 +2591,8 @@ static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
return NULL;
}
pvt->ext_model = boot_cpu_data.x86_model >> 4;
amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
(fam == 0xf ?
(pvt->fam == 0xf ?
(pvt->ext_model >= K8_REV_F ? "revF or later "
: "revE or earlier ")
: ""), pvt->mc_node_id);
@ -2470,8 +2643,15 @@ static int amd64_init_one_instance(struct pci_dev *F2)
layers[0].size = pvt->csels[0].b_cnt;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = pvt->channel_count;
/*
* Always allocate two channels since we can have setups with DIMMs on
* only one channel. Also, this simplifies handling later for the price
* of a couple of KBs tops.
*/
layers[1].size = 2;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
if (!mci)
goto err_siblings;
@ -2579,6 +2759,8 @@ static void amd64_remove_one_instance(struct pci_dev *pdev)
struct ecc_settings *s = ecc_stngs[nid];
mci = find_mci_by_dev(&pdev->dev);
WARN_ON(!mci);
del_mc_sysfs_attrs(mci);
/* Remove from EDAC CORE tracking list */
mci = edac_mc_del_mc(&pdev->dev);
@ -2636,6 +2818,14 @@ static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
.class = 0,
.class_mask = 0,
},
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = 0,
.class_mask = 0,
},
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_16H_NB_F2,

View File

@ -170,6 +170,8 @@
/*
* PCI-defined configuration space registers
*/
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 0x141b
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F2 0x141c
#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
#define PCI_DEVICE_ID_AMD_16H_NB_F1 0x1531
@ -181,13 +183,22 @@
#define DRAM_BASE_LO 0x40
#define DRAM_LIMIT_LO 0x44
#define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7))
/*
* F15 M30h D18F1x2[1C:00]
*/
#define DRAM_CONT_BASE 0x200
#define DRAM_CONT_LIMIT 0x204
/*
* F15 M30h D18F1x2[4C:40]
*/
#define DRAM_CONT_HIGH_OFF 0x240
#define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3))
#define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
#define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7))
#define DHAR 0xf0
#define dhar_valid(pvt) ((pvt)->dhar & BIT(0))
#define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
#define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
#define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
@ -234,8 +245,6 @@
#define DDR3_MODE BIT(8)
#define DCT_SEL_LO 0x110
#define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800)
#define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3)
#define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
#define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
@ -297,6 +306,7 @@ enum amd_families {
K8_CPUS = 0,
F10_CPUS,
F15_CPUS,
F15_M30H_CPUS,
F16_CPUS,
NUM_FAMILIES,
};
@ -337,6 +347,10 @@ struct amd64_pvt {
struct pci_dev *F1, *F2, *F3;
u16 mc_node_id; /* MC index of this MC node */
u8 fam; /* CPU family */
u8 model; /* ... model */
u8 stepping; /* ... stepping */
int ext_model; /* extended model value of this node */
int channel_count;
@ -414,6 +428,14 @@ static inline u16 extract_syndrome(u64 status)
return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
}
static inline u8 dct_sel_interleave_addr(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30)
return (((pvt->dct_sel_hi >> 9) & 0x1) << 2) |
((pvt->dct_sel_lo >> 6) & 0x3);
return ((pvt)->dct_sel_lo >> 6) & 0x3;
}
/*
* per-node ECC settings descriptor
*/
@ -504,3 +526,33 @@ static inline void enable_caches(void *dummy)
{
write_cr0(read_cr0() & ~X86_CR0_CD);
}
static inline u8 dram_intlv_en(struct amd64_pvt *pvt, unsigned int i)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &tmp);
return (u8) tmp & 0xF;
}
return (u8) (pvt->ranges[i].base.lo >> 8) & 0x7;
}
static inline u8 dhar_valid(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
return (tmp >> 1) & BIT(0);
}
return (pvt)->dhar & BIT(0);
}
static inline u32 dct_sel_baseaddr(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
return (tmp >> 11) & 0x1FFF;
}
return (pvt)->dct_sel_lo & 0xFFFFF800;
}

View File

@ -789,7 +789,7 @@ static struct cpc925_dev_info cpc925_devs[] = {
.exit = cpc925_htlink_exit,
.check = cpc925_htlink_check,
},
{0}, /* Terminated by NULL */
{ }
};
/*

View File

@ -58,8 +58,10 @@ static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
if (!val)
return -EINVAL;
ret = strict_strtol(val, 0, &l);
if (ret == -EINVAL || ((int)l != l))
ret = kstrtol(val, 0, &l);
if (ret)
return ret;
if ((int)l != l)
return -EINVAL;
*((int *)kp->arg) = l;

View File

@ -260,8 +260,7 @@ static void i3200_check(struct mem_ctl_info *mci)
i3200_process_error_info(mci, &info);
}
void __iomem *i3200_map_mchbar(struct pci_dev *pdev)
static void __iomem *i3200_map_mchbar(struct pci_dev *pdev)
{
union {
u64 mchbar;

View File

@ -248,8 +248,7 @@ static void x38_check(struct mem_ctl_info *mci)
x38_process_error_info(mci, &info);
}
void __iomem *x38_map_mchbar(struct pci_dev *pdev)
static void __iomem *x38_map_mchbar(struct pci_dev *pdev)
{
union {
u64 mchbar;

View File

@ -1798,6 +1798,7 @@ enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
MF_ACTION_REQUIRED = 1 << 1,
MF_MUST_KILL = 1 << 2,
MF_SOFT_OFFLINE = 1 << 3,
};
extern int memory_failure(unsigned long pfn, int trapno, int flags);
extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);

View File

@ -518,6 +518,8 @@
#define PCI_DEVICE_ID_AMD_11H_NB_MISC 0x1303
#define PCI_DEVICE_ID_AMD_11H_NB_LINK 0x1304
#define PCI_DEVICE_ID_AMD_15H_M10H_F3 0x1403
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F3 0x141d
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F4 0x141e
#define PCI_DEVICE_ID_AMD_15H_NB_F0 0x1600
#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602

View File

@ -1286,7 +1286,10 @@ static void memory_failure_work_func(struct work_struct *work)
spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
if (!gotten)
break;
memory_failure(entry.pfn, entry.trapno, entry.flags);
if (entry.flags & MF_SOFT_OFFLINE)
soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
else
memory_failure(entry.pfn, entry.trapno, entry.flags);
}
}