mirror of https://gitee.com/openkylin/linux.git
mtd: doc: remove support for DoC 2000/2001/2001+
These drivers are deprecated for very long time, and we have a different driver for these called "diskonchip". Thus, kill the ancient cruft. Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
parent
8e12b474f9
commit
b5a6c3095f
|
@ -205,69 +205,6 @@ config MTD_BLOCK2MTD
|
|||
|
||||
comment "Disk-On-Chip Device Drivers"
|
||||
|
||||
config MTD_DOC2000
|
||||
tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)"
|
||||
depends on MTD_NAND
|
||||
select MTD_DOCPROBE
|
||||
select MTD_NAND_IDS
|
||||
---help---
|
||||
This provides an MTD device driver for the M-Systems DiskOnChip
|
||||
2000 and Millennium devices. Originally designed for the DiskOnChip
|
||||
2000, it also now includes support for the DiskOnChip Millennium.
|
||||
If you have problems with this driver and the DiskOnChip Millennium,
|
||||
you may wish to try the alternative Millennium driver below. To use
|
||||
the alternative driver, you will need to undefine DOC_SINGLE_DRIVER
|
||||
in the <file:drivers/mtd/devices/docprobe.c> source code.
|
||||
|
||||
If you use this device, you probably also want to enable the NFTL
|
||||
'NAND Flash Translation Layer' option below, which is used to
|
||||
emulate a block device by using a kind of file system on the flash
|
||||
chips.
|
||||
|
||||
NOTE: This driver is deprecated and will probably be removed soon.
|
||||
Please try the new DiskOnChip driver under "NAND Flash Device
|
||||
Drivers".
|
||||
|
||||
config MTD_DOC2001
|
||||
tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)"
|
||||
depends on MTD_NAND
|
||||
select MTD_DOCPROBE
|
||||
select MTD_NAND_IDS
|
||||
---help---
|
||||
This provides an alternative MTD device driver for the M-Systems
|
||||
DiskOnChip Millennium devices. Use this if you have problems with
|
||||
the combined DiskOnChip 2000 and Millennium driver above. To get
|
||||
the DiskOnChip probe code to load and use this driver instead of
|
||||
the other one, you will need to undefine DOC_SINGLE_DRIVER near
|
||||
the beginning of <file:drivers/mtd/devices/docprobe.c>.
|
||||
|
||||
If you use this device, you probably also want to enable the NFTL
|
||||
'NAND Flash Translation Layer' option below, which is used to
|
||||
emulate a block device by using a kind of file system on the flash
|
||||
chips.
|
||||
|
||||
NOTE: This driver is deprecated and will probably be removed soon.
|
||||
Please try the new DiskOnChip driver under "NAND Flash Device
|
||||
Drivers".
|
||||
|
||||
config MTD_DOC2001PLUS
|
||||
tristate "M-Systems Disk-On-Chip Millennium Plus"
|
||||
depends on MTD_NAND
|
||||
select MTD_DOCPROBE
|
||||
select MTD_NAND_IDS
|
||||
---help---
|
||||
This provides an MTD device driver for the M-Systems DiskOnChip
|
||||
Millennium Plus devices.
|
||||
|
||||
If you use this device, you probably also want to enable the INFTL
|
||||
'Inverse NAND Flash Translation Layer' option below, which is used
|
||||
to emulate a block device by using a kind of file system on the
|
||||
flash chips.
|
||||
|
||||
NOTE: This driver will soon be replaced by the new DiskOnChip driver
|
||||
under "NAND Flash Device Drivers" (currently that driver does not
|
||||
support all Millennium Plus devices).
|
||||
|
||||
config MTD_DOCG3
|
||||
tristate "M-Systems Disk-On-Chip G3"
|
||||
select BCH
|
||||
|
|
|
@ -2,12 +2,7 @@
|
|||
# linux/drivers/mtd/devices/Makefile
|
||||
#
|
||||
|
||||
obj-$(CONFIG_MTD_DOC2000) += doc2000.o
|
||||
obj-$(CONFIG_MTD_DOC2001) += doc2001.o
|
||||
obj-$(CONFIG_MTD_DOC2001PLUS) += doc2001plus.o
|
||||
obj-$(CONFIG_MTD_DOCG3) += docg3.o
|
||||
obj-$(CONFIG_MTD_DOCPROBE) += docprobe.o
|
||||
obj-$(CONFIG_MTD_DOCECC) += docecc.o
|
||||
obj-$(CONFIG_MTD_SLRAM) += slram.o
|
||||
obj-$(CONFIG_MTD_PHRAM) += phram.o
|
||||
obj-$(CONFIG_MTD_PMC551) += pmc551.o
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,824 +0,0 @@
|
|||
|
||||
/*
|
||||
* Linux driver for Disk-On-Chip Millennium
|
||||
* (c) 1999 Machine Vision Holdings, Inc.
|
||||
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/bitops.h>
|
||||
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/doc2000.h>
|
||||
|
||||
/* #define ECC_DEBUG */
|
||||
|
||||
/* I have no idea why some DoC chips can not use memcop_form|to_io().
|
||||
* This may be due to the different revisions of the ASIC controller built-in or
|
||||
* simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
|
||||
* this:*/
|
||||
#undef USE_MEMCPY
|
||||
|
||||
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
|
||||
struct mtd_oob_ops *ops);
|
||||
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
|
||||
struct mtd_oob_ops *ops);
|
||||
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
|
||||
|
||||
static struct mtd_info *docmillist = NULL;
|
||||
|
||||
/* Perform the required delay cycles by reading from the NOP register */
|
||||
static void DoC_Delay(void __iomem * docptr, unsigned short cycles)
|
||||
{
|
||||
volatile char dummy;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < cycles; i++)
|
||||
dummy = ReadDOC(docptr, NOP);
|
||||
}
|
||||
|
||||
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
|
||||
static int _DoC_WaitReady(void __iomem * docptr)
|
||||
{
|
||||
unsigned short c = 0xffff;
|
||||
|
||||
pr_debug("_DoC_WaitReady called for out-of-line wait\n");
|
||||
|
||||
/* Out-of-line routine to wait for chip response */
|
||||
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c)
|
||||
;
|
||||
|
||||
if (c == 0)
|
||||
pr_debug("_DoC_WaitReady timed out.\n");
|
||||
|
||||
return (c == 0);
|
||||
}
|
||||
|
||||
static inline int DoC_WaitReady(void __iomem * docptr)
|
||||
{
|
||||
/* This is inline, to optimise the common case, where it's ready instantly */
|
||||
int ret = 0;
|
||||
|
||||
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
|
||||
see Software Requirement 11.4 item 2. */
|
||||
DoC_Delay(docptr, 4);
|
||||
|
||||
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
|
||||
/* Call the out-of-line routine to wait */
|
||||
ret = _DoC_WaitReady(docptr);
|
||||
|
||||
/* issue 2 read from NOP register after reading from CDSNControl register
|
||||
see Software Requirement 11.4 item 2. */
|
||||
DoC_Delay(docptr, 2);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* DoC_Command: Send a flash command to the flash chip through the CDSN IO register
|
||||
with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
||||
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
||||
|
||||
static void DoC_Command(void __iomem * docptr, unsigned char command,
|
||||
unsigned char xtraflags)
|
||||
{
|
||||
/* Assert the CLE (Command Latch Enable) line to the flash chip */
|
||||
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
|
||||
DoC_Delay(docptr, 4);
|
||||
|
||||
/* Send the command */
|
||||
WriteDOC(command, docptr, Mil_CDSN_IO);
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
|
||||
/* Lower the CLE line */
|
||||
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
|
||||
DoC_Delay(docptr, 4);
|
||||
}
|
||||
|
||||
/* DoC_Address: Set the current address for the flash chip through the CDSN IO register
|
||||
with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
||||
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
||||
|
||||
static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs,
|
||||
unsigned char xtraflags1, unsigned char xtraflags2)
|
||||
{
|
||||
/* Assert the ALE (Address Latch Enable) line to the flash chip */
|
||||
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
|
||||
DoC_Delay(docptr, 4);
|
||||
|
||||
/* Send the address */
|
||||
switch (numbytes)
|
||||
{
|
||||
case 1:
|
||||
/* Send single byte, bits 0-7. */
|
||||
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
break;
|
||||
case 2:
|
||||
/* Send bits 9-16 followed by 17-23 */
|
||||
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
break;
|
||||
case 3:
|
||||
/* Send 0-7, 9-16, then 17-23 */
|
||||
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
/* Lower the ALE line */
|
||||
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl);
|
||||
DoC_Delay(docptr, 4);
|
||||
}
|
||||
|
||||
/* DoC_SelectChip: Select a given flash chip within the current floor */
|
||||
static int DoC_SelectChip(void __iomem * docptr, int chip)
|
||||
{
|
||||
/* Select the individual flash chip requested */
|
||||
WriteDOC(chip, docptr, CDSNDeviceSelect);
|
||||
DoC_Delay(docptr, 4);
|
||||
|
||||
/* Wait for it to be ready */
|
||||
return DoC_WaitReady(docptr);
|
||||
}
|
||||
|
||||
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
|
||||
static int DoC_SelectFloor(void __iomem * docptr, int floor)
|
||||
{
|
||||
/* Select the floor (bank) of chips required */
|
||||
WriteDOC(floor, docptr, FloorSelect);
|
||||
|
||||
/* Wait for the chip to be ready */
|
||||
return DoC_WaitReady(docptr);
|
||||
}
|
||||
|
||||
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
|
||||
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
|
||||
{
|
||||
int mfr, id, i, j;
|
||||
volatile char dummy;
|
||||
|
||||
/* Page in the required floor/chip
|
||||
FIXME: is this supported by Millennium ?? */
|
||||
DoC_SelectFloor(doc->virtadr, floor);
|
||||
DoC_SelectChip(doc->virtadr, chip);
|
||||
|
||||
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
||||
DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP);
|
||||
DoC_WaitReady(doc->virtadr);
|
||||
|
||||
/* Read the NAND chip ID: 1. Send ReadID command */
|
||||
DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP);
|
||||
|
||||
/* Read the NAND chip ID: 2. Send address byte zero */
|
||||
DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00);
|
||||
|
||||
/* Read the manufacturer and device id codes of the flash device through
|
||||
CDSN IO register see Software Requirement 11.4 item 5.*/
|
||||
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
|
||||
DoC_Delay(doc->virtadr, 2);
|
||||
mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO);
|
||||
|
||||
DoC_Delay(doc->virtadr, 2);
|
||||
id = ReadDOC(doc->virtadr, Mil_CDSN_IO);
|
||||
dummy = ReadDOC(doc->virtadr, LastDataRead);
|
||||
|
||||
/* No response - return failure */
|
||||
if (mfr == 0xff || mfr == 0)
|
||||
return 0;
|
||||
|
||||
/* FIXME: to deal with multi-flash on multi-Millennium case more carefully */
|
||||
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
||||
if ( id == nand_flash_ids[i].dev_id) {
|
||||
/* Try to identify manufacturer */
|
||||
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
|
||||
if (nand_manuf_ids[j].id == mfr)
|
||||
break;
|
||||
}
|
||||
printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, "
|
||||
"Chip ID: %2.2X (%s:%s)\n",
|
||||
mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name);
|
||||
doc->mfr = mfr;
|
||||
doc->id = id;
|
||||
doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nand_flash_ids[i].name == NULL)
|
||||
return 0;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
|
||||
static void DoC_ScanChips(struct DiskOnChip *this)
|
||||
{
|
||||
int floor, chip;
|
||||
int numchips[MAX_FLOORS_MIL];
|
||||
int ret;
|
||||
|
||||
this->numchips = 0;
|
||||
this->mfr = 0;
|
||||
this->id = 0;
|
||||
|
||||
/* For each floor, find the number of valid chips it contains */
|
||||
for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) {
|
||||
numchips[floor] = 0;
|
||||
for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) {
|
||||
ret = DoC_IdentChip(this, floor, chip);
|
||||
if (ret) {
|
||||
numchips[floor]++;
|
||||
this->numchips++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If there are none at all that we recognise, bail */
|
||||
if (!this->numchips) {
|
||||
printk("No flash chips recognised.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Allocate an array to hold the information for each chip */
|
||||
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
|
||||
if (!this->chips){
|
||||
printk("No memory for allocating chip info structures\n");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Fill out the chip array with {floor, chipno} for each
|
||||
* detected chip in the device. */
|
||||
for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) {
|
||||
for (chip = 0 ; chip < numchips[floor] ; chip++) {
|
||||
this->chips[ret].floor = floor;
|
||||
this->chips[ret].chip = chip;
|
||||
this->chips[ret].curadr = 0;
|
||||
this->chips[ret].curmode = 0x50;
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculate and print the total size of the device */
|
||||
this->totlen = this->numchips * (1 << this->chipshift);
|
||||
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
|
||||
this->numchips ,this->totlen >> 20);
|
||||
}
|
||||
|
||||
static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
|
||||
{
|
||||
int tmp1, tmp2, retval;
|
||||
|
||||
if (doc1->physadr == doc2->physadr)
|
||||
return 1;
|
||||
|
||||
/* Use the alias resolution register which was set aside for this
|
||||
* purpose. If it's value is the same on both chips, they might
|
||||
* be the same chip, and we write to one and check for a change in
|
||||
* the other. It's unclear if this register is usuable in the
|
||||
* DoC 2000 (it's in the Millenium docs), but it seems to work. */
|
||||
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
|
||||
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
||||
if (tmp1 != tmp2)
|
||||
return 0;
|
||||
|
||||
WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution);
|
||||
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
||||
if (tmp2 == (tmp1+1) % 0xff)
|
||||
retval = 1;
|
||||
else
|
||||
retval = 0;
|
||||
|
||||
/* Restore register contents. May not be necessary, but do it just to
|
||||
* be safe. */
|
||||
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/* This routine is found from the docprobe code by symbol_get(),
|
||||
* which will bump the use count of this module. */
|
||||
void DoCMil_init(struct mtd_info *mtd)
|
||||
{
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
struct DiskOnChip *old = NULL;
|
||||
|
||||
/* We must avoid being called twice for the same device. */
|
||||
if (docmillist)
|
||||
old = docmillist->priv;
|
||||
|
||||
while (old) {
|
||||
if (DoCMil_is_alias(this, old)) {
|
||||
printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at "
|
||||
"0x%lX - already configured\n", this->physadr);
|
||||
iounmap(this->virtadr);
|
||||
kfree(mtd);
|
||||
return;
|
||||
}
|
||||
if (old->nextdoc)
|
||||
old = old->nextdoc->priv;
|
||||
else
|
||||
old = NULL;
|
||||
}
|
||||
|
||||
mtd->name = "DiskOnChip Millennium";
|
||||
printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n",
|
||||
this->physadr);
|
||||
|
||||
mtd->type = MTD_NANDFLASH;
|
||||
mtd->flags = MTD_CAP_NANDFLASH;
|
||||
|
||||
/* FIXME: erase size is not always 8KiB */
|
||||
mtd->erasesize = 0x2000;
|
||||
mtd->writebufsize = mtd->writesize = 512;
|
||||
mtd->oobsize = 16;
|
||||
mtd->ecc_strength = 2;
|
||||
mtd->owner = THIS_MODULE;
|
||||
mtd->_erase = doc_erase;
|
||||
mtd->_read = doc_read;
|
||||
mtd->_write = doc_write;
|
||||
mtd->_read_oob = doc_read_oob;
|
||||
mtd->_write_oob = doc_write_oob;
|
||||
this->curfloor = -1;
|
||||
this->curchip = -1;
|
||||
|
||||
/* Ident all the chips present. */
|
||||
DoC_ScanChips(this);
|
||||
|
||||
if (!this->totlen) {
|
||||
kfree(mtd);
|
||||
iounmap(this->virtadr);
|
||||
} else {
|
||||
this->nextdoc = docmillist;
|
||||
docmillist = mtd;
|
||||
mtd->size = this->totlen;
|
||||
mtd_device_register(mtd, NULL, 0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(DoCMil_init);
|
||||
|
||||
static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
int i, ret;
|
||||
volatile char dummy;
|
||||
unsigned char syndrome[6], eccbuf[6];
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
void __iomem *docptr = this->virtadr;
|
||||
struct Nand *mychip = &this->chips[from >> (this->chipshift)];
|
||||
|
||||
/* Don't allow a single read to cross a 512-byte block boundary */
|
||||
if (from + len > ((from | 0x1ff) + 1))
|
||||
len = ((from | 0x1ff) + 1) - from;
|
||||
|
||||
/* Find the chip which is to be used and select it */
|
||||
if (this->curfloor != mychip->floor) {
|
||||
DoC_SelectFloor(docptr, mychip->floor);
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
} else if (this->curchip != mychip->chip) {
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
}
|
||||
this->curfloor = mychip->floor;
|
||||
this->curchip = mychip->chip;
|
||||
|
||||
/* issue the Read0 or Read1 command depend on which half of the page
|
||||
we are accessing. Polling the Flash Ready bit after issue 3 bytes
|
||||
address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/
|
||||
DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP);
|
||||
DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
|
||||
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
||||
WriteDOC (DOC_ECC_EN, docptr, ECCConf);
|
||||
|
||||
/* Read the data via the internal pipeline through CDSN IO register,
|
||||
see Pipelined Read Operations 11.3 */
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
#ifndef USE_MEMCPY
|
||||
for (i = 0; i < len-1; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
|
||||
}
|
||||
#else
|
||||
memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
|
||||
#endif
|
||||
buf[len - 1] = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
/* Let the caller know we completed it */
|
||||
*retlen = len;
|
||||
ret = 0;
|
||||
|
||||
/* Read the ECC data from Spare Data Area,
|
||||
see Reed-Solomon EDC/ECC 11.1 */
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
#ifndef USE_MEMCPY
|
||||
for (i = 0; i < 5; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
|
||||
}
|
||||
#else
|
||||
memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5);
|
||||
#endif
|
||||
eccbuf[5] = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
/* Flush the pipeline */
|
||||
dummy = ReadDOC(docptr, ECCConf);
|
||||
dummy = ReadDOC(docptr, ECCConf);
|
||||
|
||||
/* Check the ECC Status */
|
||||
if (ReadDOC(docptr, ECCConf) & 0x80) {
|
||||
int nb_errors;
|
||||
/* There was an ECC error */
|
||||
#ifdef ECC_DEBUG
|
||||
printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
|
||||
#endif
|
||||
/* Read the ECC syndrome through the DiskOnChip ECC logic.
|
||||
These syndrome will be all ZERO when there is no error */
|
||||
for (i = 0; i < 6; i++) {
|
||||
syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i);
|
||||
}
|
||||
nb_errors = doc_decode_ecc(buf, syndrome);
|
||||
#ifdef ECC_DEBUG
|
||||
printk("ECC Errors corrected: %x\n", nb_errors);
|
||||
#endif
|
||||
if (nb_errors < 0) {
|
||||
/* We return error, but have actually done the read. Not that
|
||||
this can be told to user-space, via sys_read(), but at least
|
||||
MTD-aware stuff can know about it by checking *retlen */
|
||||
ret = -EIO;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef PSYCHO_DEBUG
|
||||
printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
||||
(long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
|
||||
eccbuf[4], eccbuf[5]);
|
||||
#endif
|
||||
|
||||
/* disable the ECC engine */
|
||||
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
int i,ret = 0;
|
||||
char eccbuf[6];
|
||||
volatile char dummy;
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
void __iomem *docptr = this->virtadr;
|
||||
struct Nand *mychip = &this->chips[to >> (this->chipshift)];
|
||||
|
||||
#if 0
|
||||
/* Don't allow a single write to cross a 512-byte block boundary */
|
||||
if (to + len > ( (to | 0x1ff) + 1))
|
||||
len = ((to | 0x1ff) + 1) - to;
|
||||
#else
|
||||
/* Don't allow writes which aren't exactly one block */
|
||||
if (to & 0x1ff || len != 0x200)
|
||||
return -EINVAL;
|
||||
#endif
|
||||
|
||||
/* Find the chip which is to be used and select it */
|
||||
if (this->curfloor != mychip->floor) {
|
||||
DoC_SelectFloor(docptr, mychip->floor);
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
} else if (this->curchip != mychip->chip) {
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
}
|
||||
this->curfloor = mychip->floor;
|
||||
this->curchip = mychip->chip;
|
||||
|
||||
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
||||
DoC_Command(docptr, NAND_CMD_RESET, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
/* Set device to main plane of flash */
|
||||
DoC_Command(docptr, NAND_CMD_READ0, 0x00);
|
||||
|
||||
/* issue the Serial Data In command to initial the Page Program process */
|
||||
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
|
||||
DoC_Address(docptr, 3, to, 0x00, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
|
||||
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
||||
WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
|
||||
|
||||
/* Write the data via the internal pipeline through CDSN IO register,
|
||||
see Pipelined Write Operations 11.2 */
|
||||
#ifndef USE_MEMCPY
|
||||
for (i = 0; i < len; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
|
||||
}
|
||||
#else
|
||||
memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
|
||||
#endif
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
|
||||
/* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic
|
||||
see Reed-Solomon EDC/ECC 11.1 */
|
||||
WriteDOC(0, docptr, NOP);
|
||||
WriteDOC(0, docptr, NOP);
|
||||
WriteDOC(0, docptr, NOP);
|
||||
|
||||
/* Read the ECC data through the DiskOnChip ECC logic */
|
||||
for (i = 0; i < 6; i++) {
|
||||
eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i);
|
||||
}
|
||||
|
||||
/* ignore the ECC engine */
|
||||
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
|
||||
|
||||
#ifndef USE_MEMCPY
|
||||
/* Write the ECC data to flash */
|
||||
for (i = 0; i < 6; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i);
|
||||
}
|
||||
#else
|
||||
memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6);
|
||||
#endif
|
||||
|
||||
/* write the block status BLOCK_USED (0x5555) at the end of ECC data
|
||||
FIXME: this is only a hack for programming the IPL area for LinuxBIOS
|
||||
and should be replace with proper codes in user space utilities */
|
||||
WriteDOC(0x55, docptr, Mil_CDSN_IO);
|
||||
WriteDOC(0x55, docptr, Mil_CDSN_IO + 1);
|
||||
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
|
||||
#ifdef PSYCHO_DEBUG
|
||||
printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
||||
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
|
||||
eccbuf[4], eccbuf[5]);
|
||||
#endif
|
||||
|
||||
/* Commit the Page Program command and wait for ready
|
||||
see Software Requirement 11.4 item 1.*/
|
||||
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
/* Read the status of the flash device through CDSN IO register
|
||||
see Software Requirement 11.4 item 5.*/
|
||||
DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
DoC_Delay(docptr, 2);
|
||||
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
|
||||
printk("Error programming flash\n");
|
||||
/* Error in programming
|
||||
FIXME: implement Bad Block Replacement (in nftl.c ??) */
|
||||
ret = -EIO;
|
||||
}
|
||||
dummy = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
/* Let the caller know we completed it */
|
||||
*retlen = len;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
|
||||
struct mtd_oob_ops *ops)
|
||||
{
|
||||
#ifndef USE_MEMCPY
|
||||
int i;
|
||||
#endif
|
||||
volatile char dummy;
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
void __iomem *docptr = this->virtadr;
|
||||
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
|
||||
uint8_t *buf = ops->oobbuf;
|
||||
size_t len = ops->len;
|
||||
|
||||
BUG_ON(ops->mode != MTD_OPS_PLACE_OOB);
|
||||
|
||||
ofs += ops->ooboffs;
|
||||
|
||||
/* Find the chip which is to be used and select it */
|
||||
if (this->curfloor != mychip->floor) {
|
||||
DoC_SelectFloor(docptr, mychip->floor);
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
} else if (this->curchip != mychip->chip) {
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
}
|
||||
this->curfloor = mychip->floor;
|
||||
this->curchip = mychip->chip;
|
||||
|
||||
/* disable the ECC engine */
|
||||
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
||||
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
|
||||
|
||||
/* issue the Read2 command to set the pointer to the Spare Data Area.
|
||||
Polling the Flash Ready bit after issue 3 bytes address in
|
||||
Sequence Read Mode, see Software Requirement 11.4 item 1.*/
|
||||
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
||||
DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
/* Read the data out via the internal pipeline through CDSN IO register,
|
||||
see Pipelined Read Operations 11.3 */
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
#ifndef USE_MEMCPY
|
||||
for (i = 0; i < len-1; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
|
||||
}
|
||||
#else
|
||||
memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
|
||||
#endif
|
||||
buf[len - 1] = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
ops->retlen = len;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
|
||||
struct mtd_oob_ops *ops)
|
||||
{
|
||||
#ifndef USE_MEMCPY
|
||||
int i;
|
||||
#endif
|
||||
volatile char dummy;
|
||||
int ret = 0;
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
void __iomem *docptr = this->virtadr;
|
||||
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
|
||||
uint8_t *buf = ops->oobbuf;
|
||||
size_t len = ops->len;
|
||||
|
||||
BUG_ON(ops->mode != MTD_OPS_PLACE_OOB);
|
||||
|
||||
ofs += ops->ooboffs;
|
||||
|
||||
/* Find the chip which is to be used and select it */
|
||||
if (this->curfloor != mychip->floor) {
|
||||
DoC_SelectFloor(docptr, mychip->floor);
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
} else if (this->curchip != mychip->chip) {
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
}
|
||||
this->curfloor = mychip->floor;
|
||||
this->curchip = mychip->chip;
|
||||
|
||||
/* disable the ECC engine */
|
||||
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
||||
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
|
||||
|
||||
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
||||
DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
|
||||
DoC_WaitReady(docptr);
|
||||
/* issue the Read2 command to set the pointer to the Spare Data Area. */
|
||||
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
||||
|
||||
/* issue the Serial Data In command to initial the Page Program process */
|
||||
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
|
||||
DoC_Address(docptr, 3, ofs, 0x00, 0x00);
|
||||
|
||||
/* Write the data via the internal pipeline through CDSN IO register,
|
||||
see Pipelined Write Operations 11.2 */
|
||||
#ifndef USE_MEMCPY
|
||||
for (i = 0; i < len; i++) {
|
||||
/* N.B. you have to increase the source address in this way or the
|
||||
ECC logic will not work properly */
|
||||
WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
|
||||
}
|
||||
#else
|
||||
memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
|
||||
#endif
|
||||
WriteDOC(0x00, docptr, WritePipeTerm);
|
||||
|
||||
/* Commit the Page Program command and wait for ready
|
||||
see Software Requirement 11.4 item 1.*/
|
||||
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
/* Read the status of the flash device through CDSN IO register
|
||||
see Software Requirement 11.4 item 5.*/
|
||||
DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
DoC_Delay(docptr, 2);
|
||||
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
|
||||
printk("Error programming oob data\n");
|
||||
/* FIXME: implement Bad Block Replacement (in nftl.c ??) */
|
||||
ops->retlen = 0;
|
||||
ret = -EIO;
|
||||
}
|
||||
dummy = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
ops->retlen = len;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int doc_erase (struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
volatile char dummy;
|
||||
struct DiskOnChip *this = mtd->priv;
|
||||
__u32 ofs = instr->addr;
|
||||
__u32 len = instr->len;
|
||||
void __iomem *docptr = this->virtadr;
|
||||
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
|
||||
|
||||
if (len != mtd->erasesize)
|
||||
printk(KERN_WARNING "Erase not right size (%x != %x)n",
|
||||
len, mtd->erasesize);
|
||||
|
||||
/* Find the chip which is to be used and select it */
|
||||
if (this->curfloor != mychip->floor) {
|
||||
DoC_SelectFloor(docptr, mychip->floor);
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
} else if (this->curchip != mychip->chip) {
|
||||
DoC_SelectChip(docptr, mychip->chip);
|
||||
}
|
||||
this->curfloor = mychip->floor;
|
||||
this->curchip = mychip->chip;
|
||||
|
||||
instr->state = MTD_ERASE_PENDING;
|
||||
|
||||
/* issue the Erase Setup command */
|
||||
DoC_Command(docptr, NAND_CMD_ERASE1, 0x00);
|
||||
DoC_Address(docptr, 2, ofs, 0x00, 0x00);
|
||||
|
||||
/* Commit the Erase Start command and wait for ready
|
||||
see Software Requirement 11.4 item 1.*/
|
||||
DoC_Command(docptr, NAND_CMD_ERASE2, 0x00);
|
||||
DoC_WaitReady(docptr);
|
||||
|
||||
instr->state = MTD_ERASING;
|
||||
|
||||
/* Read the status of the flash device through CDSN IO register
|
||||
see Software Requirement 11.4 item 5.
|
||||
FIXME: it seems that we are not wait long enough, some blocks are not
|
||||
erased fully */
|
||||
DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
||||
dummy = ReadDOC(docptr, ReadPipeInit);
|
||||
DoC_Delay(docptr, 2);
|
||||
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
|
||||
printk("Error Erasing at 0x%x\n", ofs);
|
||||
/* There was an error
|
||||
FIXME: implement Bad Block Replacement (in nftl.c ??) */
|
||||
instr->state = MTD_ERASE_FAILED;
|
||||
} else
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
dummy = ReadDOC(docptr, LastDataRead);
|
||||
|
||||
mtd_erase_callback(instr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
*
|
||||
* Module stuff
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
static void __exit cleanup_doc2001(void)
|
||||
{
|
||||
struct mtd_info *mtd;
|
||||
struct DiskOnChip *this;
|
||||
|
||||
while ((mtd=docmillist)) {
|
||||
this = mtd->priv;
|
||||
docmillist = this->nextdoc;
|
||||
|
||||
mtd_device_unregister(mtd);
|
||||
|
||||
iounmap(this->virtadr);
|
||||
kfree(this->chips);
|
||||
kfree(mtd);
|
||||
}
|
||||
}
|
||||
|
||||
module_exit(cleanup_doc2001);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
||||
MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium");
|
File diff suppressed because it is too large
Load Diff
|
@ -1,521 +0,0 @@
|
|||
/*
|
||||
* ECC algorithm for M-systems disk on chip. We use the excellent Reed
|
||||
* Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
|
||||
* GNU GPL License. The rest is simply to convert the disk on chip
|
||||
* syndrome into a standard syndome.
|
||||
*
|
||||
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
|
||||
* Copyright (C) 2000 Netgem S.A.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/doc2000.h>
|
||||
|
||||
#define DEBUG_ECC 0
|
||||
/* need to undef it (from asm/termbits.h) */
|
||||
#undef B0
|
||||
|
||||
#define MM 10 /* Symbol size in bits */
|
||||
#define KK (1023-4) /* Number of data symbols per block */
|
||||
#define B0 510 /* First root of generator polynomial, alpha form */
|
||||
#define PRIM 1 /* power of alpha used to generate roots of generator poly */
|
||||
#define NN ((1 << MM) - 1)
|
||||
|
||||
typedef unsigned short dtype;
|
||||
|
||||
/* 1+x^3+x^10 */
|
||||
static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
|
||||
|
||||
/* This defines the type used to store an element of the Galois Field
|
||||
* used by the code. Make sure this is something larger than a char if
|
||||
* if anything larger than GF(256) is used.
|
||||
*
|
||||
* Note: unsigned char will work up to GF(256) but int seems to run
|
||||
* faster on the Pentium.
|
||||
*/
|
||||
typedef int gf;
|
||||
|
||||
/* No legal value in index form represents zero, so
|
||||
* we need a special value for this purpose
|
||||
*/
|
||||
#define A0 (NN)
|
||||
|
||||
/* Compute x % NN, where NN is 2**MM - 1,
|
||||
* without a slow divide
|
||||
*/
|
||||
static inline gf
|
||||
modnn(int x)
|
||||
{
|
||||
while (x >= NN) {
|
||||
x -= NN;
|
||||
x = (x >> MM) + (x & NN);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
#define CLEAR(a,n) {\
|
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = 0;\
|
||||
}
|
||||
|
||||
#define COPY(a,b,n) {\
|
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = (b)[ci];\
|
||||
}
|
||||
|
||||
#define COPYDOWN(a,b,n) {\
|
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = (b)[ci];\
|
||||
}
|
||||
|
||||
#define Ldec 1
|
||||
|
||||
/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
|
||||
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
|
||||
polynomial form -> index form index_of[j=alpha**i] = i
|
||||
alpha=2 is the primitive element of GF(2**m)
|
||||
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
|
||||
Let @ represent the primitive element commonly called "alpha" that
|
||||
is the root of the primitive polynomial p(x). Then in GF(2^m), for any
|
||||
0 <= i <= 2^m-2,
|
||||
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
|
||||
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
|
||||
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
|
||||
example the polynomial representation of @^5 would be given by the binary
|
||||
representation of the integer "alpha_to[5]".
|
||||
Similarly, index_of[] can be used as follows:
|
||||
As above, let @ represent the primitive element of GF(2^m) that is
|
||||
the root of the primitive polynomial p(x). In order to find the power
|
||||
of @ (alpha) that has the polynomial representation
|
||||
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
|
||||
we consider the integer "i" whose binary representation with a(0) being LSB
|
||||
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
|
||||
"index_of[i]". Now, @^index_of[i] is that element whose polynomial
|
||||
representation is (a(0),a(1),a(2),...,a(m-1)).
|
||||
NOTE:
|
||||
The element alpha_to[2^m-1] = 0 always signifying that the
|
||||
representation of "@^infinity" = 0 is (0,0,0,...,0).
|
||||
Similarly, the element index_of[0] = A0 always signifying
|
||||
that the power of alpha which has the polynomial representation
|
||||
(0,0,...,0) is "infinity".
|
||||
|
||||
*/
|
||||
|
||||
static void
|
||||
generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
|
||||
{
|
||||
register int i, mask;
|
||||
|
||||
mask = 1;
|
||||
Alpha_to[MM] = 0;
|
||||
for (i = 0; i < MM; i++) {
|
||||
Alpha_to[i] = mask;
|
||||
Index_of[Alpha_to[i]] = i;
|
||||
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
|
||||
if (Pp[i] != 0)
|
||||
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
|
||||
mask <<= 1; /* single left-shift */
|
||||
}
|
||||
Index_of[Alpha_to[MM]] = MM;
|
||||
/*
|
||||
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
|
||||
* poly-repr of @^i shifted left one-bit and accounting for any @^MM
|
||||
* term that may occur when poly-repr of @^i is shifted.
|
||||
*/
|
||||
mask >>= 1;
|
||||
for (i = MM + 1; i < NN; i++) {
|
||||
if (Alpha_to[i - 1] >= mask)
|
||||
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
|
||||
else
|
||||
Alpha_to[i] = Alpha_to[i - 1] << 1;
|
||||
Index_of[Alpha_to[i]] = i;
|
||||
}
|
||||
Index_of[0] = A0;
|
||||
Alpha_to[NN] = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
|
||||
* of the feedback shift register after having processed the data and
|
||||
* the ECC.
|
||||
*
|
||||
* Return number of symbols corrected, or -1 if codeword is illegal
|
||||
* or uncorrectable. If eras_pos is non-null, the detected error locations
|
||||
* are written back. NOTE! This array must be at least NN-KK elements long.
|
||||
* The corrected data are written in eras_val[]. They must be xor with the data
|
||||
* to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
|
||||
*
|
||||
* First "no_eras" erasures are declared by the calling program. Then, the
|
||||
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
|
||||
* If the number of channel errors is not greater than "t_after_eras" the
|
||||
* transmitted codeword will be recovered. Details of algorithm can be found
|
||||
* in R. Blahut's "Theory ... of Error-Correcting Codes".
|
||||
|
||||
* Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
|
||||
* will result. The decoder *could* check for this condition, but it would involve
|
||||
* extra time on every decoding operation.
|
||||
* */
|
||||
static int
|
||||
eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
|
||||
gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
|
||||
int no_eras)
|
||||
{
|
||||
int deg_lambda, el, deg_omega;
|
||||
int i, j, r,k;
|
||||
gf u,q,tmp,num1,num2,den,discr_r;
|
||||
gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
|
||||
* and syndrome poly */
|
||||
gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
|
||||
gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
|
||||
int syn_error, count;
|
||||
|
||||
syn_error = 0;
|
||||
for(i=0;i<NN-KK;i++)
|
||||
syn_error |= bb[i];
|
||||
|
||||
if (!syn_error) {
|
||||
/* if remainder is zero, data[] is a codeword and there are no
|
||||
* errors to correct. So return data[] unmodified
|
||||
*/
|
||||
count = 0;
|
||||
goto finish;
|
||||
}
|
||||
|
||||
for(i=1;i<=NN-KK;i++){
|
||||
s[i] = bb[0];
|
||||
}
|
||||
for(j=1;j<NN-KK;j++){
|
||||
if(bb[j] == 0)
|
||||
continue;
|
||||
tmp = Index_of[bb[j]];
|
||||
|
||||
for(i=1;i<=NN-KK;i++)
|
||||
s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
|
||||
}
|
||||
|
||||
/* undo the feedback register implicit multiplication and convert
|
||||
syndromes to index form */
|
||||
|
||||
for(i=1;i<=NN-KK;i++) {
|
||||
tmp = Index_of[s[i]];
|
||||
if (tmp != A0)
|
||||
tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
|
||||
s[i] = tmp;
|
||||
}
|
||||
|
||||
CLEAR(&lambda[1],NN-KK);
|
||||
lambda[0] = 1;
|
||||
|
||||
if (no_eras > 0) {
|
||||
/* Init lambda to be the erasure locator polynomial */
|
||||
lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
|
||||
for (i = 1; i < no_eras; i++) {
|
||||
u = modnn(PRIM*eras_pos[i]);
|
||||
for (j = i+1; j > 0; j--) {
|
||||
tmp = Index_of[lambda[j - 1]];
|
||||
if(tmp != A0)
|
||||
lambda[j] ^= Alpha_to[modnn(u + tmp)];
|
||||
}
|
||||
}
|
||||
#if DEBUG_ECC >= 1
|
||||
/* Test code that verifies the erasure locator polynomial just constructed
|
||||
Needed only for decoder debugging. */
|
||||
|
||||
/* find roots of the erasure location polynomial */
|
||||
for(i=1;i<=no_eras;i++)
|
||||
reg[i] = Index_of[lambda[i]];
|
||||
count = 0;
|
||||
for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
|
||||
q = 1;
|
||||
for (j = 1; j <= no_eras; j++)
|
||||
if (reg[j] != A0) {
|
||||
reg[j] = modnn(reg[j] + j);
|
||||
q ^= Alpha_to[reg[j]];
|
||||
}
|
||||
if (q != 0)
|
||||
continue;
|
||||
/* store root and error location number indices */
|
||||
root[count] = i;
|
||||
loc[count] = k;
|
||||
count++;
|
||||
}
|
||||
if (count != no_eras) {
|
||||
printf("\n lambda(x) is WRONG\n");
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
#if DEBUG_ECC >= 2
|
||||
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
|
||||
for (i = 0; i < count; i++)
|
||||
printf("%d ", loc[i]);
|
||||
printf("\n");
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
for(i=0;i<NN-KK+1;i++)
|
||||
b[i] = Index_of[lambda[i]];
|
||||
|
||||
/*
|
||||
* Begin Berlekamp-Massey algorithm to determine error+erasure
|
||||
* locator polynomial
|
||||
*/
|
||||
r = no_eras;
|
||||
el = no_eras;
|
||||
while (++r <= NN-KK) { /* r is the step number */
|
||||
/* Compute discrepancy at the r-th step in poly-form */
|
||||
discr_r = 0;
|
||||
for (i = 0; i < r; i++){
|
||||
if ((lambda[i] != 0) && (s[r - i] != A0)) {
|
||||
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
|
||||
}
|
||||
}
|
||||
discr_r = Index_of[discr_r]; /* Index form */
|
||||
if (discr_r == A0) {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
COPYDOWN(&b[1],b,NN-KK);
|
||||
b[0] = A0;
|
||||
} else {
|
||||
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
|
||||
t[0] = lambda[0];
|
||||
for (i = 0 ; i < NN-KK; i++) {
|
||||
if(b[i] != A0)
|
||||
t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
|
||||
else
|
||||
t[i+1] = lambda[i+1];
|
||||
}
|
||||
if (2 * el <= r + no_eras - 1) {
|
||||
el = r + no_eras - el;
|
||||
/*
|
||||
* 2 lines below: B(x) <-- inv(discr_r) *
|
||||
* lambda(x)
|
||||
*/
|
||||
for (i = 0; i <= NN-KK; i++)
|
||||
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
|
||||
} else {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
COPYDOWN(&b[1],b,NN-KK);
|
||||
b[0] = A0;
|
||||
}
|
||||
COPY(lambda,t,NN-KK+1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Convert lambda to index form and compute deg(lambda(x)) */
|
||||
deg_lambda = 0;
|
||||
for(i=0;i<NN-KK+1;i++){
|
||||
lambda[i] = Index_of[lambda[i]];
|
||||
if(lambda[i] != A0)
|
||||
deg_lambda = i;
|
||||
}
|
||||
/*
|
||||
* Find roots of the error+erasure locator polynomial by Chien
|
||||
* Search
|
||||
*/
|
||||
COPY(®[1],&lambda[1],NN-KK);
|
||||
count = 0; /* Number of roots of lambda(x) */
|
||||
for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
|
||||
q = 1;
|
||||
for (j = deg_lambda; j > 0; j--){
|
||||
if (reg[j] != A0) {
|
||||
reg[j] = modnn(reg[j] + j);
|
||||
q ^= Alpha_to[reg[j]];
|
||||
}
|
||||
}
|
||||
if (q != 0)
|
||||
continue;
|
||||
/* store root (index-form) and error location number */
|
||||
root[count] = i;
|
||||
loc[count] = k;
|
||||
/* If we've already found max possible roots,
|
||||
* abort the search to save time
|
||||
*/
|
||||
if(++count == deg_lambda)
|
||||
break;
|
||||
}
|
||||
if (deg_lambda != count) {
|
||||
/*
|
||||
* deg(lambda) unequal to number of roots => uncorrectable
|
||||
* error detected
|
||||
*/
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
/*
|
||||
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
|
||||
* x**(NN-KK)). in index form. Also find deg(omega).
|
||||
*/
|
||||
deg_omega = 0;
|
||||
for (i = 0; i < NN-KK;i++){
|
||||
tmp = 0;
|
||||
j = (deg_lambda < i) ? deg_lambda : i;
|
||||
for(;j >= 0; j--){
|
||||
if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
|
||||
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
|
||||
}
|
||||
if(tmp != 0)
|
||||
deg_omega = i;
|
||||
omega[i] = Index_of[tmp];
|
||||
}
|
||||
omega[NN-KK] = A0;
|
||||
|
||||
/*
|
||||
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
|
||||
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
|
||||
*/
|
||||
for (j = count-1; j >=0; j--) {
|
||||
num1 = 0;
|
||||
for (i = deg_omega; i >= 0; i--) {
|
||||
if (omega[i] != A0)
|
||||
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
|
||||
}
|
||||
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
|
||||
den = 0;
|
||||
|
||||
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
|
||||
for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
|
||||
if(lambda[i+1] != A0)
|
||||
den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
|
||||
}
|
||||
if (den == 0) {
|
||||
#if DEBUG_ECC >= 1
|
||||
printf("\n ERROR: denominator = 0\n");
|
||||
#endif
|
||||
/* Convert to dual- basis */
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
/* Apply error to data */
|
||||
if (num1 != 0) {
|
||||
eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
|
||||
} else {
|
||||
eras_val[j] = 0;
|
||||
}
|
||||
}
|
||||
finish:
|
||||
for(i=0;i<count;i++)
|
||||
eras_pos[i] = loc[i];
|
||||
return count;
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/* The DOC specific code begins here */
|
||||
|
||||
#define SECTOR_SIZE 512
|
||||
/* The sector bytes are packed into NB_DATA MM bits words */
|
||||
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
|
||||
|
||||
/*
|
||||
* Correct the errors in 'sector[]' by using 'ecc1[]' which is the
|
||||
* content of the feedback shift register applyied to the sector and
|
||||
* the ECC. Return the number of errors corrected (and correct them in
|
||||
* sector), or -1 if error
|
||||
*/
|
||||
int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
|
||||
{
|
||||
int parity, i, nb_errors;
|
||||
gf bb[NN - KK + 1];
|
||||
gf error_val[NN-KK];
|
||||
int error_pos[NN-KK], pos, bitpos, index, val;
|
||||
dtype *Alpha_to, *Index_of;
|
||||
|
||||
/* init log and exp tables here to save memory. However, it is slower */
|
||||
Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
|
||||
if (!Alpha_to)
|
||||
return -1;
|
||||
|
||||
Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
|
||||
if (!Index_of) {
|
||||
kfree(Alpha_to);
|
||||
return -1;
|
||||
}
|
||||
|
||||
generate_gf(Alpha_to, Index_of);
|
||||
|
||||
parity = ecc1[1];
|
||||
|
||||
bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
|
||||
bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
|
||||
bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
|
||||
bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
|
||||
|
||||
nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
|
||||
error_val, error_pos, 0);
|
||||
if (nb_errors <= 0)
|
||||
goto the_end;
|
||||
|
||||
/* correct the errors */
|
||||
for(i=0;i<nb_errors;i++) {
|
||||
pos = error_pos[i];
|
||||
if (pos >= NB_DATA && pos < KK) {
|
||||
nb_errors = -1;
|
||||
goto the_end;
|
||||
}
|
||||
if (pos < NB_DATA) {
|
||||
/* extract bit position (MSB first) */
|
||||
pos = 10 * (NB_DATA - 1 - pos) - 6;
|
||||
/* now correct the following 10 bits. At most two bytes
|
||||
can be modified since pos is even */
|
||||
index = (pos >> 3) ^ 1;
|
||||
bitpos = pos & 7;
|
||||
if ((index >= 0 && index < SECTOR_SIZE) ||
|
||||
index == (SECTOR_SIZE + 1)) {
|
||||
val = error_val[i] >> (2 + bitpos);
|
||||
parity ^= val;
|
||||
if (index < SECTOR_SIZE)
|
||||
sector[index] ^= val;
|
||||
}
|
||||
index = ((pos >> 3) + 1) ^ 1;
|
||||
bitpos = (bitpos + 10) & 7;
|
||||
if (bitpos == 0)
|
||||
bitpos = 8;
|
||||
if ((index >= 0 && index < SECTOR_SIZE) ||
|
||||
index == (SECTOR_SIZE + 1)) {
|
||||
val = error_val[i] << (8 - bitpos);
|
||||
parity ^= val;
|
||||
if (index < SECTOR_SIZE)
|
||||
sector[index] ^= val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* use parity to test extra errors */
|
||||
if ((parity & 0xff) != 0)
|
||||
nb_errors = -1;
|
||||
|
||||
the_end:
|
||||
kfree(Alpha_to);
|
||||
kfree(Index_of);
|
||||
return nb_errors;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(doc_decode_ecc);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
|
||||
MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");
|
|
@ -1,325 +0,0 @@
|
|||
|
||||
/* Linux driver for Disk-On-Chip devices */
|
||||
/* Probe routines common to all DoC devices */
|
||||
/* (C) 1999 Machine Vision Holdings, Inc. */
|
||||
/* (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> */
|
||||
|
||||
|
||||
/* DOC_PASSIVE_PROBE:
|
||||
In order to ensure that the BIOS checksum is correct at boot time, and
|
||||
hence that the onboard BIOS extension gets executed, the DiskOnChip
|
||||
goes into reset mode when it is read sequentially: all registers
|
||||
return 0xff until the chip is woken up again by writing to the
|
||||
DOCControl register.
|
||||
|
||||
Unfortunately, this means that the probe for the DiskOnChip is unsafe,
|
||||
because one of the first things it does is write to where it thinks
|
||||
the DOCControl register should be - which may well be shared memory
|
||||
for another device. I've had machines which lock up when this is
|
||||
attempted. Hence the possibility to do a passive probe, which will fail
|
||||
to detect a chip in reset mode, but is at least guaranteed not to lock
|
||||
the machine.
|
||||
|
||||
If you have this problem, uncomment the following line:
|
||||
#define DOC_PASSIVE_PROBE
|
||||
*/
|
||||
|
||||
|
||||
/* DOC_SINGLE_DRIVER:
|
||||
Millennium driver has been merged into DOC2000 driver.
|
||||
|
||||
The old Millennium-only driver has been retained just in case there
|
||||
are problems with the new code. If the combined driver doesn't work
|
||||
for you, you can try the old one by undefining DOC_SINGLE_DRIVER
|
||||
below and also enabling it in your configuration. If this fixes the
|
||||
problems, please send a report to the MTD mailing list at
|
||||
<linux-mtd@lists.infradead.org>.
|
||||
*/
|
||||
#define DOC_SINGLE_DRIVER
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/io.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/doc2000.h>
|
||||
|
||||
|
||||
static unsigned long doc_config_location = CONFIG_MTD_DOCPROBE_ADDRESS;
|
||||
module_param(doc_config_location, ulong, 0);
|
||||
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
|
||||
|
||||
static unsigned long __initdata doc_locations[] = {
|
||||
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
|
||||
#ifdef CONFIG_MTD_DOCPROBE_HIGH
|
||||
0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
|
||||
0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
|
||||
0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
|
||||
0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
|
||||
0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
|
||||
#else /* CONFIG_MTD_DOCPROBE_HIGH */
|
||||
0xc8000, 0xca000, 0xcc000, 0xce000,
|
||||
0xd0000, 0xd2000, 0xd4000, 0xd6000,
|
||||
0xd8000, 0xda000, 0xdc000, 0xde000,
|
||||
0xe0000, 0xe2000, 0xe4000, 0xe6000,
|
||||
0xe8000, 0xea000, 0xec000, 0xee000,
|
||||
#endif /* CONFIG_MTD_DOCPROBE_HIGH */
|
||||
#endif
|
||||
0xffffffff };
|
||||
|
||||
/* doccheck: Probe a given memory window to see if there's a DiskOnChip present */
|
||||
|
||||
static inline int __init doccheck(void __iomem *potential, unsigned long physadr)
|
||||
{
|
||||
void __iomem *window=potential;
|
||||
unsigned char tmp, tmpb, tmpc, ChipID;
|
||||
#ifndef DOC_PASSIVE_PROBE
|
||||
unsigned char tmp2;
|
||||
#endif
|
||||
|
||||
/* Routine copied from the Linux DOC driver */
|
||||
|
||||
#ifdef CONFIG_MTD_DOCPROBE_55AA
|
||||
/* Check for 0x55 0xAA signature at beginning of window,
|
||||
this is no longer true once we remove the IPL (for Millennium */
|
||||
if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
|
||||
return 0;
|
||||
#endif /* CONFIG_MTD_DOCPROBE_55AA */
|
||||
|
||||
#ifndef DOC_PASSIVE_PROBE
|
||||
/* It's not possible to cleanly detect the DiskOnChip - the
|
||||
* bootup procedure will put the device into reset mode, and
|
||||
* it's not possible to talk to it without actually writing
|
||||
* to the DOCControl register. So we store the current contents
|
||||
* of the DOCControl register's location, in case we later decide
|
||||
* that it's not a DiskOnChip, and want to put it back how we
|
||||
* found it.
|
||||
*/
|
||||
tmp2 = ReadDOC(window, DOCControl);
|
||||
|
||||
/* Reset the DiskOnChip ASIC */
|
||||
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
|
||||
window, DOCControl);
|
||||
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
|
||||
window, DOCControl);
|
||||
|
||||
/* Enable the DiskOnChip ASIC */
|
||||
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
|
||||
window, DOCControl);
|
||||
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
|
||||
window, DOCControl);
|
||||
#endif /* !DOC_PASSIVE_PROBE */
|
||||
|
||||
/* We need to read the ChipID register four times. For some
|
||||
newer DiskOnChip 2000 units, the first three reads will
|
||||
return the DiskOnChip Millennium ident. Don't ask. */
|
||||
ChipID = ReadDOC(window, ChipID);
|
||||
|
||||
switch (ChipID) {
|
||||
case DOC_ChipID_Doc2k:
|
||||
/* Check the TOGGLE bit in the ECC register */
|
||||
tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
|
||||
tmpb = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
|
||||
tmpc = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
|
||||
if (tmp != tmpb && tmp == tmpc)
|
||||
return ChipID;
|
||||
break;
|
||||
|
||||
case DOC_ChipID_DocMil:
|
||||
/* Check for the new 2000 with Millennium ASIC */
|
||||
ReadDOC(window, ChipID);
|
||||
ReadDOC(window, ChipID);
|
||||
if (ReadDOC(window, ChipID) != DOC_ChipID_DocMil)
|
||||
ChipID = DOC_ChipID_Doc2kTSOP;
|
||||
|
||||
/* Check the TOGGLE bit in the ECC register */
|
||||
tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
|
||||
tmpb = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
|
||||
tmpc = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
|
||||
if (tmp != tmpb && tmp == tmpc)
|
||||
return ChipID;
|
||||
break;
|
||||
|
||||
case DOC_ChipID_DocMilPlus16:
|
||||
case DOC_ChipID_DocMilPlus32:
|
||||
case 0:
|
||||
/* Possible Millennium+, need to do more checks */
|
||||
#ifndef DOC_PASSIVE_PROBE
|
||||
/* Possibly release from power down mode */
|
||||
for (tmp = 0; (tmp < 4); tmp++)
|
||||
ReadDOC(window, Mplus_Power);
|
||||
|
||||
/* Reset the DiskOnChip ASIC */
|
||||
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
|
||||
DOC_MODE_BDECT;
|
||||
WriteDOC(tmp, window, Mplus_DOCControl);
|
||||
WriteDOC(~tmp, window, Mplus_CtrlConfirm);
|
||||
|
||||
mdelay(1);
|
||||
/* Enable the DiskOnChip ASIC */
|
||||
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
|
||||
DOC_MODE_BDECT;
|
||||
WriteDOC(tmp, window, Mplus_DOCControl);
|
||||
WriteDOC(~tmp, window, Mplus_CtrlConfirm);
|
||||
mdelay(1);
|
||||
#endif /* !DOC_PASSIVE_PROBE */
|
||||
|
||||
ChipID = ReadDOC(window, ChipID);
|
||||
|
||||
switch (ChipID) {
|
||||
case DOC_ChipID_DocMilPlus16:
|
||||
case DOC_ChipID_DocMilPlus32:
|
||||
/* Check the TOGGLE bit in the toggle register */
|
||||
tmp = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
|
||||
tmpb = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
|
||||
tmpc = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
|
||||
if (tmp != tmpb && tmp == tmpc)
|
||||
return ChipID;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
/* FALL TRHU */
|
||||
|
||||
default:
|
||||
|
||||
#ifdef CONFIG_MTD_DOCPROBE_55AA
|
||||
printk(KERN_DEBUG "Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
|
||||
ChipID, physadr);
|
||||
#endif
|
||||
#ifndef DOC_PASSIVE_PROBE
|
||||
/* Put back the contents of the DOCControl register, in case it's not
|
||||
* actually a DiskOnChip.
|
||||
*/
|
||||
WriteDOC(tmp2, window, DOCControl);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
printk(KERN_WARNING "DiskOnChip failed TOGGLE test, dropping.\n");
|
||||
|
||||
#ifndef DOC_PASSIVE_PROBE
|
||||
/* Put back the contents of the DOCControl register: it's not a DiskOnChip */
|
||||
WriteDOC(tmp2, window, DOCControl);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int docfound;
|
||||
|
||||
extern void DoC2k_init(struct mtd_info *);
|
||||
extern void DoCMil_init(struct mtd_info *);
|
||||
extern void DoCMilPlus_init(struct mtd_info *);
|
||||
|
||||
static void __init DoC_Probe(unsigned long physadr)
|
||||
{
|
||||
void __iomem *docptr;
|
||||
struct DiskOnChip *this;
|
||||
struct mtd_info *mtd;
|
||||
int ChipID;
|
||||
char namebuf[15];
|
||||
char *name = namebuf;
|
||||
void (*initroutine)(struct mtd_info *) = NULL;
|
||||
|
||||
docptr = ioremap(physadr, DOC_IOREMAP_LEN);
|
||||
|
||||
if (!docptr)
|
||||
return;
|
||||
|
||||
if ((ChipID = doccheck(docptr, physadr))) {
|
||||
if (ChipID == DOC_ChipID_Doc2kTSOP) {
|
||||
/* Remove this at your own peril. The hardware driver works but nothing prevents you from erasing bad blocks */
|
||||
printk(KERN_NOTICE "Refusing to drive DiskOnChip 2000 TSOP until Bad Block Table is correctly supported by INFTL\n");
|
||||
iounmap(docptr);
|
||||
return;
|
||||
}
|
||||
docfound = 1;
|
||||
mtd = kzalloc(sizeof(struct DiskOnChip) + sizeof(struct mtd_info), GFP_KERNEL);
|
||||
if (!mtd) {
|
||||
printk(KERN_WARNING "Cannot allocate memory for data structures. Dropping.\n");
|
||||
iounmap(docptr);
|
||||
return;
|
||||
}
|
||||
|
||||
this = (struct DiskOnChip *)(&mtd[1]);
|
||||
mtd->priv = this;
|
||||
this->virtadr = docptr;
|
||||
this->physadr = physadr;
|
||||
this->ChipID = ChipID;
|
||||
sprintf(namebuf, "with ChipID %2.2X", ChipID);
|
||||
|
||||
switch(ChipID) {
|
||||
case DOC_ChipID_Doc2kTSOP:
|
||||
name="2000 TSOP";
|
||||
initroutine = symbol_request(DoC2k_init);
|
||||
break;
|
||||
|
||||
case DOC_ChipID_Doc2k:
|
||||
name="2000";
|
||||
initroutine = symbol_request(DoC2k_init);
|
||||
break;
|
||||
|
||||
case DOC_ChipID_DocMil:
|
||||
name="Millennium";
|
||||
#ifdef DOC_SINGLE_DRIVER
|
||||
initroutine = symbol_request(DoC2k_init);
|
||||
#else
|
||||
initroutine = symbol_request(DoCMil_init);
|
||||
#endif /* DOC_SINGLE_DRIVER */
|
||||
break;
|
||||
|
||||
case DOC_ChipID_DocMilPlus16:
|
||||
case DOC_ChipID_DocMilPlus32:
|
||||
name="MillenniumPlus";
|
||||
initroutine = symbol_request(DoCMilPlus_init);
|
||||
break;
|
||||
}
|
||||
|
||||
if (initroutine) {
|
||||
(*initroutine)(mtd);
|
||||
symbol_put_addr(initroutine);
|
||||
return;
|
||||
}
|
||||
printk(KERN_NOTICE "Cannot find driver for DiskOnChip %s at 0x%lX\n", name, physadr);
|
||||
kfree(mtd);
|
||||
}
|
||||
iounmap(docptr);
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
*
|
||||
* Module stuff
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
static int __init init_doc(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (doc_config_location) {
|
||||
printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
|
||||
DoC_Probe(doc_config_location);
|
||||
} else {
|
||||
for (i=0; (doc_locations[i] != 0xffffffff); i++) {
|
||||
DoC_Probe(doc_locations[i]);
|
||||
}
|
||||
}
|
||||
/* No banner message any more. Print a message if no DiskOnChip
|
||||
found, so the user knows we at least tried. */
|
||||
if (!docfound)
|
||||
printk(KERN_INFO "No recognised DiskOnChip devices found\n");
|
||||
return -EAGAIN;
|
||||
}
|
||||
|
||||
module_init(init_doc);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||||
MODULE_DESCRIPTION("Probe code for DiskOnChip 2000 and Millennium devices");
|
||||
|
Loading…
Reference in New Issue