Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux-soc-thermal into soc-thermal

This commit is contained in:
Zhang Rui 2014-01-02 09:39:36 +08:00
commit c1b7bac58f
23 changed files with 1945 additions and 50 deletions

View File

@ -15,6 +15,10 @@ Optional properties:
- clock-latency: Specify the possible maximum transition latency for clock,
in unit of nanoseconds.
- voltage-tolerance: Specify the CPU voltage tolerance in percentage.
- #cooling-cells:
- cooling-min-level:
- cooling-max-level:
Please refer to Documentation/devicetree/bindings/thermal/thermal.txt.
Examples:
@ -33,6 +37,9 @@ cpus {
198000 850000
>;
clock-latency = <61036>; /* two CLK32 periods */
#cooling-cells = <2>;
cooling-min-level = <0>;
cooling-max-level = <2>;
};
cpu@1 {

View File

@ -0,0 +1,595 @@
* Thermal Framework Device Tree descriptor
This file describes a generic binding to provide a way of
defining hardware thermal structure using device tree.
A thermal structure includes thermal zones and their components,
such as trip points, polling intervals, sensors and cooling devices
binding descriptors.
The target of device tree thermal descriptors is to describe only
the hardware thermal aspects. The thermal device tree bindings are
not about how the system must control or which algorithm or policy
must be taken in place.
There are five types of nodes involved to describe thermal bindings:
- thermal sensors: devices which may be used to take temperature
measurements.
- cooling devices: devices which may be used to dissipate heat.
- trip points: describe key temperatures at which cooling is recommended. The
set of points should be chosen based on hardware limits.
- cooling maps: used to describe links between trip points and cooling devices;
- thermal zones: used to describe thermal data within the hardware;
The following is a description of each of these node types.
* Thermal sensor devices
Thermal sensor devices are nodes providing temperature sensing capabilities on
thermal zones. Typical devices are I2C ADC converters and bandgaps. These are
nodes providing temperature data to thermal zones. Thermal sensor devices may
control one or more internal sensors.
Required property:
- #thermal-sensor-cells: Used to provide sensor device specific information
Type: unsigned while referring to it. Typically 0 on thermal sensor
Size: one cell nodes with only one sensor, and at least 1 on nodes
with several internal sensors, in order
to identify uniquely the sensor instances within
the IC. See thermal zone binding for more details
on how consumers refer to sensor devices.
* Cooling device nodes
Cooling devices are nodes providing control on power dissipation. There
are essentially two ways to provide control on power dissipation. First
is by means of regulating device performance, which is known as passive
cooling. A typical passive cooling is a CPU that has dynamic voltage and
frequency scaling (DVFS), and uses lower frequencies as cooling states.
Second is by means of activating devices in order to remove
the dissipated heat, which is known as active cooling, e.g. regulating
fan speeds. In both cases, cooling devices shall have a way to determine
the state of cooling in which the device is.
Any cooling device has a range of cooling states (i.e. different levels
of heat dissipation). For example a fan's cooling states correspond to
the different fan speeds possible. Cooling states are referred to by
single unsigned integers, where larger numbers mean greater heat
dissipation. The precise set of cooling states associated with a device
(as referred to be the cooling-min-state and cooling-max-state
properties) should be defined in a particular device's binding.
For more examples of cooling devices, refer to the example sections below.
Required properties:
- cooling-min-state: An integer indicating the smallest
Type: unsigned cooling state accepted. Typically 0.
Size: one cell
- cooling-max-state: An integer indicating the largest
Type: unsigned cooling state accepted.
Size: one cell
- #cooling-cells: Used to provide cooling device specific information
Type: unsigned while referring to it. Must be at least 2, in order
Size: one cell to specify minimum and maximum cooling state used
in the reference. The first cell is the minimum
cooling state requested and the second cell is
the maximum cooling state requested in the reference.
See Cooling device maps section below for more details
on how consumers refer to cooling devices.
* Trip points
The trip node is a node to describe a point in the temperature domain
in which the system takes an action. This node describes just the point,
not the action.
Required properties:
- temperature: An integer indicating the trip temperature level,
Type: signed in millicelsius.
Size: one cell
- hysteresis: A low hysteresis value on temperature property (above).
Type: unsigned This is a relative value, in millicelsius.
Size: one cell
- type: a string containing the trip type. Expected values are:
"active": A trip point to enable active cooling
"passive": A trip point to enable passive cooling
"hot": A trip point to notify emergency
"critical": Hardware not reliable.
Type: string
* Cooling device maps
The cooling device maps node is a node to describe how cooling devices
get assigned to trip points of the zone. The cooling devices are expected
to be loaded in the target system.
Required properties:
- cooling-device: A phandle of a cooling device with its specifier,
Type: phandle + referring to which cooling device is used in this
cooling specifier binding. In the cooling specifier, the first cell
is the minimum cooling state and the second cell
is the maximum cooling state used in this map.
- trip: A phandle of a trip point node within the same thermal
Type: phandle of zone.
trip point node
Optional property:
- contribution: The cooling contribution to the thermal zone of the
Type: unsigned referred cooling device at the referred trip point.
Size: one cell The contribution is a ratio of the sum
of all cooling contributions within a thermal zone.
Note: Using the THERMAL_NO_LIMIT (-1UL) constant in the cooling-device phandle
limit specifier means:
(i) - minimum state allowed for minimum cooling state used in the reference.
(ii) - maximum state allowed for maximum cooling state used in the reference.
Refer to include/dt-bindings/thermal/thermal.h for definition of this constant.
* Thermal zone nodes
The thermal zone node is the node containing all the required info
for describing a thermal zone, including its cooling device bindings. The
thermal zone node must contain, apart from its own properties, one sub-node
containing trip nodes and one sub-node containing all the zone cooling maps.
Required properties:
- polling-delay: The maximum number of milliseconds to wait between polls
Type: unsigned when checking this thermal zone.
Size: one cell
- polling-delay-passive: The maximum number of milliseconds to wait
Type: unsigned between polls when performing passive cooling.
Size: one cell
- thermal-sensors: A list of thermal sensor phandles and sensor specifier
Type: list of used while monitoring the thermal zone.
phandles + sensor
specifier
- trips: A sub-node which is a container of only trip point nodes
Type: sub-node required to describe the thermal zone.
- cooling-maps: A sub-node which is a container of only cooling device
Type: sub-node map nodes, used to describe the relation between trips
and cooling devices.
Optional property:
- coefficients: An array of integers (one signed cell) containing
Type: array coefficients to compose a linear relation between
Elem size: one cell the sensors listed in the thermal-sensors property.
Elem type: signed Coefficients defaults to 1, in case this property
is not specified. A simple linear polynomial is used:
Z = c0 * x0 + c1 + x1 + ... + c(n-1) * x(n-1) + cn.
The coefficients are ordered and they match with sensors
by means of sensor ID. Additional coefficients are
interpreted as constant offset.
Note: The delay properties are bound to the maximum dT/dt (temperature
derivative over time) in two situations for a thermal zone:
(i) - when passive cooling is activated (polling-delay-passive); and
(ii) - when the zone just needs to be monitored (polling-delay) or
when active cooling is activated.
The maximum dT/dt is highly bound to hardware power consumption and dissipation
capability. The delays should be chosen to account for said max dT/dt,
such that a device does not cross several trip boundaries unexpectedly
between polls. Choosing the right polling delays shall avoid having the
device in temperature ranges that may damage the silicon structures and
reduce silicon lifetime.
* The thermal-zones node
The "thermal-zones" node is a container for all thermal zone nodes. It shall
contain only sub-nodes describing thermal zones as in the section
"Thermal zone nodes". The "thermal-zones" node appears under "/".
* Examples
Below are several examples on how to use thermal data descriptors
using device tree bindings:
(a) - CPU thermal zone
The CPU thermal zone example below describes how to setup one thermal zone
using one single sensor as temperature source and many cooling devices and
power dissipation control sources.
#include <dt-bindings/thermal/thermal.h>
cpus {
/*
* Here is an example of describing a cooling device for a DVFS
* capable CPU. The CPU node describes its four OPPs.
* The cooling states possible are 0..3, and they are
* used as OPP indexes. The minimum cooling state is 0, which means
* all four OPPs can be available to the system. The maximum
* cooling state is 3, which means only the lowest OPPs (198MHz@0.85V)
* can be available in the system.
*/
cpu0: cpu@0 {
...
operating-points = <
/* kHz uV */
970000 1200000
792000 1100000
396000 950000
198000 850000
>;
cooling-min-state = <0>;
cooling-max-state = <3>;
#cooling-cells = <2>; /* min followed by max */
};
...
};
&i2c1 {
...
/*
* A simple fan controller which supports 10 speeds of operation
* (represented as 0-9).
*/
fan0: fan@0x48 {
...
cooling-min-state = <0>;
cooling-max-state = <9>;
#cooling-cells = <2>; /* min followed by max */
};
};
ocp {
...
/*
* A simple IC with a single bandgap temperature sensor.
*/
bandgap0: bandgap@0x0000ED00 {
...
#thermal-sensor-cells = <0>;
};
};
thermal-zones {
cpu-thermal: cpu-thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
thermal-sensors = <&bandgap0>;
trips {
cpu-alert0: cpu-alert {
temperature = <90000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "active";
};
cpu-alert1: cpu-alert {
temperature = <100000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
cpu-crit: cpu-crit {
temperature = <125000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
map0 {
trip = <&cpu-alert0>;
cooling-device = <&fan0 THERMAL_NO_LIMITS 4>;
};
map1 {
trip = <&cpu-alert1>;
cooling-device = <&fan0 5 THERMAL_NO_LIMITS>;
};
map2 {
trip = <&cpu-alert1>;
cooling-device =
<&cpu0 THERMAL_NO_LIMITS THERMAL_NO_LIMITS>;
};
};
};
};
In the example above, the ADC sensor (bandgap0) at address 0x0000ED00 is
used to monitor the zone 'cpu-thermal' using its sole sensor. A fan
device (fan0) is controlled via I2C bus 1, at address 0x48, and has ten
different cooling states 0-9. It is used to remove the heat out of
the thermal zone 'cpu-thermal' using its cooling states
from its minimum to 4, when it reaches trip point 'cpu-alert0'
at 90C, as an example of active cooling. The same cooling device is used at
'cpu-alert1', but from 5 to its maximum state. The cpu@0 device is also
linked to the same thermal zone, 'cpu-thermal', as a passive cooling device,
using all its cooling states at trip point 'cpu-alert1',
which is a trip point at 100C. On the thermal zone 'cpu-thermal', at the
temperature of 125C, represented by the trip point 'cpu-crit', the silicon
is not reliable anymore.
(b) - IC with several internal sensors
The example below describes how to deploy several thermal zones based off a
single sensor IC, assuming it has several internal sensors. This is a common
case on SoC designs with several internal IPs that may need different thermal
requirements, and thus may have their own sensor to monitor or detect internal
hotspots in their silicon.
#include <dt-bindings/thermal/thermal.h>
ocp {
...
/*
* A simple IC with several bandgap temperature sensors.
*/
bandgap0: bandgap@0x0000ED00 {
...
#thermal-sensor-cells = <1>;
};
};
thermal-zones {
cpu-thermal: cpu-thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap0 0>;
trips {
/* each zone within the SoC may have its own trips */
cpu-alert: cpu-alert {
temperature = <100000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
cpu-crit: cpu-crit {
temperature = <125000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
/* each zone within the SoC may have its own cooling */
...
};
};
gpu-thermal: gpu-thermal {
polling-delay-passive = <120>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap0 1>;
trips {
/* each zone within the SoC may have its own trips */
gpu-alert: gpu-alert {
temperature = <90000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
gpu-crit: gpu-crit {
temperature = <105000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
/* each zone within the SoC may have its own cooling */
...
};
};
dsp-thermal: dsp-thermal {
polling-delay-passive = <50>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap0 2>;
trips {
/* each zone within the SoC may have its own trips */
dsp-alert: gpu-alert {
temperature = <90000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
dsp-crit: gpu-crit {
temperature = <135000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
/* each zone within the SoC may have its own cooling */
...
};
};
};
In the example above, there is one bandgap IC which has the capability to
monitor three sensors. The hardware has been designed so that sensors are
placed on different places in the DIE to monitor different temperature
hotspots: one for CPU thermal zone, one for GPU thermal zone and the
other to monitor a DSP thermal zone.
Thus, there is a need to assign each sensor provided by the bandgap IC
to different thermal zones. This is achieved by means of using the
#thermal-sensor-cells property and using the first cell of the sensor
specifier as sensor ID. In the example, then, <bandgap 0> is used to
monitor CPU thermal zone, <bandgap 1> is used to monitor GPU thermal
zone and <bandgap 2> is used to monitor DSP thermal zone. Each zone
may be uncorrelated, having its own dT/dt requirements, trips
and cooling maps.
(c) - Several sensors within one single thermal zone
The example below illustrates how to use more than one sensor within
one thermal zone.
#include <dt-bindings/thermal/thermal.h>
&i2c1 {
...
/*
* A simple IC with a single temperature sensor.
*/
adc: sensor@0x49 {
...
#thermal-sensor-cells = <0>;
};
};
ocp {
...
/*
* A simple IC with a single bandgap temperature sensor.
*/
bandgap0: bandgap@0x0000ED00 {
...
#thermal-sensor-cells = <0>;
};
};
thermal-zones {
cpu-thermal: cpu-thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
thermal-sensors = <&bandgap0>, /* cpu */
<&adc>; /* pcb north */
/* hotspot = 100 * bandgap - 120 * adc + 484 */
coefficients = <100 -120 484>;
trips {
...
};
cooling-maps {
...
};
};
};
In some cases, there is a need to use more than one sensor to extrapolate
a thermal hotspot in the silicon. The above example illustrates this situation.
For instance, it may be the case that a sensor external to CPU IP may be placed
close to CPU hotspot and together with internal CPU sensor, it is used
to determine the hotspot. Assuming this is the case for the above example,
the hypothetical extrapolation rule would be:
hotspot = 100 * bandgap - 120 * adc + 484
In other context, the same idea can be used to add fixed offset. For instance,
consider the hotspot extrapolation rule below:
hotspot = 1 * adc + 6000
In the above equation, the hotspot is always 6C higher than what is read
from the ADC sensor. The binding would be then:
thermal-sensors = <&adc>;
/* hotspot = 1 * adc + 6000 */
coefficients = <1 6000>;
(d) - Board thermal
The board thermal example below illustrates how to setup one thermal zone
with many sensors and many cooling devices.
#include <dt-bindings/thermal/thermal.h>
&i2c1 {
...
/*
* An IC with several temperature sensor.
*/
adc-dummy: sensor@0x50 {
...
#thermal-sensor-cells = <1>; /* sensor internal ID */
};
};
thermal-zones {
batt-thermal {
polling-delay-passive = <500>; /* milliseconds */
polling-delay = <2500>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&adc-dummy 4>;
trips {
...
};
cooling-maps {
...
};
};
board-thermal: board-thermal {
polling-delay-passive = <1000>; /* milliseconds */
polling-delay = <2500>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&adc-dummy 0>, /* pcb top edge */
<&adc-dummy 1>, /* lcd */
<&adc-dymmy 2>; /* back cover */
/*
* An array of coefficients describing the sensor
* linear relation. E.g.:
* z = c1*x1 + c2*x2 + c3*x3
*/
coefficients = <1200 -345 890>;
trips {
/* Trips are based on resulting linear equation */
cpu-trip: cpu-trip {
temperature = <60000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
gpu-trip: gpu-trip {
temperature = <55000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
}
lcd-trip: lcp-trip {
temperature = <53000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
crit-trip: crit-trip {
temperature = <68000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
map0 {
trip = <&cpu-trip>;
cooling-device = <&cpu0 0 2>;
contribution = <55>;
};
map1 {
trip = <&gpu-trip>;
cooling-device = <&gpu0 0 2>;
contribution = <20>;
};
map2 {
trip = <&lcd-trip>;
cooling-device = <&lcd0 5 10>;
contribution = <15>;
};
};
};
};
The above example is a mix of previous examples, a sensor IP with several internal
sensors used to monitor different zones, one of them is composed by several sensors and
with different cooling devices.

View File

@ -8501,6 +8501,7 @@ S: Supported
F: drivers/thermal/
F: include/linux/thermal.h
F: include/linux/cpu_cooling.h
F: Documentation/devicetree/bindings/thermal/
THINGM BLINK(1) USB RGB LED DRIVER
M: Vivien Didelot <vivien.didelot@savoirfairelinux.com>

View File

@ -0,0 +1,41 @@
/*
* Device Tree Source for OMAP4/5 SoC CPU thermal
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/
* Contact: Eduardo Valentin <eduardo.valentin@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <dt-bindings/thermal/thermal.h>
cpu_thermal: cpu_thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap 0>;
trips {
cpu_alert0: cpu_alert {
temperature = <100000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "passive";
};
cpu_crit: cpu_crit {
temperature = <125000>; /* millicelsius */
hysteresis = <2000>; /* millicelsius */
type = "critical";
};
};
cooling-maps {
map0 {
trip = <&cpu_alert0>;
cooling-device =
<&cpu0 THERMAL_NO_LIMIT THERMAL_NO_LIMIT>;
};
};
};

View File

@ -12,7 +12,7 @@
/ {
cpus {
cpu@0 {
cpu0: cpu@0 {
/* OMAP443x variants OPP50-OPPNT */
operating-points = <
/* kHz uV */
@ -22,12 +22,25 @@ cpu@0 {
1008000 1375000
>;
clock-latency = <300000>; /* From legacy driver */
/* cooling options */
cooling-min-level = <0>;
cooling-max-level = <3>;
#cooling-cells = <2>; /* min followed by max */
};
};
bandgap {
reg = <0x4a002260 0x4
0x4a00232C 0x4>;
compatible = "ti,omap4430-bandgap";
thermal-zones {
#include "omap4-cpu-thermal.dtsi"
};
ocp {
bandgap: bandgap {
reg = <0x4a002260 0x4
0x4a00232C 0x4>;
compatible = "ti,omap4430-bandgap";
#thermal-sensor-cells = <0>;
};
};
};

View File

@ -12,7 +12,7 @@
/ {
cpus {
/* OMAP446x 'standard device' variants OPP50 to OPPTurbo */
cpu@0 {
cpu0: cpu@0 {
operating-points = <
/* kHz uV */
350000 1025000
@ -20,6 +20,11 @@ cpu@0 {
920000 1313000
>;
clock-latency = <300000>; /* From legacy driver */
/* cooling options */
cooling-min-level = <0>;
cooling-max-level = <2>;
#cooling-cells = <2>; /* min followed by max */
};
};
@ -30,12 +35,20 @@ pmu {
ti,hwmods = "debugss";
};
bandgap {
reg = <0x4a002260 0x4
0x4a00232C 0x4
0x4a002378 0x18>;
compatible = "ti,omap4460-bandgap";
interrupts = <0 126 IRQ_TYPE_LEVEL_HIGH>; /* talert */
gpios = <&gpio3 22 0>; /* tshut */
thermal-zones {
#include "omap4-cpu-thermal.dtsi"
};
ocp {
bandgap: bandgap {
reg = <0x4a002260 0x4
0x4a00232C 0x4
0x4a002378 0x18>;
compatible = "ti,omap4460-bandgap";
interrupts = <0 126 IRQ_TYPE_LEVEL_HIGH>; /* talert */
gpios = <&gpio3 22 0>; /* tshut */
#thermal-sensor-cells = <0>;
};
};
};

View File

@ -0,0 +1,28 @@
/*
* Device Tree Source for OMAP543x SoC CORE thermal
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/
* Contact: Eduardo Valentin <eduardo.valentin@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <dt-bindings/thermal/thermal.h>
core_thermal: core_thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap 2>;
trips {
core_crit: core_crit {
temperature = <125000>; /* milliCelsius */
hysteresis = <2000>; /* milliCelsius */
type = "critical";
};
};
};

View File

@ -0,0 +1,28 @@
/*
* Device Tree Source for OMAP543x SoC GPU thermal
*
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/
* Contact: Eduardo Valentin <eduardo.valentin@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <dt-bindings/thermal/thermal.h>
gpu_thermal: gpu_thermal {
polling-delay-passive = <250>; /* milliseconds */
polling-delay = <1000>; /* milliseconds */
/* sensor ID */
thermal-sensors = <&bandgap 1>;
trips {
gpu_crit: gpu_crit {
temperature = <125000>; /* milliCelsius */
hysteresis = <2000>; /* milliCelsius */
type = "critical";
};
};
};

View File

@ -49,6 +49,10 @@ cpu0: cpu@0 {
1000000 1060000
1500000 1250000
>;
/* cooling options */
cooling-min-level = <0>;
cooling-max-level = <2>;
#cooling-cells = <2>; /* min followed by max */
};
cpu@1 {
device_type = "cpu";
@ -57,6 +61,12 @@ cpu@1 {
};
};
thermal-zones {
#include "omap4-cpu-thermal.dtsi"
#include "omap5-gpu-thermal.dtsi"
#include "omap5-core-thermal.dtsi"
};
timer {
compatible = "arm,armv7-timer";
/* PPI secure/nonsecure IRQ */
@ -729,13 +739,15 @@ usbhsehci: ehci@4a064c00 {
};
};
bandgap@4a0021e0 {
bandgap: bandgap@4a0021e0 {
reg = <0x4a0021e0 0xc
0x4a00232c 0xc
0x4a002380 0x2c
0x4a0023C0 0x3c>;
interrupts = <GIC_SPI 126 IRQ_TYPE_LEVEL_HIGH>;
compatible = "ti,omap5430-bandgap";
#thermal-sensor-cells = <1>;
};
};
};

View File

@ -181,7 +181,7 @@ config CPU_FREQ_GOV_CONSERVATIVE
config GENERIC_CPUFREQ_CPU0
tristate "Generic CPU0 cpufreq driver"
depends on HAVE_CLK && REGULATOR && PM_OPP && OF
depends on HAVE_CLK && REGULATOR && PM_OPP && OF && THERMAL && CPU_THERMAL
help
This adds a generic cpufreq driver for CPU0 frequency management.
It supports both uniprocessor (UP) and symmetric multiprocessor (SMP)

View File

@ -13,7 +13,9 @@
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpu_cooling.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
@ -21,6 +23,7 @@
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/thermal.h>
static unsigned int transition_latency;
static unsigned int voltage_tolerance; /* in percentage */
@ -29,6 +32,7 @@ static struct device *cpu_dev;
static struct clk *cpu_clk;
static struct regulator *cpu_reg;
static struct cpufreq_frequency_table *freq_table;
static struct thermal_cooling_device *cdev;
static unsigned int cpu0_get_speed(unsigned int cpu)
{
@ -201,6 +205,17 @@ static int cpu0_cpufreq_probe(struct platform_device *pdev)
goto out_free_table;
}
/*
* For now, just loading the cooling device;
* thermal DT code takes care of matching them.
*/
if (of_find_property(np, "#cooling-cells", NULL)) {
cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
if (IS_ERR(cdev))
pr_err("running cpufreq without cooling device: %ld\n",
PTR_ERR(cdev));
}
of_node_put(np);
return 0;
@ -213,6 +228,7 @@ static int cpu0_cpufreq_probe(struct platform_device *pdev)
static int cpu0_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_cooling_unregister(cdev);
cpufreq_unregister_driver(&cpu0_cpufreq_driver);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);

View File

@ -27,6 +27,8 @@
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/thermal.h>
#include "lm75.h"
@ -71,6 +73,7 @@ static const u8 LM75_REG_TEMP[3] = {
/* Each client has this additional data */
struct lm75_data {
struct device *hwmon_dev;
struct thermal_zone_device *tz;
struct mutex update_lock;
u8 orig_conf;
u8 resolution; /* In bits, between 9 and 12 */
@ -91,22 +94,36 @@ static struct lm75_data *lm75_update_device(struct device *dev);
/*-----------------------------------------------------------------------*/
static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
{
return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
}
/* sysfs attributes for hwmon */
static int lm75_read_temp(void *dev, long *temp)
{
struct lm75_data *data = lm75_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
*temp = lm75_reg_to_mc(data->temp[0], data->resolution);
return 0;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm75_data *data = lm75_update_device(dev);
long temp;
if (IS_ERR(data))
return PTR_ERR(data);
temp = ((data->temp[attr->index] >> (16 - data->resolution)) * 1000)
>> (data->resolution - 8);
return sprintf(buf, "%ld\n", temp);
return sprintf(buf, "%ld\n", lm75_reg_to_mc(data->temp[attr->index],
data->resolution));
}
static ssize_t set_temp(struct device *dev, struct device_attribute *da,
@ -273,6 +290,13 @@ lm75_probe(struct i2c_client *client, const struct i2c_device_id *id)
goto exit_remove;
}
data->tz = thermal_zone_of_sensor_register(&client->dev,
0,
&client->dev,
lm75_read_temp, NULL);
if (IS_ERR(data->tz))
data->tz = NULL;
dev_info(&client->dev, "%s: sensor '%s'\n",
dev_name(data->hwmon_dev), client->name);
@ -287,6 +311,7 @@ static int lm75_remove(struct i2c_client *client)
{
struct lm75_data *data = i2c_get_clientdata(client);
thermal_zone_of_sensor_unregister(&client->dev, data->tz);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &lm75_group);
lm75_write_value(client, LM75_REG_CONF, data->orig_conf);

View File

@ -27,6 +27,8 @@
#include <linux/mutex.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/thermal.h>
#include <linux/of.h>
#define DRIVER_NAME "tmp102"
@ -50,6 +52,7 @@
struct tmp102 {
struct device *hwmon_dev;
struct thermal_zone_device *tz;
struct mutex lock;
u16 config_orig;
unsigned long last_update;
@ -93,6 +96,15 @@ static struct tmp102 *tmp102_update_device(struct i2c_client *client)
return tmp102;
}
static int tmp102_read_temp(void *dev, long *temp)
{
struct tmp102 *tmp102 = tmp102_update_device(to_i2c_client(dev));
*temp = tmp102->temp[0];
return 0;
}
static ssize_t tmp102_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
@ -204,6 +216,12 @@ static int tmp102_probe(struct i2c_client *client,
goto fail_remove_sysfs;
}
tmp102->tz = thermal_zone_of_sensor_register(&client->dev, 0,
&client->dev,
tmp102_read_temp, NULL);
if (IS_ERR(tmp102->tz))
tmp102->tz = NULL;
dev_info(&client->dev, "initialized\n");
return 0;
@ -220,6 +238,7 @@ static int tmp102_remove(struct i2c_client *client)
{
struct tmp102 *tmp102 = i2c_get_clientdata(client);
thermal_zone_of_sensor_unregister(&client->dev, tmp102->tz);
hwmon_device_unregister(tmp102->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &tmp102_attr_group);

View File

@ -29,6 +29,19 @@ config THERMAL_HWMON
Say 'Y' here if you want all thermal sensors to
have hwmon sysfs interface too.
config THERMAL_OF
bool
prompt "APIs to parse thermal data out of device tree"
depends on OF
default y
help
This options provides helpers to add the support to
read and parse thermal data definitions out of the
device tree blob.
Say 'Y' here if you need to build thermal infrastructure
based on device tree.
choice
prompt "Default Thermal governor"
default THERMAL_DEFAULT_GOV_STEP_WISE
@ -79,6 +92,7 @@ config THERMAL_GOV_USER_SPACE
config CPU_THERMAL
bool "generic cpu cooling support"
depends on CPU_FREQ
depends on THERMAL_OF
help
This implements the generic cpu cooling mechanism through frequency
reduction. An ACPI version of this already exists

View File

@ -7,6 +7,7 @@ thermal_sys-y += thermal_core.o
# interface to/from other layers providing sensors
thermal_sys-$(CONFIG_THERMAL_HWMON) += thermal_hwmon.o
thermal_sys-$(CONFIG_THERMAL_OF) += of-thermal.o
# governors
thermal_sys-$(CONFIG_THERMAL_GOV_FAIR_SHARE) += fair_share.o

View File

@ -417,18 +417,21 @@ static struct notifier_block thermal_cpufreq_notifier_block = {
};
/**
* cpufreq_cooling_register - function to create cpufreq cooling device.
* __cpufreq_cooling_register - helper function to create cpufreq cooling device
* @np: a valid struct device_node to the cooling device device tree node
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
*
* This interface function registers the cpufreq cooling device with the name
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
* cooling devices.
* cooling devices. It also gives the opportunity to link the cooling device
* with a device tree node, in order to bind it via the thermal DT code.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
cpufreq_cooling_register(const struct cpumask *clip_cpus)
static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_cpus)
{
struct thermal_cooling_device *cool_dev;
struct cpufreq_cooling_device *cpufreq_dev = NULL;
@ -467,8 +470,8 @@ cpufreq_cooling_register(const struct cpumask *clip_cpus)
snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
cpufreq_dev->id);
cool_dev = thermal_cooling_device_register(dev_name, cpufreq_dev,
&cpufreq_cooling_ops);
cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
&cpufreq_cooling_ops);
if (IS_ERR(cool_dev)) {
release_idr(&cpufreq_idr, cpufreq_dev->id);
kfree(cpufreq_dev);
@ -488,8 +491,49 @@ cpufreq_cooling_register(const struct cpumask *clip_cpus)
return cool_dev;
}
/**
* cpufreq_cooling_register - function to create cpufreq cooling device.
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
*
* This interface function registers the cpufreq cooling device with the name
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
* cooling devices.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
cpufreq_cooling_register(const struct cpumask *clip_cpus)
{
return __cpufreq_cooling_register(NULL, clip_cpus);
}
EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
/**
* of_cpufreq_cooling_register - function to create cpufreq cooling device.
* @np: a valid struct device_node to the cooling device device tree node
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
*
* This interface function registers the cpufreq cooling device with the name
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
* cooling devices. Using this API, the cpufreq cooling device will be
* linked to the device tree node provided.
*
* Return: a valid struct thermal_cooling_device pointer on success,
* on failure, it returns a corresponding ERR_PTR().
*/
struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_cpus)
{
if (!np)
return ERR_PTR(-EINVAL);
return __cpufreq_cooling_register(np, clip_cpus);
}
EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
/**
* cpufreq_cooling_unregister - function to remove cpufreq cooling device.
* @cdev: thermal cooling device pointer.

View File

@ -0,0 +1,849 @@
/*
* of-thermal.c - Generic Thermal Management device tree support.
*
* Copyright (C) 2013 Texas Instruments
* Copyright (C) 2013 Eduardo Valentin <eduardo.valentin@ti.com>
*
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/thermal.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/string.h>
#include "thermal_core.h"
/*** Private data structures to represent thermal device tree data ***/
/**
* struct __thermal_trip - representation of a point in temperature domain
* @np: pointer to struct device_node that this trip point was created from
* @temperature: temperature value in miliCelsius
* @hysteresis: relative hysteresis in miliCelsius
* @type: trip point type
*/
struct __thermal_trip {
struct device_node *np;
unsigned long int temperature;
unsigned long int hysteresis;
enum thermal_trip_type type;
};
/**
* struct __thermal_bind_param - a match between trip and cooling device
* @cooling_device: a pointer to identify the referred cooling device
* @trip_id: the trip point index
* @usage: the percentage (from 0 to 100) of cooling contribution
* @min: minimum cooling state used at this trip point
* @max: maximum cooling state used at this trip point
*/
struct __thermal_bind_params {
struct device_node *cooling_device;
unsigned int trip_id;
unsigned int usage;
unsigned long min;
unsigned long max;
};
/**
* struct __thermal_zone - internal representation of a thermal zone
* @mode: current thermal zone device mode (enabled/disabled)
* @passive_delay: polling interval while passive cooling is activated
* @polling_delay: zone polling interval
* @ntrips: number of trip points
* @trips: an array of trip points (0..ntrips - 1)
* @num_tbps: number of thermal bind params
* @tbps: an array of thermal bind params (0..num_tbps - 1)
* @sensor_data: sensor private data used while reading temperature and trend
* @get_temp: sensor callback to read temperature
* @get_trend: sensor callback to read temperature trend
*/
struct __thermal_zone {
enum thermal_device_mode mode;
int passive_delay;
int polling_delay;
/* trip data */
int ntrips;
struct __thermal_trip *trips;
/* cooling binding data */
int num_tbps;
struct __thermal_bind_params *tbps;
/* sensor interface */
void *sensor_data;
int (*get_temp)(void *, long *);
int (*get_trend)(void *, long *);
};
/*** DT thermal zone device callbacks ***/
static int of_thermal_get_temp(struct thermal_zone_device *tz,
unsigned long *temp)
{
struct __thermal_zone *data = tz->devdata;
if (!data->get_temp)
return -EINVAL;
return data->get_temp(data->sensor_data, temp);
}
static int of_thermal_get_trend(struct thermal_zone_device *tz, int trip,
enum thermal_trend *trend)
{
struct __thermal_zone *data = tz->devdata;
long dev_trend;
int r;
if (!data->get_trend)
return -EINVAL;
r = data->get_trend(data->sensor_data, &dev_trend);
if (r)
return r;
/* TODO: These intervals might have some thresholds, but in core code */
if (dev_trend > 0)
*trend = THERMAL_TREND_RAISING;
else if (dev_trend < 0)
*trend = THERMAL_TREND_DROPPING;
else
*trend = THERMAL_TREND_STABLE;
return 0;
}
static int of_thermal_bind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
struct __thermal_zone *data = thermal->devdata;
int i;
if (!data || IS_ERR(data))
return -ENODEV;
/* find where to bind */
for (i = 0; i < data->num_tbps; i++) {
struct __thermal_bind_params *tbp = data->tbps + i;
if (tbp->cooling_device == cdev->np) {
int ret;
ret = thermal_zone_bind_cooling_device(thermal,
tbp->trip_id, cdev,
tbp->min,
tbp->max);
if (ret)
return ret;
}
}
return 0;
}
static int of_thermal_unbind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
struct __thermal_zone *data = thermal->devdata;
int i;
if (!data || IS_ERR(data))
return -ENODEV;
/* find where to unbind */
for (i = 0; i < data->num_tbps; i++) {
struct __thermal_bind_params *tbp = data->tbps + i;
if (tbp->cooling_device == cdev->np) {
int ret;
ret = thermal_zone_unbind_cooling_device(thermal,
tbp->trip_id, cdev);
if (ret)
return ret;
}
}
return 0;
}
static int of_thermal_get_mode(struct thermal_zone_device *tz,
enum thermal_device_mode *mode)
{
struct __thermal_zone *data = tz->devdata;
*mode = data->mode;
return 0;
}
static int of_thermal_set_mode(struct thermal_zone_device *tz,
enum thermal_device_mode mode)
{
struct __thermal_zone *data = tz->devdata;
mutex_lock(&tz->lock);
if (mode == THERMAL_DEVICE_ENABLED)
tz->polling_delay = data->polling_delay;
else
tz->polling_delay = 0;
mutex_unlock(&tz->lock);
data->mode = mode;
thermal_zone_device_update(tz);
return 0;
}
static int of_thermal_get_trip_type(struct thermal_zone_device *tz, int trip,
enum thermal_trip_type *type)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
*type = data->trips[trip].type;
return 0;
}
static int of_thermal_get_trip_temp(struct thermal_zone_device *tz, int trip,
unsigned long *temp)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
*temp = data->trips[trip].temperature;
return 0;
}
static int of_thermal_set_trip_temp(struct thermal_zone_device *tz, int trip,
unsigned long temp)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
/* thermal framework should take care of data->mask & (1 << trip) */
data->trips[trip].temperature = temp;
return 0;
}
static int of_thermal_get_trip_hyst(struct thermal_zone_device *tz, int trip,
unsigned long *hyst)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
*hyst = data->trips[trip].hysteresis;
return 0;
}
static int of_thermal_set_trip_hyst(struct thermal_zone_device *tz, int trip,
unsigned long hyst)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
/* thermal framework should take care of data->mask & (1 << trip) */
data->trips[trip].hysteresis = hyst;
return 0;
}
static int of_thermal_get_crit_temp(struct thermal_zone_device *tz,
unsigned long *temp)
{
struct __thermal_zone *data = tz->devdata;
int i;
for (i = 0; i < data->ntrips; i++)
if (data->trips[i].type == THERMAL_TRIP_CRITICAL) {
*temp = data->trips[i].temperature;
return 0;
}
return -EINVAL;
}
static struct thermal_zone_device_ops of_thermal_ops = {
.get_mode = of_thermal_get_mode,
.set_mode = of_thermal_set_mode,
.get_trip_type = of_thermal_get_trip_type,
.get_trip_temp = of_thermal_get_trip_temp,
.set_trip_temp = of_thermal_set_trip_temp,
.get_trip_hyst = of_thermal_get_trip_hyst,
.set_trip_hyst = of_thermal_set_trip_hyst,
.get_crit_temp = of_thermal_get_crit_temp,
.bind = of_thermal_bind,
.unbind = of_thermal_unbind,
};
/*** sensor API ***/
static struct thermal_zone_device *
thermal_zone_of_add_sensor(struct device_node *zone,
struct device_node *sensor, void *data,
int (*get_temp)(void *, long *),
int (*get_trend)(void *, long *))
{
struct thermal_zone_device *tzd;
struct __thermal_zone *tz;
tzd = thermal_zone_get_zone_by_name(zone->name);
if (IS_ERR(tzd))
return ERR_PTR(-EPROBE_DEFER);
tz = tzd->devdata;
mutex_lock(&tzd->lock);
tz->get_temp = get_temp;
tz->get_trend = get_trend;
tz->sensor_data = data;
tzd->ops->get_temp = of_thermal_get_temp;
tzd->ops->get_trend = of_thermal_get_trend;
mutex_unlock(&tzd->lock);
return tzd;
}
/**
* thermal_zone_of_sensor_register - registers a sensor to a DT thermal zone
* @dev: a valid struct device pointer of a sensor device. Must contain
* a valid .of_node, for the sensor node.
* @sensor_id: a sensor identifier, in case the sensor IP has more
* than one sensors
* @data: a private pointer (owned by the caller) that will be passed
* back, when a temperature reading is needed.
* @get_temp: a pointer to a function that reads the sensor temperature.
* @get_trend: a pointer to a function that reads the sensor temperature trend.
*
* This function will search the list of thermal zones described in device
* tree and look for the zone that refer to the sensor device pointed by
* @dev->of_node as temperature providers. For the zone pointing to the
* sensor node, the sensor will be added to the DT thermal zone device.
*
* The thermal zone temperature is provided by the @get_temp function
* pointer. When called, it will have the private pointer @data back.
*
* The thermal zone temperature trend is provided by the @get_trend function
* pointer. When called, it will have the private pointer @data back.
*
* TODO:
* 01 - This function must enqueue the new sensor instead of using
* it as the only source of temperature values.
*
* 02 - There must be a way to match the sensor with all thermal zones
* that refer to it.
*
* Return: On success returns a valid struct thermal_zone_device,
* otherwise, it returns a corresponding ERR_PTR(). Caller must
* check the return value with help of IS_ERR() helper.
*/
struct thermal_zone_device *
thermal_zone_of_sensor_register(struct device *dev, int sensor_id,
void *data, int (*get_temp)(void *, long *),
int (*get_trend)(void *, long *))
{
struct device_node *np, *child, *sensor_np;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np)
return ERR_PTR(-ENODEV);
if (!dev || !dev->of_node)
return ERR_PTR(-EINVAL);
sensor_np = dev->of_node;
for_each_child_of_node(np, child) {
struct of_phandle_args sensor_specs;
int ret, id;
/* For now, thermal framework supports only 1 sensor per zone */
ret = of_parse_phandle_with_args(child, "thermal-sensors",
"#thermal-sensor-cells",
0, &sensor_specs);
if (ret)
continue;
if (sensor_specs.args_count >= 1) {
id = sensor_specs.args[0];
WARN(sensor_specs.args_count > 1,
"%s: too many cells in sensor specifier %d\n",
sensor_specs.np->name, sensor_specs.args_count);
} else {
id = 0;
}
if (sensor_specs.np == sensor_np && id == sensor_id) {
of_node_put(np);
return thermal_zone_of_add_sensor(child, sensor_np,
data,
get_temp,
get_trend);
}
}
of_node_put(np);
return ERR_PTR(-ENODEV);
}
EXPORT_SYMBOL_GPL(thermal_zone_of_sensor_register);
/**
* thermal_zone_of_sensor_unregister - unregisters a sensor from a DT thermal zone
* @dev: a valid struct device pointer of a sensor device. Must contain
* a valid .of_node, for the sensor node.
* @tzd: a pointer to struct thermal_zone_device where the sensor is registered.
*
* This function removes the sensor callbacks and private data from the
* thermal zone device registered with thermal_zone_of_sensor_register()
* API. It will also silent the zone by remove the .get_temp() and .get_trend()
* thermal zone device callbacks.
*
* TODO: When the support to several sensors per zone is added, this
* function must search the sensor list based on @dev parameter.
*
*/
void thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_zone_device *tzd)
{
struct __thermal_zone *tz;
if (!dev || !tzd || !tzd->devdata)
return;
tz = tzd->devdata;
/* no __thermal_zone, nothing to be done */
if (!tz)
return;
mutex_lock(&tzd->lock);
tzd->ops->get_temp = NULL;
tzd->ops->get_trend = NULL;
tz->get_temp = NULL;
tz->get_trend = NULL;
tz->sensor_data = NULL;
mutex_unlock(&tzd->lock);
}
EXPORT_SYMBOL_GPL(thermal_zone_of_sensor_unregister);
/*** functions parsing device tree nodes ***/
/**
* thermal_of_populate_bind_params - parse and fill cooling map data
* @np: DT node containing a cooling-map node
* @__tbp: data structure to be filled with cooling map info
* @trips: array of thermal zone trip points
* @ntrips: number of trip points inside trips.
*
* This function parses a cooling-map type of node represented by
* @np parameter and fills the read data into @__tbp data structure.
* It needs the already parsed array of trip points of the thermal zone
* in consideration.
*
* Return: 0 on success, proper error code otherwise
*/
static int thermal_of_populate_bind_params(struct device_node *np,
struct __thermal_bind_params *__tbp,
struct __thermal_trip *trips,
int ntrips)
{
struct of_phandle_args cooling_spec;
struct device_node *trip;
int ret, i;
u32 prop;
/* Default weight. Usage is optional */
__tbp->usage = 0;
ret = of_property_read_u32(np, "contribution", &prop);
if (ret == 0)
__tbp->usage = prop;
trip = of_parse_phandle(np, "trip", 0);
if (!trip) {
pr_err("missing trip property\n");
return -ENODEV;
}
/* match using device_node */
for (i = 0; i < ntrips; i++)
if (trip == trips[i].np) {
__tbp->trip_id = i;
break;
}
if (i == ntrips) {
ret = -ENODEV;
goto end;
}
ret = of_parse_phandle_with_args(np, "cooling-device", "#cooling-cells",
0, &cooling_spec);
if (ret < 0) {
pr_err("missing cooling_device property\n");
goto end;
}
__tbp->cooling_device = cooling_spec.np;
if (cooling_spec.args_count >= 2) { /* at least min and max */
__tbp->min = cooling_spec.args[0];
__tbp->max = cooling_spec.args[1];
} else {
pr_err("wrong reference to cooling device, missing limits\n");
}
end:
of_node_put(trip);
return ret;
}
/**
* It maps 'enum thermal_trip_type' found in include/linux/thermal.h
* into the device tree binding of 'trip', property type.
*/
static const char * const trip_types[] = {
[THERMAL_TRIP_ACTIVE] = "active",
[THERMAL_TRIP_PASSIVE] = "passive",
[THERMAL_TRIP_HOT] = "hot",
[THERMAL_TRIP_CRITICAL] = "critical",
};
/**
* thermal_of_get_trip_type - Get phy mode for given device_node
* @np: Pointer to the given device_node
* @type: Pointer to resulting trip type
*
* The function gets trip type string from property 'type',
* and store its index in trip_types table in @type,
*
* Return: 0 on success, or errno in error case.
*/
static int thermal_of_get_trip_type(struct device_node *np,
enum thermal_trip_type *type)
{
const char *t;
int err, i;
err = of_property_read_string(np, "type", &t);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(trip_types); i++)
if (!strcasecmp(t, trip_types[i])) {
*type = i;
return 0;
}
return -ENODEV;
}
/**
* thermal_of_populate_trip - parse and fill one trip point data
* @np: DT node containing a trip point node
* @trip: trip point data structure to be filled up
*
* This function parses a trip point type of node represented by
* @np parameter and fills the read data into @trip data structure.
*
* Return: 0 on success, proper error code otherwise
*/
static int thermal_of_populate_trip(struct device_node *np,
struct __thermal_trip *trip)
{
int prop;
int ret;
ret = of_property_read_u32(np, "temperature", &prop);
if (ret < 0) {
pr_err("missing temperature property\n");
return ret;
}
trip->temperature = prop;
ret = of_property_read_u32(np, "hysteresis", &prop);
if (ret < 0) {
pr_err("missing hysteresis property\n");
return ret;
}
trip->hysteresis = prop;
ret = thermal_of_get_trip_type(np, &trip->type);
if (ret < 0) {
pr_err("wrong trip type property\n");
return ret;
}
/* Required for cooling map matching */
trip->np = np;
return 0;
}
/**
* thermal_of_build_thermal_zone - parse and fill one thermal zone data
* @np: DT node containing a thermal zone node
*
* This function parses a thermal zone type of node represented by
* @np parameter and fills the read data into a __thermal_zone data structure
* and return this pointer.
*
* TODO: Missing properties to parse: thermal-sensor-names and coefficients
*
* Return: On success returns a valid struct __thermal_zone,
* otherwise, it returns a corresponding ERR_PTR(). Caller must
* check the return value with help of IS_ERR() helper.
*/
static struct __thermal_zone *
thermal_of_build_thermal_zone(struct device_node *np)
{
struct device_node *child = NULL, *gchild;
struct __thermal_zone *tz;
int ret, i;
u32 prop;
if (!np) {
pr_err("no thermal zone np\n");
return ERR_PTR(-EINVAL);
}
tz = kzalloc(sizeof(*tz), GFP_KERNEL);
if (!tz)
return ERR_PTR(-ENOMEM);
ret = of_property_read_u32(np, "polling-delay-passive", &prop);
if (ret < 0) {
pr_err("missing polling-delay-passive property\n");
goto free_tz;
}
tz->passive_delay = prop;
ret = of_property_read_u32(np, "polling-delay", &prop);
if (ret < 0) {
pr_err("missing polling-delay property\n");
goto free_tz;
}
tz->polling_delay = prop;
/* trips */
child = of_get_child_by_name(np, "trips");
/* No trips provided */
if (!child)
goto finish;
tz->ntrips = of_get_child_count(child);
if (tz->ntrips == 0) /* must have at least one child */
goto finish;
tz->trips = kzalloc(tz->ntrips * sizeof(*tz->trips), GFP_KERNEL);
if (!tz->trips) {
ret = -ENOMEM;
goto free_tz;
}
i = 0;
for_each_child_of_node(child, gchild) {
ret = thermal_of_populate_trip(gchild, &tz->trips[i++]);
if (ret)
goto free_trips;
}
of_node_put(child);
/* cooling-maps */
child = of_get_child_by_name(np, "cooling-maps");
/* cooling-maps not provided */
if (!child)
goto finish;
tz->num_tbps = of_get_child_count(child);
if (tz->num_tbps == 0)
goto finish;
tz->tbps = kzalloc(tz->num_tbps * sizeof(*tz->tbps), GFP_KERNEL);
if (!tz->tbps) {
ret = -ENOMEM;
goto free_trips;
}
i = 0;
for_each_child_of_node(child, gchild)
ret = thermal_of_populate_bind_params(gchild, &tz->tbps[i++],
tz->trips, tz->ntrips);
if (ret)
goto free_tbps;
finish:
of_node_put(child);
tz->mode = THERMAL_DEVICE_DISABLED;
return tz;
free_tbps:
kfree(tz->tbps);
free_trips:
kfree(tz->trips);
free_tz:
kfree(tz);
of_node_put(child);
return ERR_PTR(ret);
}
static inline void of_thermal_free_zone(struct __thermal_zone *tz)
{
kfree(tz->tbps);
kfree(tz->trips);
kfree(tz);
}
/**
* of_parse_thermal_zones - parse device tree thermal data
*
* Initialization function that can be called by machine initialization
* code to parse thermal data and populate the thermal framework
* with hardware thermal zones info. This function only parses thermal zones.
* Cooling devices and sensor devices nodes are supposed to be parsed
* by their respective drivers.
*
* Return: 0 on success, proper error code otherwise
*
*/
int __init of_parse_thermal_zones(void)
{
struct device_node *np, *child;
struct __thermal_zone *tz;
struct thermal_zone_device_ops *ops;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_debug("unable to find thermal zones\n");
return 0; /* Run successfully on systems without thermal DT */
}
for_each_child_of_node(np, child) {
struct thermal_zone_device *zone;
struct thermal_zone_params *tzp;
tz = thermal_of_build_thermal_zone(child);
if (IS_ERR(tz)) {
pr_err("failed to build thermal zone %s: %ld\n",
child->name,
PTR_ERR(tz));
continue;
}
ops = kmemdup(&of_thermal_ops, sizeof(*ops), GFP_KERNEL);
if (!ops)
goto exit_free;
tzp = kzalloc(sizeof(*tzp), GFP_KERNEL);
if (!tzp) {
kfree(ops);
goto exit_free;
}
/* No hwmon because there might be hwmon drivers registering */
tzp->no_hwmon = true;
zone = thermal_zone_device_register(child->name, tz->ntrips,
0, tz,
ops, tzp,
tz->passive_delay,
tz->polling_delay);
if (IS_ERR(zone)) {
pr_err("Failed to build %s zone %ld\n", child->name,
PTR_ERR(zone));
kfree(tzp);
kfree(ops);
of_thermal_free_zone(tz);
/* attempting to build remaining zones still */
}
}
return 0;
exit_free:
of_thermal_free_zone(tz);
/* no memory available, so free what we have built */
of_thermal_destroy_zones();
return -ENOMEM;
}
/**
* of_thermal_destroy_zones - remove all zones parsed and allocated resources
*
* Finds all zones parsed and added to the thermal framework and remove them
* from the system, together with their resources.
*
*/
void of_thermal_destroy_zones(void)
{
struct device_node *np, *child;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_err("unable to find thermal zones\n");
return;
}
for_each_child_of_node(np, child) {
struct thermal_zone_device *zone;
zone = thermal_zone_get_zone_by_name(child->name);
if (IS_ERR(zone))
continue;
thermal_zone_device_unregister(zone);
kfree(zone->tzp);
kfree(zone->ops);
of_thermal_free_zone(zone->devdata);
}
}

View File

@ -34,6 +34,7 @@
#include <linux/thermal.h>
#include <linux/reboot.h>
#include <linux/string.h>
#include <linux/of.h>
#include <net/netlink.h>
#include <net/genetlink.h>
@ -403,7 +404,7 @@ int thermal_zone_get_temp(struct thermal_zone_device *tz, unsigned long *temp)
enum thermal_trip_type type;
#endif
if (!tz || IS_ERR(tz))
if (!tz || IS_ERR(tz) || !tz->ops->get_temp)
goto exit;
mutex_lock(&tz->lock);
@ -456,6 +457,9 @@ void thermal_zone_device_update(struct thermal_zone_device *tz)
{
int count;
if (!tz->ops->get_temp)
return;
update_temperature(tz);
for (count = 0; count < tz->trips; count++)
@ -1052,7 +1056,8 @@ static struct class thermal_class = {
};
/**
* thermal_cooling_device_register() - register a new thermal cooling device
* __thermal_cooling_device_register() - register a new thermal cooling device
* @np: a pointer to a device tree node.
* @type: the thermal cooling device type.
* @devdata: device private data.
* @ops: standard thermal cooling devices callbacks.
@ -1060,13 +1065,16 @@ static struct class thermal_class = {
* This interface function adds a new thermal cooling device (fan/processor/...)
* to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself
* to all the thermal zone devices registered at the same time.
* It also gives the opportunity to link the cooling device to a device tree
* node, so that it can be bound to a thermal zone created out of device tree.
*
* Return: a pointer to the created struct thermal_cooling_device or an
* ERR_PTR. Caller must check return value with IS_ERR*() helpers.
*/
struct thermal_cooling_device *
thermal_cooling_device_register(char *type, void *devdata,
const struct thermal_cooling_device_ops *ops)
static struct thermal_cooling_device *
__thermal_cooling_device_register(struct device_node *np,
char *type, void *devdata,
const struct thermal_cooling_device_ops *ops)
{
struct thermal_cooling_device *cdev;
int result;
@ -1091,6 +1099,7 @@ thermal_cooling_device_register(char *type, void *devdata,
strlcpy(cdev->type, type ? : "", sizeof(cdev->type));
mutex_init(&cdev->lock);
INIT_LIST_HEAD(&cdev->thermal_instances);
cdev->np = np;
cdev->ops = ops;
cdev->updated = true;
cdev->device.class = &thermal_class;
@ -1133,8 +1142,52 @@ thermal_cooling_device_register(char *type, void *devdata,
device_unregister(&cdev->device);
return ERR_PTR(result);
}
/**
* thermal_cooling_device_register() - register a new thermal cooling device
* @type: the thermal cooling device type.
* @devdata: device private data.
* @ops: standard thermal cooling devices callbacks.
*
* This interface function adds a new thermal cooling device (fan/processor/...)
* to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself
* to all the thermal zone devices registered at the same time.
*
* Return: a pointer to the created struct thermal_cooling_device or an
* ERR_PTR. Caller must check return value with IS_ERR*() helpers.
*/
struct thermal_cooling_device *
thermal_cooling_device_register(char *type, void *devdata,
const struct thermal_cooling_device_ops *ops)
{
return __thermal_cooling_device_register(NULL, type, devdata, ops);
}
EXPORT_SYMBOL_GPL(thermal_cooling_device_register);
/**
* thermal_of_cooling_device_register() - register an OF thermal cooling device
* @np: a pointer to a device tree node.
* @type: the thermal cooling device type.
* @devdata: device private data.
* @ops: standard thermal cooling devices callbacks.
*
* This function will register a cooling device with device tree node reference.
* This interface function adds a new thermal cooling device (fan/processor/...)
* to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself
* to all the thermal zone devices registered at the same time.
*
* Return: a pointer to the created struct thermal_cooling_device or an
* ERR_PTR. Caller must check return value with IS_ERR*() helpers.
*/
struct thermal_cooling_device *
thermal_of_cooling_device_register(struct device_node *np,
char *type, void *devdata,
const struct thermal_cooling_device_ops *ops)
{
return __thermal_cooling_device_register(np, type, devdata, ops);
}
EXPORT_SYMBOL_GPL(thermal_of_cooling_device_register);
/**
* thermal_cooling_device_unregister - removes the registered thermal cooling device
* @cdev: the thermal cooling device to remove.
@ -1370,7 +1423,7 @@ static void remove_trip_attrs(struct thermal_zone_device *tz)
*/
struct thermal_zone_device *thermal_zone_device_register(const char *type,
int trips, int mask, void *devdata,
const struct thermal_zone_device_ops *ops,
struct thermal_zone_device_ops *ops,
const struct thermal_zone_params *tzp,
int passive_delay, int polling_delay)
{
@ -1386,7 +1439,7 @@ struct thermal_zone_device *thermal_zone_device_register(const char *type,
if (trips > THERMAL_MAX_TRIPS || trips < 0 || mask >> trips)
return ERR_PTR(-EINVAL);
if (!ops || !ops->get_temp)
if (!ops)
return ERR_PTR(-EINVAL);
if (trips > 0 && (!ops->get_trip_type || !ops->get_trip_temp))
@ -1490,6 +1543,9 @@ struct thermal_zone_device *thermal_zone_device_register(const char *type,
INIT_DELAYED_WORK(&(tz->poll_queue), thermal_zone_device_check);
if (!tz->ops->get_temp)
thermal_zone_device_set_polling(tz, 0);
thermal_zone_device_update(tz);
if (!result)
@ -1740,8 +1796,14 @@ static int __init thermal_init(void)
if (result)
goto unregister_class;
result = of_parse_thermal_zones();
if (result)
goto exit_netlink;
return 0;
exit_netlink:
genetlink_exit();
unregister_governors:
thermal_unregister_governors();
unregister_class:
@ -1757,6 +1819,7 @@ static int __init thermal_init(void)
static void __exit thermal_exit(void)
{
of_thermal_destroy_zones();
genetlink_exit();
class_unregister(&thermal_class);
thermal_unregister_governors();

View File

@ -77,4 +77,13 @@ static inline int thermal_gov_user_space_register(void) { return 0; }
static inline void thermal_gov_user_space_unregister(void) {}
#endif /* CONFIG_THERMAL_GOV_USER_SPACE */
/* device tree support */
#ifdef CONFIG_THERMAL_OF
int of_parse_thermal_zones(void);
void of_thermal_destroy_zones(void);
#else
static inline int of_parse_thermal_zones(void) { return 0; }
static inline void of_thermal_destroy_zones(void) { }
#endif
#endif /* __THERMAL_CORE_H__ */

View File

@ -31,6 +31,7 @@
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/cpu_cooling.h>
#include <linux/of.h>
#include "ti-thermal.h"
#include "ti-bandgap.h"
@ -44,6 +45,7 @@ struct ti_thermal_data {
enum thermal_device_mode mode;
struct work_struct thermal_wq;
int sensor_id;
bool our_zone;
};
static void ti_thermal_work(struct work_struct *work)
@ -75,11 +77,10 @@ static inline int ti_thermal_hotspot_temperature(int t, int s, int c)
/* thermal zone ops */
/* Get temperature callback function for thermal zone*/
static inline int ti_thermal_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
static inline int __ti_thermal_get_temp(void *devdata, long *temp)
{
struct thermal_zone_device *pcb_tz = NULL;
struct ti_thermal_data *data = thermal->devdata;
struct ti_thermal_data *data = devdata;
struct ti_bandgap *bgp;
const struct ti_temp_sensor *s;
int ret, tmp, slope, constant;
@ -118,6 +119,14 @@ static inline int ti_thermal_get_temp(struct thermal_zone_device *thermal,
return ret;
}
static inline int ti_thermal_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
struct ti_thermal_data *data = thermal->devdata;
return __ti_thermal_get_temp(data, temp);
}
/* Bind callback functions for thermal zone */
static int ti_thermal_bind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
@ -230,11 +239,9 @@ static int ti_thermal_get_trip_temp(struct thermal_zone_device *thermal,
return 0;
}
/* Get the temperature trend callback functions for thermal zone */
static int ti_thermal_get_trend(struct thermal_zone_device *thermal,
int trip, enum thermal_trend *trend)
static int __ti_thermal_get_trend(void *p, long *trend)
{
struct ti_thermal_data *data = thermal->devdata;
struct ti_thermal_data *data = p;
struct ti_bandgap *bgp;
int id, tr, ret = 0;
@ -245,6 +252,22 @@ static int ti_thermal_get_trend(struct thermal_zone_device *thermal,
if (ret)
return ret;
*trend = tr;
return 0;
}
/* Get the temperature trend callback functions for thermal zone */
static int ti_thermal_get_trend(struct thermal_zone_device *thermal,
int trip, enum thermal_trend *trend)
{
int ret;
long tr;
ret = __ti_thermal_get_trend(thermal->devdata, &tr);
if (ret)
return ret;
if (tr > 0)
*trend = THERMAL_TREND_RAISING;
else if (tr < 0)
@ -308,16 +331,23 @@ int ti_thermal_expose_sensor(struct ti_bandgap *bgp, int id,
if (!data)
return -EINVAL;
/* Create thermal zone */
data->ti_thermal = thermal_zone_device_register(domain,
/* in case this is specified by DT */
data->ti_thermal = thermal_zone_of_sensor_register(bgp->dev, id,
data, __ti_thermal_get_temp,
__ti_thermal_get_trend);
if (IS_ERR(data->ti_thermal)) {
/* Create thermal zone */
data->ti_thermal = thermal_zone_device_register(domain,
OMAP_TRIP_NUMBER, 0, data, &ti_thermal_ops,
NULL, FAST_TEMP_MONITORING_RATE,
FAST_TEMP_MONITORING_RATE);
if (IS_ERR(data->ti_thermal)) {
dev_err(bgp->dev, "thermal zone device is NULL\n");
return PTR_ERR(data->ti_thermal);
if (IS_ERR(data->ti_thermal)) {
dev_err(bgp->dev, "thermal zone device is NULL\n");
return PTR_ERR(data->ti_thermal);
}
data->ti_thermal->polling_delay = FAST_TEMP_MONITORING_RATE;
data->our_zone = true;
}
data->ti_thermal->polling_delay = FAST_TEMP_MONITORING_RATE;
ti_bandgap_set_sensor_data(bgp, id, data);
ti_bandgap_write_update_interval(bgp, data->sensor_id,
data->ti_thermal->polling_delay);
@ -331,7 +361,13 @@ int ti_thermal_remove_sensor(struct ti_bandgap *bgp, int id)
data = ti_bandgap_get_sensor_data(bgp, id);
thermal_zone_device_unregister(data->ti_thermal);
if (data && data->ti_thermal) {
if (data->our_zone)
thermal_zone_device_unregister(data->ti_thermal);
else
thermal_zone_of_sensor_unregister(bgp->dev,
data->ti_thermal);
}
return 0;
}
@ -350,6 +386,15 @@ int ti_thermal_report_sensor_temperature(struct ti_bandgap *bgp, int id)
int ti_thermal_register_cpu_cooling(struct ti_bandgap *bgp, int id)
{
struct ti_thermal_data *data;
struct device_node *np = bgp->dev->of_node;
/*
* We are assuming here that if one deploys the zone
* using DT, then it must be aware that the cooling device
* loading has to happen via cpufreq driver.
*/
if (of_find_property(np, "#thermal-sensor-cells", NULL))
return 0;
data = ti_bandgap_get_sensor_data(bgp, id);
if (!data || IS_ERR(data))
@ -380,7 +425,9 @@ int ti_thermal_unregister_cpu_cooling(struct ti_bandgap *bgp, int id)
struct ti_thermal_data *data;
data = ti_bandgap_get_sensor_data(bgp, id);
cpufreq_cooling_unregister(data->cool_dev);
if (data && data->cool_dev)
cpufreq_cooling_unregister(data->cool_dev);
return 0;
}

View File

@ -0,0 +1,17 @@
/*
* This header provides constants for most thermal bindings.
*
* Copyright (C) 2013 Texas Instruments
* Eduardo Valentin <eduardo.valentin@ti.com>
*
* GPLv2 only
*/
#ifndef _DT_BINDINGS_THERMAL_THERMAL_H
#define _DT_BINDINGS_THERMAL_THERMAL_H
/* On cooling devices upper and lower limits */
#define THERMAL_NO_LIMIT (-1UL)
#endif

View File

@ -24,6 +24,7 @@
#ifndef __CPU_COOLING_H__
#define __CPU_COOLING_H__
#include <linux/of.h>
#include <linux/thermal.h>
#include <linux/cpumask.h>
@ -35,6 +36,24 @@
struct thermal_cooling_device *
cpufreq_cooling_register(const struct cpumask *clip_cpus);
/**
* of_cpufreq_cooling_register - create cpufreq cooling device based on DT.
* @np: a valid struct device_node to the cooling device device tree node.
* @clip_cpus: cpumask of cpus where the frequency constraints will happen
*/
#ifdef CONFIG_THERMAL_OF
struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_cpus);
#else
static inline struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_cpus)
{
return NULL;
}
#endif
/**
* cpufreq_cooling_unregister - function to remove cpufreq cooling device.
* @cdev: thermal cooling device pointer.
@ -48,6 +67,12 @@ cpufreq_cooling_register(const struct cpumask *clip_cpus)
{
return NULL;
}
static inline struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node *np,
const struct cpumask *clip_cpus)
{
return NULL;
}
static inline
void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
{

View File

@ -25,6 +25,7 @@
#ifndef __THERMAL_H__
#define __THERMAL_H__
#include <linux/of.h>
#include <linux/idr.h>
#include <linux/device.h>
#include <linux/workqueue.h>
@ -143,6 +144,7 @@ struct thermal_cooling_device {
int id;
char type[THERMAL_NAME_LENGTH];
struct device device;
struct device_node *np;
void *devdata;
const struct thermal_cooling_device_ops *ops;
bool updated; /* true if the cooling device does not need update */
@ -172,7 +174,7 @@ struct thermal_zone_device {
int emul_temperature;
int passive;
unsigned int forced_passive;
const struct thermal_zone_device_ops *ops;
struct thermal_zone_device_ops *ops;
const struct thermal_zone_params *tzp;
struct thermal_governor *governor;
struct list_head thermal_instances;
@ -242,8 +244,31 @@ struct thermal_genl_event {
};
/* Function declarations */
#ifdef CONFIG_THERMAL_OF
struct thermal_zone_device *
thermal_zone_of_sensor_register(struct device *dev, int id,
void *data, int (*get_temp)(void *, long *),
int (*get_trend)(void *, long *));
void thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_zone_device *tz);
#else
static inline struct thermal_zone_device *
thermal_zone_of_sensor_register(struct device *dev, int id,
void *data, int (*get_temp)(void *, long *),
int (*get_trend)(void *, long *))
{
return NULL;
}
static inline
void thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_zone_device *tz)
{
}
#endif
struct thermal_zone_device *thermal_zone_device_register(const char *, int, int,
void *, const struct thermal_zone_device_ops *,
void *, struct thermal_zone_device_ops *,
const struct thermal_zone_params *, int, int);
void thermal_zone_device_unregister(struct thermal_zone_device *);
@ -256,6 +281,9 @@ void thermal_zone_device_update(struct thermal_zone_device *);
struct thermal_cooling_device *thermal_cooling_device_register(char *, void *,
const struct thermal_cooling_device_ops *);
struct thermal_cooling_device *
thermal_of_cooling_device_register(struct device_node *np, char *, void *,
const struct thermal_cooling_device_ops *);
void thermal_cooling_device_unregister(struct thermal_cooling_device *);
struct thermal_zone_device *thermal_zone_get_zone_by_name(const char *name);
int thermal_zone_get_temp(struct thermal_zone_device *tz, unsigned long *temp);