mirror of https://gitee.com/openkylin/linux.git
x86: unify fault_32|64.c
Unify includes in moved fault.c. Modify Makefiles to pick up unified file. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
f8c2ee224d
commit
c61e211d99
|
@ -2,7 +2,7 @@
|
|||
# Makefile for the linux i386-specific parts of the memory manager.
|
||||
#
|
||||
|
||||
obj-y := init_32.o pgtable_32.o fault_32.o ioremap.o extable.o pageattr.o mmap.o
|
||||
obj-y := init_32.o pgtable_32.o fault.o ioremap.o extable.o pageattr.o mmap.o
|
||||
|
||||
obj-$(CONFIG_NUMA) += discontig_32.o
|
||||
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
# Makefile for the linux x86_64-specific parts of the memory manager.
|
||||
#
|
||||
|
||||
obj-y := init_64.o fault_64.o ioremap.o extable.o pageattr.o mmap.o
|
||||
obj-y := init_64.o fault.o ioremap.o extable.o pageattr.o mmap.o
|
||||
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
||||
obj-$(CONFIG_NUMA) += numa_64.o
|
||||
obj-$(CONFIG_K8_NUMA) += k8topology_64.o
|
||||
|
|
|
@ -18,6 +18,8 @@
|
|||
#include <linux/tty.h>
|
||||
#include <linux/vt_kern.h> /* For unblank_screen() */
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/bootmem.h> /* for max_low_pfn */
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
|
@ -25,6 +27,8 @@
|
|||
#include <linux/kdebug.h>
|
||||
|
||||
#include <asm/system.h>
|
||||
#include <asm/desc.h>
|
||||
#include <asm/segment.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/smp.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
@ -88,16 +92,15 @@ static int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|||
unsigned char *max_instr;
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
||||
boot_cpu_data.x86 >= 6)) {
|
||||
/* Catch an obscure case of prefetch inside an NX page. */
|
||||
if (nx_enabled && (error_code & PF_INSTR))
|
||||
return 0;
|
||||
} else {
|
||||
# ifdef CONFIG_X86_PAE
|
||||
/* If it was a exec fault on NX page, ignore */
|
||||
if (nx_enabled && (error_code & PF_INSTR))
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
/* If it was a exec fault ignore */
|
||||
# else
|
||||
return 0;
|
||||
# endif
|
||||
#else /* CONFIG_X86_64 */
|
||||
/* If it was a exec fault on NX page, ignore */
|
||||
if (error_code & PF_INSTR)
|
||||
return 0;
|
||||
#endif
|
|
@ -1,949 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 1995 Linus Torvalds
|
||||
*/
|
||||
|
||||
#include <linux/signal.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/smp.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/tty.h>
|
||||
#include <linux/vt_kern.h> /* For unblank_screen() */
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/bootmem.h> /* for max_low_pfn */
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/kdebug.h>
|
||||
|
||||
#include <asm/system.h>
|
||||
#include <asm/desc.h>
|
||||
#include <asm/segment.h>
|
||||
|
||||
/*
|
||||
* Page fault error code bits
|
||||
* bit 0 == 0 means no page found, 1 means protection fault
|
||||
* bit 1 == 0 means read, 1 means write
|
||||
* bit 2 == 0 means kernel, 1 means user-mode
|
||||
* bit 3 == 1 means use of reserved bit detected
|
||||
* bit 4 == 1 means fault was an instruction fetch
|
||||
*/
|
||||
#define PF_PROT (1<<0)
|
||||
#define PF_WRITE (1<<1)
|
||||
#define PF_USER (1<<2)
|
||||
#define PF_RSVD (1<<3)
|
||||
#define PF_INSTR (1<<4)
|
||||
|
||||
static inline int notify_page_fault(struct pt_regs *regs)
|
||||
{
|
||||
#ifdef CONFIG_KPROBES
|
||||
int ret = 0;
|
||||
|
||||
/* kprobe_running() needs smp_processor_id() */
|
||||
#ifdef CONFIG_X86_32
|
||||
if (!user_mode_vm(regs)) {
|
||||
#else
|
||||
if (!user_mode(regs)) {
|
||||
#endif
|
||||
preempt_disable();
|
||||
if (kprobe_running() && kprobe_fault_handler(regs, 14))
|
||||
ret = 1;
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
return ret;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* X86_32
|
||||
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
||||
* Check that here and ignore it.
|
||||
*
|
||||
* X86_64
|
||||
* Sometimes the CPU reports invalid exceptions on prefetch.
|
||||
* Check that here and ignore it.
|
||||
*
|
||||
* Opcode checker based on code by Richard Brunner
|
||||
*/
|
||||
static int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
||||
unsigned long error_code)
|
||||
{
|
||||
unsigned char *instr;
|
||||
int scan_more = 1;
|
||||
int prefetch = 0;
|
||||
unsigned char *max_instr;
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
||||
boot_cpu_data.x86 >= 6)) {
|
||||
/* Catch an obscure case of prefetch inside an NX page. */
|
||||
if (nx_enabled && (error_code & PF_INSTR))
|
||||
return 0;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
/* If it was a exec fault ignore */
|
||||
if (error_code & PF_INSTR)
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
instr = (unsigned char *)convert_ip_to_linear(current, regs);
|
||||
max_instr = instr + 15;
|
||||
|
||||
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
|
||||
return 0;
|
||||
|
||||
while (scan_more && instr < max_instr) {
|
||||
unsigned char opcode;
|
||||
unsigned char instr_hi;
|
||||
unsigned char instr_lo;
|
||||
|
||||
if (probe_kernel_address(instr, opcode))
|
||||
break;
|
||||
|
||||
instr_hi = opcode & 0xf0;
|
||||
instr_lo = opcode & 0x0f;
|
||||
instr++;
|
||||
|
||||
switch (instr_hi) {
|
||||
case 0x20:
|
||||
case 0x30:
|
||||
/*
|
||||
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
||||
* In X86_64 long mode, the CPU will signal invalid
|
||||
* opcode if some of these prefixes are present so
|
||||
* X86_64 will never get here anyway
|
||||
*/
|
||||
scan_more = ((instr_lo & 7) == 0x6);
|
||||
break;
|
||||
#ifdef CONFIG_X86_64
|
||||
case 0x40:
|
||||
/*
|
||||
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
||||
* Need to figure out under what instruction mode the
|
||||
* instruction was issued. Could check the LDT for lm,
|
||||
* but for now it's good enough to assume that long
|
||||
* mode only uses well known segments or kernel.
|
||||
*/
|
||||
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
||||
break;
|
||||
#endif
|
||||
case 0x60:
|
||||
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
||||
scan_more = (instr_lo & 0xC) == 0x4;
|
||||
break;
|
||||
case 0xF0:
|
||||
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
||||
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
||||
break;
|
||||
case 0x00:
|
||||
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
||||
scan_more = 0;
|
||||
|
||||
if (probe_kernel_address(instr, opcode))
|
||||
break;
|
||||
prefetch = (instr_lo == 0xF) &&
|
||||
(opcode == 0x0D || opcode == 0x18);
|
||||
break;
|
||||
default:
|
||||
scan_more = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return prefetch;
|
||||
}
|
||||
|
||||
static void force_sig_info_fault(int si_signo, int si_code,
|
||||
unsigned long address, struct task_struct *tsk)
|
||||
{
|
||||
siginfo_t info;
|
||||
|
||||
info.si_signo = si_signo;
|
||||
info.si_errno = 0;
|
||||
info.si_code = si_code;
|
||||
info.si_addr = (void __user *)address;
|
||||
force_sig_info(si_signo, &info, tsk);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
static int bad_address(void *p)
|
||||
{
|
||||
unsigned long dummy;
|
||||
return probe_kernel_address((unsigned long *)p, dummy);
|
||||
}
|
||||
#endif
|
||||
|
||||
void dump_pagetable(unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_32
|
||||
__typeof__(pte_val(__pte(0))) page;
|
||||
|
||||
page = read_cr3();
|
||||
page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
|
||||
#ifdef CONFIG_X86_PAE
|
||||
printk("*pdpt = %016Lx ", page);
|
||||
if ((page >> PAGE_SHIFT) < max_low_pfn
|
||||
&& page & _PAGE_PRESENT) {
|
||||
page &= PAGE_MASK;
|
||||
page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
|
||||
& (PTRS_PER_PMD - 1)];
|
||||
printk(KERN_CONT "*pde = %016Lx ", page);
|
||||
page &= ~_PAGE_NX;
|
||||
}
|
||||
#else
|
||||
printk("*pde = %08lx ", page);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We must not directly access the pte in the highpte
|
||||
* case if the page table is located in highmem.
|
||||
* And let's rather not kmap-atomic the pte, just in case
|
||||
* it's allocated already.
|
||||
*/
|
||||
if ((page >> PAGE_SHIFT) < max_low_pfn
|
||||
&& (page & _PAGE_PRESENT)
|
||||
&& !(page & _PAGE_PSE)) {
|
||||
page &= PAGE_MASK;
|
||||
page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
|
||||
& (PTRS_PER_PTE - 1)];
|
||||
printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
|
||||
}
|
||||
|
||||
printk("\n");
|
||||
#else /* CONFIG_X86_64 */
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
|
||||
pgd = (pgd_t *)read_cr3();
|
||||
|
||||
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
|
||||
pgd += pgd_index(address);
|
||||
if (bad_address(pgd)) goto bad;
|
||||
printk("PGD %lx ", pgd_val(*pgd));
|
||||
if (!pgd_present(*pgd)) goto ret;
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
if (bad_address(pud)) goto bad;
|
||||
printk("PUD %lx ", pud_val(*pud));
|
||||
if (!pud_present(*pud)) goto ret;
|
||||
|
||||
pmd = pmd_offset(pud, address);
|
||||
if (bad_address(pmd)) goto bad;
|
||||
printk("PMD %lx ", pmd_val(*pmd));
|
||||
if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
|
||||
|
||||
pte = pte_offset_kernel(pmd, address);
|
||||
if (bad_address(pte)) goto bad;
|
||||
printk("PTE %lx", pte_val(*pte));
|
||||
ret:
|
||||
printk("\n");
|
||||
return;
|
||||
bad:
|
||||
printk("BAD\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
||||
{
|
||||
unsigned index = pgd_index(address);
|
||||
pgd_t *pgd_k;
|
||||
pud_t *pud, *pud_k;
|
||||
pmd_t *pmd, *pmd_k;
|
||||
|
||||
pgd += index;
|
||||
pgd_k = init_mm.pgd + index;
|
||||
|
||||
if (!pgd_present(*pgd_k))
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* set_pgd(pgd, *pgd_k); here would be useless on PAE
|
||||
* and redundant with the set_pmd() on non-PAE. As would
|
||||
* set_pud.
|
||||
*/
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
pud_k = pud_offset(pgd_k, address);
|
||||
if (!pud_present(*pud_k))
|
||||
return NULL;
|
||||
|
||||
pmd = pmd_offset(pud, address);
|
||||
pmd_k = pmd_offset(pud_k, address);
|
||||
if (!pmd_present(*pmd_k))
|
||||
return NULL;
|
||||
if (!pmd_present(*pmd)) {
|
||||
set_pmd(pmd, *pmd_k);
|
||||
arch_flush_lazy_mmu_mode();
|
||||
} else
|
||||
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
||||
return pmd_k;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
static const char errata93_warning[] =
|
||||
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
||||
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
|
||||
KERN_ERR "******* Please consider a BIOS update.\n"
|
||||
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
|
||||
#endif
|
||||
|
||||
/* Workaround for K8 erratum #93 & buggy BIOS.
|
||||
BIOS SMM functions are required to use a specific workaround
|
||||
to avoid corruption of the 64bit RIP register on C stepping K8.
|
||||
A lot of BIOS that didn't get tested properly miss this.
|
||||
The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
||||
Try to work around it here.
|
||||
Note we only handle faults in kernel here.
|
||||
Does nothing for X86_32
|
||||
*/
|
||||
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_64
|
||||
static int warned;
|
||||
if (address != regs->ip)
|
||||
return 0;
|
||||
if ((address >> 32) != 0)
|
||||
return 0;
|
||||
address |= 0xffffffffUL << 32;
|
||||
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
||||
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
||||
if (!warned) {
|
||||
printk(errata93_warning);
|
||||
warned = 1;
|
||||
}
|
||||
regs->ip = address;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
|
||||
* addresses >4GB. We catch this in the page fault handler because these
|
||||
* addresses are not reachable. Just detect this case and return. Any code
|
||||
* segment in LDT is compatibility mode.
|
||||
*/
|
||||
static int is_errata100(struct pt_regs *regs, unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_64
|
||||
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
|
||||
(address >> 32))
|
||||
return 1;
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
void do_invalid_op(struct pt_regs *, unsigned long);
|
||||
|
||||
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_F00F_BUG
|
||||
unsigned long nr;
|
||||
/*
|
||||
* Pentium F0 0F C7 C8 bug workaround.
|
||||
*/
|
||||
if (boot_cpu_data.f00f_bug) {
|
||||
nr = (address - idt_descr.address) >> 3;
|
||||
|
||||
if (nr == 6) {
|
||||
do_invalid_op(regs, 0);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
|
||||
unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_32
|
||||
if (!oops_may_print())
|
||||
return;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
if (error_code & PF_INSTR) {
|
||||
int level;
|
||||
pte_t *pte = lookup_address(address, &level);
|
||||
|
||||
if (pte && pte_present(*pte) && !pte_exec(*pte))
|
||||
printk(KERN_CRIT "kernel tried to execute "
|
||||
"NX-protected page - exploit attempt? "
|
||||
"(uid: %d)\n", current->uid);
|
||||
}
|
||||
#endif
|
||||
printk(KERN_ALERT "BUG: unable to handle kernel ");
|
||||
if (address < PAGE_SIZE)
|
||||
printk(KERN_CONT "NULL pointer dereference");
|
||||
else
|
||||
printk(KERN_CONT "paging request");
|
||||
printk(KERN_CONT " at %08lx\n", address);
|
||||
|
||||
printk(KERN_ALERT "IP:");
|
||||
printk_address(regs->ip, 1);
|
||||
dump_pagetable(address);
|
||||
#else /* CONFIG_X86_64 */
|
||||
printk(KERN_ALERT "BUG: unable to handle kernel ");
|
||||
if (address < PAGE_SIZE)
|
||||
printk(KERN_CONT "NULL pointer dereference");
|
||||
else
|
||||
printk(KERN_CONT "paging request");
|
||||
printk(KERN_CONT " at %016lx\n", address);
|
||||
|
||||
printk(KERN_ALERT "IP:");
|
||||
printk_address(regs->ip, 1);
|
||||
dump_pagetable(address);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
|
||||
unsigned long error_code)
|
||||
{
|
||||
unsigned long flags = oops_begin();
|
||||
struct task_struct *tsk;
|
||||
|
||||
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
|
||||
current->comm, address);
|
||||
dump_pagetable(address);
|
||||
tsk = current;
|
||||
tsk->thread.cr2 = address;
|
||||
tsk->thread.trap_no = 14;
|
||||
tsk->thread.error_code = error_code;
|
||||
if (__die("Bad pagetable", regs, error_code))
|
||||
regs = NULL;
|
||||
oops_end(flags, regs, SIGKILL);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* X86_32
|
||||
* Handle a fault on the vmalloc or module mapping area
|
||||
*
|
||||
* X86_64
|
||||
* Handle a fault on the vmalloc area
|
||||
*
|
||||
* This assumes no large pages in there.
|
||||
*/
|
||||
static int vmalloc_fault(unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_X86_32
|
||||
unsigned long pgd_paddr;
|
||||
pmd_t *pmd_k;
|
||||
pte_t *pte_k;
|
||||
/*
|
||||
* Synchronize this task's top level page-table
|
||||
* with the 'reference' page table.
|
||||
*
|
||||
* Do _not_ use "current" here. We might be inside
|
||||
* an interrupt in the middle of a task switch..
|
||||
*/
|
||||
pgd_paddr = read_cr3();
|
||||
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
||||
if (!pmd_k)
|
||||
return -1;
|
||||
pte_k = pte_offset_kernel(pmd_k, address);
|
||||
if (!pte_present(*pte_k))
|
||||
return -1;
|
||||
return 0;
|
||||
#else
|
||||
pgd_t *pgd, *pgd_ref;
|
||||
pud_t *pud, *pud_ref;
|
||||
pmd_t *pmd, *pmd_ref;
|
||||
pte_t *pte, *pte_ref;
|
||||
|
||||
/* Copy kernel mappings over when needed. This can also
|
||||
happen within a race in page table update. In the later
|
||||
case just flush. */
|
||||
|
||||
pgd = pgd_offset(current->mm ?: &init_mm, address);
|
||||
pgd_ref = pgd_offset_k(address);
|
||||
if (pgd_none(*pgd_ref))
|
||||
return -1;
|
||||
if (pgd_none(*pgd))
|
||||
set_pgd(pgd, *pgd_ref);
|
||||
else
|
||||
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
||||
|
||||
/* Below here mismatches are bugs because these lower tables
|
||||
are shared */
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
pud_ref = pud_offset(pgd_ref, address);
|
||||
if (pud_none(*pud_ref))
|
||||
return -1;
|
||||
if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
|
||||
BUG();
|
||||
pmd = pmd_offset(pud, address);
|
||||
pmd_ref = pmd_offset(pud_ref, address);
|
||||
if (pmd_none(*pmd_ref))
|
||||
return -1;
|
||||
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
|
||||
BUG();
|
||||
pte_ref = pte_offset_kernel(pmd_ref, address);
|
||||
if (!pte_present(*pte_ref))
|
||||
return -1;
|
||||
pte = pte_offset_kernel(pmd, address);
|
||||
/* Don't use pte_page here, because the mappings can point
|
||||
outside mem_map, and the NUMA hash lookup cannot handle
|
||||
that. */
|
||||
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
|
||||
BUG();
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int show_unhandled_signals = 1;
|
||||
|
||||
/*
|
||||
* This routine handles page faults. It determines the address,
|
||||
* and the problem, and then passes it off to one of the appropriate
|
||||
* routines.
|
||||
*/
|
||||
#ifdef CONFIG_X86_64
|
||||
asmlinkage
|
||||
#endif
|
||||
void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
||||
{
|
||||
struct task_struct *tsk;
|
||||
struct mm_struct *mm;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long address;
|
||||
int write, si_code;
|
||||
int fault;
|
||||
#ifdef CONFIG_X86_64
|
||||
unsigned long flags;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We can fault from pretty much anywhere, with unknown IRQ state.
|
||||
*/
|
||||
trace_hardirqs_fixup();
|
||||
|
||||
tsk = current;
|
||||
mm = tsk->mm;
|
||||
prefetchw(&mm->mmap_sem);
|
||||
|
||||
/* get the address */
|
||||
address = read_cr2();
|
||||
|
||||
si_code = SEGV_MAPERR;
|
||||
|
||||
if (notify_page_fault(regs))
|
||||
return;
|
||||
|
||||
/*
|
||||
* We fault-in kernel-space virtual memory on-demand. The
|
||||
* 'reference' page table is init_mm.pgd.
|
||||
*
|
||||
* NOTE! We MUST NOT take any locks for this case. We may
|
||||
* be in an interrupt or a critical region, and should
|
||||
* only copy the information from the master page table,
|
||||
* nothing more.
|
||||
*
|
||||
* This verifies that the fault happens in kernel space
|
||||
* (error_code & 4) == 0, and that the fault was not a
|
||||
* protection error (error_code & 9) == 0.
|
||||
*/
|
||||
#ifdef CONFIG_X86_32
|
||||
if (unlikely(address >= TASK_SIZE)) {
|
||||
if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
|
||||
vmalloc_fault(address) >= 0)
|
||||
return;
|
||||
/*
|
||||
* Don't take the mm semaphore here. If we fixup a prefetch
|
||||
* fault we could otherwise deadlock.
|
||||
*/
|
||||
goto bad_area_nosemaphore;
|
||||
}
|
||||
|
||||
/* It's safe to allow irq's after cr2 has been saved and the vmalloc
|
||||
fault has been handled. */
|
||||
if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
|
||||
local_irq_enable();
|
||||
|
||||
/*
|
||||
* If we're in an interrupt, have no user context or are running in an
|
||||
* atomic region then we must not take the fault.
|
||||
*/
|
||||
if (in_atomic() || !mm)
|
||||
goto bad_area_nosemaphore;
|
||||
#else /* CONFIG_X86_64 */
|
||||
if (unlikely(address >= TASK_SIZE64)) {
|
||||
/*
|
||||
* Don't check for the module range here: its PML4
|
||||
* is always initialized because it's shared with the main
|
||||
* kernel text. Only vmalloc may need PML4 syncups.
|
||||
*/
|
||||
if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
|
||||
((address >= VMALLOC_START && address < VMALLOC_END))) {
|
||||
if (vmalloc_fault(address) >= 0)
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* Don't take the mm semaphore here. If we fixup a prefetch
|
||||
* fault we could otherwise deadlock.
|
||||
*/
|
||||
goto bad_area_nosemaphore;
|
||||
}
|
||||
if (likely(regs->flags & X86_EFLAGS_IF))
|
||||
local_irq_enable();
|
||||
|
||||
if (unlikely(error_code & PF_RSVD))
|
||||
pgtable_bad(address, regs, error_code);
|
||||
|
||||
/*
|
||||
* If we're in an interrupt, have no user context or are running in an
|
||||
* atomic region then we must not take the fault.
|
||||
*/
|
||||
if (unlikely(in_atomic() || !mm))
|
||||
goto bad_area_nosemaphore;
|
||||
|
||||
/*
|
||||
* User-mode registers count as a user access even for any
|
||||
* potential system fault or CPU buglet.
|
||||
*/
|
||||
if (user_mode_vm(regs))
|
||||
error_code |= PF_USER;
|
||||
again:
|
||||
#endif
|
||||
/* When running in the kernel we expect faults to occur only to
|
||||
* addresses in user space. All other faults represent errors in the
|
||||
* kernel and should generate an OOPS. Unfortunately, in the case of an
|
||||
* erroneous fault occurring in a code path which already holds mmap_sem
|
||||
* we will deadlock attempting to validate the fault against the
|
||||
* address space. Luckily the kernel only validly references user
|
||||
* space from well defined areas of code, which are listed in the
|
||||
* exceptions table.
|
||||
*
|
||||
* As the vast majority of faults will be valid we will only perform
|
||||
* the source reference check when there is a possibility of a deadlock.
|
||||
* Attempt to lock the address space, if we cannot we then validate the
|
||||
* source. If this is invalid we can skip the address space check,
|
||||
* thus avoiding the deadlock.
|
||||
*/
|
||||
if (!down_read_trylock(&mm->mmap_sem)) {
|
||||
if ((error_code & PF_USER) == 0 &&
|
||||
!search_exception_tables(regs->ip))
|
||||
goto bad_area_nosemaphore;
|
||||
down_read(&mm->mmap_sem);
|
||||
}
|
||||
|
||||
vma = find_vma(mm, address);
|
||||
if (!vma)
|
||||
goto bad_area;
|
||||
#ifdef CONFIG_X86_32
|
||||
if (vma->vm_start <= address)
|
||||
#else
|
||||
if (likely(vma->vm_start <= address))
|
||||
#endif
|
||||
goto good_area;
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
if (error_code & PF_USER) {
|
||||
/*
|
||||
* Accessing the stack below %sp is always a bug.
|
||||
* The large cushion allows instructions like enter
|
||||
* and pusha to work. ("enter $65535,$31" pushes
|
||||
* 32 pointers and then decrements %sp by 65535.)
|
||||
*/
|
||||
if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
|
||||
goto bad_area;
|
||||
}
|
||||
if (expand_stack(vma, address))
|
||||
goto bad_area;
|
||||
/*
|
||||
* Ok, we have a good vm_area for this memory access, so
|
||||
* we can handle it..
|
||||
*/
|
||||
good_area:
|
||||
si_code = SEGV_ACCERR;
|
||||
write = 0;
|
||||
switch (error_code & (PF_PROT|PF_WRITE)) {
|
||||
default: /* 3: write, present */
|
||||
/* fall through */
|
||||
case PF_WRITE: /* write, not present */
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
write++;
|
||||
break;
|
||||
case PF_PROT: /* read, present */
|
||||
goto bad_area;
|
||||
case 0: /* read, not present */
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
survive:
|
||||
#endif
|
||||
/*
|
||||
* If for any reason at all we couldn't handle the fault,
|
||||
* make sure we exit gracefully rather than endlessly redo
|
||||
* the fault.
|
||||
*/
|
||||
fault = handle_mm_fault(mm, vma, address, write);
|
||||
if (unlikely(fault & VM_FAULT_ERROR)) {
|
||||
if (fault & VM_FAULT_OOM)
|
||||
goto out_of_memory;
|
||||
else if (fault & VM_FAULT_SIGBUS)
|
||||
goto do_sigbus;
|
||||
BUG();
|
||||
}
|
||||
if (fault & VM_FAULT_MAJOR)
|
||||
tsk->maj_flt++;
|
||||
else
|
||||
tsk->min_flt++;
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
/*
|
||||
* Did it hit the DOS screen memory VA from vm86 mode?
|
||||
*/
|
||||
if (v8086_mode(regs)) {
|
||||
unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
|
||||
if (bit < 32)
|
||||
tsk->thread.screen_bitmap |= 1 << bit;
|
||||
}
|
||||
#endif
|
||||
up_read(&mm->mmap_sem);
|
||||
return;
|
||||
|
||||
/*
|
||||
* Something tried to access memory that isn't in our memory map..
|
||||
* Fix it, but check if it's kernel or user first..
|
||||
*/
|
||||
bad_area:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
bad_area_nosemaphore:
|
||||
/* User mode accesses just cause a SIGSEGV */
|
||||
if (error_code & PF_USER) {
|
||||
/*
|
||||
* It's possible to have interrupts off here.
|
||||
*/
|
||||
local_irq_enable();
|
||||
|
||||
/*
|
||||
* Valid to do another page fault here because this one came
|
||||
* from user space.
|
||||
*/
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
|
||||
if (is_errata100(regs, address))
|
||||
return;
|
||||
|
||||
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
|
||||
printk_ratelimit()) {
|
||||
printk(
|
||||
#ifdef CONFIG_X86_32
|
||||
"%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
|
||||
#else
|
||||
"%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
|
||||
#endif
|
||||
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
|
||||
tsk->comm, task_pid_nr(tsk), address, regs->ip,
|
||||
regs->sp, error_code);
|
||||
print_vma_addr(" in ", regs->ip);
|
||||
printk("\n");
|
||||
}
|
||||
|
||||
tsk->thread.cr2 = address;
|
||||
/* Kernel addresses are always protection faults */
|
||||
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
||||
tsk->thread.trap_no = 14;
|
||||
force_sig_info_fault(SIGSEGV, si_code, address, tsk);
|
||||
return;
|
||||
}
|
||||
|
||||
if (is_f00f_bug(regs, address))
|
||||
return;
|
||||
|
||||
no_context:
|
||||
/* Are we prepared to handle this kernel fault? */
|
||||
if (fixup_exception(regs))
|
||||
return;
|
||||
|
||||
/*
|
||||
* X86_32
|
||||
* Valid to do another page fault here, because if this fault
|
||||
* had been triggered by is_prefetch fixup_exception would have
|
||||
* handled it.
|
||||
*
|
||||
* X86_64
|
||||
* Hall of shame of CPU/BIOS bugs.
|
||||
*/
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
|
||||
if (is_errata93(regs, address))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Oops. The kernel tried to access some bad page. We'll have to
|
||||
* terminate things with extreme prejudice.
|
||||
*/
|
||||
#ifdef CONFIG_X86_32
|
||||
bust_spinlocks(1);
|
||||
|
||||
show_fault_oops(regs, error_code, address);
|
||||
|
||||
tsk->thread.cr2 = address;
|
||||
tsk->thread.trap_no = 14;
|
||||
tsk->thread.error_code = error_code;
|
||||
die("Oops", regs, error_code);
|
||||
bust_spinlocks(0);
|
||||
do_exit(SIGKILL);
|
||||
#else /* CONFIG_X86_64 */
|
||||
flags = oops_begin();
|
||||
|
||||
show_fault_oops(regs, error_code, address);
|
||||
|
||||
tsk->thread.cr2 = address;
|
||||
tsk->thread.trap_no = 14;
|
||||
tsk->thread.error_code = error_code;
|
||||
if (__die("Oops", regs, error_code))
|
||||
regs = NULL;
|
||||
/* Executive summary in case the body of the oops scrolled away */
|
||||
printk(KERN_EMERG "CR2: %016lx\n", address);
|
||||
oops_end(flags, regs, SIGKILL);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We ran out of memory, or some other thing happened to us that made
|
||||
* us unable to handle the page fault gracefully.
|
||||
*/
|
||||
out_of_memory:
|
||||
up_read(&mm->mmap_sem);
|
||||
#ifdef CONFIG_X86_32
|
||||
if (is_global_init(tsk)) {
|
||||
yield();
|
||||
down_read(&mm->mmap_sem);
|
||||
goto survive;
|
||||
}
|
||||
#else
|
||||
if (is_global_init(current)) {
|
||||
yield();
|
||||
goto again;
|
||||
}
|
||||
#endif
|
||||
printk("VM: killing process %s\n", tsk->comm);
|
||||
if (error_code & PF_USER)
|
||||
do_group_exit(SIGKILL);
|
||||
goto no_context;
|
||||
|
||||
do_sigbus:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
/* Kernel mode? Handle exceptions or die */
|
||||
if (!(error_code & PF_USER))
|
||||
goto no_context;
|
||||
#ifdef CONFIG_X86_32
|
||||
/* User space => ok to do another page fault */
|
||||
if (is_prefetch(regs, address, error_code))
|
||||
return;
|
||||
#endif
|
||||
tsk->thread.cr2 = address;
|
||||
tsk->thread.error_code = error_code;
|
||||
tsk->thread.trap_no = 14;
|
||||
force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
DEFINE_SPINLOCK(pgd_lock);
|
||||
LIST_HEAD(pgd_list);
|
||||
#endif
|
||||
|
||||
void vmalloc_sync_all(void)
|
||||
{
|
||||
#ifdef CONFIG_X86_32
|
||||
/*
|
||||
* Note that races in the updates of insync and start aren't
|
||||
* problematic: insync can only get set bits added, and updates to
|
||||
* start are only improving performance (without affecting correctness
|
||||
* if undone).
|
||||
*/
|
||||
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
||||
static unsigned long start = TASK_SIZE;
|
||||
unsigned long address;
|
||||
|
||||
if (SHARED_KERNEL_PMD)
|
||||
return;
|
||||
|
||||
BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
|
||||
for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
|
||||
if (!test_bit(pgd_index(address), insync)) {
|
||||
unsigned long flags;
|
||||
struct page *page;
|
||||
|
||||
spin_lock_irqsave(&pgd_lock, flags);
|
||||
for (page = pgd_list; page; page =
|
||||
(struct page *)page->index)
|
||||
if (!vmalloc_sync_one(page_address(page),
|
||||
address)) {
|
||||
BUG_ON(page != pgd_list);
|
||||
break;
|
||||
}
|
||||
spin_unlock_irqrestore(&pgd_lock, flags);
|
||||
if (!page)
|
||||
set_bit(pgd_index(address), insync);
|
||||
}
|
||||
if (address == start && test_bit(pgd_index(address), insync))
|
||||
start = address + PGDIR_SIZE;
|
||||
}
|
||||
#else /* CONFIG_X86_64 */
|
||||
/*
|
||||
* Note that races in the updates of insync and start aren't
|
||||
* problematic: insync can only get set bits added, and updates to
|
||||
* start are only improving performance (without affecting correctness
|
||||
* if undone).
|
||||
*/
|
||||
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
||||
static unsigned long start = VMALLOC_START & PGDIR_MASK;
|
||||
unsigned long address;
|
||||
|
||||
for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
|
||||
if (!test_bit(pgd_index(address), insync)) {
|
||||
const pgd_t *pgd_ref = pgd_offset_k(address);
|
||||
struct page *page;
|
||||
|
||||
if (pgd_none(*pgd_ref))
|
||||
continue;
|
||||
spin_lock(&pgd_lock);
|
||||
list_for_each_entry(page, &pgd_list, lru) {
|
||||
pgd_t *pgd;
|
||||
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
||||
if (pgd_none(*pgd))
|
||||
set_pgd(pgd, *pgd_ref);
|
||||
else
|
||||
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
||||
}
|
||||
spin_unlock(&pgd_lock);
|
||||
set_bit(pgd_index(address), insync);
|
||||
}
|
||||
if (address == start)
|
||||
start = address + PGDIR_SIZE;
|
||||
}
|
||||
/* Check that there is no need to do the same for the modules area. */
|
||||
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
|
||||
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
||||
(__START_KERNEL & PGDIR_MASK)));
|
||||
#endif
|
||||
}
|
Loading…
Reference in New Issue