mirror of https://gitee.com/openkylin/linux.git
genalloc: make it possible to use a custom allocation algorithm
Premit use of another algorithm than the default first-fit one. For example a custom algorithm could be used to manage alignment requirements. As I can't predict all the possible requirements/needs for all allocation uses cases, I add a "free" field 'void *data' to pass any needed information to the allocation function. For example 'data' could be used to handle a structure where you store the alignment, the expected memory bank, the requester device, or any information that could influence the allocation algorithm. An usage example may look like this: struct my_pool_constraints { int align; int bank; ... }; unsigned long my_custom_algo(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { struct my_pool_constraints *constraints = data; ... deal with allocation contraints ... return the index in bitmap where perform the allocation } void create_my_pool() { struct my_pool_constraints c; struct gen_pool *pool = gen_pool_create(...); gen_pool_add(pool, ...); gen_pool_set_algo(pool, my_custom_algo, &c); } Add of best-fit algorithm function: most of the time best-fit is slower then first-fit but memory fragmentation is lower. The random buffer allocation/free tests don't show any arithmetic relation between the allocation time and fragmentation but the best-fit algorithm is sometime able to perform the allocation when the first-fit can't. This new algorithm help to remove static allocations on ESRAM, a small but fast on-chip RAM of few KB, used for high-performance uses cases like DMA linked lists, graphic accelerators, encoders/decoders. On the Ux500 (in the ARM tree) we have define 5 ESRAM banks of 128 KB each and use of static allocations becomes unmaintainable: cd arch/arm/mach-ux500 && grep -r ESRAM . ./include/mach/db8500-regs.h:/* Base address and bank offsets for ESRAM */ ./include/mach/db8500-regs.h:#define U8500_ESRAM_BASE 0x40000000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK_SIZE 0x00020000 ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK0 U8500_ESRAM_BASE ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK1 (U8500_ESRAM_BASE + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK2 (U8500_ESRAM_BANK1 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK3 (U8500_ESRAM_BANK2 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_BANK4 (U8500_ESRAM_BANK3 + U8500_ESRAM_BANK_SIZE) ./include/mach/db8500-regs.h:#define U8500_ESRAM_DMA_LCPA_OFFSET 0x10000 ./include/mach/db8500-regs.h:#define U8500_DMA_LCPA_BASE (U8500_ESRAM_BANK0 + U8500_ESRAM_DMA_LCPA_OFFSET) ./include/mach/db8500-regs.h:#define U8500_DMA_LCLA_BASE U8500_ESRAM_BANK4 I want to use genalloc to do dynamic allocations but I need to be able to fine tune the allocation algorithm. I my case best-fit algorithm give better results than first-fit, but it will not be true for every use case. Signed-off-by: Benjamin Gaignard <benjamin.gaignard@stericsson.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
e96875677f
commit
ca279cf106
|
@ -29,6 +29,20 @@
|
|||
|
||||
#ifndef __GENALLOC_H__
|
||||
#define __GENALLOC_H__
|
||||
/**
|
||||
* Allocation callback function type definition
|
||||
* @map: Pointer to bitmap
|
||||
* @size: The bitmap size in bits
|
||||
* @start: The bitnumber to start searching at
|
||||
* @nr: The number of zeroed bits we're looking for
|
||||
* @data: optional additional data used by @genpool_algo_t
|
||||
*/
|
||||
typedef unsigned long (*genpool_algo_t)(unsigned long *map,
|
||||
unsigned long size,
|
||||
unsigned long start,
|
||||
unsigned int nr,
|
||||
void *data);
|
||||
|
||||
/*
|
||||
* General purpose special memory pool descriptor.
|
||||
*/
|
||||
|
@ -36,6 +50,9 @@ struct gen_pool {
|
|||
spinlock_t lock;
|
||||
struct list_head chunks; /* list of chunks in this pool */
|
||||
int min_alloc_order; /* minimum allocation order */
|
||||
|
||||
genpool_algo_t algo; /* allocation function */
|
||||
void *data;
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -78,4 +95,14 @@ extern void gen_pool_for_each_chunk(struct gen_pool *,
|
|||
void (*)(struct gen_pool *, struct gen_pool_chunk *, void *), void *);
|
||||
extern size_t gen_pool_avail(struct gen_pool *);
|
||||
extern size_t gen_pool_size(struct gen_pool *);
|
||||
|
||||
extern void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo,
|
||||
void *data);
|
||||
|
||||
extern unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
|
||||
unsigned long start, unsigned int nr, void *data);
|
||||
|
||||
extern unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
|
||||
unsigned long start, unsigned int nr, void *data);
|
||||
|
||||
#endif /* __GENALLOC_H__ */
|
||||
|
|
|
@ -152,6 +152,8 @@ struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
|
|||
spin_lock_init(&pool->lock);
|
||||
INIT_LIST_HEAD(&pool->chunks);
|
||||
pool->min_alloc_order = min_alloc_order;
|
||||
pool->algo = gen_pool_first_fit;
|
||||
pool->data = NULL;
|
||||
}
|
||||
return pool;
|
||||
}
|
||||
|
@ -255,8 +257,9 @@ EXPORT_SYMBOL(gen_pool_destroy);
|
|||
* @size: number of bytes to allocate from the pool
|
||||
*
|
||||
* Allocate the requested number of bytes from the specified pool.
|
||||
* Uses a first-fit algorithm. Can not be used in NMI handler on
|
||||
* architectures without NMI-safe cmpxchg implementation.
|
||||
* Uses the pool allocation function (with first-fit algorithm by default).
|
||||
* Can not be used in NMI handler on architectures without
|
||||
* NMI-safe cmpxchg implementation.
|
||||
*/
|
||||
unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
|
||||
{
|
||||
|
@ -280,8 +283,8 @@ unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
|
|||
|
||||
end_bit = (chunk->end_addr - chunk->start_addr) >> order;
|
||||
retry:
|
||||
start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit,
|
||||
start_bit, nbits, 0);
|
||||
start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
|
||||
pool->data);
|
||||
if (start_bit >= end_bit)
|
||||
continue;
|
||||
remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
|
||||
|
@ -400,3 +403,80 @@ size_t gen_pool_size(struct gen_pool *pool)
|
|||
return size;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(gen_pool_size);
|
||||
|
||||
/**
|
||||
* gen_pool_set_algo - set the allocation algorithm
|
||||
* @pool: pool to change allocation algorithm
|
||||
* @algo: custom algorithm function
|
||||
* @data: additional data used by @algo
|
||||
*
|
||||
* Call @algo for each memory allocation in the pool.
|
||||
* If @algo is NULL use gen_pool_first_fit as default
|
||||
* memory allocation function.
|
||||
*/
|
||||
void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
|
||||
{
|
||||
rcu_read_lock();
|
||||
|
||||
pool->algo = algo;
|
||||
if (!pool->algo)
|
||||
pool->algo = gen_pool_first_fit;
|
||||
|
||||
pool->data = data;
|
||||
|
||||
rcu_read_unlock();
|
||||
}
|
||||
EXPORT_SYMBOL(gen_pool_set_algo);
|
||||
|
||||
/**
|
||||
* gen_pool_first_fit - find the first available region
|
||||
* of memory matching the size requirement (no alignment constraint)
|
||||
* @map: The address to base the search on
|
||||
* @size: The bitmap size in bits
|
||||
* @start: The bitnumber to start searching at
|
||||
* @nr: The number of zeroed bits we're looking for
|
||||
* @data: additional data - unused
|
||||
*/
|
||||
unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
|
||||
unsigned long start, unsigned int nr, void *data)
|
||||
{
|
||||
return bitmap_find_next_zero_area(map, size, start, nr, 0);
|
||||
}
|
||||
EXPORT_SYMBOL(gen_pool_first_fit);
|
||||
|
||||
/**
|
||||
* gen_pool_best_fit - find the best fitting region of memory
|
||||
* macthing the size requirement (no alignment constraint)
|
||||
* @map: The address to base the search on
|
||||
* @size: The bitmap size in bits
|
||||
* @start: The bitnumber to start searching at
|
||||
* @nr: The number of zeroed bits we're looking for
|
||||
* @data: additional data - unused
|
||||
*
|
||||
* Iterate over the bitmap to find the smallest free region
|
||||
* which we can allocate the memory.
|
||||
*/
|
||||
unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
|
||||
unsigned long start, unsigned int nr, void *data)
|
||||
{
|
||||
unsigned long start_bit = size;
|
||||
unsigned long len = size + 1;
|
||||
unsigned long index;
|
||||
|
||||
index = bitmap_find_next_zero_area(map, size, start, nr, 0);
|
||||
|
||||
while (index < size) {
|
||||
int next_bit = find_next_bit(map, size, index + nr);
|
||||
if ((next_bit - index) < len) {
|
||||
len = next_bit - index;
|
||||
start_bit = index;
|
||||
if (len == nr)
|
||||
return start_bit;
|
||||
}
|
||||
index = bitmap_find_next_zero_area(map, size,
|
||||
next_bit + 1, nr, 0);
|
||||
}
|
||||
|
||||
return start_bit;
|
||||
}
|
||||
EXPORT_SYMBOL(gen_pool_best_fit);
|
||||
|
|
Loading…
Reference in New Issue