sfc: Implement asynchronous MCDI requests

This will allow use of MCDI from the data path, in particular for
accelerated RFS.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
This commit is contained in:
Ben Hutchings 2013-08-27 23:12:31 +01:00
parent 251111d9a1
commit cade715ff1
3 changed files with 291 additions and 30 deletions

View File

@ -1368,6 +1368,9 @@ static void efx_soft_disable_interrupts(struct efx_nic *efx)
if (!channel->type->keep_eventq) if (!channel->type->keep_eventq)
efx_fini_eventq(channel); efx_fini_eventq(channel);
} }
/* Flush the asynchronous MCDI request queue */
efx_mcdi_flush_async(efx);
} }
static void efx_enable_interrupts(struct efx_nic *efx) static void efx_enable_interrupts(struct efx_nic *efx)

View File

@ -37,6 +37,18 @@
#define SEQ_MASK \ #define SEQ_MASK \
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
struct efx_mcdi_async_param {
struct list_head list;
unsigned int cmd;
size_t inlen;
size_t outlen;
efx_mcdi_async_completer *complete;
unsigned long cookie;
/* followed by request/response buffer */
};
static void efx_mcdi_timeout_async(unsigned long context);
static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx) static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
{ {
EFX_BUG_ON_PARANOID(!efx->mcdi); EFX_BUG_ON_PARANOID(!efx->mcdi);
@ -52,10 +64,15 @@ int efx_mcdi_init(struct efx_nic *efx)
return -ENOMEM; return -ENOMEM;
mcdi = efx_mcdi(efx); mcdi = efx_mcdi(efx);
mcdi->efx = efx;
init_waitqueue_head(&mcdi->wq); init_waitqueue_head(&mcdi->wq);
spin_lock_init(&mcdi->iface_lock); spin_lock_init(&mcdi->iface_lock);
mcdi->state = MCDI_STATE_QUIESCENT; mcdi->state = MCDI_STATE_QUIESCENT;
mcdi->mode = MCDI_MODE_POLL; mcdi->mode = MCDI_MODE_POLL;
spin_lock_init(&mcdi->async_lock);
INIT_LIST_HEAD(&mcdi->async_list);
setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
(unsigned long)mcdi);
(void) efx_mcdi_poll_reboot(efx); (void) efx_mcdi_poll_reboot(efx);
mcdi->new_epoch = true; mcdi->new_epoch = true;
@ -253,13 +270,21 @@ int efx_mcdi_poll_reboot(struct efx_nic *efx)
return efx->type->mcdi_poll_reboot(efx); return efx->type->mcdi_poll_reboot(efx);
} }
static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi) static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
{
return cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
MCDI_STATE_QUIESCENT;
}
static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
{ {
/* Wait until the interface becomes QUIESCENT and we win the race /* Wait until the interface becomes QUIESCENT and we win the race
* to mark it RUNNING. */ * to mark it RUNNING_SYNC.
*/
wait_event(mcdi->wq, wait_event(mcdi->wq,
cmpxchg(&mcdi->state, cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING) == MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
MCDI_STATE_QUIESCENT); MCDI_STATE_QUIESCENT);
} }
@ -285,16 +310,14 @@ static int efx_mcdi_await_completion(struct efx_nic *efx)
return 0; return 0;
} }
static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi) /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
* requester. Return whether this was done. Does not take any locks.
*/
static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
{ {
/* If the interface is RUNNING, then move to COMPLETED and wake any if (cmpxchg(&mcdi->state,
* waiters. If the interface isn't in RUNNING then we've received a MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
* duplicate completion after we've already transitioned back to MCDI_STATE_RUNNING_SYNC) {
* QUIESCENT. [A subsequent invocation would increment seqno, so would
* have failed the seqno check].
*/
if (cmpxchg(&mcdi->state, MCDI_STATE_RUNNING, MCDI_STATE_COMPLETED) ==
MCDI_STATE_RUNNING) {
wake_up(&mcdi->wq); wake_up(&mcdi->wq);
return true; return true;
} }
@ -304,10 +327,91 @@ static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
{ {
if (mcdi->mode == MCDI_MODE_EVENTS) {
struct efx_mcdi_async_param *async;
struct efx_nic *efx = mcdi->efx;
/* Process the asynchronous request queue */
spin_lock_bh(&mcdi->async_lock);
async = list_first_entry_or_null(
&mcdi->async_list, struct efx_mcdi_async_param, list);
if (async) {
mcdi->state = MCDI_STATE_RUNNING_ASYNC;
efx_mcdi_send_request(efx, async->cmd,
(const efx_dword_t *)(async + 1),
async->inlen);
mod_timer(&mcdi->async_timer,
jiffies + MCDI_RPC_TIMEOUT);
}
spin_unlock_bh(&mcdi->async_lock);
if (async)
return;
}
mcdi->state = MCDI_STATE_QUIESCENT; mcdi->state = MCDI_STATE_QUIESCENT;
wake_up(&mcdi->wq); wake_up(&mcdi->wq);
} }
/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
* asynchronous completion function, and release the interface.
* Return whether this was done. Must be called in bh-disabled
* context. Will take iface_lock and async_lock.
*/
static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
{
struct efx_nic *efx = mcdi->efx;
struct efx_mcdi_async_param *async;
size_t hdr_len, data_len;
efx_dword_t *outbuf;
int rc;
if (cmpxchg(&mcdi->state,
MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
MCDI_STATE_RUNNING_ASYNC)
return false;
spin_lock(&mcdi->iface_lock);
if (timeout) {
/* Ensure that if the completion event arrives later,
* the seqno check in efx_mcdi_ev_cpl() will fail
*/
++mcdi->seqno;
++mcdi->credits;
rc = -ETIMEDOUT;
hdr_len = 0;
data_len = 0;
} else {
rc = mcdi->resprc;
hdr_len = mcdi->resp_hdr_len;
data_len = mcdi->resp_data_len;
}
spin_unlock(&mcdi->iface_lock);
/* Stop the timer. In case the timer function is running, we
* must wait for it to return so that there is no possibility
* of it aborting the next request.
*/
if (!timeout)
del_timer_sync(&mcdi->async_timer);
spin_lock(&mcdi->async_lock);
async = list_first_entry(&mcdi->async_list,
struct efx_mcdi_async_param, list);
list_del(&async->list);
spin_unlock(&mcdi->async_lock);
outbuf = (efx_dword_t *)(async + 1);
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
min(async->outlen, data_len));
async->complete(efx, async->cookie, rc, outbuf, data_len);
kfree(async);
efx_mcdi_release(mcdi);
return true;
}
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
unsigned int datalen, unsigned int mcdi_err) unsigned int datalen, unsigned int mcdi_err)
{ {
@ -339,8 +443,24 @@ static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
spin_unlock(&mcdi->iface_lock); spin_unlock(&mcdi->iface_lock);
if (wake) if (wake) {
efx_mcdi_complete(mcdi); if (!efx_mcdi_complete_async(mcdi, false))
(void) efx_mcdi_complete_sync(mcdi);
/* If the interface isn't RUNNING_ASYNC or
* RUNNING_SYNC then we've received a duplicate
* completion after we've already transitioned back to
* QUIESCENT. [A subsequent invocation would increment
* seqno, so would have failed the seqno check].
*/
}
}
static void efx_mcdi_timeout_async(unsigned long context)
{
struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
efx_mcdi_complete_async(mcdi, true);
} }
static int static int
@ -383,11 +503,80 @@ int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
if (rc) if (rc)
return rc; return rc;
efx_mcdi_acquire(mcdi); efx_mcdi_acquire_sync(mcdi);
efx_mcdi_send_request(efx, cmd, inbuf, inlen); efx_mcdi_send_request(efx, cmd, inbuf, inlen);
return 0; return 0;
} }
/**
* efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
* @efx: NIC through which to issue the command
* @cmd: Command type number
* @inbuf: Command parameters
* @inlen: Length of command parameters, in bytes
* @outlen: Length to allocate for response buffer, in bytes
* @complete: Function to be called on completion or cancellation.
* @cookie: Arbitrary value to be passed to @complete.
*
* This function does not sleep and therefore may be called in atomic
* context. It will fail if event queues are disabled or if MCDI
* event completions have been disabled due to an error.
*
* If it succeeds, the @complete function will be called exactly once
* in atomic context, when one of the following occurs:
* (a) the completion event is received (in NAPI context)
* (b) event queues are disabled (in the process that disables them)
* (c) the request times-out (in timer context)
*/
int
efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen, size_t outlen,
efx_mcdi_async_completer *complete, unsigned long cookie)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
struct efx_mcdi_async_param *async;
int rc;
rc = efx_mcdi_check_supported(efx, cmd, inlen);
if (rc)
return rc;
async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
GFP_ATOMIC);
if (!async)
return -ENOMEM;
async->cmd = cmd;
async->inlen = inlen;
async->outlen = outlen;
async->complete = complete;
async->cookie = cookie;
memcpy(async + 1, inbuf, inlen);
spin_lock_bh(&mcdi->async_lock);
if (mcdi->mode == MCDI_MODE_EVENTS) {
list_add_tail(&async->list, &mcdi->async_list);
/* If this is at the front of the queue, try to start it
* immediately
*/
if (mcdi->async_list.next == &async->list &&
efx_mcdi_acquire_async(mcdi)) {
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
mod_timer(&mcdi->async_timer,
jiffies + MCDI_RPC_TIMEOUT);
}
} else {
kfree(async);
rc = -ENETDOWN;
}
spin_unlock_bh(&mcdi->async_lock);
return rc;
}
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
efx_dword_t *outbuf, size_t outlen, efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual) size_t *outlen_actual)
@ -455,6 +644,10 @@ int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
return rc; return rc;
} }
/* Switch to polled MCDI completions. This can be called in various
* error conditions with various locks held, so it must be lockless.
* Caller is responsible for flushing asynchronous requests later.
*/
void efx_mcdi_mode_poll(struct efx_nic *efx) void efx_mcdi_mode_poll(struct efx_nic *efx)
{ {
struct efx_mcdi_iface *mcdi; struct efx_mcdi_iface *mcdi;
@ -472,11 +665,50 @@ void efx_mcdi_mode_poll(struct efx_nic *efx)
* efx_mcdi_await_completion() will then call efx_mcdi_poll(). * efx_mcdi_await_completion() will then call efx_mcdi_poll().
* *
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
* which efx_mcdi_complete() provides for us. * which efx_mcdi_complete_sync() provides for us.
*/ */
mcdi->mode = MCDI_MODE_POLL; mcdi->mode = MCDI_MODE_POLL;
efx_mcdi_complete(mcdi); efx_mcdi_complete_sync(mcdi);
}
/* Flush any running or queued asynchronous requests, after event processing
* is stopped
*/
void efx_mcdi_flush_async(struct efx_nic *efx)
{
struct efx_mcdi_async_param *async, *next;
struct efx_mcdi_iface *mcdi;
if (!efx->mcdi)
return;
mcdi = efx_mcdi(efx);
/* We must be in polling mode so no more requests can be queued */
BUG_ON(mcdi->mode != MCDI_MODE_POLL);
del_timer_sync(&mcdi->async_timer);
/* If a request is still running, make sure we give the MC
* time to complete it so that the response won't overwrite our
* next request.
*/
if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
efx_mcdi_poll(efx);
mcdi->state = MCDI_STATE_QUIESCENT;
}
/* Nothing else will access the async list now, so it is safe
* to walk it without holding async_lock. If we hold it while
* calling a completer then lockdep may warn that we have
* acquired locks in the wrong order.
*/
list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
list_del(&async->list);
kfree(async);
}
} }
void efx_mcdi_mode_event(struct efx_nic *efx) void efx_mcdi_mode_event(struct efx_nic *efx)
@ -498,7 +730,7 @@ void efx_mcdi_mode_event(struct efx_nic *efx)
* write memory barrier ensure that efx_mcdi_rpc() sees it, which * write memory barrier ensure that efx_mcdi_rpc() sees it, which
* efx_mcdi_acquire() provides. * efx_mcdi_acquire() provides.
*/ */
efx_mcdi_acquire(mcdi); efx_mcdi_acquire_sync(mcdi);
mcdi->mode = MCDI_MODE_EVENTS; mcdi->mode = MCDI_MODE_EVENTS;
efx_mcdi_release(mcdi); efx_mcdi_release(mcdi);
} }
@ -515,16 +747,21 @@ static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
* are sent to the same queue, we can't be racing with * are sent to the same queue, we can't be racing with
* efx_mcdi_ev_cpl()] * efx_mcdi_ev_cpl()]
* *
* There's a race here with efx_mcdi_rpc(), because we might receive * If there is an outstanding asynchronous request, we can't
* a REBOOT event *before* the request has been copied out. In polled * complete it now (efx_mcdi_complete() would deadlock). The
* mode (during startup) this is irrelevant, because efx_mcdi_complete() * reset process will take care of this.
* is ignored. In event mode, this condition is just an edge-case of *
* receiving a REBOOT event after posting the MCDI request. Did the mc * There's a race here with efx_mcdi_send_request(), because
* reboot before or after the copyout? The best we can do always is * we might receive a REBOOT event *before* the request has
* just return failure. * been copied out. In polled mode (during startup) this is
* irrelevant, because efx_mcdi_complete_sync() is ignored. In
* event mode, this condition is just an edge-case of
* receiving a REBOOT event after posting the MCDI
* request. Did the mc reboot before or after the copyout? The
* best we can do always is just return failure.
*/ */
spin_lock(&mcdi->iface_lock); spin_lock(&mcdi->iface_lock);
if (efx_mcdi_complete(mcdi)) { if (efx_mcdi_complete_sync(mcdi)) {
if (mcdi->mode == MCDI_MODE_EVENTS) { if (mcdi->mode == MCDI_MODE_EVENTS) {
mcdi->resprc = rc; mcdi->resprc = rc;
mcdi->resp_hdr_len = 0; mcdi->resp_hdr_len = 0;

View File

@ -14,15 +14,17 @@
* enum efx_mcdi_state - MCDI request handling state * enum efx_mcdi_state - MCDI request handling state
* @MCDI_STATE_QUIESCENT: No pending MCDI requests. If the caller holds the * @MCDI_STATE_QUIESCENT: No pending MCDI requests. If the caller holds the
* mcdi @iface_lock then they are able to move to %MCDI_STATE_RUNNING * mcdi @iface_lock then they are able to move to %MCDI_STATE_RUNNING
* @MCDI_STATE_RUNNING: There is an MCDI request pending. Only the thread that * @MCDI_STATE_RUNNING_SYNC: There is a synchronous MCDI request pending.
* moved into this state is allowed to move out of it. * Only the thread that moved into this state is allowed to move out of it.
* @MCDI_STATE_RUNNING_ASYNC: There is an asynchronous MCDI request pending.
* @MCDI_STATE_COMPLETED: An MCDI request has completed, but the owning thread * @MCDI_STATE_COMPLETED: An MCDI request has completed, but the owning thread
* has not yet consumed the result. For all other threads, equivalent to * has not yet consumed the result. For all other threads, equivalent to
* %MCDI_STATE_RUNNING. * %MCDI_STATE_RUNNING.
*/ */
enum efx_mcdi_state { enum efx_mcdi_state {
MCDI_STATE_QUIESCENT, MCDI_STATE_QUIESCENT,
MCDI_STATE_RUNNING, MCDI_STATE_RUNNING_SYNC,
MCDI_STATE_RUNNING_ASYNC,
MCDI_STATE_COMPLETED, MCDI_STATE_COMPLETED,
}; };
@ -33,19 +35,25 @@ enum efx_mcdi_mode {
/** /**
* struct efx_mcdi_iface - MCDI protocol context * struct efx_mcdi_iface - MCDI protocol context
* @efx: The associated NIC.
* @state: Request handling state. Waited for by @wq. * @state: Request handling state. Waited for by @wq.
* @mode: Poll for mcdi completion, or wait for an mcdi_event. * @mode: Poll for mcdi completion, or wait for an mcdi_event.
* @wq: Wait queue for threads waiting for @state != %MCDI_STATE_RUNNING * @wq: Wait queue for threads waiting for @state != %MCDI_STATE_RUNNING
* @new_epoch: Indicates start of day or start of MC reboot recovery * @new_epoch: Indicates start of day or start of MC reboot recovery
* @iface_lock: Serialises access to all the following fields * @iface_lock: Serialises access to @seqno, @credits and response metadata
* @seqno: The next sequence number to use for mcdi requests. * @seqno: The next sequence number to use for mcdi requests.
* @credits: Number of spurious MCDI completion events allowed before we * @credits: Number of spurious MCDI completion events allowed before we
* trigger a fatal error * trigger a fatal error
* @resprc: Response error/success code (Linux numbering) * @resprc: Response error/success code (Linux numbering)
* @resp_hdr_len: Response header length * @resp_hdr_len: Response header length
* @resp_data_len: Response data (SDU or error) length * @resp_data_len: Response data (SDU or error) length
* @async_lock: Serialises access to @async_list while event processing is
* enabled
* @async_list: Queue of asynchronous requests
* @async_timer: Timer for asynchronous request timeout
*/ */
struct efx_mcdi_iface { struct efx_mcdi_iface {
struct efx_nic *efx;
enum efx_mcdi_state state; enum efx_mcdi_state state;
enum efx_mcdi_mode mode; enum efx_mcdi_mode mode;
wait_queue_head_t wq; wait_queue_head_t wq;
@ -56,6 +64,9 @@ struct efx_mcdi_iface {
int resprc; int resprc;
size_t resp_hdr_len; size_t resp_hdr_len;
size_t resp_data_len; size_t resp_data_len;
spinlock_t async_lock;
struct list_head async_list;
struct timer_list async_timer;
}; };
struct efx_mcdi_mon { struct efx_mcdi_mon {
@ -111,10 +122,20 @@ extern int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
efx_dword_t *outbuf, size_t outlen, efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual); size_t *outlen_actual);
typedef void efx_mcdi_async_completer(struct efx_nic *efx,
unsigned long cookie, int rc,
efx_dword_t *outbuf,
size_t outlen_actual);
extern int efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen,
size_t outlen,
efx_mcdi_async_completer *complete,
unsigned long cookie);
extern int efx_mcdi_poll_reboot(struct efx_nic *efx); extern int efx_mcdi_poll_reboot(struct efx_nic *efx);
extern void efx_mcdi_mode_poll(struct efx_nic *efx); extern void efx_mcdi_mode_poll(struct efx_nic *efx);
extern void efx_mcdi_mode_event(struct efx_nic *efx); extern void efx_mcdi_mode_event(struct efx_nic *efx);
extern void efx_mcdi_flush_async(struct efx_nic *efx);
extern void efx_mcdi_process_event(struct efx_channel *channel, extern void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event); efx_qword_t *event);