mirror of https://gitee.com/openkylin/linux.git
lib: Add a simple prime number generator
Prime numbers are interesting for testing components that use multiplies and divides, such as testing DRM's struct drm_mm alignment computations. v2: Move to lib/, add selftest v3: Fix initial constants (exclude 0/1 from being primes) v4: More RCU markup to keep 0day/sparse happy v5: Fix RCU unwind on module exit, add to kselftests v6: Tidy computation of bitmap size v7: for_each_prime_number_from() v8: Compose small-primes using BIT() for easier verification v9: Move rcu dance entirely into callers. v10: Improve quote for Betrand's Postulate (aka Chebyshev's theorem) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Lukas Wunner <lukas@wunner.de> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161222144514.3911-1-chris@chris-wilson.co.uk
This commit is contained in:
parent
b3ee963fe4
commit
cf4a7207b1
|
@ -0,0 +1,37 @@
|
|||
#ifndef __LINUX_PRIME_NUMBERS_H
|
||||
#define __LINUX_PRIME_NUMBERS_H
|
||||
|
||||
#include <linux/types.h>
|
||||
|
||||
bool is_prime_number(unsigned long x);
|
||||
unsigned long next_prime_number(unsigned long x);
|
||||
|
||||
/**
|
||||
* for_each_prime_number - iterate over each prime upto a value
|
||||
* @prime: the current prime number in this iteration
|
||||
* @max: the upper limit
|
||||
*
|
||||
* Starting from the first prime number 2 iterate over each prime number up to
|
||||
* the @max value. On each iteration, @prime is set to the current prime number.
|
||||
* @max should be less than ULONG_MAX to ensure termination. To begin with
|
||||
* @prime set to 1 on the first iteration use for_each_prime_number_from()
|
||||
* instead.
|
||||
*/
|
||||
#define for_each_prime_number(prime, max) \
|
||||
for_each_prime_number_from((prime), 2, (max))
|
||||
|
||||
/**
|
||||
* for_each_prime_number_from - iterate over each prime upto a value
|
||||
* @prime: the current prime number in this iteration
|
||||
* @from: the initial value
|
||||
* @max: the upper limit
|
||||
*
|
||||
* Starting from @from iterate over each successive prime number up to the
|
||||
* @max value. On each iteration, @prime is set to the current prime number.
|
||||
* @max should be less than ULONG_MAX, and @from less than @max, to ensure
|
||||
* termination.
|
||||
*/
|
||||
#define for_each_prime_number_from(prime, from, max) \
|
||||
for (prime = (from); prime <= (max); prime = next_prime_number(prime))
|
||||
|
||||
#endif /* !__LINUX_PRIME_NUMBERS_H */
|
|
@ -550,4 +550,11 @@ config STACKDEPOT
|
|||
config SBITMAP
|
||||
bool
|
||||
|
||||
config PRIME_NUMBERS
|
||||
tristate "Prime number generator"
|
||||
default n
|
||||
help
|
||||
Provides a helper module to generate prime numbers. Useful for writing
|
||||
test code, especially when checking multiplication and divison.
|
||||
|
||||
endmenu
|
||||
|
|
|
@ -197,6 +197,8 @@ obj-$(CONFIG_ASN1) += asn1_decoder.o
|
|||
|
||||
obj-$(CONFIG_FONT_SUPPORT) += fonts/
|
||||
|
||||
obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o
|
||||
|
||||
hostprogs-y := gen_crc32table
|
||||
clean-files := crc32table.h
|
||||
|
||||
|
|
|
@ -0,0 +1,314 @@
|
|||
#define pr_fmt(fmt) "prime numbers: " fmt "\n"
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/prime_numbers.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
|
||||
|
||||
struct primes {
|
||||
struct rcu_head rcu;
|
||||
unsigned long last, sz;
|
||||
unsigned long primes[];
|
||||
};
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
static const struct primes small_primes = {
|
||||
.last = 61,
|
||||
.sz = 64,
|
||||
.primes = {
|
||||
BIT(2) |
|
||||
BIT(3) |
|
||||
BIT(5) |
|
||||
BIT(7) |
|
||||
BIT(11) |
|
||||
BIT(13) |
|
||||
BIT(17) |
|
||||
BIT(19) |
|
||||
BIT(23) |
|
||||
BIT(29) |
|
||||
BIT(31) |
|
||||
BIT(37) |
|
||||
BIT(41) |
|
||||
BIT(43) |
|
||||
BIT(47) |
|
||||
BIT(53) |
|
||||
BIT(59) |
|
||||
BIT(61)
|
||||
}
|
||||
};
|
||||
#elif BITS_PER_LONG == 32
|
||||
static const struct primes small_primes = {
|
||||
.last = 31,
|
||||
.sz = 32,
|
||||
.primes = {
|
||||
BIT(2) |
|
||||
BIT(3) |
|
||||
BIT(5) |
|
||||
BIT(7) |
|
||||
BIT(11) |
|
||||
BIT(13) |
|
||||
BIT(17) |
|
||||
BIT(19) |
|
||||
BIT(23) |
|
||||
BIT(29) |
|
||||
BIT(31)
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error "unhandled BITS_PER_LONG"
|
||||
#endif
|
||||
|
||||
static DEFINE_MUTEX(lock);
|
||||
static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
|
||||
|
||||
static unsigned long selftest_max;
|
||||
|
||||
static bool slow_is_prime_number(unsigned long x)
|
||||
{
|
||||
unsigned long y = int_sqrt(x);
|
||||
|
||||
while (y > 1) {
|
||||
if ((x % y) == 0)
|
||||
break;
|
||||
y--;
|
||||
}
|
||||
|
||||
return y == 1;
|
||||
}
|
||||
|
||||
static unsigned long slow_next_prime_number(unsigned long x)
|
||||
{
|
||||
while (x < ULONG_MAX && !slow_is_prime_number(++x))
|
||||
;
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
static unsigned long clear_multiples(unsigned long x,
|
||||
unsigned long *p,
|
||||
unsigned long start,
|
||||
unsigned long end)
|
||||
{
|
||||
unsigned long m;
|
||||
|
||||
m = 2 * x;
|
||||
if (m < start)
|
||||
m = roundup(start, x);
|
||||
|
||||
while (m < end) {
|
||||
__clear_bit(m, p);
|
||||
m += x;
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
static bool expand_to_next_prime(unsigned long x)
|
||||
{
|
||||
const struct primes *p;
|
||||
struct primes *new;
|
||||
unsigned long sz, y;
|
||||
|
||||
/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
|
||||
* there is always at least one prime p between n and 2n - 2.
|
||||
* Equivalently, if n > 1, then there is always at least one prime p
|
||||
* such that n < p < 2n.
|
||||
*
|
||||
* http://mathworld.wolfram.com/BertrandsPostulate.html
|
||||
* https://en.wikipedia.org/wiki/Bertrand's_postulate
|
||||
*/
|
||||
sz = 2 * x;
|
||||
if (sz < x)
|
||||
return false;
|
||||
|
||||
sz = round_up(sz, BITS_PER_LONG);
|
||||
new = kmalloc(sizeof(*new) + bitmap_size(sz), GFP_KERNEL);
|
||||
if (!new)
|
||||
return false;
|
||||
|
||||
mutex_lock(&lock);
|
||||
p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
|
||||
if (x < p->last) {
|
||||
kfree(new);
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
/* Where memory permits, track the primes using the
|
||||
* Sieve of Eratosthenes. The sieve is to remove all multiples of known
|
||||
* primes from the set, what remains in the set is therefore prime.
|
||||
*/
|
||||
bitmap_fill(new->primes, sz);
|
||||
bitmap_copy(new->primes, p->primes, p->sz);
|
||||
for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
|
||||
new->last = clear_multiples(y, new->primes, p->sz, sz);
|
||||
new->sz = sz;
|
||||
|
||||
BUG_ON(new->last <= x);
|
||||
|
||||
rcu_assign_pointer(primes, new);
|
||||
if (p != &small_primes)
|
||||
kfree_rcu((struct primes *)p, rcu);
|
||||
|
||||
unlock:
|
||||
mutex_unlock(&lock);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void free_primes(void)
|
||||
{
|
||||
const struct primes *p;
|
||||
|
||||
mutex_lock(&lock);
|
||||
p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
|
||||
if (p != &small_primes) {
|
||||
rcu_assign_pointer(primes, &small_primes);
|
||||
kfree_rcu((struct primes *)p, rcu);
|
||||
}
|
||||
mutex_unlock(&lock);
|
||||
}
|
||||
|
||||
/**
|
||||
* next_prime_number - return the next prime number
|
||||
* @x: the starting point for searching to test
|
||||
*
|
||||
* A prime number is an integer greater than 1 that is only divisible by
|
||||
* itself and 1. The set of prime numbers is computed using the Sieve of
|
||||
* Eratoshenes (on finding a prime, all multiples of that prime are removed
|
||||
* from the set) enabling a fast lookup of the next prime number larger than
|
||||
* @x. If the sieve fails (memory limitation), the search falls back to using
|
||||
* slow trial-divison, up to the value of ULONG_MAX (which is reported as the
|
||||
* final prime as a sentinel).
|
||||
*
|
||||
* Returns: the next prime number larger than @x
|
||||
*/
|
||||
unsigned long next_prime_number(unsigned long x)
|
||||
{
|
||||
const struct primes *p;
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(primes);
|
||||
while (x >= p->last) {
|
||||
rcu_read_unlock();
|
||||
|
||||
if (!expand_to_next_prime(x))
|
||||
return slow_next_prime_number(x);
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(primes);
|
||||
}
|
||||
x = find_next_bit(p->primes, p->last, x + 1);
|
||||
rcu_read_unlock();
|
||||
|
||||
return x;
|
||||
}
|
||||
EXPORT_SYMBOL(next_prime_number);
|
||||
|
||||
/**
|
||||
* is_prime_number - test whether the given number is prime
|
||||
* @x: the number to test
|
||||
*
|
||||
* A prime number is an integer greater than 1 that is only divisible by
|
||||
* itself and 1. Internally a cache of prime numbers is kept (to speed up
|
||||
* searching for sequential primes, see next_prime_number()), but if the number
|
||||
* falls outside of that cache, its primality is tested using trial-divison.
|
||||
*
|
||||
* Returns: true if @x is prime, false for composite numbers.
|
||||
*/
|
||||
bool is_prime_number(unsigned long x)
|
||||
{
|
||||
const struct primes *p;
|
||||
bool result;
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(primes);
|
||||
while (x >= p->sz) {
|
||||
rcu_read_unlock();
|
||||
|
||||
if (!expand_to_next_prime(x))
|
||||
return slow_is_prime_number(x);
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(primes);
|
||||
}
|
||||
result = test_bit(x, p->primes);
|
||||
rcu_read_unlock();
|
||||
|
||||
return result;
|
||||
}
|
||||
EXPORT_SYMBOL(is_prime_number);
|
||||
|
||||
static void dump_primes(void)
|
||||
{
|
||||
const struct primes *p;
|
||||
char *buf;
|
||||
|
||||
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(primes);
|
||||
|
||||
if (buf)
|
||||
bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
|
||||
pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
|
||||
p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
kfree(buf);
|
||||
}
|
||||
|
||||
static int selftest(unsigned long max)
|
||||
{
|
||||
unsigned long x, last;
|
||||
|
||||
if (!max)
|
||||
return 0;
|
||||
|
||||
for (last = 0, x = 2; x < max; x++) {
|
||||
bool slow = slow_is_prime_number(x);
|
||||
bool fast = is_prime_number(x);
|
||||
|
||||
if (slow != fast) {
|
||||
pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
|
||||
x, slow ? "yes" : "no", fast ? "yes" : "no");
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (!slow)
|
||||
continue;
|
||||
|
||||
if (next_prime_number(last) != x) {
|
||||
pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
|
||||
last, x, next_prime_number(last));
|
||||
goto err;
|
||||
}
|
||||
last = x;
|
||||
}
|
||||
|
||||
pr_info("selftest(%lu) passed, last prime was %lu", x, last);
|
||||
return 0;
|
||||
|
||||
err:
|
||||
dump_primes();
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int __init primes_init(void)
|
||||
{
|
||||
return selftest(selftest_max);
|
||||
}
|
||||
|
||||
static void __exit primes_exit(void)
|
||||
{
|
||||
free_primes();
|
||||
}
|
||||
|
||||
module_init(primes_init);
|
||||
module_exit(primes_exit);
|
||||
|
||||
module_param_named(selftest, selftest_max, ulong, 0400);
|
||||
|
||||
MODULE_AUTHOR("Intel Corporation");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,15 @@
|
|||
#!/bin/sh
|
||||
# Checks fast/slow prime_number generation for inconsistencies
|
||||
|
||||
if ! /sbin/modprobe -q -r prime_numbers; then
|
||||
echo "prime_numbers: [SKIP]"
|
||||
exit 77
|
||||
fi
|
||||
|
||||
if /sbin/modprobe -q prime_numbers selftest=65536; then
|
||||
/sbin/modprobe -q -r prime_numbers
|
||||
echo "prime_numbers: ok"
|
||||
else
|
||||
echo "prime_numbers: [FAIL]"
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue