mirror of https://gitee.com/openkylin/linux.git
kref.txt: standardize document format
Each text file under Documentation follows a different format. Some doesn't even have titles! Change its representation to follow the adopted standard, using ReST markups for it to be parseable by Sphinx: - add a title for the document and section titles; - move authorship information to the beginning and use :Author: - mark literal blocks as such and ident them if needed. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
a1dac76762
commit
d6ac1c7e2f
|
@ -1,24 +1,42 @@
|
||||||
|
===================================================
|
||||||
|
Adding reference counters (krefs) to kernel objects
|
||||||
|
===================================================
|
||||||
|
|
||||||
|
:Author: Corey Minyard <minyard@acm.org>
|
||||||
|
:Author: Thomas Hellstrom <thellstrom@vmware.com>
|
||||||
|
|
||||||
|
A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
|
||||||
|
presentation on krefs, which can be found at:
|
||||||
|
|
||||||
|
- http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
|
||||||
|
- http://www.kroah.com/linux/talks/ols_2004_kref_talk/
|
||||||
|
|
||||||
|
Introduction
|
||||||
|
============
|
||||||
|
|
||||||
krefs allow you to add reference counters to your objects. If you
|
krefs allow you to add reference counters to your objects. If you
|
||||||
have objects that are used in multiple places and passed around, and
|
have objects that are used in multiple places and passed around, and
|
||||||
you don't have refcounts, your code is almost certainly broken. If
|
you don't have refcounts, your code is almost certainly broken. If
|
||||||
you want refcounts, krefs are the way to go.
|
you want refcounts, krefs are the way to go.
|
||||||
|
|
||||||
To use a kref, add one to your data structures like:
|
To use a kref, add one to your data structures like::
|
||||||
|
|
||||||
struct my_data
|
struct my_data
|
||||||
{
|
{
|
||||||
.
|
.
|
||||||
.
|
.
|
||||||
struct kref refcount;
|
struct kref refcount;
|
||||||
.
|
.
|
||||||
.
|
.
|
||||||
};
|
};
|
||||||
|
|
||||||
The kref can occur anywhere within the data structure.
|
The kref can occur anywhere within the data structure.
|
||||||
|
|
||||||
|
Initialization
|
||||||
|
==============
|
||||||
|
|
||||||
You must initialize the kref after you allocate it. To do this, call
|
You must initialize the kref after you allocate it. To do this, call
|
||||||
kref_init as so:
|
kref_init as so::
|
||||||
|
|
||||||
struct my_data *data;
|
struct my_data *data;
|
||||||
|
|
||||||
|
@ -29,18 +47,25 @@ kref_init as so:
|
||||||
|
|
||||||
This sets the refcount in the kref to 1.
|
This sets the refcount in the kref to 1.
|
||||||
|
|
||||||
|
Kref rules
|
||||||
|
==========
|
||||||
|
|
||||||
Once you have an initialized kref, you must follow the following
|
Once you have an initialized kref, you must follow the following
|
||||||
rules:
|
rules:
|
||||||
|
|
||||||
1) If you make a non-temporary copy of a pointer, especially if
|
1) If you make a non-temporary copy of a pointer, especially if
|
||||||
it can be passed to another thread of execution, you must
|
it can be passed to another thread of execution, you must
|
||||||
increment the refcount with kref_get() before passing it off:
|
increment the refcount with kref_get() before passing it off::
|
||||||
|
|
||||||
kref_get(&data->refcount);
|
kref_get(&data->refcount);
|
||||||
|
|
||||||
If you already have a valid pointer to a kref-ed structure (the
|
If you already have a valid pointer to a kref-ed structure (the
|
||||||
refcount cannot go to zero) you may do this without a lock.
|
refcount cannot go to zero) you may do this without a lock.
|
||||||
|
|
||||||
2) When you are done with a pointer, you must call kref_put():
|
2) When you are done with a pointer, you must call kref_put()::
|
||||||
|
|
||||||
kref_put(&data->refcount, data_release);
|
kref_put(&data->refcount, data_release);
|
||||||
|
|
||||||
If this is the last reference to the pointer, the release
|
If this is the last reference to the pointer, the release
|
||||||
routine will be called. If the code never tries to get
|
routine will be called. If the code never tries to get
|
||||||
a valid pointer to a kref-ed structure without already
|
a valid pointer to a kref-ed structure without already
|
||||||
|
@ -53,25 +78,25 @@ rules:
|
||||||
structure must remain valid during the kref_get().
|
structure must remain valid during the kref_get().
|
||||||
|
|
||||||
For example, if you allocate some data and then pass it to another
|
For example, if you allocate some data and then pass it to another
|
||||||
thread to process:
|
thread to process::
|
||||||
|
|
||||||
void data_release(struct kref *ref)
|
void data_release(struct kref *ref)
|
||||||
{
|
{
|
||||||
struct my_data *data = container_of(ref, struct my_data, refcount);
|
struct my_data *data = container_of(ref, struct my_data, refcount);
|
||||||
kfree(data);
|
kfree(data);
|
||||||
}
|
}
|
||||||
|
|
||||||
void more_data_handling(void *cb_data)
|
void more_data_handling(void *cb_data)
|
||||||
{
|
{
|
||||||
struct my_data *data = cb_data;
|
struct my_data *data = cb_data;
|
||||||
.
|
.
|
||||||
. do stuff with data here
|
. do stuff with data here
|
||||||
.
|
.
|
||||||
kref_put(&data->refcount, data_release);
|
kref_put(&data->refcount, data_release);
|
||||||
}
|
}
|
||||||
|
|
||||||
int my_data_handler(void)
|
int my_data_handler(void)
|
||||||
{
|
{
|
||||||
int rv = 0;
|
int rv = 0;
|
||||||
struct my_data *data;
|
struct my_data *data;
|
||||||
struct task_struct *task;
|
struct task_struct *task;
|
||||||
|
@ -91,10 +116,10 @@ int my_data_handler(void)
|
||||||
.
|
.
|
||||||
. do stuff with data here
|
. do stuff with data here
|
||||||
.
|
.
|
||||||
out:
|
out:
|
||||||
kref_put(&data->refcount, data_release);
|
kref_put(&data->refcount, data_release);
|
||||||
return rv;
|
return rv;
|
||||||
}
|
}
|
||||||
|
|
||||||
This way, it doesn't matter what order the two threads handle the
|
This way, it doesn't matter what order the two threads handle the
|
||||||
data, the kref_put() handles knowing when the data is not referenced
|
data, the kref_put() handles knowing when the data is not referenced
|
||||||
|
@ -104,7 +129,7 @@ put needs no lock because nothing tries to get the data without
|
||||||
already holding a pointer.
|
already holding a pointer.
|
||||||
|
|
||||||
Note that the "before" in rule 1 is very important. You should never
|
Note that the "before" in rule 1 is very important. You should never
|
||||||
do something like:
|
do something like::
|
||||||
|
|
||||||
task = kthread_run(more_data_handling, data, "more_data_handling");
|
task = kthread_run(more_data_handling, data, "more_data_handling");
|
||||||
if (task == ERR_PTR(-ENOMEM)) {
|
if (task == ERR_PTR(-ENOMEM)) {
|
||||||
|
@ -124,14 +149,14 @@ bad style. Don't do it.
|
||||||
There are some situations where you can optimize the gets and puts.
|
There are some situations where you can optimize the gets and puts.
|
||||||
For instance, if you are done with an object and enqueuing it for
|
For instance, if you are done with an object and enqueuing it for
|
||||||
something else or passing it off to something else, there is no reason
|
something else or passing it off to something else, there is no reason
|
||||||
to do a get then a put:
|
to do a get then a put::
|
||||||
|
|
||||||
/* Silly extra get and put */
|
/* Silly extra get and put */
|
||||||
kref_get(&obj->ref);
|
kref_get(&obj->ref);
|
||||||
enqueue(obj);
|
enqueue(obj);
|
||||||
kref_put(&obj->ref, obj_cleanup);
|
kref_put(&obj->ref, obj_cleanup);
|
||||||
|
|
||||||
Just do the enqueue. A comment about this is always welcome:
|
Just do the enqueue. A comment about this is always welcome::
|
||||||
|
|
||||||
enqueue(obj);
|
enqueue(obj);
|
||||||
/* We are done with obj, so we pass our refcount off
|
/* We are done with obj, so we pass our refcount off
|
||||||
|
@ -142,109 +167,99 @@ instance, you have a list of items that are each kref-ed, and you wish
|
||||||
to get the first one. You can't just pull the first item off the list
|
to get the first one. You can't just pull the first item off the list
|
||||||
and kref_get() it. That violates rule 3 because you are not already
|
and kref_get() it. That violates rule 3 because you are not already
|
||||||
holding a valid pointer. You must add a mutex (or some other lock).
|
holding a valid pointer. You must add a mutex (or some other lock).
|
||||||
For instance:
|
For instance::
|
||||||
|
|
||||||
static DEFINE_MUTEX(mutex);
|
static DEFINE_MUTEX(mutex);
|
||||||
static LIST_HEAD(q);
|
static LIST_HEAD(q);
|
||||||
struct my_data
|
struct my_data
|
||||||
{
|
{
|
||||||
struct kref refcount;
|
struct kref refcount;
|
||||||
struct list_head link;
|
struct list_head link;
|
||||||
};
|
};
|
||||||
|
|
||||||
static struct my_data *get_entry()
|
static struct my_data *get_entry()
|
||||||
{
|
{
|
||||||
struct my_data *entry = NULL;
|
struct my_data *entry = NULL;
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
if (!list_empty(&q)) {
|
if (!list_empty(&q)) {
|
||||||
entry = container_of(q.next, struct my_data, link);
|
entry = container_of(q.next, struct my_data, link);
|
||||||
kref_get(&entry->refcount);
|
kref_get(&entry->refcount);
|
||||||
|
}
|
||||||
|
mutex_unlock(&mutex);
|
||||||
|
return entry;
|
||||||
}
|
}
|
||||||
mutex_unlock(&mutex);
|
|
||||||
return entry;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void release_entry(struct kref *ref)
|
static void release_entry(struct kref *ref)
|
||||||
{
|
{
|
||||||
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
||||||
|
|
||||||
list_del(&entry->link);
|
list_del(&entry->link);
|
||||||
kfree(entry);
|
kfree(entry);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void put_entry(struct my_data *entry)
|
static void put_entry(struct my_data *entry)
|
||||||
{
|
{
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
kref_put(&entry->refcount, release_entry);
|
kref_put(&entry->refcount, release_entry);
|
||||||
mutex_unlock(&mutex);
|
mutex_unlock(&mutex);
|
||||||
}
|
}
|
||||||
|
|
||||||
The kref_put() return value is useful if you do not want to hold the
|
The kref_put() return value is useful if you do not want to hold the
|
||||||
lock during the whole release operation. Say you didn't want to call
|
lock during the whole release operation. Say you didn't want to call
|
||||||
kfree() with the lock held in the example above (since it is kind of
|
kfree() with the lock held in the example above (since it is kind of
|
||||||
pointless to do so). You could use kref_put() as follows:
|
pointless to do so). You could use kref_put() as follows::
|
||||||
|
|
||||||
static void release_entry(struct kref *ref)
|
static void release_entry(struct kref *ref)
|
||||||
{
|
{
|
||||||
/* All work is done after the return from kref_put(). */
|
/* All work is done after the return from kref_put(). */
|
||||||
}
|
}
|
||||||
|
|
||||||
static void put_entry(struct my_data *entry)
|
static void put_entry(struct my_data *entry)
|
||||||
{
|
{
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
if (kref_put(&entry->refcount, release_entry)) {
|
if (kref_put(&entry->refcount, release_entry)) {
|
||||||
list_del(&entry->link);
|
list_del(&entry->link);
|
||||||
mutex_unlock(&mutex);
|
mutex_unlock(&mutex);
|
||||||
kfree(entry);
|
kfree(entry);
|
||||||
} else
|
} else
|
||||||
mutex_unlock(&mutex);
|
mutex_unlock(&mutex);
|
||||||
}
|
}
|
||||||
|
|
||||||
This is really more useful if you have to call other routines as part
|
This is really more useful if you have to call other routines as part
|
||||||
of the free operations that could take a long time or might claim the
|
of the free operations that could take a long time or might claim the
|
||||||
same lock. Note that doing everything in the release routine is still
|
same lock. Note that doing everything in the release routine is still
|
||||||
preferred as it is a little neater.
|
preferred as it is a little neater.
|
||||||
|
|
||||||
|
|
||||||
Corey Minyard <minyard@acm.org>
|
|
||||||
|
|
||||||
A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
|
|
||||||
presentation on krefs, which can be found at:
|
|
||||||
http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
|
|
||||||
and:
|
|
||||||
http://www.kroah.com/linux/talks/ols_2004_kref_talk/
|
|
||||||
|
|
||||||
|
|
||||||
The above example could also be optimized using kref_get_unless_zero() in
|
The above example could also be optimized using kref_get_unless_zero() in
|
||||||
the following way:
|
the following way::
|
||||||
|
|
||||||
static struct my_data *get_entry()
|
static struct my_data *get_entry()
|
||||||
{
|
{
|
||||||
struct my_data *entry = NULL;
|
struct my_data *entry = NULL;
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
if (!list_empty(&q)) {
|
if (!list_empty(&q)) {
|
||||||
entry = container_of(q.next, struct my_data, link);
|
entry = container_of(q.next, struct my_data, link);
|
||||||
if (!kref_get_unless_zero(&entry->refcount))
|
if (!kref_get_unless_zero(&entry->refcount))
|
||||||
entry = NULL;
|
entry = NULL;
|
||||||
|
}
|
||||||
|
mutex_unlock(&mutex);
|
||||||
|
return entry;
|
||||||
}
|
}
|
||||||
mutex_unlock(&mutex);
|
|
||||||
return entry;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void release_entry(struct kref *ref)
|
static void release_entry(struct kref *ref)
|
||||||
{
|
{
|
||||||
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
||||||
|
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
list_del(&entry->link);
|
list_del(&entry->link);
|
||||||
mutex_unlock(&mutex);
|
mutex_unlock(&mutex);
|
||||||
kfree(entry);
|
kfree(entry);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void put_entry(struct my_data *entry)
|
static void put_entry(struct my_data *entry)
|
||||||
{
|
{
|
||||||
kref_put(&entry->refcount, release_entry);
|
kref_put(&entry->refcount, release_entry);
|
||||||
}
|
}
|
||||||
|
|
||||||
Which is useful to remove the mutex lock around kref_put() in put_entry(), but
|
Which is useful to remove the mutex lock around kref_put() in put_entry(), but
|
||||||
it's important that kref_get_unless_zero is enclosed in the same critical
|
it's important that kref_get_unless_zero is enclosed in the same critical
|
||||||
|
@ -254,51 +269,51 @@ Note that it is illegal to use kref_get_unless_zero without checking its
|
||||||
return value. If you are sure (by already having a valid pointer) that
|
return value. If you are sure (by already having a valid pointer) that
|
||||||
kref_get_unless_zero() will return true, then use kref_get() instead.
|
kref_get_unless_zero() will return true, then use kref_get() instead.
|
||||||
|
|
||||||
|
Krefs and RCU
|
||||||
|
=============
|
||||||
|
|
||||||
The function kref_get_unless_zero also makes it possible to use rcu
|
The function kref_get_unless_zero also makes it possible to use rcu
|
||||||
locking for lookups in the above example:
|
locking for lookups in the above example::
|
||||||
|
|
||||||
struct my_data
|
struct my_data
|
||||||
{
|
{
|
||||||
struct rcu_head rhead;
|
struct rcu_head rhead;
|
||||||
.
|
.
|
||||||
struct kref refcount;
|
struct kref refcount;
|
||||||
.
|
.
|
||||||
.
|
.
|
||||||
};
|
};
|
||||||
|
|
||||||
static struct my_data *get_entry_rcu()
|
static struct my_data *get_entry_rcu()
|
||||||
{
|
{
|
||||||
struct my_data *entry = NULL;
|
struct my_data *entry = NULL;
|
||||||
rcu_read_lock();
|
rcu_read_lock();
|
||||||
if (!list_empty(&q)) {
|
if (!list_empty(&q)) {
|
||||||
entry = container_of(q.next, struct my_data, link);
|
entry = container_of(q.next, struct my_data, link);
|
||||||
if (!kref_get_unless_zero(&entry->refcount))
|
if (!kref_get_unless_zero(&entry->refcount))
|
||||||
entry = NULL;
|
entry = NULL;
|
||||||
|
}
|
||||||
|
rcu_read_unlock();
|
||||||
|
return entry;
|
||||||
}
|
}
|
||||||
rcu_read_unlock();
|
|
||||||
return entry;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void release_entry_rcu(struct kref *ref)
|
static void release_entry_rcu(struct kref *ref)
|
||||||
{
|
{
|
||||||
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
struct my_data *entry = container_of(ref, struct my_data, refcount);
|
||||||
|
|
||||||
mutex_lock(&mutex);
|
mutex_lock(&mutex);
|
||||||
list_del_rcu(&entry->link);
|
list_del_rcu(&entry->link);
|
||||||
mutex_unlock(&mutex);
|
mutex_unlock(&mutex);
|
||||||
kfree_rcu(entry, rhead);
|
kfree_rcu(entry, rhead);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void put_entry(struct my_data *entry)
|
static void put_entry(struct my_data *entry)
|
||||||
{
|
{
|
||||||
kref_put(&entry->refcount, release_entry_rcu);
|
kref_put(&entry->refcount, release_entry_rcu);
|
||||||
}
|
}
|
||||||
|
|
||||||
But note that the struct kref member needs to remain in valid memory for a
|
But note that the struct kref member needs to remain in valid memory for a
|
||||||
rcu grace period after release_entry_rcu was called. That can be accomplished
|
rcu grace period after release_entry_rcu was called. That can be accomplished
|
||||||
by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
|
by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
|
||||||
before using kfree, but note that synchronize_rcu() may sleep for a
|
before using kfree, but note that synchronize_rcu() may sleep for a
|
||||||
substantial amount of time.
|
substantial amount of time.
|
||||||
|
|
||||||
|
|
||||||
Thomas Hellstrom <thellstrom@vmware.com>
|
|
||||||
|
|
Loading…
Reference in New Issue