KVM updates for the 3.7 merge window

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQIcBAABAgAGBQJQbY/2AAoJEI7yEDeUysxlymQQAIv5svpAI/FUe3FhvBi3IW2h
 WWMIpbdhHyocaINT18qNp8prO0iwoaBfgsnU8zuB34MrbdUgiwSHgM6T4Ff4NGa+
 R4u+gpyKYwxNQYKeJyj04luXra/krxwHL1u9OwN7o44JuQXAmzrw2tZ9ad1ArvL3
 eoZ6kGsPcdHPZMZWw2jN5xzBsRtqybm0GPPQh1qPXdn8UlPPd1X7owvbaud2y4+e
 StVIpGY6wrsO36f7UcA4Gm1EP/1E6Lm5KMXJyHgM9WBRkEfp92jTY5+XKv91vK8Z
 VKUd58QMdZE5NCNBkAR9U5N9aH0oSXnFU/g8hgiwGvrhS3IsSkKUePE6sVyMVTIO
 VptKRYe0AdmD/g25p6ApJsguV7ITlgoCPaE4rMmRcW9/bw8+iY098r7tO7w11H8M
 TyFOXihc3B+rlH8WdzOblwxHMC4yRuiPIktaA3WwbX7eA7Xv/ZRtdidifXKtgsVE
 rtubVqwGyYcHoX1Y+JiByIW1NN0pYncJhPEdc8KbRe2wKs3amA9rio1mUpBYYBPO
 B0ygcITftyXbhcTtssgcwBDGXB0AAGqI7wqdtJhFeIrKwHXD7fNeAGRwO8oKxmlj
 0aPwo9fDtpI+e6BFTohEgjZBocRvXXNWLnDSFB0E7xDR31bACck2FG5FAp1DxdS7
 lb/nbAsXf9UJLgGir4I1
 =kN6V
 -----END PGP SIGNATURE-----

Merge tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Avi Kivity:
 "Highlights of the changes for this release include support for vfio
  level triggered interrupts, improved big real mode support on older
  Intels, a streamlines guest page table walker, guest APIC speedups,
  PIO optimizations, better overcommit handling, and read-only memory."

* tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (138 commits)
  KVM: s390: Fix vcpu_load handling in interrupt code
  KVM: x86: Fix guest debug across vcpu INIT reset
  KVM: Add resampling irqfds for level triggered interrupts
  KVM: optimize apic interrupt delivery
  KVM: MMU: Eliminate pointless temporary 'ac'
  KVM: MMU: Avoid access/dirty update loop if all is well
  KVM: MMU: Eliminate eperm temporary
  KVM: MMU: Optimize is_last_gpte()
  KVM: MMU: Simplify walk_addr_generic() loop
  KVM: MMU: Optimize pte permission checks
  KVM: MMU: Update accessed and dirty bits after guest pagetable walk
  KVM: MMU: Move gpte_access() out of paging_tmpl.h
  KVM: MMU: Optimize gpte_access() slightly
  KVM: MMU: Push clean gpte write protection out of gpte_access()
  KVM: clarify kvmclock documentation
  KVM: make processes waiting on vcpu mutex killable
  KVM: SVM: Make use of asm.h
  KVM: VMX: Make use of asm.h
  KVM: VMX: Make lto-friendly
  KVM: x86: lapic: Clean up find_highest_vector() and count_vectors()
  ...

Conflicts:
	arch/s390/include/asm/processor.h
	arch/x86/kvm/i8259.c
This commit is contained in:
Linus Torvalds 2012-10-04 09:30:33 -07:00
commit ecefbd94b8
62 changed files with 3009 additions and 1469 deletions

View File

@ -857,7 +857,8 @@ struct kvm_userspace_memory_region {
};
/* for kvm_memory_region::flags */
#define KVM_MEM_LOG_DIRTY_PAGES 1UL
#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
#define KVM_MEM_READONLY (1UL << 1)
This ioctl allows the user to create or modify a guest physical memory
slot. When changing an existing slot, it may be moved in the guest
@ -873,14 +874,17 @@ It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
be identical. This allows large pages in the guest to be backed by large
pages in the host.
The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
instructs kvm to keep track of writes to memory within the slot. See
the KVM_GET_DIRTY_LOG ioctl.
The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs
kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG
ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the
KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only
allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO
exits.
When the KVM_CAP_SYNC_MMU capability, changes in the backing of the memory
region are automatically reflected into the guest. For example, an mmap()
that affects the region will be made visible immediately. Another example
is madvise(MADV_DROP).
When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
the memory region are automatically reflected into the guest. For example, an
mmap() that affects the region will be made visible immediately. Another
example is madvise(MADV_DROP).
It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
@ -1946,6 +1950,19 @@ the guest using the specified gsi pin. The irqfd is removed using
the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
and kvm_irqfd.gsi.
With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
mechanism allowing emulation of level-triggered, irqfd-based
interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
additional eventfd in the kvm_irqfd.resamplefd field. When operating
in resample mode, posting of an interrupt through kvm_irq.fd asserts
the specified gsi in the irqchip. When the irqchip is resampled, such
as from an EOI, the gsi is de-asserted and the user is notifed via
kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
the interrupt if the device making use of it still requires service.
Note that closing the resamplefd is not sufficient to disable the
irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
4.76 KVM_PPC_ALLOCATE_HTAB
Capability: KVM_CAP_PPC_ALLOC_HTAB

View File

@ -0,0 +1,66 @@
Linux KVM Hypercall:
===================
X86:
KVM Hypercalls have a three-byte sequence of either the vmcall or the vmmcall
instruction. The hypervisor can replace it with instructions that are
guaranteed to be supported.
Up to four arguments may be passed in rbx, rcx, rdx, and rsi respectively.
The hypercall number should be placed in rax and the return value will be
placed in rax. No other registers will be clobbered unless explicitly stated
by the particular hypercall.
S390:
R2-R7 are used for parameters 1-6. In addition, R1 is used for hypercall
number. The return value is written to R2.
S390 uses diagnose instruction as hypercall (0x500) along with hypercall
number in R1.
PowerPC:
It uses R3-R10 and hypercall number in R11. R4-R11 are used as output registers.
Return value is placed in R3.
KVM hypercalls uses 4 byte opcode, that are patched with 'hypercall-instructions'
property inside the device tree's /hypervisor node.
For more information refer to Documentation/virtual/kvm/ppc-pv.txt
KVM Hypercalls Documentation
===========================
The template for each hypercall is:
1. Hypercall name.
2. Architecture(s)
3. Status (deprecated, obsolete, active)
4. Purpose
1. KVM_HC_VAPIC_POLL_IRQ
------------------------
Architecture: x86
Status: active
Purpose: Trigger guest exit so that the host can check for pending
interrupts on reentry.
2. KVM_HC_MMU_OP
------------------------
Architecture: x86
Status: deprecated.
Purpose: Support MMU operations such as writing to PTE,
flushing TLB, release PT.
3. KVM_HC_FEATURES
------------------------
Architecture: PPC
Status: active
Purpose: Expose hypercall availability to the guest. On x86 platforms, cpuid
used to enumerate which hypercalls are available. On PPC, either device tree
based lookup ( which is also what EPAPR dictates) OR KVM specific enumeration
mechanism (which is this hypercall) can be used.
4. KVM_HC_PPC_MAP_MAGIC_PAGE
------------------------
Architecture: PPC
Status: active
Purpose: To enable communication between the hypervisor and guest there is a
shared page that contains parts of supervisor visible register state.
The guest can map this shared page to access its supervisor register through
memory using this hypercall.

View File

@ -34,9 +34,12 @@ MSR_KVM_WALL_CLOCK_NEW: 0x4b564d00
time information and check that they are both equal and even.
An odd version indicates an in-progress update.
sec: number of seconds for wallclock.
sec: number of seconds for wallclock at time of boot.
nsec: number of nanoseconds for wallclock.
nsec: number of nanoseconds for wallclock at time of boot.
In order to get the current wallclock time, the system_time from
MSR_KVM_SYSTEM_TIME_NEW needs to be added.
Note that although MSRs are per-CPU entities, the effect of this
particular MSR is global.
@ -82,20 +85,25 @@ MSR_KVM_SYSTEM_TIME_NEW: 0x4b564d01
time at the time this structure was last updated. Unit is
nanoseconds.
tsc_to_system_mul: a function of the tsc frequency. One has
to multiply any tsc-related quantity by this value to get
a value in nanoseconds, besides dividing by 2^tsc_shift
tsc_to_system_mul: multiplier to be used when converting
tsc-related quantity to nanoseconds
tsc_shift: cycle to nanosecond divider, as a power of two, to
allow for shift rights. One has to shift right any tsc-related
quantity by this value to get a value in nanoseconds, besides
multiplying by tsc_to_system_mul.
tsc_shift: shift to be used when converting tsc-related
quantity to nanoseconds. This shift will ensure that
multiplication with tsc_to_system_mul does not overflow.
A positive value denotes a left shift, a negative value
a right shift.
With this information, guests can derive per-CPU time by
doing:
The conversion from tsc to nanoseconds involves an additional
right shift by 32 bits. With this information, guests can
derive per-CPU time by doing:
time = (current_tsc - tsc_timestamp)
time = (time * tsc_to_system_mul) >> tsc_shift
if (tsc_shift >= 0)
time <<= tsc_shift;
else
time >>= -tsc_shift;
time = (time * tsc_to_system_mul) >> 32
time = time + system_time
flags: bits in this field indicate extended capabilities

View File

@ -174,3 +174,25 @@ following:
That way we can inject an arbitrary amount of code as replacement for a single
instruction. This allows us to check for pending interrupts when setting EE=1
for example.
Hypercall ABIs in KVM on PowerPC
=================================
1) KVM hypercalls (ePAPR)
These are ePAPR compliant hypercall implementation (mentioned above). Even
generic hypercalls are implemented here, like the ePAPR idle hcall. These are
available on all targets.
2) PAPR hypercalls
PAPR hypercalls are needed to run server PowerPC PAPR guests (-M pseries in QEMU).
These are the same hypercalls that pHyp, the POWER hypervisor implements. Some of
them are handled in the kernel, some are handled in user space. This is only
available on book3s_64.
3) OSI hypercalls
Mac-on-Linux is another user of KVM on PowerPC, which has its own hypercall (long
before KVM). This is supported to maintain compatibility. All these hypercalls get
forwarded to user space. This is only useful on book3s_32, but can be used with
book3s_64 as well.

View File

@ -924,6 +924,16 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
return 0;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level);
return 0;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@ -963,29 +973,6 @@ long kvm_arch_vm_ioctl(struct file *filp,
goto out;
}
break;
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
r = -ENXIO;
if (irqchip_in_kernel(kvm)) {
__s32 status;
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event.irq, irq_event.level);
if (ioctl == KVM_IRQ_LINE_STATUS) {
r = -EFAULT;
irq_event.status = status;
if (copy_to_user(argp, &irq_event,
sizeof irq_event))
goto out;
}
r = 0;
}
break;
}
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip chip;
@ -1626,11 +1613,17 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
return;
}
void kvm_arch_flush_shadow(struct kvm *kvm)
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_flush_remote_tlbs(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_arch_flush_shadow_all();
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{

View File

@ -53,6 +53,8 @@
struct kvm;
extern int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end);
extern int kvm_age_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
extern void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
@ -220,6 +222,7 @@ struct revmap_entry {
#define KVMPPC_GOT_PAGE 0x80
struct kvm_arch_memory_slot {
unsigned long *rmap;
};
struct kvm_arch {

View File

@ -319,7 +319,6 @@ void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr,
if (is_error_page(new_page)) {
printk(KERN_ERR "Couldn't get guest page for gfn %llx!\n",
(unsigned long long)gfn);
kvm_release_page_clean(new_page);
return;
}
hpaddr = page_to_phys(new_page);

View File

@ -705,7 +705,7 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
goto out_unlock;
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
rmap = &memslot->rmap[gfn - memslot->base_gfn];
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
lock_rmap(rmap);
/* Check if we might have been invalidated; let the guest retry if so */
@ -756,9 +756,12 @@ int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
goto out_put;
}
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn))
static int kvm_handle_hva_range(struct kvm *kvm,
unsigned long start,
unsigned long end,
int (*handler)(struct kvm *kvm,
unsigned long *rmapp,
unsigned long gfn))
{
int ret;
int retval = 0;
@ -767,15 +770,25 @@ static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
unsigned long start = memslot->userspace_addr;
unsigned long end;
unsigned long hva_start, hva_end;
gfn_t gfn, gfn_end;
end = start + (memslot->npages << PAGE_SHIFT);
if (hva >= start && hva < end) {
gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn, gfn+1, ..., gfn_end-1}.
*/
gfn = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
ret = handler(kvm, &memslot->rmap[gfn_offset],
memslot->base_gfn + gfn_offset);
for (; gfn < gfn_end; ++gfn) {
gfn_t gfn_offset = gfn - memslot->base_gfn;
ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
retval |= ret;
}
}
@ -783,6 +796,13 @@ static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
return retval;
}
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn))
{
return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn)
{
@ -850,6 +870,13 @@ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
if (kvm->arch.using_mmu_notifiers)
kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
return 0;
}
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn)
{
@ -1009,7 +1036,7 @@ long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
unsigned long *rmapp, *map;
preempt_disable();
rmapp = memslot->rmap;
rmapp = memslot->arch.rmap;
map = memslot->dirty_bitmap;
for (i = 0; i < memslot->npages; ++i) {
if (kvm_test_clear_dirty(kvm, rmapp))

View File

@ -84,7 +84,7 @@ static void remove_revmap_chain(struct kvm *kvm, long pte_index,
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
return;
rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
lock_rmap(rmap);
head = *rmap & KVMPPC_RMAP_INDEX;
@ -180,7 +180,7 @@ long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
if (!slot_is_aligned(memslot, psize))
return H_PARAMETER;
slot_fn = gfn - memslot->base_gfn;
rmap = &memslot->rmap[slot_fn];
rmap = &memslot->arch.rmap[slot_fn];
if (!kvm->arch.using_mmu_notifiers) {
physp = kvm->arch.slot_phys[memslot->id];
@ -197,7 +197,7 @@ long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
pa &= PAGE_MASK;
} else {
/* Translate to host virtual address */
hva = gfn_to_hva_memslot(memslot, gfn);
hva = __gfn_to_hva_memslot(memslot, gfn);
/* Look up the Linux PTE for the backing page */
pte_size = psize;

View File

@ -242,10 +242,8 @@ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
int i;
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (is_error_page(hpage)) {
kvm_release_page_clean(hpage);
if (is_error_page(hpage))
return;
}
hpage_offset = pte->raddr & ~PAGE_MASK;
hpage_offset &= ~0xFFFULL;

View File

@ -520,11 +520,10 @@ static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
if (likely(!pfnmap)) {
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
kvm_release_pfn_clean(pfn);
return;
}

View File

@ -302,10 +302,18 @@ long kvm_arch_dev_ioctl(struct file *filp,
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
if (!dont || free->arch.rmap != dont->arch.rmap) {
vfree(free->arch.rmap);
free->arch.rmap = NULL;
}
}
int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
if (!slot->arch.rmap)
return -ENOMEM;
return 0;
}
@ -326,8 +334,12 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
kvmppc_core_commit_memory_region(kvm, mem);
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}
void kvm_arch_flush_shadow(struct kvm *kvm)
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
}

View File

@ -159,6 +159,7 @@ extern unsigned long thread_saved_pc(struct task_struct *t);
extern void show_code(struct pt_regs *regs);
extern void print_fn_code(unsigned char *code, unsigned long len);
extern int insn_to_mnemonic(unsigned char *instruction, char buf[8]);
unsigned long get_wchan(struct task_struct *p);
#define task_pt_regs(tsk) ((struct pt_regs *) \

View File

@ -1501,6 +1501,33 @@ static struct insn *find_insn(unsigned char *code)
return NULL;
}
/**
* insn_to_mnemonic - decode an s390 instruction
* @instruction: instruction to decode
* @buf: buffer to fill with mnemonic
*
* Decode the instruction at @instruction and store the corresponding
* mnemonic into @buf.
* @buf is left unchanged if the instruction could not be decoded.
* Returns:
* %0 on success, %-ENOENT if the instruction was not found.
*/
int insn_to_mnemonic(unsigned char *instruction, char buf[8])
{
struct insn *insn;
insn = find_insn(instruction);
if (!insn)
return -ENOENT;
if (insn->name[0] == '\0')
snprintf(buf, sizeof(buf), "%s",
long_insn_name[(int) insn->name[1]]);
else
snprintf(buf, sizeof(buf), "%.5s", insn->name);
return 0;
}
EXPORT_SYMBOL_GPL(insn_to_mnemonic);
static int print_insn(char *buffer, unsigned char *code, unsigned long addr)
{
struct insn *insn;

View File

@ -21,6 +21,7 @@ config KVM
depends on HAVE_KVM && EXPERIMENTAL
select PREEMPT_NOTIFIERS
select ANON_INODES
select HAVE_KVM_CPU_RELAX_INTERCEPT
---help---
Support hosting paravirtualized guest machines using the SIE
virtualization capability on the mainframe. This should work

View File

@ -14,6 +14,8 @@
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include "kvm-s390.h"
#include "trace.h"
#include "trace-s390.h"
static int diag_release_pages(struct kvm_vcpu *vcpu)
{
@ -98,6 +100,7 @@ static int __diag_ipl_functions(struct kvm_vcpu *vcpu)
vcpu->run->exit_reason = KVM_EXIT_S390_RESET;
VCPU_EVENT(vcpu, 3, "requesting userspace resets %llx",
vcpu->run->s390_reset_flags);
trace_kvm_s390_request_resets(vcpu->run->s390_reset_flags);
return -EREMOTE;
}
@ -105,6 +108,7 @@ int kvm_s390_handle_diag(struct kvm_vcpu *vcpu)
{
int code = (vcpu->arch.sie_block->ipb & 0xfff0000) >> 16;
trace_kvm_s390_handle_diag(vcpu, code);
switch (code) {
case 0x10:
return diag_release_pages(vcpu);

View File

@ -19,6 +19,8 @@
#include "kvm-s390.h"
#include "gaccess.h"
#include "trace.h"
#include "trace-s390.h"
static int handle_lctlg(struct kvm_vcpu *vcpu)
{
@ -45,6 +47,7 @@ static int handle_lctlg(struct kvm_vcpu *vcpu)
VCPU_EVENT(vcpu, 5, "lctlg r1:%x, r3:%x,b2:%x,d2:%x", reg1, reg3, base2,
disp2);
trace_kvm_s390_handle_lctl(vcpu, 1, reg1, reg3, useraddr);
do {
rc = get_guest_u64(vcpu, useraddr,
@ -82,6 +85,7 @@ static int handle_lctl(struct kvm_vcpu *vcpu)
VCPU_EVENT(vcpu, 5, "lctl r1:%x, r3:%x,b2:%x,d2:%x", reg1, reg3, base2,
disp2);
trace_kvm_s390_handle_lctl(vcpu, 0, reg1, reg3, useraddr);
reg = reg1;
do {
@ -135,6 +139,8 @@ static int handle_stop(struct kvm_vcpu *vcpu)
vcpu->stat.exit_stop_request++;
spin_lock_bh(&vcpu->arch.local_int.lock);
trace_kvm_s390_stop_request(vcpu->arch.local_int.action_bits);
if (vcpu->arch.local_int.action_bits & ACTION_RELOADVCPU_ON_STOP) {
vcpu->arch.local_int.action_bits &= ~ACTION_RELOADVCPU_ON_STOP;
rc = SIE_INTERCEPT_RERUNVCPU;
@ -171,6 +177,7 @@ static int handle_validity(struct kvm_vcpu *vcpu)
int rc;
vcpu->stat.exit_validity++;
trace_kvm_s390_intercept_validity(vcpu, viwhy);
if (viwhy == 0x37) {
vmaddr = gmap_fault(vcpu->arch.sie_block->prefix,
vcpu->arch.gmap);
@ -213,6 +220,9 @@ static int handle_instruction(struct kvm_vcpu *vcpu)
intercept_handler_t handler;
vcpu->stat.exit_instruction++;
trace_kvm_s390_intercept_instruction(vcpu,
vcpu->arch.sie_block->ipa,
vcpu->arch.sie_block->ipb);
handler = instruction_handlers[vcpu->arch.sie_block->ipa >> 8];
if (handler)
return handler(vcpu);
@ -222,6 +232,7 @@ static int handle_instruction(struct kvm_vcpu *vcpu)
static int handle_prog(struct kvm_vcpu *vcpu)
{
vcpu->stat.exit_program_interruption++;
trace_kvm_s390_intercept_prog(vcpu, vcpu->arch.sie_block->iprcc);
return kvm_s390_inject_program_int(vcpu, vcpu->arch.sie_block->iprcc);
}

View File

@ -19,6 +19,7 @@
#include <asm/uaccess.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include "trace-s390.h"
static int psw_extint_disabled(struct kvm_vcpu *vcpu)
{
@ -130,6 +131,8 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
case KVM_S390_INT_EMERGENCY:
VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg");
vcpu->stat.deliver_emergency_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->emerg.code, 0);
rc = put_guest_u16(vcpu, __LC_EXT_INT_CODE, 0x1201);
if (rc == -EFAULT)
exception = 1;
@ -152,6 +155,8 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
case KVM_S390_INT_EXTERNAL_CALL:
VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call");
vcpu->stat.deliver_external_call++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->extcall.code, 0);
rc = put_guest_u16(vcpu, __LC_EXT_INT_CODE, 0x1202);
if (rc == -EFAULT)
exception = 1;
@ -175,6 +180,8 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x",
inti->ext.ext_params);
vcpu->stat.deliver_service_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->ext.ext_params, 0);
rc = put_guest_u16(vcpu, __LC_EXT_INT_CODE, 0x2401);
if (rc == -EFAULT)
exception = 1;
@ -198,6 +205,9 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
VCPU_EVENT(vcpu, 4, "interrupt: virtio parm:%x,parm64:%llx",
inti->ext.ext_params, inti->ext.ext_params2);
vcpu->stat.deliver_virtio_interrupt++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->ext.ext_params,
inti->ext.ext_params2);
rc = put_guest_u16(vcpu, __LC_EXT_INT_CODE, 0x2603);
if (rc == -EFAULT)
exception = 1;
@ -229,6 +239,8 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
case KVM_S390_SIGP_STOP:
VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu stop");
vcpu->stat.deliver_stop_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
0, 0);
__set_intercept_indicator(vcpu, inti);
break;
@ -236,12 +248,16 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x",
inti->prefix.address);
vcpu->stat.deliver_prefix_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->prefix.address, 0);
kvm_s390_set_prefix(vcpu, inti->prefix.address);
break;
case KVM_S390_RESTART:
VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart");
vcpu->stat.deliver_restart_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
0, 0);
rc = copy_to_guest(vcpu, offsetof(struct _lowcore,
restart_old_psw), &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
if (rc == -EFAULT)
@ -259,6 +275,8 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
inti->pgm.code,
table[vcpu->arch.sie_block->ipa >> 14]);
vcpu->stat.deliver_program_int++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type,
inti->pgm.code, 0);
rc = put_guest_u16(vcpu, __LC_PGM_INT_CODE, inti->pgm.code);
if (rc == -EFAULT)
exception = 1;
@ -405,9 +423,7 @@ int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_bh(&vcpu->arch.local_int.lock);
spin_unlock(&vcpu->arch.local_int.float_int->lock);
vcpu_put(vcpu);
schedule();
vcpu_load(vcpu);
spin_lock(&vcpu->arch.local_int.float_int->lock);
spin_lock_bh(&vcpu->arch.local_int.lock);
}
@ -515,6 +531,7 @@ int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
inti->pgm.code = code;
VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, inti->type, code, 0, 1);
spin_lock_bh(&li->lock);
list_add(&inti->list, &li->list);
atomic_set(&li->active, 1);
@ -556,6 +573,8 @@ int kvm_s390_inject_vm(struct kvm *kvm,
kfree(inti);
return -EINVAL;
}
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2);
mutex_lock(&kvm->lock);
fi = &kvm->arch.float_int;
@ -621,6 +640,8 @@ int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu,
kfree(inti);
return -EINVAL;
}
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, s390int->type, s390int->parm,
s390int->parm64, 2);
mutex_lock(&vcpu->kvm->lock);
li = &vcpu->arch.local_int;

View File

@ -32,6 +32,10 @@
#include "kvm-s390.h"
#include "gaccess.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace-s390.h"
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
@ -242,6 +246,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
if (!kvm_is_ucontrol(vcpu->kvm)) {
clear_bit(63 - vcpu->vcpu_id,
(unsigned long *) &vcpu->kvm->arch.sca->mcn);
@ -417,6 +422,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
goto out_free_sie_block;
VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
vcpu->arch.sie_block);
trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
return vcpu;
out_free_sie_block:
@ -607,18 +613,22 @@ static int __vcpu_run(struct kvm_vcpu *vcpu)
local_irq_enable();
VCPU_EVENT(vcpu, 6, "entering sie flags %x",
atomic_read(&vcpu->arch.sie_block->cpuflags));
trace_kvm_s390_sie_enter(vcpu,
atomic_read(&vcpu->arch.sie_block->cpuflags));
rc = sie64a(vcpu->arch.sie_block, vcpu->run->s.regs.gprs);
if (rc) {
if (kvm_is_ucontrol(vcpu->kvm)) {
rc = SIE_INTERCEPT_UCONTROL;
} else {
VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
trace_kvm_s390_sie_fault(vcpu);
kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
rc = 0;
}
}
VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
vcpu->arch.sie_block->icptcode);
trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
local_irq_disable();
kvm_guest_exit();
local_irq_enable();
@ -959,7 +969,12 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
return;
}
void kvm_arch_flush_shadow(struct kvm *kvm)
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
}

View File

@ -20,6 +20,7 @@
#include <asm/sysinfo.h>
#include "gaccess.h"
#include "kvm-s390.h"
#include "trace.h"
static int handle_set_prefix(struct kvm_vcpu *vcpu)
{
@ -59,6 +60,7 @@ static int handle_set_prefix(struct kvm_vcpu *vcpu)
kvm_s390_set_prefix(vcpu, address);
VCPU_EVENT(vcpu, 5, "setting prefix to %x", address);
trace_kvm_s390_handle_prefix(vcpu, 1, address);
out:
return 0;
}
@ -91,6 +93,7 @@ static int handle_store_prefix(struct kvm_vcpu *vcpu)
}
VCPU_EVENT(vcpu, 5, "storing prefix to %x", address);
trace_kvm_s390_handle_prefix(vcpu, 0, address);
out:
return 0;
}
@ -119,6 +122,7 @@ static int handle_store_cpu_address(struct kvm_vcpu *vcpu)
}
VCPU_EVENT(vcpu, 5, "storing cpu address to %llx", useraddr);
trace_kvm_s390_handle_stap(vcpu, useraddr);
out:
return 0;
}
@ -164,9 +168,11 @@ static int handle_stfl(struct kvm_vcpu *vcpu)
&facility_list, sizeof(facility_list));
if (rc == -EFAULT)
kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
else
else {
VCPU_EVENT(vcpu, 5, "store facility list value %x",
facility_list);
trace_kvm_s390_handle_stfl(vcpu, facility_list);
}
return 0;
}
@ -278,6 +284,7 @@ static int handle_stsi(struct kvm_vcpu *vcpu)
kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
goto out_mem;
}
trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2);
free_page(mem);
vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44);
vcpu->run->s.regs.gprs[0] = 0;

View File

@ -18,6 +18,7 @@
#include <asm/sigp.h>
#include "gaccess.h"
#include "kvm-s390.h"
#include "trace.h"
static int __sigp_sense(struct kvm_vcpu *vcpu, u16 cpu_addr,
u64 *reg)
@ -344,6 +345,7 @@ int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu)
else
parameter = vcpu->run->s.regs.gprs[r1 + 1];
trace_kvm_s390_handle_sigp(vcpu, order_code, cpu_addr, parameter);
switch (order_code) {
case SIGP_SENSE:
vcpu->stat.instruction_sigp_sense++;

210
arch/s390/kvm/trace-s390.h Normal file
View File

@ -0,0 +1,210 @@
#if !defined(_TRACE_KVMS390_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_KVMS390_H
#include <linux/tracepoint.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm-s390
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace-s390
/*
* Trace point for the creation of the kvm instance.
*/
TRACE_EVENT(kvm_s390_create_vm,
TP_PROTO(unsigned long type),
TP_ARGS(type),
TP_STRUCT__entry(
__field(unsigned long, type)
),
TP_fast_assign(
__entry->type = type;
),
TP_printk("create vm%s",
__entry->type & KVM_VM_S390_UCONTROL ? " (UCONTROL)" : "")
);
/*
* Trace points for creation and destruction of vpcus.
*/
TRACE_EVENT(kvm_s390_create_vcpu,
TP_PROTO(unsigned int id, struct kvm_vcpu *vcpu,
struct kvm_s390_sie_block *sie_block),
TP_ARGS(id, vcpu, sie_block),
TP_STRUCT__entry(
__field(unsigned int, id)
__field(struct kvm_vcpu *, vcpu)
__field(struct kvm_s390_sie_block *, sie_block)
),
TP_fast_assign(
__entry->id = id;
__entry->vcpu = vcpu;
__entry->sie_block = sie_block;
),
TP_printk("create cpu %d at %p, sie block at %p", __entry->id,
__entry->vcpu, __entry->sie_block)
);
TRACE_EVENT(kvm_s390_destroy_vcpu,
TP_PROTO(unsigned int id),
TP_ARGS(id),
TP_STRUCT__entry(
__field(unsigned int, id)
),
TP_fast_assign(
__entry->id = id;
),
TP_printk("destroy cpu %d", __entry->id)
);
/*
* Trace points for injection of interrupts, either per machine or
* per vcpu.
*/
#define kvm_s390_int_type \
{KVM_S390_SIGP_STOP, "sigp stop"}, \
{KVM_S390_PROGRAM_INT, "program interrupt"}, \
{KVM_S390_SIGP_SET_PREFIX, "sigp set prefix"}, \
{KVM_S390_RESTART, "sigp restart"}, \
{KVM_S390_INT_VIRTIO, "virtio interrupt"}, \
{KVM_S390_INT_SERVICE, "sclp interrupt"}, \
{KVM_S390_INT_EMERGENCY, "sigp emergency"}, \
{KVM_S390_INT_EXTERNAL_CALL, "sigp ext call"}
TRACE_EVENT(kvm_s390_inject_vm,
TP_PROTO(__u64 type, __u32 parm, __u64 parm64, int who),
TP_ARGS(type, parm, parm64, who),
TP_STRUCT__entry(
__field(__u32, inttype)
__field(__u32, parm)
__field(__u64, parm64)
__field(int, who)
),
TP_fast_assign(
__entry->inttype = type & 0x00000000ffffffff;
__entry->parm = parm;
__entry->parm64 = parm64;
__entry->who = who;
),
TP_printk("inject%s: type:%x (%s) parm:%x parm64:%llx",
(__entry->who == 1) ? " (from kernel)" :
(__entry->who == 2) ? " (from user)" : "",
__entry->inttype,
__print_symbolic(__entry->inttype, kvm_s390_int_type),
__entry->parm, __entry->parm64)
);
TRACE_EVENT(kvm_s390_inject_vcpu,
TP_PROTO(unsigned int id, __u64 type, __u32 parm, __u64 parm64, \
int who),
TP_ARGS(id, type, parm, parm64, who),
TP_STRUCT__entry(
__field(int, id)
__field(__u32, inttype)
__field(__u32, parm)
__field(__u64, parm64)
__field(int, who)
),
TP_fast_assign(
__entry->id = id;
__entry->inttype = type & 0x00000000ffffffff;
__entry->parm = parm;
__entry->parm64 = parm64;
__entry->who = who;
),
TP_printk("inject%s (vcpu %d): type:%x (%s) parm:%x parm64:%llx",
(__entry->who == 1) ? " (from kernel)" :
(__entry->who == 2) ? " (from user)" : "",
__entry->id, __entry->inttype,
__print_symbolic(__entry->inttype, kvm_s390_int_type),
__entry->parm, __entry->parm64)
);
/*
* Trace point for the actual delivery of interrupts.
*/
TRACE_EVENT(kvm_s390_deliver_interrupt,
TP_PROTO(unsigned int id, __u64 type, __u32 data0, __u64 data1),
TP_ARGS(id, type, data0, data1),
TP_STRUCT__entry(
__field(int, id)
__field(__u32, inttype)
__field(__u32, data0)
__field(__u64, data1)
),
TP_fast_assign(
__entry->id = id;
__entry->inttype = type & 0x00000000ffffffff;
__entry->data0 = data0;
__entry->data1 = data1;
),
TP_printk("deliver interrupt (vcpu %d): type:%x (%s) " \
"data:%08x %016llx",
__entry->id, __entry->inttype,
__print_symbolic(__entry->inttype, kvm_s390_int_type),
__entry->data0, __entry->data1)
);
/*
* Trace point for resets that may be requested from userspace.
*/
TRACE_EVENT(kvm_s390_request_resets,
TP_PROTO(__u64 resets),
TP_ARGS(resets),
TP_STRUCT__entry(
__field(__u64, resets)
),
TP_fast_assign(
__entry->resets = resets;
),
TP_printk("requesting userspace resets %llx",
__entry->resets)
);
/*
* Trace point for a vcpu's stop requests.
*/
TRACE_EVENT(kvm_s390_stop_request,
TP_PROTO(unsigned int action_bits),
TP_ARGS(action_bits),
TP_STRUCT__entry(
__field(unsigned int, action_bits)
),
TP_fast_assign(
__entry->action_bits = action_bits;
),
TP_printk("stop request, action_bits = %08x",
__entry->action_bits)
);
#endif /* _TRACE_KVMS390_H */
/* This part must be outside protection */
#include <trace/define_trace.h>

341
arch/s390/kvm/trace.h Normal file
View File

@ -0,0 +1,341 @@
#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_KVM_H
#include <linux/tracepoint.h>
#include <asm/sigp.h>
#include <asm/debug.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace
/*
* Helpers for vcpu-specific tracepoints containing the same information
* as s390dbf VCPU_EVENTs.
*/
#define VCPU_PROTO_COMMON struct kvm_vcpu *vcpu
#define VCPU_ARGS_COMMON vcpu
#define VCPU_FIELD_COMMON __field(int, id) \
__field(unsigned long, pswmask) \
__field(unsigned long, pswaddr)
#define VCPU_ASSIGN_COMMON do { \
__entry->id = vcpu->vcpu_id; \
__entry->pswmask = vcpu->arch.sie_block->gpsw.mask; \
__entry->pswaddr = vcpu->arch.sie_block->gpsw.addr; \
} while (0);
#define VCPU_TP_PRINTK(p_str, p_args...) \
TP_printk("%02d[%016lx-%016lx]: " p_str, __entry->id, \
__entry->pswmask, __entry->pswaddr, p_args)
/*
* Tracepoints for SIE entry and exit.
*/
TRACE_EVENT(kvm_s390_sie_enter,
TP_PROTO(VCPU_PROTO_COMMON, int cpuflags),
TP_ARGS(VCPU_ARGS_COMMON, cpuflags),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(int, cpuflags)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->cpuflags = cpuflags;
),
VCPU_TP_PRINTK("entering sie flags %x", __entry->cpuflags)
);
TRACE_EVENT(kvm_s390_sie_fault,
TP_PROTO(VCPU_PROTO_COMMON),
TP_ARGS(VCPU_ARGS_COMMON),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
),
VCPU_TP_PRINTK("%s", "fault in sie instruction")
);
#define sie_intercept_code \
{0x04, "Instruction"}, \
{0x08, "Program interruption"}, \
{0x0C, "Instruction and program interuption"}, \
{0x10, "External request"}, \
{0x14, "External interruption"}, \
{0x18, "I/O request"}, \
{0x1C, "Wait state"}, \
{0x20, "Validity"}, \
{0x28, "Stop request"}
TRACE_EVENT(kvm_s390_sie_exit,
TP_PROTO(VCPU_PROTO_COMMON, u8 icptcode),
TP_ARGS(VCPU_ARGS_COMMON, icptcode),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(u8, icptcode)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->icptcode = icptcode;
),
VCPU_TP_PRINTK("exit sie icptcode %d (%s)", __entry->icptcode,
__print_symbolic(__entry->icptcode,
sie_intercept_code))
);
/*
* Trace point for intercepted instructions.
*/
TRACE_EVENT(kvm_s390_intercept_instruction,
TP_PROTO(VCPU_PROTO_COMMON, __u16 ipa, __u32 ipb),
TP_ARGS(VCPU_ARGS_COMMON, ipa, ipb),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(__u64, instruction)
__field(char, insn[8])
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->instruction = ((__u64)ipa << 48) |
((__u64)ipb << 16);
),
VCPU_TP_PRINTK("intercepted instruction %016llx (%s)",
__entry->instruction,
insn_to_mnemonic((unsigned char *)
&__entry->instruction,
__entry->insn) ?
"unknown" : __entry->insn)
);
/*
* Trace point for intercepted program interruptions.
*/
TRACE_EVENT(kvm_s390_intercept_prog,
TP_PROTO(VCPU_PROTO_COMMON, __u16 code),
TP_ARGS(VCPU_ARGS_COMMON, code),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(__u16, code)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->code = code;
),
VCPU_TP_PRINTK("intercepted program interruption %04x",
__entry->code)
);
/*
* Trace point for validity intercepts.
*/
TRACE_EVENT(kvm_s390_intercept_validity,
TP_PROTO(VCPU_PROTO_COMMON, __u16 viwhy),
TP_ARGS(VCPU_ARGS_COMMON, viwhy),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(__u16, viwhy)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->viwhy = viwhy;
),
VCPU_TP_PRINTK("got validity intercept %04x", __entry->viwhy)
);
/*
* Trace points for instructions that are of special interest.
*/
#define sigp_order_codes \
{SIGP_SENSE, "sense"}, \
{SIGP_EXTERNAL_CALL, "external call"}, \
{SIGP_EMERGENCY_SIGNAL, "emergency signal"}, \
{SIGP_STOP, "stop"}, \
{SIGP_STOP_AND_STORE_STATUS, "stop and store status"}, \
{SIGP_SET_ARCHITECTURE, "set architecture"}, \
{SIGP_SET_PREFIX, "set prefix"}, \
{SIGP_SENSE_RUNNING, "sense running"}, \
{SIGP_RESTART, "restart"}
TRACE_EVENT(kvm_s390_handle_sigp,
TP_PROTO(VCPU_PROTO_COMMON, __u8 order_code, __u16 cpu_addr, \
__u32 parameter),
TP_ARGS(VCPU_ARGS_COMMON, order_code, cpu_addr, parameter),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(__u8, order_code)
__field(__u16, cpu_addr)
__field(__u32, parameter)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->order_code = order_code;
__entry->cpu_addr = cpu_addr;
__entry->parameter = parameter;
),
VCPU_TP_PRINTK("handle sigp order %02x (%s), cpu address %04x, " \
"parameter %08x", __entry->order_code,
__print_symbolic(__entry->order_code,
sigp_order_codes),
__entry->cpu_addr, __entry->parameter)
);
#define diagnose_codes \
{0x10, "release pages"}, \
{0x44, "time slice end"}, \
{0x308, "ipl functions"}, \
{0x500, "kvm hypercall"}, \
{0x501, "kvm breakpoint"}
TRACE_EVENT(kvm_s390_handle_diag,
TP_PROTO(VCPU_PROTO_COMMON, __u16 code),
TP_ARGS(VCPU_ARGS_COMMON, code),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(__u16, code)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->code = code;
),
VCPU_TP_PRINTK("handle diagnose call %04x (%s)", __entry->code,
__print_symbolic(__entry->code, diagnose_codes))
);
TRACE_EVENT(kvm_s390_handle_lctl,
TP_PROTO(VCPU_PROTO_COMMON, int g, int reg1, int reg3, u64 addr),
TP_ARGS(VCPU_ARGS_COMMON, g, reg1, reg3, addr),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(int, g)
__field(int, reg1)
__field(int, reg3)
__field(u64, addr)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->g = g;
__entry->reg1 = reg1;
__entry->reg3 = reg3;
__entry->addr = addr;
),
VCPU_TP_PRINTK("%s: loading cr %x-%x from %016llx",
__entry->g ? "lctlg" : "lctl",
__entry->reg1, __entry->reg3, __entry->addr)
);
TRACE_EVENT(kvm_s390_handle_prefix,
TP_PROTO(VCPU_PROTO_COMMON, int set, u32 address),
TP_ARGS(VCPU_ARGS_COMMON, set, address),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(int, set)
__field(u32, address)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->set = set;
__entry->address = address;
),
VCPU_TP_PRINTK("%s prefix to %08x",
__entry->set ? "setting" : "storing",
__entry->address)
);
TRACE_EVENT(kvm_s390_handle_stap,
TP_PROTO(VCPU_PROTO_COMMON, u64 address),
TP_ARGS(VCPU_ARGS_COMMON, address),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(u64, address)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->address = address;
),
VCPU_TP_PRINTK("storing cpu address to %016llx",
__entry->address)
);
TRACE_EVENT(kvm_s390_handle_stfl,
TP_PROTO(VCPU_PROTO_COMMON, unsigned int facility_list),
TP_ARGS(VCPU_ARGS_COMMON, facility_list),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(unsigned int, facility_list)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->facility_list = facility_list;
),
VCPU_TP_PRINTK("store facility list value %08x",
__entry->facility_list)
);
TRACE_EVENT(kvm_s390_handle_stsi,
TP_PROTO(VCPU_PROTO_COMMON, int fc, int sel1, int sel2, u64 addr),
TP_ARGS(VCPU_ARGS_COMMON, fc, sel1, sel2, addr),
TP_STRUCT__entry(
VCPU_FIELD_COMMON
__field(int, fc)
__field(int, sel1)
__field(int, sel2)
__field(u64, addr)
),
TP_fast_assign(
VCPU_ASSIGN_COMMON
__entry->fc = fc;
__entry->sel1 = sel1;
__entry->sel2 = sel2;
__entry->addr = addr;
),
VCPU_TP_PRINTK("STSI %d.%d.%d information stored to %016llx",
__entry->fc, __entry->sel1, __entry->sel2,
__entry->addr)
);
#endif /* _TRACE_KVM_H */
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -586,23 +586,18 @@ config PARAVIRT_TIME_ACCOUNTING
source "arch/x86/xen/Kconfig"
config KVM_CLOCK
bool "KVM paravirtualized clock"
config KVM_GUEST
bool "KVM Guest support (including kvmclock)"
select PARAVIRT
select PARAVIRT
select PARAVIRT_CLOCK
---help---
Turning on this option will allow you to run a paravirtualized clock
when running over the KVM hypervisor. Instead of relying on a PIT
(or probably other) emulation by the underlying device model, the host
provides the guest with timing infrastructure such as time of day, and
system time
config KVM_GUEST
bool "KVM Guest support"
select PARAVIRT
default y if PARAVIRT_GUEST
---help---
This option enables various optimizations for running under the KVM
hypervisor.
hypervisor. It includes a paravirtualized clock, so that instead
of relying on a PIT (or probably other) emulation by the
underlying device model, the host provides the guest with
timing infrastructure such as time of day, and system time
source "arch/x86/lguest/Kconfig"

View File

@ -41,6 +41,7 @@
#define __KVM_HAVE_DEBUGREGS
#define __KVM_HAVE_XSAVE
#define __KVM_HAVE_XCRS
#define __KVM_HAVE_READONLY_MEM
/* Architectural interrupt line count. */
#define KVM_NR_INTERRUPTS 256

View File

@ -85,6 +85,19 @@ struct x86_instruction_info {
#define X86EMUL_INTERCEPTED 6 /* Intercepted by nested VMCB/VMCS */
struct x86_emulate_ops {
/*
* read_gpr: read a general purpose register (rax - r15)
*
* @reg: gpr number.
*/
ulong (*read_gpr)(struct x86_emulate_ctxt *ctxt, unsigned reg);
/*
* write_gpr: write a general purpose register (rax - r15)
*
* @reg: gpr number.
* @val: value to write.
*/
void (*write_gpr)(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val);
/*
* read_std: Read bytes of standard (non-emulated/special) memory.
* Used for descriptor reading.
@ -200,8 +213,9 @@ typedef u32 __attribute__((vector_size(16))) sse128_t;
/* Type, address-of, and value of an instruction's operand. */
struct operand {
enum { OP_REG, OP_MEM, OP_IMM, OP_XMM, OP_MM, OP_NONE } type;
enum { OP_REG, OP_MEM, OP_MEM_STR, OP_IMM, OP_XMM, OP_MM, OP_NONE } type;
unsigned int bytes;
unsigned int count;
union {
unsigned long orig_val;
u64 orig_val64;
@ -221,6 +235,7 @@ struct operand {
char valptr[sizeof(unsigned long) + 2];
sse128_t vec_val;
u64 mm_val;
void *data;
};
};
@ -236,14 +251,23 @@ struct read_cache {
unsigned long end;
};
/* Execution mode, passed to the emulator. */
enum x86emul_mode {
X86EMUL_MODE_REAL, /* Real mode. */
X86EMUL_MODE_VM86, /* Virtual 8086 mode. */
X86EMUL_MODE_PROT16, /* 16-bit protected mode. */
X86EMUL_MODE_PROT32, /* 32-bit protected mode. */
X86EMUL_MODE_PROT64, /* 64-bit (long) mode. */
};
struct x86_emulate_ctxt {
struct x86_emulate_ops *ops;
const struct x86_emulate_ops *ops;
/* Register state before/after emulation. */
unsigned long eflags;
unsigned long eip; /* eip before instruction emulation */
/* Emulated execution mode, represented by an X86EMUL_MODE value. */
int mode;
enum x86emul_mode mode;
/* interruptibility state, as a result of execution of STI or MOV SS */
int interruptibility;
@ -281,8 +305,10 @@ struct x86_emulate_ctxt {
bool rip_relative;
unsigned long _eip;
struct operand memop;
u32 regs_valid; /* bitmaps of registers in _regs[] that can be read */
u32 regs_dirty; /* bitmaps of registers in _regs[] that have been written */
/* Fields above regs are cleared together. */
unsigned long regs[NR_VCPU_REGS];
unsigned long _regs[NR_VCPU_REGS];
struct operand *memopp;
struct fetch_cache fetch;
struct read_cache io_read;
@ -293,17 +319,6 @@ struct x86_emulate_ctxt {
#define REPE_PREFIX 0xf3
#define REPNE_PREFIX 0xf2
/* Execution mode, passed to the emulator. */
#define X86EMUL_MODE_REAL 0 /* Real mode. */
#define X86EMUL_MODE_VM86 1 /* Virtual 8086 mode. */
#define X86EMUL_MODE_PROT16 2 /* 16-bit protected mode. */
#define X86EMUL_MODE_PROT32 4 /* 32-bit protected mode. */
#define X86EMUL_MODE_PROT64 8 /* 64-bit (long) mode. */
/* any protected mode */
#define X86EMUL_MODE_PROT (X86EMUL_MODE_PROT16|X86EMUL_MODE_PROT32| \
X86EMUL_MODE_PROT64)
/* CPUID vendors */
#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541
#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163
@ -394,4 +409,7 @@ int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, int idt_index, int reason,
bool has_error_code, u32 error_code);
int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq);
void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt);
void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt);
#endif /* _ASM_X86_KVM_X86_EMULATE_H */

View File

@ -271,10 +271,24 @@ struct kvm_mmu {
union kvm_mmu_page_role base_role;
bool direct_map;
/*
* Bitmap; bit set = permission fault
* Byte index: page fault error code [4:1]
* Bit index: pte permissions in ACC_* format
*/
u8 permissions[16];
u64 *pae_root;
u64 *lm_root;
u64 rsvd_bits_mask[2][4];
/*
* Bitmap: bit set = last pte in walk
* index[0:1]: level (zero-based)
* index[2]: pte.ps
*/
u8 last_pte_bitmap;
bool nx;
u64 pdptrs[4]; /* pae */
@ -398,12 +412,15 @@ struct kvm_vcpu_arch {
struct x86_emulate_ctxt emulate_ctxt;
bool emulate_regs_need_sync_to_vcpu;
bool emulate_regs_need_sync_from_vcpu;
int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
gpa_t time;
struct pvclock_vcpu_time_info hv_clock;
unsigned int hw_tsc_khz;
unsigned int time_offset;
struct page *time_page;
/* set guest stopped flag in pvclock flags field */
bool pvclock_set_guest_stopped_request;
struct {
u64 msr_val;
@ -438,6 +455,7 @@ struct kvm_vcpu_arch {
unsigned long dr6;
unsigned long dr7;
unsigned long eff_db[KVM_NR_DB_REGS];
unsigned long guest_debug_dr7;
u64 mcg_cap;
u64 mcg_status;
@ -484,14 +502,24 @@ struct kvm_vcpu_arch {
};
struct kvm_lpage_info {
unsigned long rmap_pde;
int write_count;
};
struct kvm_arch_memory_slot {
unsigned long *rmap[KVM_NR_PAGE_SIZES];
struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
};
struct kvm_apic_map {
struct rcu_head rcu;
u8 ldr_bits;
/* fields bellow are used to decode ldr values in different modes */
u32 cid_shift, cid_mask, lid_mask;
struct kvm_lapic *phys_map[256];
/* first index is cluster id second is cpu id in a cluster */
struct kvm_lapic *logical_map[16][16];
};
struct kvm_arch {
unsigned int n_used_mmu_pages;
unsigned int n_requested_mmu_pages;
@ -509,6 +537,8 @@ struct kvm_arch {
struct kvm_ioapic *vioapic;
struct kvm_pit *vpit;
int vapics_in_nmi_mode;
struct mutex apic_map_lock;
struct kvm_apic_map *apic_map;
unsigned int tss_addr;
struct page *apic_access_page;
@ -602,8 +632,7 @@ struct kvm_x86_ops {
void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
void (*vcpu_put)(struct kvm_vcpu *vcpu);
void (*set_guest_debug)(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg);
void (*update_db_bp_intercept)(struct kvm_vcpu *vcpu);
int (*get_msr)(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata);
int (*set_msr)(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
@ -941,6 +970,7 @@ extern bool kvm_rebooting;
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_age_hva(struct kvm *kvm, unsigned long hva);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);

View File

@ -102,21 +102,21 @@ struct kvm_vcpu_pv_apf_data {
extern void kvmclock_init(void);
extern int kvm_register_clock(char *txt);
#ifdef CONFIG_KVM_CLOCK
#ifdef CONFIG_KVM_GUEST
bool kvm_check_and_clear_guest_paused(void);
#else
static inline bool kvm_check_and_clear_guest_paused(void)
{
return false;
}
#endif /* CONFIG_KVMCLOCK */
#endif /* CONFIG_KVM_GUEST */
/* This instruction is vmcall. On non-VT architectures, it will generate a
* trap that we will then rewrite to the appropriate instruction.
*/
#define KVM_HYPERCALL ".byte 0x0f,0x01,0xc1"
/* For KVM hypercalls, a three-byte sequence of either the vmrun or the vmmrun
/* For KVM hypercalls, a three-byte sequence of either the vmcall or the vmmcall
* instruction. The hypervisor may replace it with something else but only the
* instructions are guaranteed to be supported.
*

View File

@ -81,8 +81,7 @@ obj-$(CONFIG_DEBUG_RODATA_TEST) += test_rodata.o
obj-$(CONFIG_DEBUG_NX_TEST) += test_nx.o
obj-$(CONFIG_DEBUG_NMI_SELFTEST) += nmi_selftest.o
obj-$(CONFIG_KVM_GUEST) += kvm.o
obj-$(CONFIG_KVM_CLOCK) += kvmclock.o
obj-$(CONFIG_KVM_GUEST) += kvm.o kvmclock.o
obj-$(CONFIG_PARAVIRT) += paravirt.o paravirt_patch_$(BITS).o
obj-$(CONFIG_PARAVIRT_SPINLOCKS)+= paravirt-spinlocks.o
obj-$(CONFIG_PARAVIRT_CLOCK) += pvclock.o

View File

@ -354,6 +354,7 @@ static void kvm_pv_guest_cpu_reboot(void *unused)
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
kvm_disable_steal_time();
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
@ -396,9 +397,7 @@ void kvm_disable_steal_time(void)
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
#ifdef CONFIG_KVM_CLOCK
WARN_ON(kvm_register_clock("primary cpu clock"));
#endif
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
}

View File

@ -957,7 +957,7 @@ void __init setup_arch(char **cmdline_p)
initmem_init();
memblock_find_dma_reserve();
#ifdef CONFIG_KVM_CLOCK
#ifdef CONFIG_KVM_GUEST
kvmclock_init();
#endif

View File

@ -20,6 +20,7 @@ if VIRTUALIZATION
config KVM
tristate "Kernel-based Virtual Machine (KVM) support"
depends on HAVE_KVM
depends on HIGH_RES_TIMERS
# for device assignment:
depends on PCI
# for TASKSTATS/TASK_DELAY_ACCT:
@ -37,6 +38,7 @@ config KVM
select TASK_DELAY_ACCT
select PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_CPU_RELAX_INTERCEPT
---help---
Support hosting fully virtualized guest machines using hardware
virtualization extensions. You will need a fairly recent

View File

@ -12,7 +12,7 @@ kvm-$(CONFIG_IOMMU_API) += $(addprefix ../../../virt/kvm/, iommu.o)
kvm-$(CONFIG_KVM_ASYNC_PF) += $(addprefix ../../../virt/kvm/, async_pf.o)
kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
i8254.o timer.o cpuid.o pmu.o
i8254.o cpuid.o pmu.o
kvm-intel-y += vmx.o
kvm-amd-y += svm.o

View File

@ -316,7 +316,7 @@ static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
}
case 7: {
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* Mask ebx against host capbability word 9 */
/* Mask ebx against host capability word 9 */
if (index == 0) {
entry->ebx &= kvm_supported_word9_x86_features;
cpuid_mask(&entry->ebx, 9);
@ -397,8 +397,8 @@ static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
break;
}
case KVM_CPUID_SIGNATURE: {
char signature[12] = "KVMKVMKVM\0\0";
u32 *sigptr = (u32 *)signature;
static const char signature[12] = "KVMKVMKVM\0\0";
const u32 *sigptr = (const u32 *)signature;
entry->eax = KVM_CPUID_FEATURES;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
@ -484,10 +484,10 @@ struct kvm_cpuid_param {
u32 func;
u32 idx;
bool has_leaf_count;
bool (*qualifier)(struct kvm_cpuid_param *param);
bool (*qualifier)(const struct kvm_cpuid_param *param);
};
static bool is_centaur_cpu(struct kvm_cpuid_param *param)
static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
{
return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
}
@ -498,7 +498,7 @@ int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG, i;
u32 func;
static struct kvm_cpuid_param param[] = {
static const struct kvm_cpuid_param param[] = {
{ .func = 0, .has_leaf_count = true },
{ .func = 0x80000000, .has_leaf_count = true },
{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
@ -517,7 +517,7 @@ int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
r = 0;
for (i = 0; i < ARRAY_SIZE(param); i++) {
struct kvm_cpuid_param *ent = &param[i];
const struct kvm_cpuid_param *ent = &param[i];
if (ent->qualifier && !ent->qualifier(ent))
continue;

File diff suppressed because it is too large Load Diff

View File

@ -108,7 +108,7 @@ static s64 __kpit_elapsed(struct kvm *kvm)
ktime_t remaining;
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
if (!ps->pit_timer.period)
if (!ps->period)
return 0;
/*
@ -120,9 +120,9 @@ static s64 __kpit_elapsed(struct kvm *kvm)
* itself with the initial count and continues counting
* from there.
*/
remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
elapsed = mod_64(elapsed, ps->pit_timer.period);
remaining = hrtimer_get_remaining(&ps->timer);
elapsed = ps->period - ktime_to_ns(remaining);
elapsed = mod_64(elapsed, ps->period);
return elapsed;
}
@ -238,12 +238,12 @@ static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
int value;
spin_lock(&ps->inject_lock);
value = atomic_dec_return(&ps->pit_timer.pending);
value = atomic_dec_return(&ps->pending);
if (value < 0)
/* spurious acks can be generated if, for example, the
* PIC is being reset. Handle it gracefully here
*/
atomic_inc(&ps->pit_timer.pending);
atomic_inc(&ps->pending);
else if (value > 0)
/* in this case, we had multiple outstanding pit interrupts
* that we needed to inject. Reinject
@ -261,28 +261,17 @@ void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
if (!kvm_vcpu_is_bsp(vcpu) || !pit)
return;
timer = &pit->pit_state.pit_timer.timer;
timer = &pit->pit_state.timer;
if (hrtimer_cancel(timer))
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
static void destroy_pit_timer(struct kvm_pit *pit)
{
hrtimer_cancel(&pit->pit_state.pit_timer.timer);
hrtimer_cancel(&pit->pit_state.timer);
flush_kthread_work(&pit->expired);
}
static bool kpit_is_periodic(struct kvm_timer *ktimer)
{
struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
pit_timer);
return ps->is_periodic;
}
static struct kvm_timer_ops kpit_ops = {
.is_periodic = kpit_is_periodic,
};
static void pit_do_work(struct kthread_work *work)
{
struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
@ -322,16 +311,16 @@ static void pit_do_work(struct kthread_work *work)
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
struct kvm_pit *pt = ktimer->kvm->arch.vpit;
struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
struct kvm_pit *pt = ps->kvm->arch.vpit;
if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
atomic_inc(&ktimer->pending);
if (ps->reinject || !atomic_read(&ps->pending)) {
atomic_inc(&ps->pending);
queue_kthread_work(&pt->worker, &pt->expired);
}
if (ktimer->t_ops->is_periodic(ktimer)) {
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
if (ps->is_periodic) {
hrtimer_add_expires_ns(&ps->timer, ps->period);
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
@ -340,7 +329,6 @@ static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
{
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
struct kvm_timer *pt = &ps->pit_timer;
s64 interval;
if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
@ -351,19 +339,18 @@ static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
pr_debug("create pit timer, interval is %llu nsec\n", interval);
/* TODO The new value only affected after the retriggered */
hrtimer_cancel(&pt->timer);
hrtimer_cancel(&ps->timer);
flush_kthread_work(&ps->pit->expired);
pt->period = interval;
ps->period = interval;
ps->is_periodic = is_period;
pt->timer.function = pit_timer_fn;
pt->t_ops = &kpit_ops;
pt->kvm = ps->pit->kvm;
ps->timer.function = pit_timer_fn;
ps->kvm = ps->pit->kvm;
atomic_set(&pt->pending, 0);
atomic_set(&ps->pending, 0);
ps->irq_ack = 1;
hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
HRTIMER_MODE_ABS);
}
@ -639,7 +626,7 @@ void kvm_pit_reset(struct kvm_pit *pit)
}
mutex_unlock(&pit->pit_state.lock);
atomic_set(&pit->pit_state.pit_timer.pending, 0);
atomic_set(&pit->pit_state.pending, 0);
pit->pit_state.irq_ack = 1;
}
@ -648,7 +635,7 @@ static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
if (!mask) {
atomic_set(&pit->pit_state.pit_timer.pending, 0);
atomic_set(&pit->pit_state.pending, 0);
pit->pit_state.irq_ack = 1;
}
}
@ -706,12 +693,11 @@ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
pit_state = &pit->pit_state;
pit_state->pit = pit;
hrtimer_init(&pit_state->pit_timer.timer,
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
pit_state->irq_ack_notifier.gsi = 0;
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
pit_state->pit_timer.reinject = true;
pit_state->reinject = true;
mutex_unlock(&pit->pit_state.lock);
kvm_pit_reset(pit);
@ -761,7 +747,7 @@ void kvm_free_pit(struct kvm *kvm)
kvm_unregister_irq_ack_notifier(kvm,
&kvm->arch.vpit->pit_state.irq_ack_notifier);
mutex_lock(&kvm->arch.vpit->pit_state.lock);
timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
timer = &kvm->arch.vpit->pit_state.timer;
hrtimer_cancel(timer);
flush_kthread_work(&kvm->arch.vpit->expired);
kthread_stop(kvm->arch.vpit->worker_task);

View File

@ -24,8 +24,12 @@ struct kvm_kpit_channel_state {
struct kvm_kpit_state {
struct kvm_kpit_channel_state channels[3];
u32 flags;
struct kvm_timer pit_timer;
bool is_periodic;
s64 period; /* unit: ns */
struct hrtimer timer;
atomic_t pending; /* accumulated triggered timers */
bool reinject;
struct kvm *kvm;
u32 speaker_data_on;
struct mutex lock;
struct kvm_pit *pit;

View File

@ -190,17 +190,17 @@ void kvm_pic_update_irq(struct kvm_pic *s)
int kvm_pic_set_irq(struct kvm_pic *s, int irq, int irq_source_id, int level)
{
int ret = -1;
int ret, irq_level;
BUG_ON(irq < 0 || irq >= PIC_NUM_PINS);
pic_lock(s);
if (irq >= 0 && irq < PIC_NUM_PINS) {
int irq_level = __kvm_irq_line_state(&s->irq_states[irq],
irq_source_id, level);
ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, irq_level);
pic_update_irq(s);
trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
s->pics[irq >> 3].imr, ret == 0);
}
irq_level = __kvm_irq_line_state(&s->irq_states[irq],
irq_source_id, level);
ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, irq_level);
pic_update_irq(s);
trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
s->pics[irq >> 3].imr, ret == 0);
pic_unlock(s);
return ret;
@ -275,23 +275,20 @@ void kvm_pic_reset(struct kvm_kpic_state *s)
{
int irq, i;
struct kvm_vcpu *vcpu;
u8 irr = s->irr, isr = s->imr;
u8 edge_irr = s->irr & ~s->elcr;
bool found = false;
s->last_irr = 0;
s->irr = 0;
s->irr &= s->elcr;
s->imr = 0;
s->isr = 0;
s->priority_add = 0;
s->irq_base = 0;
s->read_reg_select = 0;
s->poll = 0;
s->special_mask = 0;
s->init_state = 0;
s->auto_eoi = 0;
s->rotate_on_auto_eoi = 0;
s->special_fully_nested_mode = 0;
s->init4 = 0;
s->read_reg_select = 0;
if (!s->init4) {
s->special_fully_nested_mode = 0;
s->auto_eoi = 0;
}
s->init_state = 1;
kvm_for_each_vcpu(i, vcpu, s->pics_state->kvm)
if (kvm_apic_accept_pic_intr(vcpu)) {
@ -304,7 +301,7 @@ void kvm_pic_reset(struct kvm_kpic_state *s)
return;
for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
if (irr & (1 << irq) || isr & (1 << irq))
if (edge_irr & (1 << irq))
pic_clear_isr(s, irq);
}
@ -316,40 +313,13 @@ static void pic_ioport_write(void *opaque, u32 addr, u32 val)
addr &= 1;
if (addr == 0) {
if (val & 0x10) {
u8 edge_irr = s->irr & ~s->elcr;
int i;
bool found = false;
struct kvm_vcpu *vcpu;
s->init4 = val & 1;
s->last_irr = 0;
s->irr &= s->elcr;
s->imr = 0;
s->priority_add = 0;
s->special_mask = 0;
s->read_reg_select = 0;
if (!s->init4) {
s->special_fully_nested_mode = 0;
s->auto_eoi = 0;
}
s->init_state = 1;
if (val & 0x02)
pr_pic_unimpl("single mode not supported");
if (val & 0x08)
pr_pic_unimpl(
"level sensitive irq not supported");
kvm_for_each_vcpu(i, vcpu, s->pics_state->kvm)
if (kvm_apic_accept_pic_intr(vcpu)) {
found = true;
break;
}
if (found)
for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
if (edge_irr & (1 << irq))
pic_clear_isr(s, irq);
"level sensitive irq not supported");
kvm_pic_reset(s);
} else if (val & 0x08) {
if (val & 0x04)
s->poll = 1;

View File

@ -70,7 +70,7 @@ struct kvm_pic {
struct kvm_io_device dev_slave;
struct kvm_io_device dev_eclr;
void (*ack_notifier)(void *opaque, int irq);
unsigned long irq_states[16];
unsigned long irq_states[PIC_NUM_PINS];
};
struct kvm_pic *kvm_create_pic(struct kvm *kvm);

View File

@ -1,18 +0,0 @@
struct kvm_timer {
struct hrtimer timer;
s64 period; /* unit: ns */
u32 timer_mode_mask;
u64 tscdeadline;
atomic_t pending; /* accumulated triggered timers */
bool reinject;
struct kvm_timer_ops *t_ops;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
};
struct kvm_timer_ops {
bool (*is_periodic)(struct kvm_timer *);
};
enum hrtimer_restart kvm_timer_fn(struct hrtimer *data);

View File

@ -34,6 +34,7 @@
#include <asm/current.h>
#include <asm/apicdef.h>
#include <linux/atomic.h>
#include <linux/jump_label.h>
#include "kvm_cache_regs.h"
#include "irq.h"
#include "trace.h"
@ -65,6 +66,7 @@
#define APIC_DEST_NOSHORT 0x0
#define APIC_DEST_MASK 0x800
#define MAX_APIC_VECTOR 256
#define APIC_VECTORS_PER_REG 32
#define VEC_POS(v) ((v) & (32 - 1))
#define REG_POS(v) (((v) >> 5) << 4)
@ -72,11 +74,6 @@
static unsigned int min_timer_period_us = 500;
module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
static inline u32 apic_get_reg(struct kvm_lapic *apic, int reg_off)
{
return *((u32 *) (apic->regs + reg_off));
}
static inline void apic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
{
*((u32 *) (apic->regs + reg_off)) = val;
@ -117,19 +114,23 @@ static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
}
static inline int apic_hw_enabled(struct kvm_lapic *apic)
{
return (apic)->vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE;
}
struct static_key_deferred apic_hw_disabled __read_mostly;
struct static_key_deferred apic_sw_disabled __read_mostly;
static inline int apic_sw_enabled(struct kvm_lapic *apic)
static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
{
return apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_APIC_ENABLED;
if ((kvm_apic_get_reg(apic, APIC_SPIV) ^ val) & APIC_SPIV_APIC_ENABLED) {
if (val & APIC_SPIV_APIC_ENABLED)
static_key_slow_dec_deferred(&apic_sw_disabled);
else
static_key_slow_inc(&apic_sw_disabled.key);
}
apic_set_reg(apic, APIC_SPIV, val);
}
static inline int apic_enabled(struct kvm_lapic *apic)
{
return apic_sw_enabled(apic) && apic_hw_enabled(apic);
return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
}
#define LVT_MASK \
@ -139,36 +140,135 @@ static inline int apic_enabled(struct kvm_lapic *apic)
(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
static inline int apic_x2apic_mode(struct kvm_lapic *apic)
{
return apic->vcpu->arch.apic_base & X2APIC_ENABLE;
}
static inline int kvm_apic_id(struct kvm_lapic *apic)
{
return (apic_get_reg(apic, APIC_ID) >> 24) & 0xff;
return (kvm_apic_get_reg(apic, APIC_ID) >> 24) & 0xff;
}
static inline u16 apic_cluster_id(struct kvm_apic_map *map, u32 ldr)
{
u16 cid;
ldr >>= 32 - map->ldr_bits;
cid = (ldr >> map->cid_shift) & map->cid_mask;
BUG_ON(cid >= ARRAY_SIZE(map->logical_map));
return cid;
}
static inline u16 apic_logical_id(struct kvm_apic_map *map, u32 ldr)
{
ldr >>= (32 - map->ldr_bits);
return ldr & map->lid_mask;
}
static void recalculate_apic_map(struct kvm *kvm)
{
struct kvm_apic_map *new, *old = NULL;
struct kvm_vcpu *vcpu;
int i;
new = kzalloc(sizeof(struct kvm_apic_map), GFP_KERNEL);
mutex_lock(&kvm->arch.apic_map_lock);
if (!new)
goto out;
new->ldr_bits = 8;
/* flat mode is default */
new->cid_shift = 8;
new->cid_mask = 0;
new->lid_mask = 0xff;
kvm_for_each_vcpu(i, vcpu, kvm) {
struct kvm_lapic *apic = vcpu->arch.apic;
u16 cid, lid;
u32 ldr;
if (!kvm_apic_present(vcpu))
continue;
/*
* All APICs have to be configured in the same mode by an OS.
* We take advatage of this while building logical id loockup
* table. After reset APICs are in xapic/flat mode, so if we
* find apic with different setting we assume this is the mode
* OS wants all apics to be in; build lookup table accordingly.
*/
if (apic_x2apic_mode(apic)) {
new->ldr_bits = 32;
new->cid_shift = 16;
new->cid_mask = new->lid_mask = 0xffff;
} else if (kvm_apic_sw_enabled(apic) &&
!new->cid_mask /* flat mode */ &&
kvm_apic_get_reg(apic, APIC_DFR) == APIC_DFR_CLUSTER) {
new->cid_shift = 4;
new->cid_mask = 0xf;
new->lid_mask = 0xf;
}
new->phys_map[kvm_apic_id(apic)] = apic;
ldr = kvm_apic_get_reg(apic, APIC_LDR);
cid = apic_cluster_id(new, ldr);
lid = apic_logical_id(new, ldr);
if (lid)
new->logical_map[cid][ffs(lid) - 1] = apic;
}
out:
old = rcu_dereference_protected(kvm->arch.apic_map,
lockdep_is_held(&kvm->arch.apic_map_lock));
rcu_assign_pointer(kvm->arch.apic_map, new);
mutex_unlock(&kvm->arch.apic_map_lock);
if (old)
kfree_rcu(old, rcu);
}
static inline void kvm_apic_set_id(struct kvm_lapic *apic, u8 id)
{
apic_set_reg(apic, APIC_ID, id << 24);
recalculate_apic_map(apic->vcpu->kvm);
}
static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
{
apic_set_reg(apic, APIC_LDR, id);
recalculate_apic_map(apic->vcpu->kvm);
}
static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
{
return !(apic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
return !(kvm_apic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
}
static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
{
return apic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
return kvm_apic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
}
static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
{
return ((apic_get_reg(apic, APIC_LVTT) &
return ((kvm_apic_get_reg(apic, APIC_LVTT) &
apic->lapic_timer.timer_mode_mask) == APIC_LVT_TIMER_ONESHOT);
}
static inline int apic_lvtt_period(struct kvm_lapic *apic)
{
return ((apic_get_reg(apic, APIC_LVTT) &
return ((kvm_apic_get_reg(apic, APIC_LVTT) &
apic->lapic_timer.timer_mode_mask) == APIC_LVT_TIMER_PERIODIC);
}
static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
{
return ((apic_get_reg(apic, APIC_LVTT) &
return ((kvm_apic_get_reg(apic, APIC_LVTT) &
apic->lapic_timer.timer_mode_mask) ==
APIC_LVT_TIMER_TSCDEADLINE);
}
@ -184,7 +284,7 @@ void kvm_apic_set_version(struct kvm_vcpu *vcpu)
struct kvm_cpuid_entry2 *feat;
u32 v = APIC_VERSION;
if (!irqchip_in_kernel(vcpu->kvm))
if (!kvm_vcpu_has_lapic(vcpu))
return;
feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
@ -193,12 +293,7 @@ void kvm_apic_set_version(struct kvm_vcpu *vcpu)
apic_set_reg(apic, APIC_LVR, v);
}
static inline int apic_x2apic_mode(struct kvm_lapic *apic)
{
return apic->vcpu->arch.apic_base & X2APIC_ENABLE;
}
static unsigned int apic_lvt_mask[APIC_LVT_NUM] = {
static const unsigned int apic_lvt_mask[APIC_LVT_NUM] = {
LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
LVT_MASK | APIC_MODE_MASK, /* LVTPC */
@ -208,25 +303,30 @@ static unsigned int apic_lvt_mask[APIC_LVT_NUM] = {
static int find_highest_vector(void *bitmap)
{
u32 *word = bitmap;
int word_offset = MAX_APIC_VECTOR >> 5;
int vec;
u32 *reg;
while ((word_offset != 0) && (word[(--word_offset) << 2] == 0))
continue;
for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
vec >= 0; vec -= APIC_VECTORS_PER_REG) {
reg = bitmap + REG_POS(vec);
if (*reg)
return fls(*reg) - 1 + vec;
}
if (likely(!word_offset && !word[0]))
return -1;
else
return fls(word[word_offset << 2]) - 1 + (word_offset << 5);
return -1;
}
static u8 count_vectors(void *bitmap)
{
u32 *word = bitmap;
int word_offset;
int vec;
u32 *reg;
u8 count = 0;
for (word_offset = 0; word_offset < MAX_APIC_VECTOR >> 5; ++word_offset)
count += hweight32(word[word_offset << 2]);
for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
reg = bitmap + REG_POS(vec);
count += hweight32(*reg);
}
return count;
}
@ -285,7 +385,6 @@ static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
int highest_irr;
/* This may race with setting of irr in __apic_accept_irq() and
@ -293,9 +392,9 @@ int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
* will cause vmexit immediately and the value will be recalculated
* on the next vmentry.
*/
if (!apic)
if (!kvm_vcpu_has_lapic(vcpu))
return 0;
highest_irr = apic_find_highest_irr(apic);
highest_irr = apic_find_highest_irr(vcpu->arch.apic);
return highest_irr;
}
@ -378,8 +477,8 @@ static void apic_update_ppr(struct kvm_lapic *apic)
u32 tpr, isrv, ppr, old_ppr;
int isr;
old_ppr = apic_get_reg(apic, APIC_PROCPRI);
tpr = apic_get_reg(apic, APIC_TASKPRI);
old_ppr = kvm_apic_get_reg(apic, APIC_PROCPRI);
tpr = kvm_apic_get_reg(apic, APIC_TASKPRI);
isr = apic_find_highest_isr(apic);
isrv = (isr != -1) ? isr : 0;
@ -415,13 +514,13 @@ int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
u32 logical_id;
if (apic_x2apic_mode(apic)) {
logical_id = apic_get_reg(apic, APIC_LDR);
logical_id = kvm_apic_get_reg(apic, APIC_LDR);
return logical_id & mda;
}
logical_id = GET_APIC_LOGICAL_ID(apic_get_reg(apic, APIC_LDR));
logical_id = GET_APIC_LOGICAL_ID(kvm_apic_get_reg(apic, APIC_LDR));
switch (apic_get_reg(apic, APIC_DFR)) {
switch (kvm_apic_get_reg(apic, APIC_DFR)) {
case APIC_DFR_FLAT:
if (logical_id & mda)
result = 1;
@ -433,7 +532,7 @@ int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
break;
default:
apic_debug("Bad DFR vcpu %d: %08x\n",
apic->vcpu->vcpu_id, apic_get_reg(apic, APIC_DFR));
apic->vcpu->vcpu_id, kvm_apic_get_reg(apic, APIC_DFR));
break;
}
@ -478,6 +577,72 @@ int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
return result;
}
bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_lapic_irq *irq, int *r)
{
struct kvm_apic_map *map;
unsigned long bitmap = 1;
struct kvm_lapic **dst;
int i;
bool ret = false;
*r = -1;
if (irq->shorthand == APIC_DEST_SELF) {
*r = kvm_apic_set_irq(src->vcpu, irq);
return true;
}
if (irq->shorthand)
return false;
rcu_read_lock();
map = rcu_dereference(kvm->arch.apic_map);
if (!map)
goto out;
if (irq->dest_mode == 0) { /* physical mode */
if (irq->delivery_mode == APIC_DM_LOWEST ||
irq->dest_id == 0xff)
goto out;
dst = &map->phys_map[irq->dest_id & 0xff];
} else {
u32 mda = irq->dest_id << (32 - map->ldr_bits);
dst = map->logical_map[apic_cluster_id(map, mda)];
bitmap = apic_logical_id(map, mda);
if (irq->delivery_mode == APIC_DM_LOWEST) {
int l = -1;
for_each_set_bit(i, &bitmap, 16) {
if (!dst[i])
continue;
if (l < 0)
l = i;
else if (kvm_apic_compare_prio(dst[i]->vcpu, dst[l]->vcpu) < 0)
l = i;
}
bitmap = (l >= 0) ? 1 << l : 0;
}
}
for_each_set_bit(i, &bitmap, 16) {
if (!dst[i])
continue;
if (*r < 0)
*r = 0;
*r += kvm_apic_set_irq(dst[i]->vcpu, irq);
}
ret = true;
out:
rcu_read_unlock();
return ret;
}
/*
* Add a pending IRQ into lapic.
* Return 1 if successfully added and 0 if discarded.
@ -591,7 +756,7 @@ static int apic_set_eoi(struct kvm_lapic *apic)
apic_clear_isr(vector, apic);
apic_update_ppr(apic);
if (!(apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI) &&
if (!(kvm_apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI) &&
kvm_ioapic_handles_vector(apic->vcpu->kvm, vector)) {
int trigger_mode;
if (apic_test_vector(vector, apic->regs + APIC_TMR))
@ -606,8 +771,8 @@ static int apic_set_eoi(struct kvm_lapic *apic)
static void apic_send_ipi(struct kvm_lapic *apic)
{
u32 icr_low = apic_get_reg(apic, APIC_ICR);
u32 icr_high = apic_get_reg(apic, APIC_ICR2);
u32 icr_low = kvm_apic_get_reg(apic, APIC_ICR);
u32 icr_high = kvm_apic_get_reg(apic, APIC_ICR2);
struct kvm_lapic_irq irq;
irq.vector = icr_low & APIC_VECTOR_MASK;
@ -642,7 +807,7 @@ static u32 apic_get_tmcct(struct kvm_lapic *apic)
ASSERT(apic != NULL);
/* if initial count is 0, current count should also be 0 */
if (apic_get_reg(apic, APIC_TMICT) == 0)
if (kvm_apic_get_reg(apic, APIC_TMICT) == 0)
return 0;
remaining = hrtimer_get_remaining(&apic->lapic_timer.timer);
@ -696,13 +861,15 @@ static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
val = apic_get_tmcct(apic);
break;
case APIC_PROCPRI:
apic_update_ppr(apic);
val = kvm_apic_get_reg(apic, offset);
break;
case APIC_TASKPRI:
report_tpr_access(apic, false);
/* fall thru */
default:
apic_update_ppr(apic);
val = apic_get_reg(apic, offset);
val = kvm_apic_get_reg(apic, offset);
break;
}
@ -719,7 +886,7 @@ static int apic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
{
unsigned char alignment = offset & 0xf;
u32 result;
/* this bitmask has a bit cleared for each reserver register */
/* this bitmask has a bit cleared for each reserved register */
static const u64 rmask = 0x43ff01ffffffe70cULL;
if ((alignment + len) > 4) {
@ -754,7 +921,7 @@ static int apic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
{
return apic_hw_enabled(apic) &&
return kvm_apic_hw_enabled(apic) &&
addr >= apic->base_address &&
addr < apic->base_address + LAPIC_MMIO_LENGTH;
}
@ -777,7 +944,7 @@ static void update_divide_count(struct kvm_lapic *apic)
{
u32 tmp1, tmp2, tdcr;
tdcr = apic_get_reg(apic, APIC_TDCR);
tdcr = kvm_apic_get_reg(apic, APIC_TDCR);
tmp1 = tdcr & 0xf;
tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
apic->divide_count = 0x1 << (tmp2 & 0x7);
@ -792,9 +959,9 @@ static void start_apic_timer(struct kvm_lapic *apic)
atomic_set(&apic->lapic_timer.pending, 0);
if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
/* lapic timer in oneshot or peroidic mode */
/* lapic timer in oneshot or periodic mode */
now = apic->lapic_timer.timer.base->get_time();
apic->lapic_timer.period = (u64)apic_get_reg(apic, APIC_TMICT)
apic->lapic_timer.period = (u64)kvm_apic_get_reg(apic, APIC_TMICT)
* APIC_BUS_CYCLE_NS * apic->divide_count;
if (!apic->lapic_timer.period)
@ -826,7 +993,7 @@ static void start_apic_timer(struct kvm_lapic *apic)
"timer initial count 0x%x, period %lldns, "
"expire @ 0x%016" PRIx64 ".\n", __func__,
APIC_BUS_CYCLE_NS, ktime_to_ns(now),
apic_get_reg(apic, APIC_TMICT),
kvm_apic_get_reg(apic, APIC_TMICT),
apic->lapic_timer.period,
ktime_to_ns(ktime_add_ns(now,
apic->lapic_timer.period)));
@ -858,7 +1025,7 @@ static void start_apic_timer(struct kvm_lapic *apic)
static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
{
int nmi_wd_enabled = apic_lvt_nmi_mode(apic_get_reg(apic, APIC_LVT0));
int nmi_wd_enabled = apic_lvt_nmi_mode(kvm_apic_get_reg(apic, APIC_LVT0));
if (apic_lvt_nmi_mode(lvt0_val)) {
if (!nmi_wd_enabled) {
@ -879,7 +1046,7 @@ static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
switch (reg) {
case APIC_ID: /* Local APIC ID */
if (!apic_x2apic_mode(apic))
apic_set_reg(apic, APIC_ID, val);
kvm_apic_set_id(apic, val >> 24);
else
ret = 1;
break;
@ -895,29 +1062,30 @@ static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
case APIC_LDR:
if (!apic_x2apic_mode(apic))
apic_set_reg(apic, APIC_LDR, val & APIC_LDR_MASK);
kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
else
ret = 1;
break;
case APIC_DFR:
if (!apic_x2apic_mode(apic))
if (!apic_x2apic_mode(apic)) {
apic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
else
recalculate_apic_map(apic->vcpu->kvm);
} else
ret = 1;
break;
case APIC_SPIV: {
u32 mask = 0x3ff;
if (apic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
if (kvm_apic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
mask |= APIC_SPIV_DIRECTED_EOI;
apic_set_reg(apic, APIC_SPIV, val & mask);
apic_set_spiv(apic, val & mask);
if (!(val & APIC_SPIV_APIC_ENABLED)) {
int i;
u32 lvt_val;
for (i = 0; i < APIC_LVT_NUM; i++) {
lvt_val = apic_get_reg(apic,
lvt_val = kvm_apic_get_reg(apic,
APIC_LVTT + 0x10 * i);
apic_set_reg(apic, APIC_LVTT + 0x10 * i,
lvt_val | APIC_LVT_MASKED);
@ -946,7 +1114,7 @@ static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
case APIC_LVT1:
case APIC_LVTERR:
/* TODO: Check vector */
if (!apic_sw_enabled(apic))
if (!kvm_apic_sw_enabled(apic))
val |= APIC_LVT_MASKED;
val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
@ -955,12 +1123,12 @@ static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
break;
case APIC_LVTT:
if ((apic_get_reg(apic, APIC_LVTT) &
if ((kvm_apic_get_reg(apic, APIC_LVTT) &
apic->lapic_timer.timer_mode_mask) !=
(val & apic->lapic_timer.timer_mode_mask))
hrtimer_cancel(&apic->lapic_timer.timer);
if (!apic_sw_enabled(apic))
if (!kvm_apic_sw_enabled(apic))
val |= APIC_LVT_MASKED;
val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
apic_set_reg(apic, APIC_LVTT, val);
@ -1039,24 +1207,30 @@ static int apic_mmio_write(struct kvm_io_device *this,
void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (apic)
if (kvm_vcpu_has_lapic(vcpu))
apic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
}
EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
void kvm_free_lapic(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!vcpu->arch.apic)
return;
hrtimer_cancel(&vcpu->arch.apic->lapic_timer.timer);
hrtimer_cancel(&apic->lapic_timer.timer);
if (vcpu->arch.apic->regs)
free_page((unsigned long)vcpu->arch.apic->regs);
if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
static_key_slow_dec_deferred(&apic_hw_disabled);
kfree(vcpu->arch.apic);
if (!(kvm_apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_APIC_ENABLED))
static_key_slow_dec_deferred(&apic_sw_disabled);
if (apic->regs)
free_page((unsigned long)apic->regs);
kfree(apic);
}
/*
@ -1068,10 +1242,9 @@ void kvm_free_lapic(struct kvm_vcpu *vcpu)
u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic)
return 0;
if (apic_lvtt_oneshot(apic) || apic_lvtt_period(apic))
if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) ||
apic_lvtt_period(apic))
return 0;
return apic->lapic_timer.tscdeadline;
@ -1080,10 +1253,9 @@ u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic)
return;
if (apic_lvtt_oneshot(apic) || apic_lvtt_period(apic))
if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) ||
apic_lvtt_period(apic))
return;
hrtimer_cancel(&apic->lapic_timer.timer);
@ -1095,20 +1267,21 @@ void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic)
if (!kvm_vcpu_has_lapic(vcpu))
return;
apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
| (apic_get_reg(apic, APIC_TASKPRI) & 4));
| (kvm_apic_get_reg(apic, APIC_TASKPRI) & 4));
}
u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
u64 tpr;
if (!apic)
if (!kvm_vcpu_has_lapic(vcpu))
return 0;
tpr = (u64) apic_get_reg(apic, APIC_TASKPRI);
tpr = (u64) kvm_apic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
return (tpr & 0xf0) >> 4;
}
@ -1123,6 +1296,15 @@ void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
return;
}
/* update jump label if enable bit changes */
if ((vcpu->arch.apic_base ^ value) & MSR_IA32_APICBASE_ENABLE) {
if (value & MSR_IA32_APICBASE_ENABLE)
static_key_slow_dec_deferred(&apic_hw_disabled);
else
static_key_slow_inc(&apic_hw_disabled.key);
recalculate_apic_map(vcpu->kvm);
}
if (!kvm_vcpu_is_bsp(apic->vcpu))
value &= ~MSR_IA32_APICBASE_BSP;
@ -1130,7 +1312,7 @@ void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
if (apic_x2apic_mode(apic)) {
u32 id = kvm_apic_id(apic);
u32 ldr = ((id & ~0xf) << 16) | (1 << (id & 0xf));
apic_set_reg(apic, APIC_LDR, ldr);
kvm_apic_set_ldr(apic, ldr);
}
apic->base_address = apic->vcpu->arch.apic_base &
MSR_IA32_APICBASE_BASE;
@ -1155,7 +1337,7 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
/* Stop the timer in case it's a reset to an active apic */
hrtimer_cancel(&apic->lapic_timer.timer);
apic_set_reg(apic, APIC_ID, vcpu->vcpu_id << 24);
kvm_apic_set_id(apic, vcpu->vcpu_id);
kvm_apic_set_version(apic->vcpu);
for (i = 0; i < APIC_LVT_NUM; i++)
@ -1164,9 +1346,9 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
apic_set_reg(apic, APIC_DFR, 0xffffffffU);
apic_set_reg(apic, APIC_SPIV, 0xff);
apic_set_spiv(apic, 0xff);
apic_set_reg(apic, APIC_TASKPRI, 0);
apic_set_reg(apic, APIC_LDR, 0);
kvm_apic_set_ldr(apic, 0);
apic_set_reg(apic, APIC_ESR, 0);
apic_set_reg(apic, APIC_ICR, 0);
apic_set_reg(apic, APIC_ICR2, 0);
@ -1183,7 +1365,8 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
update_divide_count(apic);
atomic_set(&apic->lapic_timer.pending, 0);
if (kvm_vcpu_is_bsp(vcpu))
vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
kvm_lapic_set_base(vcpu,
vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
vcpu->arch.pv_eoi.msr_val = 0;
apic_update_ppr(apic);
@ -1196,45 +1379,34 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
vcpu->arch.apic_base, apic->base_address);
}
bool kvm_apic_present(struct kvm_vcpu *vcpu)
{
return vcpu->arch.apic && apic_hw_enabled(vcpu->arch.apic);
}
int kvm_lapic_enabled(struct kvm_vcpu *vcpu)
{
return kvm_apic_present(vcpu) && apic_sw_enabled(vcpu->arch.apic);
}
/*
*----------------------------------------------------------------------
* timer interface
*----------------------------------------------------------------------
*/
static bool lapic_is_periodic(struct kvm_timer *ktimer)
static bool lapic_is_periodic(struct kvm_lapic *apic)
{
struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic,
lapic_timer);
return apic_lvtt_period(apic);
}
int apic_has_pending_timer(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *lapic = vcpu->arch.apic;
struct kvm_lapic *apic = vcpu->arch.apic;
if (lapic && apic_enabled(lapic) && apic_lvt_enabled(lapic, APIC_LVTT))
return atomic_read(&lapic->lapic_timer.pending);
if (kvm_vcpu_has_lapic(vcpu) && apic_enabled(apic) &&
apic_lvt_enabled(apic, APIC_LVTT))
return atomic_read(&apic->lapic_timer.pending);
return 0;
}
int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
{
u32 reg = apic_get_reg(apic, lvt_type);
u32 reg = kvm_apic_get_reg(apic, lvt_type);
int vector, mode, trig_mode;
if (apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
vector = reg & APIC_VECTOR_MASK;
mode = reg & APIC_MODE_MASK;
trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
@ -1251,15 +1423,40 @@ void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
kvm_apic_local_deliver(apic, APIC_LVT0);
}
static struct kvm_timer_ops lapic_timer_ops = {
.is_periodic = lapic_is_periodic,
};
static const struct kvm_io_device_ops apic_mmio_ops = {
.read = apic_mmio_read,
.write = apic_mmio_write,
};
static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
{
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
struct kvm_vcpu *vcpu = apic->vcpu;
wait_queue_head_t *q = &vcpu->wq;
/*
* There is a race window between reading and incrementing, but we do
* not care about potentially losing timer events in the !reinject
* case anyway. Note: KVM_REQ_PENDING_TIMER is implicitly checked
* in vcpu_enter_guest.
*/
if (!atomic_read(&ktimer->pending)) {
atomic_inc(&ktimer->pending);
/* FIXME: this code should not know anything about vcpus */
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
}
if (waitqueue_active(q))
wake_up_interruptible(q);
if (lapic_is_periodic(apic)) {
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}
int kvm_create_lapic(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic;
@ -1283,14 +1480,17 @@ int kvm_create_lapic(struct kvm_vcpu *vcpu)
hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
HRTIMER_MODE_ABS);
apic->lapic_timer.timer.function = kvm_timer_fn;
apic->lapic_timer.t_ops = &lapic_timer_ops;
apic->lapic_timer.kvm = vcpu->kvm;
apic->lapic_timer.vcpu = vcpu;
apic->lapic_timer.timer.function = apic_timer_fn;
apic->base_address = APIC_DEFAULT_PHYS_BASE;
vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE;
/*
* APIC is created enabled. This will prevent kvm_lapic_set_base from
* thinking that APIC satet has changed.
*/
vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
kvm_lapic_set_base(vcpu,
APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE);
static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
kvm_lapic_reset(vcpu);
kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
@ -1306,23 +1506,23 @@ int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
struct kvm_lapic *apic = vcpu->arch.apic;
int highest_irr;
if (!apic || !apic_enabled(apic))
if (!kvm_vcpu_has_lapic(vcpu) || !apic_enabled(apic))
return -1;
apic_update_ppr(apic);
highest_irr = apic_find_highest_irr(apic);
if ((highest_irr == -1) ||
((highest_irr & 0xF0) <= apic_get_reg(apic, APIC_PROCPRI)))
((highest_irr & 0xF0) <= kvm_apic_get_reg(apic, APIC_PROCPRI)))
return -1;
return highest_irr;
}
int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
{
u32 lvt0 = apic_get_reg(vcpu->arch.apic, APIC_LVT0);
u32 lvt0 = kvm_apic_get_reg(vcpu->arch.apic, APIC_LVT0);
int r = 0;
if (!apic_hw_enabled(vcpu->arch.apic))
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
r = 1;
if ((lvt0 & APIC_LVT_MASKED) == 0 &&
GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
@ -1334,7 +1534,10 @@ void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (apic && atomic_read(&apic->lapic_timer.pending) > 0) {
if (!kvm_vcpu_has_lapic(vcpu))
return;
if (atomic_read(&apic->lapic_timer.pending) > 0) {
if (kvm_apic_local_deliver(apic, APIC_LVTT))
atomic_dec(&apic->lapic_timer.pending);
}
@ -1354,12 +1557,17 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
return vector;
}
void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu)
void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
struct kvm_lapic *apic = vcpu->arch.apic;
apic->base_address = vcpu->arch.apic_base &
MSR_IA32_APICBASE_BASE;
kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
/* set SPIV separately to get count of SW disabled APICs right */
apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
/* call kvm_apic_set_id() to put apic into apic_map */
kvm_apic_set_id(apic, kvm_apic_id(apic));
kvm_apic_set_version(vcpu);
apic_update_ppr(apic);
@ -1374,13 +1582,12 @@ void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu)
void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct hrtimer *timer;
if (!apic)
if (!kvm_vcpu_has_lapic(vcpu))
return;
timer = &apic->lapic_timer.timer;
timer = &vcpu->arch.apic->lapic_timer.timer;
if (hrtimer_cancel(timer))
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
@ -1478,7 +1685,7 @@ void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
return;
tpr = apic_get_reg(apic, APIC_TASKPRI) & 0xff;
tpr = kvm_apic_get_reg(apic, APIC_TASKPRI) & 0xff;
max_irr = apic_find_highest_irr(apic);
if (max_irr < 0)
max_irr = 0;
@ -1537,7 +1744,7 @@ int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!irqchip_in_kernel(vcpu->kvm))
if (!kvm_vcpu_has_lapic(vcpu))
return 1;
/* if this is ICR write vector before command */
@ -1551,7 +1758,7 @@ int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
struct kvm_lapic *apic = vcpu->arch.apic;
u32 low, high = 0;
if (!irqchip_in_kernel(vcpu->kvm))
if (!kvm_vcpu_has_lapic(vcpu))
return 1;
if (apic_reg_read(apic, reg, 4, &low))
@ -1576,3 +1783,10 @@ int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
addr);
}
void kvm_lapic_init(void)
{
/* do not patch jump label more than once per second */
jump_label_rate_limit(&apic_hw_disabled, HZ);
jump_label_rate_limit(&apic_sw_disabled, HZ);
}

View File

@ -2,10 +2,17 @@
#define __KVM_X86_LAPIC_H
#include "iodev.h"
#include "kvm_timer.h"
#include <linux/kvm_host.h>
struct kvm_timer {
struct hrtimer timer;
s64 period; /* unit: ns */
u32 timer_mode_mask;
u64 tscdeadline;
atomic_t pending; /* accumulated triggered timers */
};
struct kvm_lapic {
unsigned long base_address;
struct kvm_io_device dev;
@ -45,11 +52,13 @@ int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq);
int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type);
bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_lapic_irq *irq, int *r);
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data);
void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu);
int kvm_lapic_enabled(struct kvm_vcpu *vcpu);
bool kvm_apic_present(struct kvm_vcpu *vcpu);
void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s);
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu);
u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu);
@ -71,4 +80,48 @@ static inline bool kvm_hv_vapic_assist_page_enabled(struct kvm_vcpu *vcpu)
}
int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data);
void kvm_lapic_init(void);
static inline u32 kvm_apic_get_reg(struct kvm_lapic *apic, int reg_off)
{
return *((u32 *) (apic->regs + reg_off));
}
extern struct static_key kvm_no_apic_vcpu;
static inline bool kvm_vcpu_has_lapic(struct kvm_vcpu *vcpu)
{
if (static_key_false(&kvm_no_apic_vcpu))
return vcpu->arch.apic;
return true;
}
extern struct static_key_deferred apic_hw_disabled;
static inline int kvm_apic_hw_enabled(struct kvm_lapic *apic)
{
if (static_key_false(&apic_hw_disabled.key))
return apic->vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE;
return MSR_IA32_APICBASE_ENABLE;
}
extern struct static_key_deferred apic_sw_disabled;
static inline int kvm_apic_sw_enabled(struct kvm_lapic *apic)
{
if (static_key_false(&apic_sw_disabled.key))
return kvm_apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_APIC_ENABLED;
return APIC_SPIV_APIC_ENABLED;
}
static inline bool kvm_apic_present(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_has_lapic(vcpu) && kvm_apic_hw_enabled(vcpu->arch.apic);
}
static inline int kvm_lapic_enabled(struct kvm_vcpu *vcpu)
{
return kvm_apic_present(vcpu) && kvm_apic_sw_enabled(vcpu->arch.apic);
}
#endif

View File

@ -556,6 +556,14 @@ static int mmu_spte_clear_track_bits(u64 *sptep)
return 0;
pfn = spte_to_pfn(old_spte);
/*
* KVM does not hold the refcount of the page used by
* kvm mmu, before reclaiming the page, we should
* unmap it from mmu first.
*/
WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
kvm_set_pfn_accessed(pfn);
if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
@ -960,13 +968,10 @@ static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
struct kvm_memory_slot *slot)
{
struct kvm_lpage_info *linfo;
unsigned long idx;
if (likely(level == PT_PAGE_TABLE_LEVEL))
return &slot->rmap[gfn - slot->base_gfn];
linfo = lpage_info_slot(gfn, slot, level);
return &linfo->rmap_pde;
idx = gfn_to_index(gfn, slot->base_gfn, level);
return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
}
/*
@ -1173,7 +1178,8 @@ void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
unsigned long *rmapp;
while (mask) {
rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PT_PAGE_TABLE_LEVEL, slot);
__rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
/* clear the first set bit */
@ -1200,7 +1206,7 @@ static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
}
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long data)
struct kvm_memory_slot *slot, unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@ -1218,7 +1224,7 @@ static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
}
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long data)
struct kvm_memory_slot *slot, unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@ -1259,43 +1265,67 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
return 0;
}
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
unsigned long data,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
unsigned long data))
static int kvm_handle_hva_range(struct kvm *kvm,
unsigned long start,
unsigned long end,
unsigned long data,
int (*handler)(struct kvm *kvm,
unsigned long *rmapp,
struct kvm_memory_slot *slot,
unsigned long data))
{
int j;
int ret;
int retval = 0;
int ret = 0;
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
unsigned long start = memslot->userspace_addr;
unsigned long end;
unsigned long hva_start, hva_end;
gfn_t gfn_start, gfn_end;
end = start + (memslot->npages << PAGE_SHIFT);
if (hva >= start && hva < end) {
gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
gfn_t gfn = memslot->base_gfn + gfn_offset;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
*/
gfn_start = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
ret = handler(kvm, &memslot->rmap[gfn_offset], data);
for (j = PT_PAGE_TABLE_LEVEL;
j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
unsigned long idx, idx_end;
unsigned long *rmapp;
for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
struct kvm_lpage_info *linfo;
/*
* {idx(page_j) | page_j intersects with
* [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
*/
idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
linfo = lpage_info_slot(gfn, memslot,
PT_DIRECTORY_LEVEL + j);
ret |= handler(kvm, &linfo->rmap_pde, data);
}
trace_kvm_age_page(hva, memslot, ret);
retval |= ret;
rmapp = __gfn_to_rmap(gfn_start, j, memslot);
for (; idx <= idx_end; ++idx)
ret |= handler(kvm, rmapp++, memslot, data);
}
}
return retval;
return ret;
}
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
unsigned long data,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
struct kvm_memory_slot *slot,
unsigned long data))
{
return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
}
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
@ -1303,13 +1333,18 @@ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
}
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long data)
struct kvm_memory_slot *slot, unsigned long data)
{
u64 *sptep;
struct rmap_iterator uninitialized_var(iter);
@ -1323,8 +1358,10 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
* This has some overhead, but not as much as the cost of swapping
* out actively used pages or breaking up actively used hugepages.
*/
if (!shadow_accessed_mask)
return kvm_unmap_rmapp(kvm, rmapp, data);
if (!shadow_accessed_mask) {
young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
goto out;
}
for (sptep = rmap_get_first(*rmapp, &iter); sptep;
sptep = rmap_get_next(&iter)) {
@ -1336,12 +1373,14 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
(unsigned long *)sptep);
}
}
out:
/* @data has hva passed to kvm_age_hva(). */
trace_kvm_age_page(data, slot, young);
return young;
}
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long data)
struct kvm_memory_slot *slot, unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@ -1379,13 +1418,13 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
kvm_flush_remote_tlbs(vcpu->kvm);
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
@ -2457,7 +2496,9 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
rmap_recycle(vcpu, sptep, gfn);
}
}
kvm_release_pfn_clean(pfn);
if (!is_error_pfn(pfn))
kvm_release_pfn_clean(pfn);
}
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
@ -2469,17 +2510,12 @@ static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
bool no_dirty_log)
{
struct kvm_memory_slot *slot;
unsigned long hva;
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
if (!slot) {
get_page(fault_page);
return page_to_pfn(fault_page);
}
if (!slot)
return KVM_PFN_ERR_FAULT;
hva = gfn_to_hva_memslot(slot, gfn);
return hva_to_pfn_atomic(vcpu->kvm, hva);
return gfn_to_pfn_memslot_atomic(slot, gfn);
}
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
@ -2580,11 +2616,6 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
iterator.level - 1,
1, ACC_ALL, iterator.sptep);
if (!sp) {
pgprintk("nonpaging_map: ENOMEM\n");
kvm_release_pfn_clean(pfn);
return -ENOMEM;
}
mmu_spte_set(iterator.sptep,
__pa(sp->spt)
@ -2611,8 +2642,16 @@ static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
{
kvm_release_pfn_clean(pfn);
if (is_hwpoison_pfn(pfn)) {
/*
* Do not cache the mmio info caused by writing the readonly gfn
* into the spte otherwise read access on readonly gfn also can
* caused mmio page fault and treat it as mmio access.
* Return 1 to tell kvm to emulate it.
*/
if (pfn == KVM_PFN_ERR_RO_FAULT)
return 1;
if (pfn == KVM_PFN_ERR_HWPOISON) {
kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
return 0;
}
@ -3236,8 +3275,6 @@ static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
if (!async)
return false; /* *pfn has correct page already */
put_page(pfn_to_page(*pfn));
if (!prefault && can_do_async_pf(vcpu)) {
trace_kvm_try_async_get_page(gva, gfn);
if (kvm_find_async_pf_gfn(vcpu, gfn)) {
@ -3371,6 +3408,18 @@ static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
}
static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
{
unsigned mask;
BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
mask = (unsigned)~ACC_WRITE_MASK;
/* Allow write access to dirty gptes */
mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
*access &= mask;
}
static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
int *nr_present)
{
@ -3388,6 +3437,25 @@ static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
return false;
}
static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
{
unsigned access;
access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
access &= ~(gpte >> PT64_NX_SHIFT);
return access;
}
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
unsigned index;
index = level - 1;
index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
return mmu->last_pte_bitmap & (1 << index);
}
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
@ -3457,6 +3525,56 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
}
}
static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
unsigned bit, byte, pfec;
u8 map;
bool fault, x, w, u, wf, uf, ff, smep;
smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
pfec = byte << 1;
map = 0;
wf = pfec & PFERR_WRITE_MASK;
uf = pfec & PFERR_USER_MASK;
ff = pfec & PFERR_FETCH_MASK;
for (bit = 0; bit < 8; ++bit) {
x = bit & ACC_EXEC_MASK;
w = bit & ACC_WRITE_MASK;
u = bit & ACC_USER_MASK;
/* Not really needed: !nx will cause pte.nx to fault */
x |= !mmu->nx;
/* Allow supervisor writes if !cr0.wp */
w |= !is_write_protection(vcpu) && !uf;
/* Disallow supervisor fetches of user code if cr4.smep */
x &= !(smep && u && !uf);
fault = (ff && !x) || (uf && !u) || (wf && !w);
map |= fault << bit;
}
mmu->permissions[byte] = map;
}
}
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
u8 map;
unsigned level, root_level = mmu->root_level;
const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
if (root_level == PT32E_ROOT_LEVEL)
--root_level;
/* PT_PAGE_TABLE_LEVEL always terminates */
map = 1 | (1 << ps_set_index);
for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
if (level <= PT_PDPE_LEVEL
&& (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
map |= 1 << (ps_set_index | (level - 1));
}
mmu->last_pte_bitmap = map;
}
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
struct kvm_mmu *context,
int level)
@ -3465,6 +3583,8 @@ static int paging64_init_context_common(struct kvm_vcpu *vcpu,
context->root_level = level;
reset_rsvds_bits_mask(vcpu, context);
update_permission_bitmask(vcpu, context);
update_last_pte_bitmap(vcpu, context);
ASSERT(is_pae(vcpu));
context->new_cr3 = paging_new_cr3;
@ -3493,6 +3613,8 @@ static int paging32_init_context(struct kvm_vcpu *vcpu,
context->root_level = PT32_ROOT_LEVEL;
reset_rsvds_bits_mask(vcpu, context);
update_permission_bitmask(vcpu, context);
update_last_pte_bitmap(vcpu, context);
context->new_cr3 = paging_new_cr3;
context->page_fault = paging32_page_fault;
@ -3553,6 +3675,9 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
context->gva_to_gpa = paging32_gva_to_gpa;
}
update_permission_bitmask(vcpu, context);
update_last_pte_bitmap(vcpu, context);
return 0;
}
@ -3628,6 +3753,9 @@ static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
}
update_permission_bitmask(vcpu, g_context);
update_last_pte_bitmap(vcpu, g_context);
return 0;
}

View File

@ -18,8 +18,10 @@
#define PT_PCD_MASK (1ULL << 4)
#define PT_ACCESSED_SHIFT 5
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
#define PT_DIRTY_MASK (1ULL << 6)
#define PT_PAGE_SIZE_MASK (1ULL << 7)
#define PT_DIRTY_SHIFT 6
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
#define PT_PAGE_SIZE_SHIFT 7
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
#define PT_PAT_MASK (1ULL << 7)
#define PT_GLOBAL_MASK (1ULL << 8)
#define PT64_NX_SHIFT 63
@ -88,17 +90,14 @@ static inline bool is_write_protection(struct kvm_vcpu *vcpu)
return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
}
static inline bool check_write_user_access(struct kvm_vcpu *vcpu,
bool write_fault, bool user_fault,
unsigned long pte)
/*
* Will a fault with a given page-fault error code (pfec) cause a permission
* fault with the given access (in ACC_* format)?
*/
static inline bool permission_fault(struct kvm_mmu *mmu, unsigned pte_access,
unsigned pfec)
{
if (unlikely(write_fault && !is_writable_pte(pte)
&& (user_fault || is_write_protection(vcpu))))
return false;
if (unlikely(user_fault && !(pte & PT_USER_MASK)))
return false;
return true;
return (mmu->permissions[pfec >> 1] >> pte_access) & 1;
}
#endif

View File

@ -116,10 +116,8 @@ static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn);
if (is_error_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
if (is_error_pfn(pfn))
return;
}
hpa = pfn << PAGE_SHIFT;
if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
@ -190,7 +188,6 @@ static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_memory_slot *slot;
unsigned long *rmapp;
u64 *sptep;
struct rmap_iterator iter;
@ -198,8 +195,7 @@ static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
if (sp->role.direct || sp->unsync || sp->role.invalid)
return;
slot = gfn_to_memslot(kvm, sp->gfn);
rmapp = &slot->rmap[sp->gfn - slot->base_gfn];
rmapp = gfn_to_rmap(kvm, sp->gfn, PT_PAGE_TABLE_LEVEL);
for (sptep = rmap_get_first(*rmapp, &iter); sptep;
sptep = rmap_get_next(&iter)) {

View File

@ -63,10 +63,12 @@
*/
struct guest_walker {
int level;
unsigned max_level;
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
pt_element_t ptes[PT_MAX_FULL_LEVELS];
pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
unsigned pt_access;
unsigned pte_access;
gfn_t gfn;
@ -101,38 +103,41 @@ static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
return (ret != orig_pte);
}
static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte,
bool last)
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu,
struct guest_walker *walker,
int write_fault)
{
unsigned access;
unsigned level, index;
pt_element_t pte, orig_pte;
pt_element_t __user *ptep_user;
gfn_t table_gfn;
int ret;
access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
if (last && !is_dirty_gpte(gpte))
access &= ~ACC_WRITE_MASK;
for (level = walker->max_level; level >= walker->level; --level) {
pte = orig_pte = walker->ptes[level - 1];
table_gfn = walker->table_gfn[level - 1];
ptep_user = walker->ptep_user[level - 1];
index = offset_in_page(ptep_user) / sizeof(pt_element_t);
if (!(pte & PT_ACCESSED_MASK)) {
trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
pte |= PT_ACCESSED_MASK;
}
if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
pte |= PT_DIRTY_MASK;
}
if (pte == orig_pte)
continue;
#if PTTYPE == 64
if (vcpu->arch.mmu.nx)
access &= ~(gpte >> PT64_NX_SHIFT);
#endif
return access;
}
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
if (ret)
return ret;
static bool FNAME(is_last_gpte)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
pt_element_t gpte)
{
if (walker->level == PT_PAGE_TABLE_LEVEL)
return true;
if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
(PTTYPE == 64 || is_pse(vcpu)))
return true;
if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
(mmu->root_level == PT64_ROOT_LEVEL))
return true;
return false;
mark_page_dirty(vcpu->kvm, table_gfn);
walker->ptes[level] = pte;
}
return 0;
}
/*
@ -142,21 +147,22 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gva_t addr, u32 access)
{
int ret;
pt_element_t pte;
pt_element_t __user *uninitialized_var(ptep_user);
gfn_t table_gfn;
unsigned index, pt_access, uninitialized_var(pte_access);
unsigned index, pt_access, pte_access, accessed_dirty, shift;
gpa_t pte_gpa;
bool eperm, last_gpte;
int offset;
const int write_fault = access & PFERR_WRITE_MASK;
const int user_fault = access & PFERR_USER_MASK;
const int fetch_fault = access & PFERR_FETCH_MASK;
u16 errcode = 0;
gpa_t real_gpa;
gfn_t gfn;
trace_kvm_mmu_pagetable_walk(addr, access);
retry_walk:
eperm = false;
walker->level = mmu->root_level;
pte = mmu->get_cr3(vcpu);
@ -169,15 +175,21 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
--walker->level;
}
#endif
walker->max_level = walker->level;
ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
(mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
pt_access = ACC_ALL;
accessed_dirty = PT_ACCESSED_MASK;
pt_access = pte_access = ACC_ALL;
++walker->level;
for (;;) {
do {
gfn_t real_gfn;
unsigned long host_addr;
pt_access &= pte_access;
--walker->level;
index = PT_INDEX(addr, walker->level);
table_gfn = gpte_to_gfn(pte);
@ -199,6 +211,7 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
goto error;
walker->ptep_user[walker->level - 1] = ptep_user;
trace_kvm_mmu_paging_element(pte, walker->level);
@ -211,92 +224,48 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
goto error;
}
if (!check_write_user_access(vcpu, write_fault, user_fault,
pte))
eperm = true;
#if PTTYPE == 64
if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
eperm = true;
#endif
last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
if (last_gpte) {
pte_access = pt_access &
FNAME(gpte_access)(vcpu, pte, true);
/* check if the kernel is fetching from user page */
if (unlikely(pte_access & PT_USER_MASK) &&
kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
if (fetch_fault && !user_fault)
eperm = true;
}
if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
int ret;
trace_kvm_mmu_set_accessed_bit(table_gfn, index,
sizeof(pte));
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
pte, pte|PT_ACCESSED_MASK);
if (unlikely(ret < 0))
goto error;
else if (ret)
goto retry_walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_ACCESSED_MASK;
}
accessed_dirty &= pte;
pte_access = pt_access & gpte_access(vcpu, pte);
walker->ptes[walker->level - 1] = pte;
} while (!is_last_gpte(mmu, walker->level, pte));
if (last_gpte) {
int lvl = walker->level;
gpa_t real_gpa;
gfn_t gfn;
u32 ac;
gfn = gpte_to_gfn_lvl(pte, lvl);
gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
if (PTTYPE == 32 &&
walker->level == PT_DIRECTORY_LEVEL &&
is_cpuid_PSE36())
gfn += pse36_gfn_delta(pte);
ac = write_fault | fetch_fault | user_fault;
real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
ac);
if (real_gpa == UNMAPPED_GVA)
return 0;
walker->gfn = real_gpa >> PAGE_SHIFT;
break;
}
pt_access &= FNAME(gpte_access)(vcpu, pte, false);
--walker->level;
}
if (unlikely(eperm)) {
if (unlikely(permission_fault(mmu, pte_access, access))) {
errcode |= PFERR_PRESENT_MASK;
goto error;
}
if (write_fault && unlikely(!is_dirty_gpte(pte))) {
int ret;
gfn = gpte_to_gfn_lvl(pte, walker->level);
gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
pte, pte|PT_DIRTY_MASK);
if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
gfn += pse36_gfn_delta(pte);
real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
if (real_gpa == UNMAPPED_GVA)
return 0;
walker->gfn = real_gpa >> PAGE_SHIFT;
if (!write_fault)
protect_clean_gpte(&pte_access, pte);
/*
* On a write fault, fold the dirty bit into accessed_dirty by shifting it one
* place right.
*
* On a read fault, do nothing.
*/
shift = write_fault >> ilog2(PFERR_WRITE_MASK);
shift *= PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT;
accessed_dirty &= pte >> shift;
if (unlikely(!accessed_dirty)) {
ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
if (unlikely(ret < 0))
goto error;
else if (ret)
goto retry_walk;
mark_page_dirty(vcpu->kvm, table_gfn);
pte |= PT_DIRTY_MASK;
walker->ptes[walker->level - 1] = pte;
}
walker->pt_access = pt_access;
@ -368,12 +337,11 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
return;
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte, true);
pte_access = sp->role.access & gpte_access(vcpu, gpte);
protect_clean_gpte(&pte_access, gpte);
pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
if (mmu_invalid_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
if (mmu_invalid_pfn(pfn))
return;
}
/*
* we call mmu_set_spte() with host_writable = true because that
@ -443,15 +411,13 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
continue;
pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte,
true);
pte_access = sp->role.access & gpte_access(vcpu, gpte);
protect_clean_gpte(&pte_access, gpte);
gfn = gpte_to_gfn(gpte);
pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
pte_access & ACC_WRITE_MASK);
if (mmu_invalid_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
if (mmu_invalid_pfn(pfn))
break;
}
mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
NULL, PT_PAGE_TABLE_LEVEL, gfn,
@ -798,7 +764,8 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access;
pte_access &= FNAME(gpte_access)(vcpu, gpte, true);
pte_access &= gpte_access(vcpu, gpte);
protect_clean_gpte(&pte_access, gpte);
if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
continue;

View File

@ -1,5 +1,5 @@
/*
* Kernel-based Virtual Machine -- Performane Monitoring Unit support
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
*

View File

@ -163,7 +163,7 @@ static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define MSR_INVALID 0xffffffffU
static struct svm_direct_access_msrs {
static const struct svm_direct_access_msrs {
u32 index; /* Index of the MSR */
bool always; /* True if intercept is always on */
} direct_access_msrs[] = {
@ -400,7 +400,7 @@ struct svm_init_data {
int r;
};
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
@ -1146,7 +1146,6 @@ static void init_vmcb(struct vcpu_svm *svm)
svm_set_efer(&svm->vcpu, 0);
save->dr6 = 0xffff0ff0;
save->dr7 = 0x400;
kvm_set_rflags(&svm->vcpu, 2);
save->rip = 0x0000fff0;
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
@ -1643,7 +1642,7 @@ static void svm_set_segment(struct kvm_vcpu *vcpu,
mark_dirty(svm->vmcb, VMCB_SEG);
}
static void update_db_intercept(struct kvm_vcpu *vcpu)
static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@ -1663,20 +1662,6 @@ static void update_db_intercept(struct kvm_vcpu *vcpu)
vcpu->guest_debug = 0;
}
static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
else
svm->vmcb->save.dr7 = vcpu->arch.dr7;
mark_dirty(svm->vmcb, VMCB_DR);
update_db_intercept(vcpu);
}
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{
if (sd->next_asid > sd->max_asid) {
@ -1748,7 +1733,7 @@ static int db_interception(struct vcpu_svm *svm)
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
svm->vmcb->save.rflags &=
~(X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(&svm->vcpu);
update_db_bp_intercept(&svm->vcpu);
}
if (svm->vcpu.guest_debug &
@ -2063,7 +2048,7 @@ static inline bool nested_svm_intr(struct vcpu_svm *svm)
if (svm->nested.intercept & 1ULL) {
/*
* The #vmexit can't be emulated here directly because this
* code path runs with irqs and preemtion disabled. A
* code path runs with irqs and preemption disabled. A
* #vmexit emulation might sleep. Only signal request for
* the #vmexit here.
*/
@ -2105,7 +2090,6 @@ static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
return kmap(page);
error:
kvm_release_page_clean(page);
kvm_inject_gp(&svm->vcpu, 0);
return NULL;
@ -2409,7 +2393,7 @@ static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
{
/*
* This function merges the msr permission bitmaps of kvm and the
* nested vmcb. It is omptimized in that it only merges the parts where
* nested vmcb. It is optimized in that it only merges the parts where
* the kvm msr permission bitmap may contain zero bits
*/
int i;
@ -3268,7 +3252,7 @@ static int pause_interception(struct vcpu_svm *svm)
return 1;
}
static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
[SVM_EXIT_READ_CR4] = cr_interception,
@ -3660,7 +3644,7 @@ static void enable_nmi_window(struct kvm_vcpu *vcpu)
*/
svm->nmi_singlestep = true;
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(vcpu);
update_db_bp_intercept(vcpu);
}
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
@ -3783,12 +3767,6 @@ static void svm_cancel_injection(struct kvm_vcpu *vcpu)
svm_complete_interrupts(svm);
}
#ifdef CONFIG_X86_64
#define R "r"
#else
#define R "e"
#endif
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@ -3815,13 +3793,13 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
local_irq_enable();
asm volatile (
"push %%"R"bp; \n\t"
"mov %c[rbx](%[svm]), %%"R"bx \n\t"
"mov %c[rcx](%[svm]), %%"R"cx \n\t"
"mov %c[rdx](%[svm]), %%"R"dx \n\t"
"mov %c[rsi](%[svm]), %%"R"si \n\t"
"mov %c[rdi](%[svm]), %%"R"di \n\t"
"mov %c[rbp](%[svm]), %%"R"bp \n\t"
"push %%" _ASM_BP "; \n\t"
"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%[svm]), %%r8 \n\t"
"mov %c[r9](%[svm]), %%r9 \n\t"
@ -3834,20 +3812,20 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
#endif
/* Enter guest mode */
"push %%"R"ax \n\t"
"mov %c[vmcb](%[svm]), %%"R"ax \n\t"
"push %%" _ASM_AX " \n\t"
"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
__ex(SVM_VMLOAD) "\n\t"
__ex(SVM_VMRUN) "\n\t"
__ex(SVM_VMSAVE) "\n\t"
"pop %%"R"ax \n\t"
"pop %%" _ASM_AX " \n\t"
/* Save guest registers, load host registers */
"mov %%"R"bx, %c[rbx](%[svm]) \n\t"
"mov %%"R"cx, %c[rcx](%[svm]) \n\t"
"mov %%"R"dx, %c[rdx](%[svm]) \n\t"
"mov %%"R"si, %c[rsi](%[svm]) \n\t"
"mov %%"R"di, %c[rdi](%[svm]) \n\t"
"mov %%"R"bp, %c[rbp](%[svm]) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%[svm]) \n\t"
"mov %%r9, %c[r9](%[svm]) \n\t"
@ -3858,7 +3836,7 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
"mov %%r14, %c[r14](%[svm]) \n\t"
"mov %%r15, %c[r15](%[svm]) \n\t"
#endif
"pop %%"R"bp"
"pop %%" _ASM_BP
:
: [svm]"a"(svm),
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
@ -3879,9 +3857,11 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
#endif
: "cc", "memory"
, R"bx", R"cx", R"dx", R"si", R"di"
#ifdef CONFIG_X86_64
, "rbx", "rcx", "rdx", "rsi", "rdi"
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
#else
, "ebx", "ecx", "edx", "esi", "edi"
#endif
);
@ -3941,8 +3921,6 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
mark_all_clean(svm->vmcb);
}
#undef R
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
struct vcpu_svm *svm = to_svm(vcpu);
@ -4069,7 +4047,7 @@ static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
#define POST_MEM(exit) { .exit_code = (exit), \
.stage = X86_ICPT_POST_MEMACCESS, }
static struct __x86_intercept {
static const struct __x86_intercept {
u32 exit_code;
enum x86_intercept_stage stage;
} x86_intercept_map[] = {
@ -4260,7 +4238,7 @@ static struct kvm_x86_ops svm_x86_ops = {
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.set_guest_debug = svm_guest_debug,
.update_db_bp_intercept = update_db_bp_intercept,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,

View File

@ -1,47 +0,0 @@
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* timer support
*
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/hrtimer.h>
#include <linux/atomic.h>
#include "kvm_timer.h"
enum hrtimer_restart kvm_timer_fn(struct hrtimer *data)
{
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
struct kvm_vcpu *vcpu = ktimer->vcpu;
wait_queue_head_t *q = &vcpu->wq;
/*
* There is a race window between reading and incrementing, but we do
* not care about potentially losing timer events in the !reinject
* case anyway. Note: KVM_REQ_PENDING_TIMER is implicitly checked
* in vcpu_enter_guest.
*/
if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
atomic_inc(&ktimer->pending);
/* FIXME: this code should not know anything about vcpus */
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
}
if (waitqueue_active(q))
wake_up_interruptible(q);
if (ktimer->t_ops->is_periodic(ktimer)) {
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}

View File

@ -127,6 +127,8 @@ module_param(ple_gap, int, S_IRUGO);
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
extern const ulong vmx_return;
#define NR_AUTOLOAD_MSRS 8
#define VMCS02_POOL_SIZE 1
@ -405,16 +407,16 @@ struct vcpu_vmx {
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} tr, es, ds, fs, gs;
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment seg[8];
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
@ -450,7 +452,7 @@ static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
[number##_HIGH] = VMCS12_OFFSET(name)+4
static unsigned short vmcs_field_to_offset_table[] = {
static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
FIELD(GUEST_ES_SELECTOR, guest_es_selector),
FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
@ -596,10 +598,9 @@ static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
if (is_error_page(page)) {
kvm_release_page_clean(page);
if (is_error_page(page))
return NULL;
}
return page;
}
@ -667,7 +668,7 @@ static struct vmx_capability {
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static struct kvm_vmx_segment_field {
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
@ -1343,7 +1344,7 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
guest_efer = vmx->vcpu.arch.efer;
/*
* NX is emulated; LMA and LME handled by hardware; SCE meaninless
* NX is emulated; LMA and LME handled by hardware; SCE meaningless
* outside long mode
*/
ignore_bits = EFER_NX | EFER_SCE;
@ -1995,7 +1996,7 @@ static __init void nested_vmx_setup_ctls_msrs(void)
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
CPU_BASED_RDPMC_EXITING |
CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
@ -2291,16 +2292,6 @@ static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
}
}
static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
{
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
else
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
update_exception_bitmap(vcpu);
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
@ -2698,20 +2689,17 @@ static __exit void hardware_unsetup(void)
free_kvm_area();
}
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment tmp = *save;
if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
vmcs_write16(sf->selector, save->selector);
vmcs_writel(sf->base, save->base);
vmcs_write32(sf->limit, save->limit);
vmcs_write32(sf->ar_bytes, save->ar);
} else {
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
<< AR_DPL_SHIFT;
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
tmp.base = vmcs_readl(sf->base);
tmp.selector = vmcs_read16(sf->selector);
tmp.s = 1;
}
vmx_set_segment(vcpu, &tmp, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
@ -2724,10 +2712,7 @@ static void enter_pmode(struct kvm_vcpu *vcpu)
vmx_segment_cache_clear(vmx);
vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
@ -2742,10 +2727,10 @@ static void enter_pmode(struct kvm_vcpu *vcpu)
if (emulate_invalid_guest_state)
return;
fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
vmx_segment_cache_clear(vmx);
@ -2773,14 +2758,10 @@ static gva_t rmode_tss_base(struct kvm *kvm)
return kvm->arch.tss_addr;
}
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
save->selector = vmcs_read16(sf->selector);
save->base = vmcs_readl(sf->base);
save->limit = vmcs_read32(sf->limit);
save->ar = vmcs_read32(sf->ar_bytes);
vmcs_write16(sf->selector, save->base >> 4);
vmcs_write32(sf->base, save->base & 0xffff0);
vmcs_write32(sf->limit, 0xffff);
@ -2800,9 +2781,16 @@ static void enter_rmode(struct kvm_vcpu *vcpu)
if (enable_unrestricted_guest)
return;
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx->emulation_required = 1;
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Call it here with phys address pointing 16M below 4G.
@ -2817,14 +2805,8 @@ static void enter_rmode(struct kvm_vcpu *vcpu)
vmx_segment_cache_clear(vmx);
vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
@ -3117,35 +3099,24 @@ static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_save_segment *save;
u32 ar;
if (vmx->rmode.vm86_active
&& (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
|| seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
|| seg == VCPU_SREG_GS)
&& !emulate_invalid_guest_state) {
switch (seg) {
case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
case VCPU_SREG_ES: save = &vmx->rmode.es; break;
case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
default: BUG();
}
var->selector = save->selector;
var->base = save->base;
var->limit = save->limit;
ar = save->ar;
|| seg == VCPU_SREG_GS)) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
goto use_saved_rmode_seg;
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
use_saved_rmode_seg:
if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
ar = 0;
var->type = ar & 15;
@ -3227,23 +3198,21 @@ static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
vmx_segment_cache_clear(vmx);
if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
vmcs_write16(sf->selector, var->selector);
vmx->rmode.tr.selector = var->selector;
vmx->rmode.tr.base = var->base;
vmx->rmode.tr.limit = var->limit;
vmx->rmode.tr.ar = vmx_segment_access_rights(var);
vmx->rmode.segs[VCPU_SREG_TR] = *var;
return;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
if (vmx->rmode.vm86_active && var->s) {
vmx->rmode.segs[seg] = *var;
/*
* Hack real-mode segments into vm86 compatibility.
*/
@ -3258,7 +3227,7 @@ static void vmx_set_segment(struct kvm_vcpu *vcpu,
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the usedland code. This causes invalid guest
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
@ -3288,16 +3257,10 @@ static void vmx_set_segment(struct kvm_vcpu *vcpu,
vmcs_readl(GUEST_CS_BASE) >> 4);
break;
case VCPU_SREG_ES:
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
break;
case VCPU_SREG_DS:
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
break;
case VCPU_SREG_GS:
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
break;
case VCPU_SREG_FS:
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
break;
case VCPU_SREG_SS:
vmcs_write16(GUEST_SS_SELECTOR,
@ -3351,9 +3314,9 @@ static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
if (var.limit < 0xffff)
return false;
if (ar != 0xf3)
if (((ar | (3 << AR_DPL_SHIFT)) & ~(AR_G_MASK | AR_DB_MASK)) != 0xf3)
return false;
return true;
@ -3605,7 +3568,7 @@ static int init_rmode_identity_map(struct kvm *kvm)
static void seg_setup(int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
@ -3770,8 +3733,7 @@ static void vmx_set_constant_host_state(void)
native_store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
@ -4005,8 +3967,6 @@ static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
kvm_rip_write(vcpu, 0);
kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
vmcs_writel(GUEST_DR7, 0x400);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
@ -4456,7 +4416,7 @@ vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
hypercall[2] = 0xc1;
}
/* called to set cr0 as approriate for a mov-to-cr0 exit. */
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (to_vmx(vcpu)->nested.vmxon &&
@ -5701,7 +5661,7 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
@ -6229,17 +6189,10 @@ static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
msrs[i].host);
}
#ifdef CONFIG_X86_64
#define R "r"
#define Q "q"
#else
#define R "e"
#define Q "l"
#endif
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long debugctlmsr;
if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
@ -6279,34 +6232,35 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
vmx_set_interrupt_shadow(vcpu, 0);
atomic_switch_perf_msrs(vmx);
debugctlmsr = get_debugctlmsr();
vmx->__launched = vmx->loaded_vmcs->launched;
asm(
/* Store host registers */
"push %%"R"dx; push %%"R"bp;"
"push %%"R"cx \n\t" /* placeholder for guest rcx */
"push %%"R"cx \n\t"
"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
"push %%" _ASM_DX "; push %%" _ASM_BP ";"
"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
"push %%" _ASM_CX " \n\t"
"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
"je 1f \n\t"
"mov %%"R"sp, %c[host_rsp](%0) \n\t"
"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
"1: \n\t"
/* Reload cr2 if changed */
"mov %c[cr2](%0), %%"R"ax \n\t"
"mov %%cr2, %%"R"dx \n\t"
"cmp %%"R"ax, %%"R"dx \n\t"
"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
"mov %%cr2, %%" _ASM_DX " \n\t"
"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
"je 2f \n\t"
"mov %%"R"ax, %%cr2 \n\t"
"mov %%" _ASM_AX", %%cr2 \n\t"
"2: \n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%0), %%"R"ax \n\t"
"mov %c[rbx](%0), %%"R"bx \n\t"
"mov %c[rdx](%0), %%"R"dx \n\t"
"mov %c[rsi](%0), %%"R"si \n\t"
"mov %c[rdi](%0), %%"R"di \n\t"
"mov %c[rbp](%0), %%"R"bp \n\t"
"mov %c[rax](%0), %%" _ASM_AX " \n\t"
"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
@ -6317,24 +6271,24 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
#endif
"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
/* Enter guest mode */
"jne .Llaunched \n\t"
"jne 1f \n\t"
__ex(ASM_VMX_VMLAUNCH) "\n\t"
"jmp .Lkvm_vmx_return \n\t"
".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
".Lkvm_vmx_return: "
"jmp 2f \n\t"
"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
"2: "
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%"R"sp) \n\t"
"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
"pop %0 \n\t"
"mov %%"R"ax, %c[rax](%0) \n\t"
"mov %%"R"bx, %c[rbx](%0) \n\t"
"pop"Q" %c[rcx](%0) \n\t"
"mov %%"R"dx, %c[rdx](%0) \n\t"
"mov %%"R"si, %c[rsi](%0) \n\t"
"mov %%"R"di, %c[rdi](%0) \n\t"
"mov %%"R"bp, %c[rbp](%0) \n\t"
"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
@ -6345,11 +6299,15 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
#endif
"mov %%cr2, %%"R"ax \n\t"
"mov %%"R"ax, %c[cr2](%0) \n\t"
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
"pop %%"R"bp; pop %%"R"dx \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
"setbe %c[fail](%0) \n\t"
".pushsection .rodata \n\t"
".global vmx_return \n\t"
"vmx_return: " _ASM_PTR " 2b \n\t"
".popsection"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
@ -6374,12 +6332,18 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
[wordsize]"i"(sizeof(ulong))
: "cc", "memory"
, R"ax", R"bx", R"di", R"si"
#ifdef CONFIG_X86_64
, "rax", "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "eax", "ebx", "edi", "esi"
#endif
);
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (debugctlmsr)
update_debugctlmsr(debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
@ -6424,9 +6388,6 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
vmx_complete_interrupts(vmx);
}
#undef R
#undef Q
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
@ -7281,7 +7242,7 @@ static struct kvm_x86_ops vmx_x86_ops = {
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.set_guest_debug = set_guest_debug,
.update_db_bp_intercept = update_exception_bitmap,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,

View File

@ -246,20 +246,14 @@ static void drop_user_return_notifiers(void *ignore)
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm))
return vcpu->arch.apic_base;
else
return vcpu->arch.apic_base;
return vcpu->arch.apic_base;
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
/* TODO: reserve bits check */
if (irqchip_in_kernel(vcpu->kvm))
kvm_lapic_set_base(vcpu, data);
else
vcpu->arch.apic_base = data;
kvm_lapic_set_base(vcpu, data);
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
@ -698,6 +692,18 @@ unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
static void kvm_update_dr7(struct kvm_vcpu *vcpu)
{
unsigned long dr7;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
dr7 = vcpu->arch.guest_debug_dr7;
else
dr7 = vcpu->arch.dr7;
kvm_x86_ops->set_dr7(vcpu, dr7);
vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
}
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
switch (dr) {
@ -723,10 +729,7 @@ static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
if (val & 0xffffffff00000000ULL)
return -1; /* #GP */
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
}
kvm_update_dr7(vcpu);
break;
}
@ -823,7 +826,7 @@ static u32 msrs_to_save[] = {
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
static const u32 emulated_msrs[] = {
MSR_IA32_TSCDEADLINE,
MSR_IA32_MISC_ENABLE,
MSR_IA32_MCG_STATUS,
@ -1097,7 +1100,7 @@ void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
* For each generation, we track the original measured
* nanosecond time, offset, and write, so if TSCs are in
* sync, we can match exact offset, and if not, we can match
* exact software computaion in compute_guest_tsc()
* exact software computation in compute_guest_tsc()
*
* These values are tracked in kvm->arch.cur_xxx variables.
*/
@ -1140,6 +1143,7 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
unsigned long this_tsc_khz;
s64 kernel_ns, max_kernel_ns;
u64 tsc_timestamp;
u8 pvclock_flags;
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
@ -1221,7 +1225,14 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
vcpu->last_kernel_ns = kernel_ns;
vcpu->last_guest_tsc = tsc_timestamp;
vcpu->hv_clock.flags = 0;
pvclock_flags = 0;
if (vcpu->pvclock_set_guest_stopped_request) {
pvclock_flags |= PVCLOCK_GUEST_STOPPED;
vcpu->pvclock_set_guest_stopped_request = false;
}
vcpu->hv_clock.flags = pvclock_flags;
/*
* The interface expects us to write an even number signaling that the
@ -1504,7 +1515,7 @@ static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
{
gpa_t gpa = data & ~0x3f;
/* Bits 2:5 are resrved, Should be zero */
/* Bits 2:5 are reserved, Should be zero */
if (data & 0x3c)
return 1;
@ -1639,10 +1650,9 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
vcpu->arch.time_page =
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
if (is_error_page(vcpu->arch.time_page)) {
kvm_release_page_clean(vcpu->arch.time_page);
if (is_error_page(vcpu->arch.time_page))
vcpu->arch.time_page = NULL;
}
break;
}
case MSR_KVM_ASYNC_PF_EN:
@ -1727,7 +1737,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
* Ignore all writes to this no longer documented MSR.
* Writes are only relevant for old K7 processors,
* all pre-dating SVM, but a recommended workaround from
* AMD for these chips. It is possible to speicify the
* AMD for these chips. It is possible to specify the
* affected processor models on the command line, hence
* the need to ignore the workaround.
*/
@ -2177,6 +2187,8 @@ int kvm_dev_ioctl_check_extension(long ext)
case KVM_CAP_GET_TSC_KHZ:
case KVM_CAP_PCI_2_3:
case KVM_CAP_KVMCLOCK_CTRL:
case KVM_CAP_READONLY_MEM:
case KVM_CAP_IRQFD_RESAMPLE:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
@ -2358,8 +2370,7 @@ static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
kvm_apic_post_state_restore(vcpu);
kvm_apic_post_state_restore(vcpu, s);
update_cr8_intercept(vcpu);
return 0;
@ -2368,7 +2379,7 @@ static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm))
return -ENXIO;
@ -2635,11 +2646,9 @@ static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
*/
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
{
struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
if (!vcpu->arch.time_page)
return -EINVAL;
src->flags |= PVCLOCK_GUEST_STOPPED;
mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT);
vcpu->arch.pvclock_set_guest_stopped_request = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
return 0;
}
@ -3090,7 +3099,7 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
if (!kvm->arch.vpit)
return -ENXIO;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return 0;
}
@ -3173,6 +3182,16 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
return r;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level);
return 0;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@ -3279,29 +3298,6 @@ long kvm_arch_vm_ioctl(struct file *filp,
create_pit_unlock:
mutex_unlock(&kvm->slots_lock);
break;
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
r = -ENXIO;
if (irqchip_in_kernel(kvm)) {
__s32 status;
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event.irq, irq_event.level);
if (ioctl == KVM_IRQ_LINE_STATUS) {
r = -EFAULT;
irq_event.status = status;
if (copy_to_user(argp, &irq_event,
sizeof irq_event))
goto out;
}
r = 0;
}
break;
}
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip;
@ -3689,20 +3685,17 @@ static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t *gpa, struct x86_exception *exception,
bool write)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
| (write ? PFERR_WRITE_MASK : 0);
if (vcpu_match_mmio_gva(vcpu, gva) &&
check_write_user_access(vcpu, write, access,
vcpu->arch.access)) {
if (vcpu_match_mmio_gva(vcpu, gva)
&& !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
(gva & (PAGE_SIZE - 1));
trace_vcpu_match_mmio(gva, *gpa, write, false);
return 1;
}
if (write)
access |= PFERR_WRITE_MASK;
*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
if (*gpa == UNMAPPED_GVA)
@ -3790,14 +3783,14 @@ static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
return X86EMUL_CONTINUE;
}
static struct read_write_emulator_ops read_emultor = {
static const struct read_write_emulator_ops read_emultor = {
.read_write_prepare = read_prepare,
.read_write_emulate = read_emulate,
.read_write_mmio = vcpu_mmio_read,
.read_write_exit_mmio = read_exit_mmio,
};
static struct read_write_emulator_ops write_emultor = {
static const struct read_write_emulator_ops write_emultor = {
.read_write_emulate = write_emulate,
.read_write_mmio = write_mmio,
.read_write_exit_mmio = write_exit_mmio,
@ -3808,7 +3801,7 @@ static int emulator_read_write_onepage(unsigned long addr, void *val,
unsigned int bytes,
struct x86_exception *exception,
struct kvm_vcpu *vcpu,
struct read_write_emulator_ops *ops)
const struct read_write_emulator_ops *ops)
{
gpa_t gpa;
int handled, ret;
@ -3857,7 +3850,7 @@ static int emulator_read_write_onepage(unsigned long addr, void *val,
int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
void *val, unsigned int bytes,
struct x86_exception *exception,
struct read_write_emulator_ops *ops)
const struct read_write_emulator_ops *ops)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
gpa_t gpa;
@ -3962,10 +3955,8 @@ static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
goto emul_write;
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
if (is_error_page(page)) {
kvm_release_page_clean(page);
if (is_error_page(page))
goto emul_write;
}
kaddr = kmap_atomic(page);
kaddr += offset_in_page(gpa);
@ -4332,7 +4323,19 @@ static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
}
static struct x86_emulate_ops emulate_ops = {
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
{
return kvm_register_read(emul_to_vcpu(ctxt), reg);
}
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
{
kvm_register_write(emul_to_vcpu(ctxt), reg, val);
}
static const struct x86_emulate_ops emulate_ops = {
.read_gpr = emulator_read_gpr,
.write_gpr = emulator_write_gpr,
.read_std = kvm_read_guest_virt_system,
.write_std = kvm_write_guest_virt_system,
.fetch = kvm_fetch_guest_virt,
@ -4367,14 +4370,6 @@ static struct x86_emulate_ops emulate_ops = {
.get_cpuid = emulator_get_cpuid,
};
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
kvm_register_read(vcpu, VCPU_REGS_RAX);
kvm_register_read(vcpu, VCPU_REGS_RSP);
kvm_register_read(vcpu, VCPU_REGS_RIP);
vcpu->arch.regs_dirty = ~0;
}
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
{
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
@ -4401,12 +4396,10 @@ static void inject_emulated_exception(struct kvm_vcpu *vcpu)
kvm_queue_exception(vcpu, ctxt->exception.vector);
}
static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
const unsigned long *regs)
static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
{
memset(&ctxt->twobyte, 0,
(void *)&ctxt->regs - (void *)&ctxt->twobyte);
memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
(void *)&ctxt->_regs - (void *)&ctxt->twobyte);
ctxt->fetch.start = 0;
ctxt->fetch.end = 0;
@ -4421,14 +4414,6 @@ static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int cs_db, cs_l;
/*
* TODO: fix emulate.c to use guest_read/write_register
* instead of direct ->regs accesses, can save hundred cycles
* on Intel for instructions that don't read/change RSP, for
* for example.
*/
cache_all_regs(vcpu);
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
ctxt->eflags = kvm_get_rflags(vcpu);
@ -4440,7 +4425,7 @@ static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
X86EMUL_MODE_PROT16;
ctxt->guest_mode = is_guest_mode(vcpu);
init_decode_cache(ctxt, vcpu->arch.regs);
init_decode_cache(ctxt);
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
}
@ -4460,7 +4445,6 @@ int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
return EMULATE_FAIL;
ctxt->eip = ctxt->_eip;
memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
@ -4493,13 +4477,14 @@ static int handle_emulation_failure(struct kvm_vcpu *vcpu)
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
{
gpa_t gpa;
pfn_t pfn;
if (tdp_enabled)
return false;
/*
* if emulation was due to access to shadowed page table
* and it failed try to unshadow page and re-entetr the
* and it failed try to unshadow page and re-enter the
* guest to let CPU execute the instruction.
*/
if (kvm_mmu_unprotect_page_virt(vcpu, gva))
@ -4510,8 +4495,17 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
if (gpa == UNMAPPED_GVA)
return true; /* let cpu generate fault */
if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
/*
* Do not retry the unhandleable instruction if it faults on the
* readonly host memory, otherwise it will goto a infinite loop:
* retry instruction -> write #PF -> emulation fail -> retry
* instruction -> ...
*/
pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
if (!is_error_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
return true;
}
return false;
}
@ -4560,6 +4554,9 @@ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
return true;
}
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2,
int emulation_type,
@ -4608,7 +4605,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
changes registers values during IO operation */
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
emulator_invalidate_register_cache(ctxt);
}
restart:
@ -4630,13 +4627,16 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
} else if (vcpu->arch.pio.count) {
if (!vcpu->arch.pio.in)
vcpu->arch.pio.count = 0;
else
else {
writeback = false;
vcpu->arch.complete_userspace_io = complete_emulated_pio;
}
r = EMULATE_DO_MMIO;
} else if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
writeback = false;
r = EMULATE_DO_MMIO;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
} else if (r == EMULATION_RESTART)
goto restart;
else
@ -4646,7 +4646,6 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
toggle_interruptibility(vcpu, ctxt->interruptibility);
kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
kvm_rip_write(vcpu, ctxt->eip);
} else
@ -4929,6 +4928,7 @@ int kvm_arch_init(void *opaque)
if (cpu_has_xsave)
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
kvm_lapic_init();
return 0;
out:
@ -5499,6 +5499,24 @@ static int __vcpu_run(struct kvm_vcpu *vcpu)
return r;
}
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
{
int r;
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (r != EMULATE_DONE)
return 0;
return 1;
}
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
{
BUG_ON(!vcpu->arch.pio.count);
return complete_emulated_io(vcpu);
}
/*
* Implements the following, as a state machine:
*
@ -5515,47 +5533,37 @@ static int __vcpu_run(struct kvm_vcpu *vcpu)
* copy data
* exit
*/
static int complete_mmio(struct kvm_vcpu *vcpu)
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct kvm_mmio_fragment *frag;
int r;
if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
return 1;
BUG_ON(!vcpu->mmio_needed);
if (vcpu->mmio_needed) {
/* Complete previous fragment */
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
if (!vcpu->mmio_is_write)
memcpy(frag->data, run->mmio.data, frag->len);
if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
if (vcpu->mmio_is_write)
return 1;
vcpu->mmio_read_completed = 1;
goto done;
}
/* Initiate next fragment */
++frag;
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = frag->gpa;
/* Complete previous fragment */
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
if (!vcpu->mmio_is_write)
memcpy(frag->data, run->mmio.data, frag->len);
if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
if (vcpu->mmio_is_write)
memcpy(run->mmio.data, frag->data, frag->len);
run->mmio.len = frag->len;
run->mmio.is_write = vcpu->mmio_is_write;
return 0;
return 1;
vcpu->mmio_read_completed = 1;
return complete_emulated_io(vcpu);
}
done:
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (r != EMULATE_DONE)
return 0;
return 1;
/* Initiate next fragment */
++frag;
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = frag->gpa;
if (vcpu->mmio_is_write)
memcpy(run->mmio.data, frag->data, frag->len);
run->mmio.len = frag->len;
run->mmio.is_write = vcpu->mmio_is_write;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
return 0;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
@ -5582,9 +5590,14 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
}
r = complete_mmio(vcpu);
if (r <= 0)
goto out;
if (unlikely(vcpu->arch.complete_userspace_io)) {
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
vcpu->arch.complete_userspace_io = NULL;
r = cui(vcpu);
if (r <= 0)
goto out;
} else
WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
r = __vcpu_run(vcpu);
@ -5602,12 +5615,11 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
/*
* We are here if userspace calls get_regs() in the middle of
* instruction emulation. Registers state needs to be copied
* back from emulation context to vcpu. Usrapace shouldn't do
* back from emulation context to vcpu. Userspace shouldn't do
* that usually, but some bad designed PV devices (vmware
* backdoor interface) need this to work
*/
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
}
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
@ -5747,7 +5759,6 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
if (ret)
return EMULATE_FAIL;
memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
@ -5799,7 +5810,7 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
max_bits = KVM_NR_INTERRUPTS;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
@ -5859,13 +5870,12 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
for (i = 0; i < KVM_NR_DB_REGS; ++i)
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
vcpu->arch.switch_db_regs =
(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
} else {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
}
kvm_update_dr7(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
@ -5877,7 +5887,7 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
*/
kvm_set_rflags(vcpu, rflags);
kvm_x86_ops->set_guest_debug(vcpu, dbg);
kvm_x86_ops->update_db_bp_intercept(vcpu);
r = 0;
@ -6023,7 +6033,9 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
int r;
vcpu->arch.mtrr_state.have_fixed = 1;
vcpu_load(vcpu);
r = vcpu_load(vcpu);
if (r)
return r;
r = kvm_arch_vcpu_reset(vcpu);
if (r == 0)
r = kvm_mmu_setup(vcpu);
@ -6034,9 +6046,11 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int r;
vcpu->arch.apf.msr_val = 0;
vcpu_load(vcpu);
r = vcpu_load(vcpu);
BUG_ON(r);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
@ -6050,10 +6064,10 @@ int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
vcpu->arch.nmi_pending = 0;
vcpu->arch.nmi_injected = false;
vcpu->arch.switch_db_regs = 0;
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = DR6_FIXED_1;
vcpu->arch.dr7 = DR7_FIXED_1;
kvm_update_dr7(vcpu);
kvm_make_request(KVM_REQ_EVENT, vcpu);
vcpu->arch.apf.msr_val = 0;
@ -6132,7 +6146,7 @@ int kvm_arch_hardware_enable(void *garbage)
* as we reset last_host_tsc on all VCPUs to stop this from being
* called multiple times (one for each physical CPU bringup).
*
* Platforms with unnreliable TSCs don't have to deal with this, they
* Platforms with unreliable TSCs don't have to deal with this, they
* will be compensated by the logic in vcpu_load, which sets the TSC to
* catchup mode. This will catchup all VCPUs to real time, but cannot
* guarantee that they stay in perfect synchronization.
@ -6185,6 +6199,8 @@ bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
}
struct static_key kvm_no_apic_vcpu __read_mostly;
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
@ -6217,7 +6233,8 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
}
} else
static_key_slow_inc(&kvm_no_apic_vcpu);
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
GFP_KERNEL);
@ -6257,6 +6274,8 @@ void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
kvm_mmu_destroy(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
free_page((unsigned long)vcpu->arch.pio_data);
if (!irqchip_in_kernel(vcpu->kvm))
static_key_slow_dec(&kvm_no_apic_vcpu);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
@ -6269,15 +6288,21 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
&kvm->arch.irq_sources_bitmap);
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
mutex_init(&kvm->arch.apic_map_lock);
return 0;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
int r;
r = vcpu_load(vcpu);
BUG_ON(r);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
@ -6321,6 +6346,7 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
put_page(kvm->arch.apic_access_page);
if (kvm->arch.ept_identity_pagetable)
put_page(kvm->arch.ept_identity_pagetable);
kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
}
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
@ -6328,10 +6354,18 @@ void kvm_arch_free_memslot(struct kvm_memory_slot *free,
{
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
kvm_kvfree(free->arch.lpage_info[i]);
free->arch.lpage_info[i] = NULL;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
kvm_kvfree(free->arch.rmap[i]);
free->arch.rmap[i] = NULL;
}
if (i == 0)
continue;
if (!dont || free->arch.lpage_info[i - 1] !=
dont->arch.lpage_info[i - 1]) {
kvm_kvfree(free->arch.lpage_info[i - 1]);
free->arch.lpage_info[i - 1] = NULL;
}
}
}
@ -6340,23 +6374,30 @@ int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
unsigned long ugfn;
int lpages;
int level = i + 2;
int level = i + 1;
lpages = gfn_to_index(slot->base_gfn + npages - 1,
slot->base_gfn, level) + 1;
slot->arch.lpage_info[i] =
kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
if (!slot->arch.lpage_info[i])
slot->arch.rmap[i] =
kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
if (!slot->arch.rmap[i])
goto out_free;
if (i == 0)
continue;
slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
sizeof(*slot->arch.lpage_info[i - 1]));
if (!slot->arch.lpage_info[i - 1])
goto out_free;
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
slot->arch.lpage_info[i][0].write_count = 1;
slot->arch.lpage_info[i - 1][0].write_count = 1;
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
slot->arch.lpage_info[i][lpages - 1].write_count = 1;
slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
ugfn = slot->userspace_addr >> PAGE_SHIFT;
/*
* If the gfn and userspace address are not aligned wrt each
@ -6368,16 +6409,21 @@ int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
unsigned long j;
for (j = 0; j < lpages; ++j)
slot->arch.lpage_info[i][j].write_count = 1;
slot->arch.lpage_info[i - 1][j].write_count = 1;
}
}
return 0;
out_free:
for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
kvm_kvfree(slot->arch.lpage_info[i]);
slot->arch.lpage_info[i] = NULL;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
kvm_kvfree(slot->arch.rmap[i]);
slot->arch.rmap[i] = NULL;
if (i == 0)
continue;
kvm_kvfree(slot->arch.lpage_info[i - 1]);
slot->arch.lpage_info[i - 1] = NULL;
}
return -ENOMEM;
}
@ -6396,10 +6442,10 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
map_flags = MAP_SHARED | MAP_ANONYMOUS;
/*To keep backward compatibility with older userspace,
*x86 needs to hanlde !user_alloc case.
*x86 needs to handle !user_alloc case.
*/
if (!user_alloc) {
if (npages && !old.rmap) {
if (npages && !old.npages) {
unsigned long userspace_addr;
userspace_addr = vm_mmap(NULL, 0,
@ -6427,7 +6473,7 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
if (!user_alloc && !old.user_alloc && old.npages && !npages) {
int ret;
ret = vm_munmap(old.userspace_addr,
@ -6446,14 +6492,28 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
spin_unlock(&kvm->mmu_lock);
/*
* If memory slot is created, or moved, we need to clear all
* mmio sptes.
*/
if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
kvm_mmu_zap_all(kvm);
kvm_reload_remote_mmus(kvm);
}
}
void kvm_arch_flush_shadow(struct kvm *kvm)
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_mmu_zap_all(kvm);
kvm_reload_remote_mmus(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_arch_flush_shadow_all(kvm);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&

View File

@ -124,4 +124,5 @@ int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
extern u64 host_xcr0;
extern struct static_key kvm_no_apic_vcpu;
#endif

View File

@ -101,9 +101,13 @@ struct kvm_userspace_memory_region {
__u64 userspace_addr; /* start of the userspace allocated memory */
};
/* for kvm_memory_region::flags */
#define KVM_MEM_LOG_DIRTY_PAGES 1UL
#define KVM_MEMSLOT_INVALID (1UL << 1)
/*
* The bit 0 ~ bit 15 of kvm_memory_region::flags are visible for userspace,
* other bits are reserved for kvm internal use which are defined in
* include/linux/kvm_host.h.
*/
#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
#define KVM_MEM_READONLY (1UL << 1)
/* for KVM_IRQ_LINE */
struct kvm_irq_level {
@ -618,6 +622,10 @@ struct kvm_ppc_smmu_info {
#define KVM_CAP_PPC_GET_SMMU_INFO 78
#define KVM_CAP_S390_COW 79
#define KVM_CAP_PPC_ALLOC_HTAB 80
#ifdef __KVM_HAVE_READONLY_MEM
#define KVM_CAP_READONLY_MEM 81
#endif
#define KVM_CAP_IRQFD_RESAMPLE 82
#ifdef KVM_CAP_IRQ_ROUTING
@ -683,12 +691,21 @@ struct kvm_xen_hvm_config {
#endif
#define KVM_IRQFD_FLAG_DEASSIGN (1 << 0)
/*
* Available with KVM_CAP_IRQFD_RESAMPLE
*
* KVM_IRQFD_FLAG_RESAMPLE indicates resamplefd is valid and specifies
* the irqfd to operate in resampling mode for level triggered interrupt
* emlation. See Documentation/virtual/kvm/api.txt.
*/
#define KVM_IRQFD_FLAG_RESAMPLE (1 << 1)
struct kvm_irqfd {
__u32 fd;
__u32 gsi;
__u32 flags;
__u8 pad[20];
__u32 resamplefd;
__u8 pad[16];
};
struct kvm_clock_data {

View File

@ -21,6 +21,7 @@
#include <linux/slab.h>
#include <linux/rcupdate.h>
#include <linux/ratelimit.h>
#include <linux/err.h>
#include <asm/signal.h>
#include <linux/kvm.h>
@ -34,6 +35,13 @@
#define KVM_MMIO_SIZE 8
#endif
/*
* The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
* in kvm, other bits are visible for userspace which are defined in
* include/linux/kvm_h.
*/
#define KVM_MEMSLOT_INVALID (1UL << 16)
/*
* If we support unaligned MMIO, at most one fragment will be split into two:
*/
@ -48,6 +56,47 @@
#define KVM_MAX_MMIO_FRAGMENTS \
(KVM_MMIO_SIZE / KVM_USER_MMIO_SIZE + KVM_EXTRA_MMIO_FRAGMENTS)
/*
* For the normal pfn, the highest 12 bits should be zero,
* so we can mask these bits to indicate the error.
*/
#define KVM_PFN_ERR_MASK (0xfffULL << 52)
#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
#define KVM_PFN_ERR_BAD (KVM_PFN_ERR_MASK + 2)
#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 3)
static inline bool is_error_pfn(pfn_t pfn)
{
return !!(pfn & KVM_PFN_ERR_MASK);
}
static inline bool is_noslot_pfn(pfn_t pfn)
{
return pfn == KVM_PFN_ERR_BAD;
}
static inline bool is_invalid_pfn(pfn_t pfn)
{
return !is_noslot_pfn(pfn) && is_error_pfn(pfn);
}
#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
static inline bool kvm_is_error_hva(unsigned long addr)
{
return addr >= PAGE_OFFSET;
}
#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
static inline bool is_error_page(struct page *page)
{
return IS_ERR(page);
}
/*
* vcpu->requests bit members
*/
@ -70,7 +119,8 @@
#define KVM_REQ_PMU 16
#define KVM_REQ_PMI 17
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
struct kvm;
struct kvm_vcpu;
@ -183,6 +233,18 @@ struct kvm_vcpu {
} async_pf;
#endif
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
/*
* Cpu relax intercept or pause loop exit optimization
* in_spin_loop: set when a vcpu does a pause loop exit
* or cpu relax intercepted.
* dy_eligible: indicates whether vcpu is eligible for directed yield.
*/
struct {
bool in_spin_loop;
bool dy_eligible;
} spin_loop;
#endif
struct kvm_vcpu_arch arch;
};
@ -201,7 +263,6 @@ struct kvm_memory_slot {
gfn_t base_gfn;
unsigned long npages;
unsigned long flags;
unsigned long *rmap;
unsigned long *dirty_bitmap;
struct kvm_arch_memory_slot arch;
unsigned long userspace_addr;
@ -283,6 +344,8 @@ struct kvm {
struct {
spinlock_t lock;
struct list_head items;
struct list_head resampler_list;
struct mutex resampler_lock;
} irqfds;
struct list_head ioeventfds;
#endif
@ -348,7 +411,7 @@ static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
void vcpu_load(struct kvm_vcpu *vcpu);
int __must_check vcpu_load(struct kvm_vcpu *vcpu);
void vcpu_put(struct kvm_vcpu *vcpu);
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
@ -378,23 +441,6 @@ id_to_memslot(struct kvm_memslots *slots, int id)
return slot;
}
#define HPA_MSB ((sizeof(hpa_t) * 8) - 1)
#define HPA_ERR_MASK ((hpa_t)1 << HPA_MSB)
static inline int is_error_hpa(hpa_t hpa) { return hpa >> HPA_MSB; }
extern struct page *bad_page;
extern struct page *fault_page;
extern pfn_t bad_pfn;
extern pfn_t fault_pfn;
int is_error_page(struct page *page);
int is_error_pfn(pfn_t pfn);
int is_hwpoison_pfn(pfn_t pfn);
int is_fault_pfn(pfn_t pfn);
int is_noslot_pfn(pfn_t pfn);
int is_invalid_pfn(pfn_t pfn);
int kvm_is_error_hva(unsigned long addr);
int kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc);
@ -415,28 +461,33 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
int user_alloc);
bool kvm_largepages_enabled(void);
void kvm_disable_largepages(void);
void kvm_arch_flush_shadow(struct kvm *kvm);
/* flush all memory translations */
void kvm_arch_flush_shadow_all(struct kvm *kvm);
/* flush memory translations pointing to 'slot' */
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot);
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
int nr_pages);
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page);
void kvm_set_page_dirty(struct page *page);
void kvm_set_page_accessed(struct page *page);
pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr);
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
bool write_fault, bool *writable);
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
bool *writable);
pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_release_pfn_dirty(pfn_t);
pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_release_pfn_dirty(pfn_t pfn);
void kvm_release_pfn_clean(pfn_t pfn);
void kvm_set_pfn_dirty(pfn_t pfn);
void kvm_set_pfn_accessed(pfn_t pfn);
@ -494,6 +545,7 @@ int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct
kvm_userspace_memory_region *mem,
int user_alloc);
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level);
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
@ -573,7 +625,7 @@ void kvm_arch_sync_events(struct kvm *kvm);
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
int kvm_is_mmio_pfn(pfn_t pfn);
bool kvm_is_mmio_pfn(pfn_t pfn);
struct kvm_irq_ack_notifier {
struct hlist_node link;
@ -728,6 +780,12 @@ __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
return search_memslots(slots, gfn);
}
static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
{
return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
}
static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_memslot(kvm, gfn)->id;
@ -740,10 +798,12 @@ static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
}
static inline unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
gfn_t gfn)
static inline gfn_t
hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
{
return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
return slot->base_gfn + gfn_offset;
}
static inline gpa_t gfn_to_gpa(gfn_t gfn)
@ -899,5 +959,32 @@ static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
}
}
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.in_spin_loop = val;
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.dy_eligible = val;
}
#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
}
static inline bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
{
return true;
}
#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
#endif

View File

@ -118,6 +118,7 @@ void jump_label_rate_limit(struct static_key_deferred *key,
key->timeout = rl;
INIT_DELAYED_WORK(&key->work, jump_label_update_timeout);
}
EXPORT_SYMBOL_GPL(jump_label_rate_limit);
static int addr_conflict(struct jump_entry *entry, void *start, void *end)
{

View File

@ -21,3 +21,6 @@ config KVM_ASYNC_PF
config HAVE_KVM_MSI
bool
config HAVE_KVM_CPU_RELAX_INTERCEPT
bool

View File

@ -111,8 +111,8 @@ void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu)
list_entry(vcpu->async_pf.done.next,
typeof(*work), link);
list_del(&work->link);
if (work->page)
put_page(work->page);
if (!is_error_page(work->page))
kvm_release_page_clean(work->page);
kmem_cache_free(async_pf_cache, work);
}
spin_unlock(&vcpu->async_pf.lock);
@ -138,8 +138,8 @@ void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu)
list_del(&work->queue);
vcpu->async_pf.queued--;
if (work->page)
put_page(work->page);
if (!is_error_page(work->page))
kvm_release_page_clean(work->page);
kmem_cache_free(async_pf_cache, work);
}
}
@ -203,8 +203,7 @@ int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu)
if (!work)
return -ENOMEM;
work->page = bad_page;
get_page(bad_page);
work->page = KVM_ERR_PTR_BAD_PAGE;
INIT_LIST_HEAD(&work->queue); /* for list_del to work */
spin_lock(&vcpu->async_pf.lock);

View File

@ -43,6 +43,31 @@
* --------------------------------------------------------------------
*/
/*
* Resampling irqfds are a special variety of irqfds used to emulate
* level triggered interrupts. The interrupt is asserted on eventfd
* trigger. On acknowledgement through the irq ack notifier, the
* interrupt is de-asserted and userspace is notified through the
* resamplefd. All resamplers on the same gsi are de-asserted
* together, so we don't need to track the state of each individual
* user. We can also therefore share the same irq source ID.
*/
struct _irqfd_resampler {
struct kvm *kvm;
/*
* List of resampling struct _irqfd objects sharing this gsi.
* RCU list modified under kvm->irqfds.resampler_lock
*/
struct list_head list;
struct kvm_irq_ack_notifier notifier;
/*
* Entry in list of kvm->irqfd.resampler_list. Use for sharing
* resamplers among irqfds on the same gsi.
* Accessed and modified under kvm->irqfds.resampler_lock
*/
struct list_head link;
};
struct _irqfd {
/* Used for MSI fast-path */
struct kvm *kvm;
@ -52,6 +77,12 @@ struct _irqfd {
/* Used for level IRQ fast-path */
int gsi;
struct work_struct inject;
/* The resampler used by this irqfd (resampler-only) */
struct _irqfd_resampler *resampler;
/* Eventfd notified on resample (resampler-only) */
struct eventfd_ctx *resamplefd;
/* Entry in list of irqfds for a resampler (resampler-only) */
struct list_head resampler_link;
/* Used for setup/shutdown */
struct eventfd_ctx *eventfd;
struct list_head list;
@ -67,8 +98,58 @@ irqfd_inject(struct work_struct *work)
struct _irqfd *irqfd = container_of(work, struct _irqfd, inject);
struct kvm *kvm = irqfd->kvm;
kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1);
kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0);
if (!irqfd->resampler) {
kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1);
kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0);
} else
kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
irqfd->gsi, 1);
}
/*
* Since resampler irqfds share an IRQ source ID, we de-assert once
* then notify all of the resampler irqfds using this GSI. We can't
* do multiple de-asserts or we risk racing with incoming re-asserts.
*/
static void
irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian)
{
struct _irqfd_resampler *resampler;
struct _irqfd *irqfd;
resampler = container_of(kian, struct _irqfd_resampler, notifier);
kvm_set_irq(resampler->kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
resampler->notifier.gsi, 0);
rcu_read_lock();
list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link)
eventfd_signal(irqfd->resamplefd, 1);
rcu_read_unlock();
}
static void
irqfd_resampler_shutdown(struct _irqfd *irqfd)
{
struct _irqfd_resampler *resampler = irqfd->resampler;
struct kvm *kvm = resampler->kvm;
mutex_lock(&kvm->irqfds.resampler_lock);
list_del_rcu(&irqfd->resampler_link);
synchronize_rcu();
if (list_empty(&resampler->list)) {
list_del(&resampler->link);
kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier);
kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
resampler->notifier.gsi, 0);
kfree(resampler);
}
mutex_unlock(&kvm->irqfds.resampler_lock);
}
/*
@ -92,6 +173,11 @@ irqfd_shutdown(struct work_struct *work)
*/
flush_work(&irqfd->inject);
if (irqfd->resampler) {
irqfd_resampler_shutdown(irqfd);
eventfd_ctx_put(irqfd->resamplefd);
}
/*
* It is now safe to release the object's resources
*/
@ -203,7 +289,7 @@ kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args)
struct kvm_irq_routing_table *irq_rt;
struct _irqfd *irqfd, *tmp;
struct file *file = NULL;
struct eventfd_ctx *eventfd = NULL;
struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL;
int ret;
unsigned int events;
@ -231,6 +317,54 @@ kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args)
irqfd->eventfd = eventfd;
if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) {
struct _irqfd_resampler *resampler;
resamplefd = eventfd_ctx_fdget(args->resamplefd);
if (IS_ERR(resamplefd)) {
ret = PTR_ERR(resamplefd);
goto fail;
}
irqfd->resamplefd = resamplefd;
INIT_LIST_HEAD(&irqfd->resampler_link);
mutex_lock(&kvm->irqfds.resampler_lock);
list_for_each_entry(resampler,
&kvm->irqfds.resampler_list, list) {
if (resampler->notifier.gsi == irqfd->gsi) {
irqfd->resampler = resampler;
break;
}
}
if (!irqfd->resampler) {
resampler = kzalloc(sizeof(*resampler), GFP_KERNEL);
if (!resampler) {
ret = -ENOMEM;
mutex_unlock(&kvm->irqfds.resampler_lock);
goto fail;
}
resampler->kvm = kvm;
INIT_LIST_HEAD(&resampler->list);
resampler->notifier.gsi = irqfd->gsi;
resampler->notifier.irq_acked = irqfd_resampler_ack;
INIT_LIST_HEAD(&resampler->link);
list_add(&resampler->link, &kvm->irqfds.resampler_list);
kvm_register_irq_ack_notifier(kvm,
&resampler->notifier);
irqfd->resampler = resampler;
}
list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list);
synchronize_rcu();
mutex_unlock(&kvm->irqfds.resampler_lock);
}
/*
* Install our own custom wake-up handling so we are notified via
* a callback whenever someone signals the underlying eventfd
@ -276,6 +410,12 @@ kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args)
return 0;
fail:
if (irqfd->resampler)
irqfd_resampler_shutdown(irqfd);
if (resamplefd && !IS_ERR(resamplefd))
eventfd_ctx_put(resamplefd);
if (eventfd && !IS_ERR(eventfd))
eventfd_ctx_put(eventfd);
@ -291,6 +431,8 @@ kvm_eventfd_init(struct kvm *kvm)
{
spin_lock_init(&kvm->irqfds.lock);
INIT_LIST_HEAD(&kvm->irqfds.items);
INIT_LIST_HEAD(&kvm->irqfds.resampler_list);
mutex_init(&kvm->irqfds.resampler_lock);
INIT_LIST_HEAD(&kvm->ioeventfds);
}
@ -340,7 +482,7 @@ kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args)
int
kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
{
if (args->flags & ~KVM_IRQFD_FLAG_DEASSIGN)
if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE))
return -EINVAL;
if (args->flags & KVM_IRQFD_FLAG_DEASSIGN)

View File

@ -197,28 +197,29 @@ int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int irq_source_id,
u32 old_irr;
u32 mask = 1 << irq;
union kvm_ioapic_redirect_entry entry;
int ret = 1;
int ret, irq_level;
BUG_ON(irq < 0 || irq >= IOAPIC_NUM_PINS);
spin_lock(&ioapic->lock);
old_irr = ioapic->irr;
if (irq >= 0 && irq < IOAPIC_NUM_PINS) {
int irq_level = __kvm_irq_line_state(&ioapic->irq_states[irq],
irq_source_id, level);
entry = ioapic->redirtbl[irq];
irq_level ^= entry.fields.polarity;
if (!irq_level)
ioapic->irr &= ~mask;
else {
int edge = (entry.fields.trig_mode == IOAPIC_EDGE_TRIG);
ioapic->irr |= mask;
if ((edge && old_irr != ioapic->irr) ||
(!edge && !entry.fields.remote_irr))
ret = ioapic_service(ioapic, irq);
else
ret = 0; /* report coalesced interrupt */
}
trace_kvm_ioapic_set_irq(entry.bits, irq, ret == 0);
irq_level = __kvm_irq_line_state(&ioapic->irq_states[irq],
irq_source_id, level);
entry = ioapic->redirtbl[irq];
irq_level ^= entry.fields.polarity;
if (!irq_level) {
ioapic->irr &= ~mask;
ret = 1;
} else {
int edge = (entry.fields.trig_mode == IOAPIC_EDGE_TRIG);
ioapic->irr |= mask;
if ((edge && old_irr != ioapic->irr) ||
(!edge && !entry.fields.remote_irr))
ret = ioapic_service(ioapic, irq);
else
ret = 0; /* report coalesced interrupt */
}
trace_kvm_ioapic_set_irq(entry.bits, irq, ret == 0);
spin_unlock(&ioapic->lock);
return ret;

View File

@ -42,13 +42,13 @@ static int kvm_iommu_unmap_memslots(struct kvm *kvm);
static void kvm_iommu_put_pages(struct kvm *kvm,
gfn_t base_gfn, unsigned long npages);
static pfn_t kvm_pin_pages(struct kvm *kvm, struct kvm_memory_slot *slot,
gfn_t gfn, unsigned long size)
static pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn,
unsigned long size)
{
gfn_t end_gfn;
pfn_t pfn;
pfn = gfn_to_pfn_memslot(kvm, slot, gfn);
pfn = gfn_to_pfn_memslot(slot, gfn);
end_gfn = gfn + (size >> PAGE_SHIFT);
gfn += 1;
@ -56,7 +56,7 @@ static pfn_t kvm_pin_pages(struct kvm *kvm, struct kvm_memory_slot *slot,
return pfn;
while (gfn < end_gfn)
gfn_to_pfn_memslot(kvm, slot, gfn++);
gfn_to_pfn_memslot(slot, gfn++);
return pfn;
}
@ -105,7 +105,7 @@ int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot)
* Pin all pages we are about to map in memory. This is
* important because we unmap and unpin in 4kb steps later.
*/
pfn = kvm_pin_pages(kvm, slot, gfn, page_size);
pfn = kvm_pin_pages(slot, gfn, page_size);
if (is_error_pfn(pfn)) {
gfn += 1;
continue;
@ -300,6 +300,12 @@ static void kvm_iommu_put_pages(struct kvm *kvm,
/* Get physical address */
phys = iommu_iova_to_phys(domain, gfn_to_gpa(gfn));
if (!phys) {
gfn++;
continue;
}
pfn = phys >> PAGE_SHIFT;
/* Unmap address from IO address space */

View File

@ -68,8 +68,13 @@ int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_vcpu *vcpu, *lowest = NULL;
if (irq->dest_mode == 0 && irq->dest_id == 0xff &&
kvm_is_dm_lowest_prio(irq))
kvm_is_dm_lowest_prio(irq)) {
printk(KERN_INFO "kvm: apic: phys broadcast and lowest prio\n");
irq->delivery_mode = APIC_DM_FIXED;
}
if (kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r))
return r;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!kvm_apic_present(vcpu))
@ -223,6 +228,9 @@ int kvm_request_irq_source_id(struct kvm *kvm)
}
ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
#ifdef CONFIG_X86
ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
#endif
set_bit(irq_source_id, bitmap);
unlock:
mutex_unlock(&kvm->irq_lock);
@ -233,6 +241,9 @@ int kvm_request_irq_source_id(struct kvm *kvm)
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id)
{
ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
#ifdef CONFIG_X86
ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
#endif
mutex_lock(&kvm->irq_lock);
if (irq_source_id < 0 ||
@ -321,11 +332,11 @@ static int setup_routing_entry(struct kvm_irq_routing_table *rt,
switch (ue->u.irqchip.irqchip) {
case KVM_IRQCHIP_PIC_MASTER:
e->set = kvm_set_pic_irq;
max_pin = 16;
max_pin = PIC_NUM_PINS;
break;
case KVM_IRQCHIP_PIC_SLAVE:
e->set = kvm_set_pic_irq;
max_pin = 16;
max_pin = PIC_NUM_PINS;
delta = 8;
break;
case KVM_IRQCHIP_IOAPIC:

View File

@ -100,13 +100,7 @@ EXPORT_SYMBOL_GPL(kvm_rebooting);
static bool largepages_enabled = true;
static struct page *hwpoison_page;
static pfn_t hwpoison_pfn;
struct page *fault_page;
pfn_t fault_pfn;
inline int kvm_is_mmio_pfn(pfn_t pfn)
bool kvm_is_mmio_pfn(pfn_t pfn)
{
if (pfn_valid(pfn)) {
int reserved;
@ -137,11 +131,12 @@ inline int kvm_is_mmio_pfn(pfn_t pfn)
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
void vcpu_load(struct kvm_vcpu *vcpu)
int vcpu_load(struct kvm_vcpu *vcpu)
{
int cpu;
mutex_lock(&vcpu->mutex);
if (mutex_lock_killable(&vcpu->mutex))
return -EINTR;
if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
/* The thread running this VCPU changed. */
struct pid *oldpid = vcpu->pid;
@ -154,6 +149,7 @@ void vcpu_load(struct kvm_vcpu *vcpu)
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_vcpu_load(vcpu, cpu);
put_cpu();
return 0;
}
void vcpu_put(struct kvm_vcpu *vcpu)
@ -236,6 +232,9 @@ int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
}
vcpu->run = page_address(page);
kvm_vcpu_set_in_spin_loop(vcpu, false);
kvm_vcpu_set_dy_eligible(vcpu, false);
r = kvm_arch_vcpu_init(vcpu);
if (r < 0)
goto fail_free_run;
@ -332,8 +331,7 @@ static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
* count is also read inside the mmu_lock critical section.
*/
kvm->mmu_notifier_count++;
for (; start < end; start += PAGE_SIZE)
need_tlb_flush |= kvm_unmap_hva(kvm, start);
need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
need_tlb_flush |= kvm->tlbs_dirty;
/* we've to flush the tlb before the pages can be freed */
if (need_tlb_flush)
@ -412,7 +410,7 @@ static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
int idx;
idx = srcu_read_lock(&kvm->srcu);
kvm_arch_flush_shadow(kvm);
kvm_arch_flush_shadow_all(kvm);
srcu_read_unlock(&kvm->srcu, idx);
}
@ -551,16 +549,12 @@ static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
if (!dont || free->rmap != dont->rmap)
vfree(free->rmap);
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
kvm_destroy_dirty_bitmap(free);
kvm_arch_free_memslot(free, dont);
free->npages = 0;
free->rmap = NULL;
}
void kvm_free_physmem(struct kvm *kvm)
@ -590,7 +584,7 @@ static void kvm_destroy_vm(struct kvm *kvm)
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
#else
kvm_arch_flush_shadow(kvm);
kvm_arch_flush_shadow_all(kvm);
#endif
kvm_arch_destroy_vm(kvm);
kvm_free_physmem(kvm);
@ -686,6 +680,20 @@ void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
slots->generation++;
}
static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
{
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
#ifdef KVM_CAP_READONLY_MEM
valid_flags |= KVM_MEM_READONLY;
#endif
if (mem->flags & ~valid_flags)
return -EINVAL;
return 0;
}
/*
* Allocate some memory and give it an address in the guest physical address
* space.
@ -706,6 +714,10 @@ int __kvm_set_memory_region(struct kvm *kvm,
struct kvm_memory_slot old, new;
struct kvm_memslots *slots, *old_memslots;
r = check_memory_region_flags(mem);
if (r)
goto out;
r = -EINVAL;
/* General sanity checks */
if (mem->memory_size & (PAGE_SIZE - 1))
@ -769,11 +781,7 @@ int __kvm_set_memory_region(struct kvm *kvm,
if (npages && !old.npages) {
new.user_alloc = user_alloc;
new.userspace_addr = mem->userspace_addr;
#ifndef CONFIG_S390
new.rmap = vzalloc(npages * sizeof(*new.rmap));
if (!new.rmap)
goto out_free;
#endif /* not defined CONFIG_S390 */
if (kvm_arch_create_memslot(&new, npages))
goto out_free;
}
@ -785,7 +793,7 @@ int __kvm_set_memory_region(struct kvm *kvm,
/* destroy any largepage mappings for dirty tracking */
}
if (!npages) {
if (!npages || base_gfn != old.base_gfn) {
struct kvm_memory_slot *slot;
r = -ENOMEM;
@ -801,14 +809,14 @@ int __kvm_set_memory_region(struct kvm *kvm,
old_memslots = kvm->memslots;
rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
/* From this point no new shadow pages pointing to a deleted
* memslot will be created.
/* From this point no new shadow pages pointing to a deleted,
* or moved, memslot will be created.
*
* validation of sp->gfn happens in:
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
* - kvm_is_visible_gfn (mmu_check_roots)
*/
kvm_arch_flush_shadow(kvm);
kvm_arch_flush_shadow_memslot(kvm, slot);
kfree(old_memslots);
}
@ -832,7 +840,6 @@ int __kvm_set_memory_region(struct kvm *kvm,
/* actual memory is freed via old in kvm_free_physmem_slot below */
if (!npages) {
new.rmap = NULL;
new.dirty_bitmap = NULL;
memset(&new.arch, 0, sizeof(new.arch));
}
@ -844,13 +851,6 @@ int __kvm_set_memory_region(struct kvm *kvm,
kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
/*
* If the new memory slot is created, we need to clear all
* mmio sptes.
*/
if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
kvm_arch_flush_shadow(kvm);
kvm_free_physmem_slot(&old, &new);
kfree(old_memslots);
@ -932,53 +932,6 @@ void kvm_disable_largepages(void)
}
EXPORT_SYMBOL_GPL(kvm_disable_largepages);
int is_error_page(struct page *page)
{
return page == bad_page || page == hwpoison_page || page == fault_page;
}
EXPORT_SYMBOL_GPL(is_error_page);
int is_error_pfn(pfn_t pfn)
{
return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_error_pfn);
int is_hwpoison_pfn(pfn_t pfn)
{
return pfn == hwpoison_pfn;
}
EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
int is_fault_pfn(pfn_t pfn)
{
return pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_fault_pfn);
int is_noslot_pfn(pfn_t pfn)
{
return pfn == bad_pfn;
}
EXPORT_SYMBOL_GPL(is_noslot_pfn);
int is_invalid_pfn(pfn_t pfn)
{
return pfn == hwpoison_pfn || pfn == fault_pfn;
}
EXPORT_SYMBOL_GPL(is_invalid_pfn);
static inline unsigned long bad_hva(void)
{
return PAGE_OFFSET;
}
int kvm_is_error_hva(unsigned long addr)
{
return addr == bad_hva();
}
EXPORT_SYMBOL_GPL(kvm_is_error_hva);
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
@ -1021,28 +974,62 @@ unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
return size;
}
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages)
static bool memslot_is_readonly(struct kvm_memory_slot *slot)
{
return slot->flags & KVM_MEM_READONLY;
}
static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages, bool write)
{
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
return bad_hva();
return KVM_HVA_ERR_BAD;
if (memslot_is_readonly(slot) && write)
return KVM_HVA_ERR_RO_BAD;
if (nr_pages)
*nr_pages = slot->npages - (gfn - slot->base_gfn);
return gfn_to_hva_memslot(slot, gfn);
return __gfn_to_hva_memslot(slot, gfn);
}
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages)
{
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
}
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
gfn_t gfn)
{
return gfn_to_hva_many(slot, gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva);
static pfn_t get_fault_pfn(void)
/*
* The hva returned by this function is only allowed to be read.
* It should pair with kvm_read_hva() or kvm_read_hva_atomic().
*/
static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
{
get_page(fault_page);
return fault_pfn;
return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
}
static int kvm_read_hva(void *data, void __user *hva, int len)
{
return __copy_from_user(data, hva, len);
}
static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
{
return __copy_from_user_inatomic(data, hva, len);
}
int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
@ -1065,108 +1052,186 @@ static inline int check_user_page_hwpoison(unsigned long addr)
return rc == -EHWPOISON;
}
static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
bool *async, bool write_fault, bool *writable)
/*
* The atomic path to get the writable pfn which will be stored in @pfn,
* true indicates success, otherwise false is returned.
*/
static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
bool write_fault, bool *writable, pfn_t *pfn)
{
struct page *page[1];
int npages;
if (!(async || atomic))
return false;
/*
* Fast pin a writable pfn only if it is a write fault request
* or the caller allows to map a writable pfn for a read fault
* request.
*/
if (!(write_fault || writable))
return false;
npages = __get_user_pages_fast(addr, 1, 1, page);
if (npages == 1) {
*pfn = page_to_pfn(page[0]);
if (writable)
*writable = true;
return true;
}
return false;
}
/*
* The slow path to get the pfn of the specified host virtual address,
* 1 indicates success, -errno is returned if error is detected.
*/
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
bool *writable, pfn_t *pfn)
{
struct page *page[1];
int npages = 0;
pfn_t pfn;
might_sleep();
if (writable)
*writable = write_fault;
if (async) {
down_read(&current->mm->mmap_sem);
npages = get_user_page_nowait(current, current->mm,
addr, write_fault, page);
up_read(&current->mm->mmap_sem);
} else
npages = get_user_pages_fast(addr, 1, write_fault,
page);
if (npages != 1)
return npages;
/* map read fault as writable if possible */
if (unlikely(!write_fault) && writable) {
struct page *wpage[1];
npages = __get_user_pages_fast(addr, 1, 1, wpage);
if (npages == 1) {
*writable = true;
put_page(page[0]);
page[0] = wpage[0];
}
npages = 1;
}
*pfn = page_to_pfn(page[0]);
return npages;
}
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
{
if (unlikely(!(vma->vm_flags & VM_READ)))
return false;
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
return false;
return true;
}
/*
* Pin guest page in memory and return its pfn.
* @addr: host virtual address which maps memory to the guest
* @atomic: whether this function can sleep
* @async: whether this function need to wait IO complete if the
* host page is not in the memory
* @write_fault: whether we should get a writable host page
* @writable: whether it allows to map a writable host page for !@write_fault
*
* The function will map a writable host page for these two cases:
* 1): @write_fault = true
* 2): @write_fault = false && @writable, @writable will tell the caller
* whether the mapping is writable.
*/
static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
bool write_fault, bool *writable)
{
struct vm_area_struct *vma;
pfn_t pfn = 0;
int npages;
/* we can do it either atomically or asynchronously, not both */
BUG_ON(atomic && async);
BUG_ON(!write_fault && !writable);
if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
return pfn;
if (writable)
*writable = true;
if (atomic)
return KVM_PFN_ERR_FAULT;
if (atomic || async)
npages = __get_user_pages_fast(addr, 1, 1, page);
npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
if (npages == 1)
return pfn;
if (unlikely(npages != 1) && !atomic) {
might_sleep();
if (writable)
*writable = write_fault;
if (async) {
down_read(&current->mm->mmap_sem);
npages = get_user_page_nowait(current, current->mm,
addr, write_fault, page);
up_read(&current->mm->mmap_sem);
} else
npages = get_user_pages_fast(addr, 1, write_fault,
page);
/* map read fault as writable if possible */
if (unlikely(!write_fault) && npages == 1) {
struct page *wpage[1];
npages = __get_user_pages_fast(addr, 1, 1, wpage);
if (npages == 1) {
*writable = true;
put_page(page[0]);
page[0] = wpage[0];
}
npages = 1;
}
down_read(&current->mm->mmap_sem);
if (npages == -EHWPOISON ||
(!async && check_user_page_hwpoison(addr))) {
pfn = KVM_PFN_ERR_HWPOISON;
goto exit;
}
if (unlikely(npages != 1)) {
struct vm_area_struct *vma;
if (atomic)
return get_fault_pfn();
down_read(&current->mm->mmap_sem);
if (npages == -EHWPOISON ||
(!async && check_user_page_hwpoison(addr))) {
up_read(&current->mm->mmap_sem);
get_page(hwpoison_page);
return page_to_pfn(hwpoison_page);
}
vma = find_vma_intersection(current->mm, addr, addr+1);
if (vma == NULL)
pfn = get_fault_pfn();
else if ((vma->vm_flags & VM_PFNMAP)) {
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
BUG_ON(!kvm_is_mmio_pfn(pfn));
} else {
if (async && (vma->vm_flags & VM_WRITE))
*async = true;
pfn = get_fault_pfn();
}
up_read(&current->mm->mmap_sem);
} else
pfn = page_to_pfn(page[0]);
vma = find_vma_intersection(current->mm, addr, addr + 1);
if (vma == NULL)
pfn = KVM_PFN_ERR_FAULT;
else if ((vma->vm_flags & VM_PFNMAP)) {
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
BUG_ON(!kvm_is_mmio_pfn(pfn));
} else {
if (async && vma_is_valid(vma, write_fault))
*async = true;
pfn = KVM_PFN_ERR_FAULT;
}
exit:
up_read(&current->mm->mmap_sem);
return pfn;
}
pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
static pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
bool *async, bool write_fault, bool *writable)
{
return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
if (addr == KVM_HVA_ERR_RO_BAD)
return KVM_PFN_ERR_RO_FAULT;
if (kvm_is_error_hva(addr))
return KVM_PFN_ERR_BAD;
/* Do not map writable pfn in the readonly memslot. */
if (writable && memslot_is_readonly(slot)) {
*writable = false;
writable = NULL;
}
return hva_to_pfn(addr, atomic, async, write_fault,
writable);
}
EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
bool write_fault, bool *writable)
{
unsigned long addr;
struct kvm_memory_slot *slot;
if (async)
*async = false;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr)) {
get_page(bad_page);
return page_to_pfn(bad_page);
}
slot = gfn_to_memslot(kvm, gfn);
return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
writable);
}
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
@ -1195,13 +1260,17 @@ pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot, gfn_t gfn)
pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
{
unsigned long addr = gfn_to_hva_memslot(slot, gfn);
return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
}
pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
{
return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
int nr_pages)
{
@ -1219,30 +1288,42 @@ int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
}
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
static struct page *kvm_pfn_to_page(pfn_t pfn)
{
if (is_error_pfn(pfn))
return KVM_ERR_PTR_BAD_PAGE;
if (kvm_is_mmio_pfn(pfn)) {
WARN_ON(1);
return KVM_ERR_PTR_BAD_PAGE;
}
return pfn_to_page(pfn);
}
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
pfn_t pfn;
pfn = gfn_to_pfn(kvm, gfn);
if (!kvm_is_mmio_pfn(pfn))
return pfn_to_page(pfn);
WARN_ON(kvm_is_mmio_pfn(pfn));
get_page(bad_page);
return bad_page;
return kvm_pfn_to_page(pfn);
}
EXPORT_SYMBOL_GPL(gfn_to_page);
void kvm_release_page_clean(struct page *page)
{
WARN_ON(is_error_page(page));
kvm_release_pfn_clean(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
void kvm_release_pfn_clean(pfn_t pfn)
{
WARN_ON(is_error_pfn(pfn));
if (!kvm_is_mmio_pfn(pfn))
put_page(pfn_to_page(pfn));
}
@ -1250,6 +1331,8 @@ EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
void kvm_release_page_dirty(struct page *page)
{
WARN_ON(is_error_page(page));
kvm_release_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
@ -1305,10 +1388,10 @@ int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int r;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
addr = gfn_to_hva_read(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_from_user(data, (void __user *)addr + offset, len);
r = kvm_read_hva(data, (void __user *)addr + offset, len);
if (r)
return -EFAULT;
return 0;
@ -1343,11 +1426,11 @@ int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
gfn_t gfn = gpa >> PAGE_SHIFT;
int offset = offset_in_page(gpa);
addr = gfn_to_hva(kvm, gfn);
addr = gfn_to_hva_read(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
pagefault_disable();
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
pagefault_enable();
if (r)
return -EFAULT;
@ -1580,6 +1663,43 @@ bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
}
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
/*
* Helper that checks whether a VCPU is eligible for directed yield.
* Most eligible candidate to yield is decided by following heuristics:
*
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
* (preempted lock holder), indicated by @in_spin_loop.
* Set at the beiginning and cleared at the end of interception/PLE handler.
*
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
* chance last time (mostly it has become eligible now since we have probably
* yielded to lockholder in last iteration. This is done by toggling
* @dy_eligible each time a VCPU checked for eligibility.)
*
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
* to preempted lock-holder could result in wrong VCPU selection and CPU
* burning. Giving priority for a potential lock-holder increases lock
* progress.
*
* Since algorithm is based on heuristics, accessing another VCPU data without
* locking does not harm. It may result in trying to yield to same VCPU, fail
* and continue with next VCPU and so on.
*/
bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
{
bool eligible;
eligible = !vcpu->spin_loop.in_spin_loop ||
(vcpu->spin_loop.in_spin_loop &&
vcpu->spin_loop.dy_eligible);
if (vcpu->spin_loop.in_spin_loop)
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
return eligible;
}
#endif
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
{
struct kvm *kvm = me->kvm;
@ -1589,6 +1709,7 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
int pass;
int i;
kvm_vcpu_set_in_spin_loop(me, true);
/*
* We boost the priority of a VCPU that is runnable but not
* currently running, because it got preempted by something
@ -1607,6 +1728,8 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
continue;
if (waitqueue_active(&vcpu->wq))
continue;
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
continue;
if (kvm_vcpu_yield_to(vcpu)) {
kvm->last_boosted_vcpu = i;
yielded = 1;
@ -1614,6 +1737,10 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
}
}
}
kvm_vcpu_set_in_spin_loop(me, false);
/* Ensure vcpu is not eligible during next spinloop */
kvm_vcpu_set_dy_eligible(me, false);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
@ -1766,7 +1893,9 @@ static long kvm_vcpu_ioctl(struct file *filp,
#endif
vcpu_load(vcpu);
r = vcpu_load(vcpu);
if (r)
return r;
switch (ioctl) {
case KVM_RUN:
r = -EINVAL;
@ -2093,6 +2222,29 @@ static long kvm_vm_ioctl(struct file *filp,
r = kvm_send_userspace_msi(kvm, &msi);
break;
}
#endif
#ifdef __KVM_HAVE_IRQ_LINE
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof irq_event))
goto out;
r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
if (r)
goto out;
r = -EFAULT;
if (ioctl == KVM_IRQ_LINE_STATUS) {
if (copy_to_user(argp, &irq_event, sizeof irq_event))
goto out;
}
r = 0;
break;
}
#endif
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
@ -2698,9 +2850,6 @@ static struct syscore_ops kvm_syscore_ops = {
.resume = kvm_resume,
};
struct page *bad_page;
pfn_t bad_pfn;
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
@ -2732,33 +2881,6 @@ int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
if (r)
goto out_fail;
bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (bad_page == NULL) {
r = -ENOMEM;
goto out;
}
bad_pfn = page_to_pfn(bad_page);
hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (hwpoison_page == NULL) {
r = -ENOMEM;
goto out_free_0;
}
hwpoison_pfn = page_to_pfn(hwpoison_page);
fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (fault_page == NULL) {
r = -ENOMEM;
goto out_free_0;
}
fault_pfn = page_to_pfn(fault_page);
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
r = -ENOMEM;
goto out_free_0;
@ -2833,12 +2955,6 @@ int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
out_free_0a:
free_cpumask_var(cpus_hardware_enabled);
out_free_0:
if (fault_page)
__free_page(fault_page);
if (hwpoison_page)
__free_page(hwpoison_page);
__free_page(bad_page);
out:
kvm_arch_exit();
out_fail:
return r;
@ -2858,8 +2974,5 @@ void kvm_exit(void)
kvm_arch_hardware_unsetup();
kvm_arch_exit();
free_cpumask_var(cpus_hardware_enabled);
__free_page(fault_page);
__free_page(hwpoison_page);
__free_page(bad_page);
}
EXPORT_SYMBOL_GPL(kvm_exit);