mirror of https://gitee.com/openkylin/linux.git
Merge branch 'for-rmk' of git://git.android.com/kernel into devel
This commit is contained in:
commit
f20e3b5fe7
1
.mailmap
1
.mailmap
|
@ -66,6 +66,7 @@ Kenneth W Chen <kenneth.w.chen@intel.com>
|
|||
Koushik <raghavendra.koushik@neterion.com>
|
||||
Leonid I Ananiev <leonid.i.ananiev@intel.com>
|
||||
Linas Vepstas <linas@austin.ibm.com>
|
||||
Mark Brown <broonie@sirena.org.uk>
|
||||
Matthieu CASTET <castet.matthieu@free.fr>
|
||||
Michael Buesch <mb@bu3sch.de>
|
||||
Michael Buesch <mbuesch@freenet.de>
|
||||
|
|
12
CREDITS
12
CREDITS
|
@ -1653,14 +1653,14 @@ S: Chapel Hill, North Carolina 27514-4818
|
|||
S: USA
|
||||
|
||||
N: Dave Jones
|
||||
E: davej@codemonkey.org.uk
|
||||
E: davej@redhat.com
|
||||
W: http://www.codemonkey.org.uk
|
||||
D: x86 errata/setup maintenance.
|
||||
D: AGPGART driver.
|
||||
D: Assorted VIA x86 support.
|
||||
D: 2.5 AGPGART overhaul.
|
||||
D: CPUFREQ maintenance.
|
||||
D: Backport/Forwardport merge monkey.
|
||||
D: Various Janitor work.
|
||||
S: United Kingdom
|
||||
D: Fedora kernel maintainence.
|
||||
D: Misc/Other.
|
||||
S: 314 Littleton Rd, Westford, MA 01886, USA
|
||||
|
||||
N: Martin Josfsson
|
||||
E: gandalf@wlug.westbo.se
|
||||
|
|
|
@ -1105,7 +1105,7 @@ static struct block_device_operations opt_fops = {
|
|||
</listitem>
|
||||
<listitem>
|
||||
<para>
|
||||
Function names as strings (__FUNCTION__).
|
||||
Function names as strings (__func__).
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
|
|
|
@ -236,10 +236,8 @@ software system can set different pages for controlling accesses to the
|
|||
MSI-X structure. The implementation of MSI support requires the PCI
|
||||
subsystem, not a device driver, to maintain full control of the MSI-X
|
||||
table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
|
||||
table/MSI-X PBA. A device driver is prohibited from requesting the MMIO
|
||||
address space of the MSI-X table/MSI-X PBA. Otherwise, the PCI subsystem
|
||||
will fail enabling MSI-X on its hardware device when it calls the function
|
||||
pci_enable_msix().
|
||||
table/MSI-X PBA. A device driver should not access the MMIO address
|
||||
space of the MSI-X table/MSI-X PBA.
|
||||
|
||||
5.3.2 API pci_enable_msix
|
||||
|
||||
|
|
|
@ -163,6 +163,10 @@ need pass only as many optional fields as necessary:
|
|||
o class and classmask fields default to 0
|
||||
o driver_data defaults to 0UL.
|
||||
|
||||
Note that driver_data must match the value used by any of the pci_device_id
|
||||
entries defined in the driver. This makes the driver_data field mandatory
|
||||
if all the pci_device_id entries have a non-zero driver_data value.
|
||||
|
||||
Once added, the driver probe routine will be invoked for any unclaimed
|
||||
PCI devices listed in its (newly updated) pci_ids list.
|
||||
|
||||
|
|
|
@ -203,22 +203,17 @@ to mmio_enabled.
|
|||
|
||||
3.3 helper functions
|
||||
|
||||
3.3.1 int pci_find_aer_capability(struct pci_dev *dev);
|
||||
pci_find_aer_capability locates the PCI Express AER capability
|
||||
in the device configuration space. If the device doesn't support
|
||||
PCI-Express AER, the function returns 0.
|
||||
|
||||
3.3.2 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
|
||||
3.3.1 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
|
||||
pci_enable_pcie_error_reporting enables the device to send error
|
||||
messages to root port when an error is detected. Note that devices
|
||||
don't enable the error reporting by default, so device drivers need
|
||||
call this function to enable it.
|
||||
|
||||
3.3.3 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
|
||||
3.3.2 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
|
||||
pci_disable_pcie_error_reporting disables the device to send error
|
||||
messages to root port when an error is detected.
|
||||
|
||||
3.3.4 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
|
||||
3.3.3 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
|
||||
pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable
|
||||
error status register.
|
||||
|
||||
|
|
|
@ -0,0 +1,99 @@
|
|||
The cgroup freezer is useful to batch job management system which start
|
||||
and stop sets of tasks in order to schedule the resources of a machine
|
||||
according to the desires of a system administrator. This sort of program
|
||||
is often used on HPC clusters to schedule access to the cluster as a
|
||||
whole. The cgroup freezer uses cgroups to describe the set of tasks to
|
||||
be started/stopped by the batch job management system. It also provides
|
||||
a means to start and stop the tasks composing the job.
|
||||
|
||||
The cgroup freezer will also be useful for checkpointing running groups
|
||||
of tasks. The freezer allows the checkpoint code to obtain a consistent
|
||||
image of the tasks by attempting to force the tasks in a cgroup into a
|
||||
quiescent state. Once the tasks are quiescent another task can
|
||||
walk /proc or invoke a kernel interface to gather information about the
|
||||
quiesced tasks. Checkpointed tasks can be restarted later should a
|
||||
recoverable error occur. This also allows the checkpointed tasks to be
|
||||
migrated between nodes in a cluster by copying the gathered information
|
||||
to another node and restarting the tasks there.
|
||||
|
||||
Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping
|
||||
and resuming tasks in userspace. Both of these signals are observable
|
||||
from within the tasks we wish to freeze. While SIGSTOP cannot be caught,
|
||||
blocked, or ignored it can be seen by waiting or ptracing parent tasks.
|
||||
SIGCONT is especially unsuitable since it can be caught by the task. Any
|
||||
programs designed to watch for SIGSTOP and SIGCONT could be broken by
|
||||
attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
|
||||
demonstrate this problem using nested bash shells:
|
||||
|
||||
$ echo $$
|
||||
16644
|
||||
$ bash
|
||||
$ echo $$
|
||||
16690
|
||||
|
||||
From a second, unrelated bash shell:
|
||||
$ kill -SIGSTOP 16690
|
||||
$ kill -SIGCONT 16990
|
||||
|
||||
<at this point 16990 exits and causes 16644 to exit too>
|
||||
|
||||
This happens because bash can observe both signals and choose how it
|
||||
responds to them.
|
||||
|
||||
Another example of a program which catches and responds to these
|
||||
signals is gdb. In fact any program designed to use ptrace is likely to
|
||||
have a problem with this method of stopping and resuming tasks.
|
||||
|
||||
In contrast, the cgroup freezer uses the kernel freezer code to
|
||||
prevent the freeze/unfreeze cycle from becoming visible to the tasks
|
||||
being frozen. This allows the bash example above and gdb to run as
|
||||
expected.
|
||||
|
||||
The freezer subsystem in the container filesystem defines a file named
|
||||
freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the
|
||||
cgroup. Subsequently writing "THAWED" will unfreeze the tasks in the cgroup.
|
||||
Reading will return the current state.
|
||||
|
||||
* Examples of usage :
|
||||
|
||||
# mkdir /containers/freezer
|
||||
# mount -t cgroup -ofreezer freezer /containers
|
||||
# mkdir /containers/0
|
||||
# echo $some_pid > /containers/0/tasks
|
||||
|
||||
to get status of the freezer subsystem :
|
||||
|
||||
# cat /containers/0/freezer.state
|
||||
THAWED
|
||||
|
||||
to freeze all tasks in the container :
|
||||
|
||||
# echo FROZEN > /containers/0/freezer.state
|
||||
# cat /containers/0/freezer.state
|
||||
FREEZING
|
||||
# cat /containers/0/freezer.state
|
||||
FROZEN
|
||||
|
||||
to unfreeze all tasks in the container :
|
||||
|
||||
# echo THAWED > /containers/0/freezer.state
|
||||
# cat /containers/0/freezer.state
|
||||
THAWED
|
||||
|
||||
This is the basic mechanism which should do the right thing for user space task
|
||||
in a simple scenario.
|
||||
|
||||
It's important to note that freezing can be incomplete. In that case we return
|
||||
EBUSY. This means that some tasks in the cgroup are busy doing something that
|
||||
prevents us from completely freezing the cgroup at this time. After EBUSY,
|
||||
the cgroup will remain partially frozen -- reflected by freezer.state reporting
|
||||
"FREEZING" when read. The state will remain "FREEZING" until one of these
|
||||
things happens:
|
||||
|
||||
1) Userspace cancels the freezing operation by writing "THAWED" to
|
||||
the freezer.state file
|
||||
2) Userspace retries the freezing operation by writing "FROZEN" to
|
||||
the freezer.state file (writing "FREEZING" is not legal
|
||||
and returns EIO)
|
||||
3) The tasks that blocked the cgroup from entering the "FROZEN"
|
||||
state disappear from the cgroup's set of tasks.
|
|
@ -112,14 +112,22 @@ the per cgroup LRU.
|
|||
|
||||
2.2.1 Accounting details
|
||||
|
||||
All mapped pages (RSS) and unmapped user pages (Page Cache) are accounted.
|
||||
RSS pages are accounted at the time of page_add_*_rmap() unless they've already
|
||||
been accounted for earlier. A file page will be accounted for as Page Cache;
|
||||
it's mapped into the page tables of a process, duplicate accounting is carefully
|
||||
avoided. Page Cache pages are accounted at the time of add_to_page_cache().
|
||||
The corresponding routines that remove a page from the page tables or removes
|
||||
a page from Page Cache is used to decrement the accounting counters of the
|
||||
cgroup.
|
||||
All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
|
||||
(some pages which never be reclaimable and will not be on global LRU
|
||||
are not accounted. we just accounts pages under usual vm management.)
|
||||
|
||||
RSS pages are accounted at page_fault unless they've already been accounted
|
||||
for earlier. A file page will be accounted for as Page Cache when it's
|
||||
inserted into inode (radix-tree). While it's mapped into the page tables of
|
||||
processes, duplicate accounting is carefully avoided.
|
||||
|
||||
A RSS page is unaccounted when it's fully unmapped. A PageCache page is
|
||||
unaccounted when it's removed from radix-tree.
|
||||
|
||||
At page migration, accounting information is kept.
|
||||
|
||||
Note: we just account pages-on-lru because our purpose is to control amount
|
||||
of used pages. not-on-lru pages are tend to be out-of-control from vm view.
|
||||
|
||||
2.3 Shared Page Accounting
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ hooks, beyond what is already present, required to manage dynamic
|
|||
job placement on large systems.
|
||||
|
||||
Cpusets use the generic cgroup subsystem described in
|
||||
Documentation/cgroup.txt.
|
||||
Documentation/cgroups/cgroups.txt.
|
||||
|
||||
Requests by a task, using the sched_setaffinity(2) system call to
|
||||
include CPUs in its CPU affinity mask, and using the mbind(2) and
|
||||
|
|
|
@ -96,6 +96,11 @@ errors=remount-ro(*) Remount the filesystem read-only on an error.
|
|||
errors=continue Keep going on a filesystem error.
|
||||
errors=panic Panic and halt the machine if an error occurs.
|
||||
|
||||
data_err=ignore(*) Just print an error message if an error occurs
|
||||
in a file data buffer in ordered mode.
|
||||
data_err=abort Abort the journal if an error occurs in a file
|
||||
data buffer in ordered mode.
|
||||
|
||||
grpid Give objects the same group ID as their creator.
|
||||
bsdgroups
|
||||
|
||||
|
|
|
@ -1384,15 +1384,18 @@ causes the kernel to prefer to reclaim dentries and inodes.
|
|||
dirty_background_ratio
|
||||
----------------------
|
||||
|
||||
Contains, as a percentage of total system memory, the number of pages at which
|
||||
the pdflush background writeback daemon will start writing out dirty data.
|
||||
Contains, as a percentage of the dirtyable system memory (free pages + mapped
|
||||
pages + file cache, not including locked pages and HugePages), the number of
|
||||
pages at which the pdflush background writeback daemon will start writing out
|
||||
dirty data.
|
||||
|
||||
dirty_ratio
|
||||
-----------------
|
||||
|
||||
Contains, as a percentage of total system memory, the number of pages at which
|
||||
a process which is generating disk writes will itself start writing out dirty
|
||||
data.
|
||||
Contains, as a percentage of the dirtyable system memory (free pages + mapped
|
||||
pages + file cache, not including locked pages and HugePages), the number of
|
||||
pages at which a process which is generating disk writes will itself start
|
||||
writing out dirty data.
|
||||
|
||||
dirty_writeback_centisecs
|
||||
-------------------------
|
||||
|
@ -2412,24 +2415,29 @@ will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
|
|||
of memory types. If a bit of the bitmask is set, memory segments of the
|
||||
corresponding memory type are dumped, otherwise they are not dumped.
|
||||
|
||||
The following 4 memory types are supported:
|
||||
The following 7 memory types are supported:
|
||||
- (bit 0) anonymous private memory
|
||||
- (bit 1) anonymous shared memory
|
||||
- (bit 2) file-backed private memory
|
||||
- (bit 3) file-backed shared memory
|
||||
- (bit 4) ELF header pages in file-backed private memory areas (it is
|
||||
effective only if the bit 2 is cleared)
|
||||
- (bit 5) hugetlb private memory
|
||||
- (bit 6) hugetlb shared memory
|
||||
|
||||
Note that MMIO pages such as frame buffer are never dumped and vDSO pages
|
||||
are always dumped regardless of the bitmask status.
|
||||
|
||||
Default value of coredump_filter is 0x3; this means all anonymous memory
|
||||
segments are dumped.
|
||||
Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
|
||||
effected by bit 5-6.
|
||||
|
||||
Default value of coredump_filter is 0x23; this means all anonymous memory
|
||||
segments and hugetlb private memory are dumped.
|
||||
|
||||
If you don't want to dump all shared memory segments attached to pid 1234,
|
||||
write 1 to the process's proc file.
|
||||
write 0x21 to the process's proc file.
|
||||
|
||||
$ echo 0x1 > /proc/1234/coredump_filter
|
||||
$ echo 0x21 > /proc/1234/coredump_filter
|
||||
|
||||
When a new process is created, the process inherits the bitmask status from its
|
||||
parent. It is useful to set up coredump_filter before the program runs.
|
||||
|
|
|
@ -86,6 +86,15 @@ norm_unmount (*) commit on unmount; the journal is committed
|
|||
fast_unmount do not commit on unmount; this option makes
|
||||
unmount faster, but the next mount slower
|
||||
because of the need to replay the journal.
|
||||
bulk_read read more in one go to take advantage of flash
|
||||
media that read faster sequentially
|
||||
no_bulk_read (*) do not bulk-read
|
||||
no_chk_data_crc skip checking of CRCs on data nodes in order to
|
||||
improve read performance. Use this option only
|
||||
if the flash media is highly reliable. The effect
|
||||
of this option is that corruption of the contents
|
||||
of a file can go unnoticed.
|
||||
chk_data_crc (*) do not skip checking CRCs on data nodes
|
||||
|
||||
|
||||
Quick usage instructions
|
||||
|
|
|
@ -101,6 +101,7 @@ parameter is applicable:
|
|||
X86-64 X86-64 architecture is enabled.
|
||||
More X86-64 boot options can be found in
|
||||
Documentation/x86_64/boot-options.txt .
|
||||
X86 Either 32bit or 64bit x86 (same as X86-32+X86-64)
|
||||
|
||||
In addition, the following text indicates that the option:
|
||||
|
||||
|
@ -690,7 +691,7 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
See Documentation/block/as-iosched.txt and
|
||||
Documentation/block/deadline-iosched.txt for details.
|
||||
|
||||
elfcorehdr= [X86-32, X86_64]
|
||||
elfcorehdr= [IA64,PPC,SH,X86-32,X86_64]
|
||||
Specifies physical address of start of kernel core
|
||||
image elf header. Generally kexec loader will
|
||||
pass this option to capture kernel.
|
||||
|
@ -796,6 +797,8 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
Defaults to the default architecture's huge page size
|
||||
if not specified.
|
||||
|
||||
hlt [BUGS=ARM,SH]
|
||||
|
||||
i8042.debug [HW] Toggle i8042 debug mode
|
||||
i8042.direct [HW] Put keyboard port into non-translated mode
|
||||
i8042.dumbkbd [HW] Pretend that controller can only read data from
|
||||
|
@ -1211,6 +1214,10 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
|
||||
memory.
|
||||
|
||||
memchunk=nn[KMG]
|
||||
[KNL,SH] Allow user to override the default size for
|
||||
per-device physically contiguous DMA buffers.
|
||||
|
||||
memmap=exactmap [KNL,X86-32,X86_64] Enable setting of an exact
|
||||
E820 memory map, as specified by the user.
|
||||
Such memmap=exactmap lines can be constructed based on
|
||||
|
@ -1393,6 +1400,8 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
|
||||
nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects.
|
||||
|
||||
nodsp [SH] Disable hardware DSP at boot time.
|
||||
|
||||
noefi [X86-32,X86-64] Disable EFI runtime services support.
|
||||
|
||||
noexec [IA-64]
|
||||
|
@ -1409,13 +1418,15 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
noexec32=off: disable non-executable mappings
|
||||
read implies executable mappings
|
||||
|
||||
nofpu [SH] Disable hardware FPU at boot time.
|
||||
|
||||
nofxsr [BUGS=X86-32] Disables x86 floating point extended
|
||||
register save and restore. The kernel will only save
|
||||
legacy floating-point registers on task switch.
|
||||
|
||||
noclflush [BUGS=X86] Don't use the CLFLUSH instruction
|
||||
|
||||
nohlt [BUGS=ARM]
|
||||
nohlt [BUGS=ARM,SH]
|
||||
|
||||
no-hlt [BUGS=X86-32] Tells the kernel that the hlt
|
||||
instruction doesn't work correctly and not to
|
||||
|
@ -1578,7 +1589,7 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
See also Documentation/paride.txt.
|
||||
|
||||
pci=option[,option...] [PCI] various PCI subsystem options:
|
||||
off [X86-32] don't probe for the PCI bus
|
||||
off [X86] don't probe for the PCI bus
|
||||
bios [X86-32] force use of PCI BIOS, don't access
|
||||
the hardware directly. Use this if your machine
|
||||
has a non-standard PCI host bridge.
|
||||
|
@ -1586,9 +1597,9 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
hardware access methods are allowed. Use this
|
||||
if you experience crashes upon bootup and you
|
||||
suspect they are caused by the BIOS.
|
||||
conf1 [X86-32] Force use of PCI Configuration
|
||||
conf1 [X86] Force use of PCI Configuration
|
||||
Mechanism 1.
|
||||
conf2 [X86-32] Force use of PCI Configuration
|
||||
conf2 [X86] Force use of PCI Configuration
|
||||
Mechanism 2.
|
||||
noaer [PCIE] If the PCIEAER kernel config parameter is
|
||||
enabled, this kernel boot option can be used to
|
||||
|
@ -1608,37 +1619,37 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
this option if the kernel is unable to allocate
|
||||
IRQs or discover secondary PCI buses on your
|
||||
motherboard.
|
||||
rom [X86-32] Assign address space to expansion ROMs.
|
||||
rom [X86] Assign address space to expansion ROMs.
|
||||
Use with caution as certain devices share
|
||||
address decoders between ROMs and other
|
||||
resources.
|
||||
norom [X86-32,X86_64] Do not assign address space to
|
||||
norom [X86] Do not assign address space to
|
||||
expansion ROMs that do not already have
|
||||
BIOS assigned address ranges.
|
||||
irqmask=0xMMMM [X86-32] Set a bit mask of IRQs allowed to be
|
||||
irqmask=0xMMMM [X86] Set a bit mask of IRQs allowed to be
|
||||
assigned automatically to PCI devices. You can
|
||||
make the kernel exclude IRQs of your ISA cards
|
||||
this way.
|
||||
pirqaddr=0xAAAAA [X86-32] Specify the physical address
|
||||
pirqaddr=0xAAAAA [X86] Specify the physical address
|
||||
of the PIRQ table (normally generated
|
||||
by the BIOS) if it is outside the
|
||||
F0000h-100000h range.
|
||||
lastbus=N [X86-32] Scan all buses thru bus #N. Can be
|
||||
lastbus=N [X86] Scan all buses thru bus #N. Can be
|
||||
useful if the kernel is unable to find your
|
||||
secondary buses and you want to tell it
|
||||
explicitly which ones they are.
|
||||
assign-busses [X86-32] Always assign all PCI bus
|
||||
assign-busses [X86] Always assign all PCI bus
|
||||
numbers ourselves, overriding
|
||||
whatever the firmware may have done.
|
||||
usepirqmask [X86-32] Honor the possible IRQ mask stored
|
||||
usepirqmask [X86] Honor the possible IRQ mask stored
|
||||
in the BIOS $PIR table. This is needed on
|
||||
some systems with broken BIOSes, notably
|
||||
some HP Pavilion N5400 and Omnibook XE3
|
||||
notebooks. This will have no effect if ACPI
|
||||
IRQ routing is enabled.
|
||||
noacpi [X86-32] Do not use ACPI for IRQ routing
|
||||
noacpi [X86] Do not use ACPI for IRQ routing
|
||||
or for PCI scanning.
|
||||
use_crs [X86-32] Use _CRS for PCI resource
|
||||
use_crs [X86] Use _CRS for PCI resource
|
||||
allocation.
|
||||
routeirq Do IRQ routing for all PCI devices.
|
||||
This is normally done in pci_enable_device(),
|
||||
|
@ -1667,6 +1678,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
reserved for the CardBus bridge's memory
|
||||
window. The default value is 64 megabytes.
|
||||
|
||||
pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power
|
||||
Management.
|
||||
off Disable ASPM.
|
||||
force Enable ASPM even on devices that claim not to support it.
|
||||
WARNING: Forcing ASPM on may cause system lockups.
|
||||
|
||||
pcmv= [HW,PCMCIA] BadgePAD 4
|
||||
|
||||
pd. [PARIDE]
|
||||
|
|
|
@ -50,10 +50,12 @@ Connecting a function (probe) to a marker is done by providing a probe (function
|
|||
to call) for the specific marker through marker_probe_register() and can be
|
||||
activated by calling marker_arm(). Marker deactivation can be done by calling
|
||||
marker_disarm() as many times as marker_arm() has been called. Removing a probe
|
||||
is done through marker_probe_unregister(); it will disarm the probe and make
|
||||
sure there is no caller left using the probe when it returns. Probe removal is
|
||||
preempt-safe because preemption is disabled around the probe call. See the
|
||||
"Probe example" section below for a sample probe module.
|
||||
is done through marker_probe_unregister(); it will disarm the probe.
|
||||
marker_synchronize_unregister() must be called before the end of the module exit
|
||||
function to make sure there is no caller left using the probe. This, and the
|
||||
fact that preemption is disabled around the probe call, make sure that probe
|
||||
removal and module unload are safe. See the "Probe example" section below for a
|
||||
sample probe module.
|
||||
|
||||
The marker mechanism supports inserting multiple instances of the same marker.
|
||||
Markers can be put in inline functions, inlined static functions, and
|
||||
|
|
|
@ -0,0 +1,714 @@
|
|||
Introduction
|
||||
============
|
||||
|
||||
Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
|
||||
I felt there was room for optimisation. I bashed the code for a few hours
|
||||
performing tricks like table lookup removing superfluous code etc.
|
||||
After that the speed was increased by 35-40%.
|
||||
Still I was not too happy as I felt there was additional room for improvement.
|
||||
|
||||
Bad! I was hooked.
|
||||
I decided to annotate my steps in this file. Perhaps it is useful to someone
|
||||
or someone learns something from it.
|
||||
|
||||
|
||||
The problem
|
||||
===========
|
||||
|
||||
NAND flash (at least SLC one) typically has sectors of 256 bytes.
|
||||
However NAND flash is not extremely reliable so some error detection
|
||||
(and sometimes correction) is needed.
|
||||
|
||||
This is done by means of a Hamming code. I'll try to explain it in
|
||||
laymans terms (and apologies to all the pro's in the field in case I do
|
||||
not use the right terminology, my coding theory class was almost 30
|
||||
years ago, and I must admit it was not one of my favourites).
|
||||
|
||||
As I said before the ecc calculation is performed on sectors of 256
|
||||
bytes. This is done by calculating several parity bits over the rows and
|
||||
columns. The parity used is even parity which means that the parity bit = 1
|
||||
if the data over which the parity is calculated is 1 and the parity bit = 0
|
||||
if the data over which the parity is calculated is 0. So the total
|
||||
number of bits over the data over which the parity is calculated + the
|
||||
parity bit is even. (see wikipedia if you can't follow this).
|
||||
Parity is often calculated by means of an exclusive or operation,
|
||||
sometimes also referred to as xor. In C the operator for xor is ^
|
||||
|
||||
Back to ecc.
|
||||
Let's give a small figure:
|
||||
|
||||
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
|
||||
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
|
||||
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
|
||||
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
|
||||
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
|
||||
....
|
||||
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
|
||||
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
|
||||
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
|
||||
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
|
||||
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
|
||||
|
||||
This figure represents a sector of 256 bytes.
|
||||
cp is my abbreviaton for column parity, rp for row parity.
|
||||
|
||||
Let's start to explain column parity.
|
||||
cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
|
||||
so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
|
||||
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
|
||||
cp2 is the parity over bit0, bit1, bit4 and bit5
|
||||
cp3 is the parity over bit2, bit3, bit6 and bit7.
|
||||
cp4 is the parity over bit0, bit1, bit2 and bit3.
|
||||
cp5 is the parity over bit4, bit5, bit6 and bit7.
|
||||
Note that each of cp0 .. cp5 is exactly one bit.
|
||||
|
||||
Row parity actually works almost the same.
|
||||
rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
|
||||
rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
|
||||
rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
|
||||
(so handle two bytes, then skip 2 bytes).
|
||||
rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
|
||||
for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
|
||||
so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
|
||||
and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
|
||||
The story now becomes quite boring. I guess you get the idea.
|
||||
rp6 covers 8 bytes then skips 8 etc
|
||||
rp7 skips 8 bytes then covers 8 etc
|
||||
rp8 covers 16 bytes then skips 16 etc
|
||||
rp9 skips 16 bytes then covers 16 etc
|
||||
rp10 covers 32 bytes then skips 32 etc
|
||||
rp11 skips 32 bytes then covers 32 etc
|
||||
rp12 covers 64 bytes then skips 64 etc
|
||||
rp13 skips 64 bytes then covers 64 etc
|
||||
rp14 covers 128 bytes then skips 128
|
||||
rp15 skips 128 bytes then covers 128
|
||||
|
||||
In the end the parity bits are grouped together in three bytes as
|
||||
follows:
|
||||
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
|
||||
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
|
||||
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
|
||||
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
|
||||
|
||||
I detected after writing this that ST application note AN1823
|
||||
(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
|
||||
nicer picture.(but they use line parity as term where I use row parity)
|
||||
Oh well, I'm graphically challenged, so suffer with me for a moment :-)
|
||||
And I could not reuse the ST picture anyway for copyright reasons.
|
||||
|
||||
|
||||
Attempt 0
|
||||
=========
|
||||
|
||||
Implementing the parity calculation is pretty simple.
|
||||
In C pseudocode:
|
||||
for (i = 0; i < 256; i++)
|
||||
{
|
||||
if (i & 0x01)
|
||||
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
|
||||
else
|
||||
rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
|
||||
if (i & 0x02)
|
||||
rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
|
||||
else
|
||||
rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
|
||||
if (i & 0x04)
|
||||
rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
|
||||
else
|
||||
rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
|
||||
if (i & 0x08)
|
||||
rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
|
||||
else
|
||||
rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
|
||||
if (i & 0x10)
|
||||
rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
|
||||
else
|
||||
rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
|
||||
if (i & 0x20)
|
||||
rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
|
||||
else
|
||||
rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
|
||||
if (i & 0x40)
|
||||
rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
|
||||
else
|
||||
rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
|
||||
if (i & 0x80)
|
||||
rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
|
||||
else
|
||||
rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
|
||||
cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
|
||||
cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
|
||||
cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
|
||||
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
|
||||
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
|
||||
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
|
||||
}
|
||||
|
||||
|
||||
Analysis 0
|
||||
==========
|
||||
|
||||
C does have bitwise operators but not really operators to do the above
|
||||
efficiently (and most hardware has no such instructions either).
|
||||
Therefore without implementing this it was clear that the code above was
|
||||
not going to bring me a Nobel prize :-)
|
||||
|
||||
Fortunately the exclusive or operation is commutative, so we can combine
|
||||
the values in any order. So instead of calculating all the bits
|
||||
individually, let us try to rearrange things.
|
||||
For the column parity this is easy. We can just xor the bytes and in the
|
||||
end filter out the relevant bits. This is pretty nice as it will bring
|
||||
all cp calculation out of the if loop.
|
||||
|
||||
Similarly we can first xor the bytes for the various rows.
|
||||
This leads to:
|
||||
|
||||
|
||||
Attempt 1
|
||||
=========
|
||||
|
||||
const char parity[256] = {
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
|
||||
};
|
||||
|
||||
void ecc1(const unsigned char *buf, unsigned char *code)
|
||||
{
|
||||
int i;
|
||||
const unsigned char *bp = buf;
|
||||
unsigned char cur;
|
||||
unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
|
||||
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
|
||||
unsigned char par;
|
||||
|
||||
par = 0;
|
||||
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
|
||||
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
|
||||
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
|
||||
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
|
||||
|
||||
for (i = 0; i < 256; i++)
|
||||
{
|
||||
cur = *bp++;
|
||||
par ^= cur;
|
||||
if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
|
||||
if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
|
||||
if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
|
||||
if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
|
||||
if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
|
||||
if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
|
||||
if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
|
||||
if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
|
||||
}
|
||||
code[0] =
|
||||
(parity[rp7] << 7) |
|
||||
(parity[rp6] << 6) |
|
||||
(parity[rp5] << 5) |
|
||||
(parity[rp4] << 4) |
|
||||
(parity[rp3] << 3) |
|
||||
(parity[rp2] << 2) |
|
||||
(parity[rp1] << 1) |
|
||||
(parity[rp0]);
|
||||
code[1] =
|
||||
(parity[rp15] << 7) |
|
||||
(parity[rp14] << 6) |
|
||||
(parity[rp13] << 5) |
|
||||
(parity[rp12] << 4) |
|
||||
(parity[rp11] << 3) |
|
||||
(parity[rp10] << 2) |
|
||||
(parity[rp9] << 1) |
|
||||
(parity[rp8]);
|
||||
code[2] =
|
||||
(parity[par & 0xf0] << 7) |
|
||||
(parity[par & 0x0f] << 6) |
|
||||
(parity[par & 0xcc] << 5) |
|
||||
(parity[par & 0x33] << 4) |
|
||||
(parity[par & 0xaa] << 3) |
|
||||
(parity[par & 0x55] << 2);
|
||||
code[0] = ~code[0];
|
||||
code[1] = ~code[1];
|
||||
code[2] = ~code[2];
|
||||
}
|
||||
|
||||
Still pretty straightforward. The last three invert statements are there to
|
||||
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
|
||||
all data is 0xff, so the checksum then matches.
|
||||
|
||||
I also introduced the parity lookup. I expected this to be the fastest
|
||||
way to calculate the parity, but I will investigate alternatives later
|
||||
on.
|
||||
|
||||
|
||||
Analysis 1
|
||||
==========
|
||||
|
||||
The code works, but is not terribly efficient. On my system it took
|
||||
almost 4 times as much time as the linux driver code. But hey, if it was
|
||||
*that* easy this would have been done long before.
|
||||
No pain. no gain.
|
||||
|
||||
Fortunately there is plenty of room for improvement.
|
||||
|
||||
In step 1 we moved from bit-wise calculation to byte-wise calculation.
|
||||
However in C we can also use the unsigned long data type and virtually
|
||||
every modern microprocessor supports 32 bit operations, so why not try
|
||||
to write our code in such a way that we process data in 32 bit chunks.
|
||||
|
||||
Of course this means some modification as the row parity is byte by
|
||||
byte. A quick analysis:
|
||||
for the column parity we use the par variable. When extending to 32 bits
|
||||
we can in the end easily calculate p0 and p1 from it.
|
||||
(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
|
||||
respectively)
|
||||
also rp2 and rp3 can be easily retrieved from par as rp3 covers the
|
||||
first two bytes and rp2 the last two bytes.
|
||||
|
||||
Note that of course now the loop is executed only 64 times (256/4).
|
||||
And note that care must taken wrt byte ordering. The way bytes are
|
||||
ordered in a long is machine dependent, and might affect us.
|
||||
Anyway, if there is an issue: this code is developed on x86 (to be
|
||||
precise: a DELL PC with a D920 Intel CPU)
|
||||
|
||||
And of course the performance might depend on alignment, but I expect
|
||||
that the I/O buffers in the nand driver are aligned properly (and
|
||||
otherwise that should be fixed to get maximum performance).
|
||||
|
||||
Let's give it a try...
|
||||
|
||||
|
||||
Attempt 2
|
||||
=========
|
||||
|
||||
extern const char parity[256];
|
||||
|
||||
void ecc2(const unsigned char *buf, unsigned char *code)
|
||||
{
|
||||
int i;
|
||||
const unsigned long *bp = (unsigned long *)buf;
|
||||
unsigned long cur;
|
||||
unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
|
||||
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
|
||||
unsigned long par;
|
||||
|
||||
par = 0;
|
||||
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
|
||||
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
|
||||
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
|
||||
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
|
||||
|
||||
for (i = 0; i < 64; i++)
|
||||
{
|
||||
cur = *bp++;
|
||||
par ^= cur;
|
||||
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
|
||||
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
|
||||
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
|
||||
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
|
||||
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
|
||||
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
|
||||
}
|
||||
/*
|
||||
we need to adapt the code generation for the fact that rp vars are now
|
||||
long; also the column parity calculation needs to be changed.
|
||||
we'll bring rp4 to 15 back to single byte entities by shifting and
|
||||
xoring
|
||||
*/
|
||||
rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
|
||||
rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
|
||||
rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
|
||||
rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
|
||||
rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
|
||||
rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
|
||||
rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
|
||||
rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
|
||||
rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
|
||||
rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
|
||||
rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
|
||||
rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
|
||||
rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
|
||||
rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
|
||||
par ^= (par >> 16);
|
||||
rp1 = (par >> 8); rp1 &= 0xff;
|
||||
rp0 = (par & 0xff);
|
||||
par ^= (par >> 8); par &= 0xff;
|
||||
|
||||
code[0] =
|
||||
(parity[rp7] << 7) |
|
||||
(parity[rp6] << 6) |
|
||||
(parity[rp5] << 5) |
|
||||
(parity[rp4] << 4) |
|
||||
(parity[rp3] << 3) |
|
||||
(parity[rp2] << 2) |
|
||||
(parity[rp1] << 1) |
|
||||
(parity[rp0]);
|
||||
code[1] =
|
||||
(parity[rp15] << 7) |
|
||||
(parity[rp14] << 6) |
|
||||
(parity[rp13] << 5) |
|
||||
(parity[rp12] << 4) |
|
||||
(parity[rp11] << 3) |
|
||||
(parity[rp10] << 2) |
|
||||
(parity[rp9] << 1) |
|
||||
(parity[rp8]);
|
||||
code[2] =
|
||||
(parity[par & 0xf0] << 7) |
|
||||
(parity[par & 0x0f] << 6) |
|
||||
(parity[par & 0xcc] << 5) |
|
||||
(parity[par & 0x33] << 4) |
|
||||
(parity[par & 0xaa] << 3) |
|
||||
(parity[par & 0x55] << 2);
|
||||
code[0] = ~code[0];
|
||||
code[1] = ~code[1];
|
||||
code[2] = ~code[2];
|
||||
}
|
||||
|
||||
The parity array is not shown any more. Note also that for these
|
||||
examples I kinda deviated from my regular programming style by allowing
|
||||
multiple statements on a line, not using { } in then and else blocks
|
||||
with only a single statement and by using operators like ^=
|
||||
|
||||
|
||||
Analysis 2
|
||||
==========
|
||||
|
||||
The code (of course) works, and hurray: we are a little bit faster than
|
||||
the linux driver code (about 15%). But wait, don't cheer too quickly.
|
||||
THere is more to be gained.
|
||||
If we look at e.g. rp14 and rp15 we see that we either xor our data with
|
||||
rp14 or with rp15. However we also have par which goes over all data.
|
||||
This means there is no need to calculate rp14 as it can be calculated from
|
||||
rp15 through rp14 = par ^ rp15;
|
||||
(or if desired we can avoid calculating rp15 and calculate it from
|
||||
rp14). That is why some places refer to inverse parity.
|
||||
Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
|
||||
Effectively this means we can eliminate the else clause from the if
|
||||
statements. Also we can optimise the calculation in the end a little bit
|
||||
by going from long to byte first. Actually we can even avoid the table
|
||||
lookups
|
||||
|
||||
Attempt 3
|
||||
=========
|
||||
|
||||
Odd replaced:
|
||||
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
|
||||
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
|
||||
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
|
||||
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
|
||||
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
|
||||
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
|
||||
with
|
||||
if (i & 0x01) rp5 ^= cur;
|
||||
if (i & 0x02) rp7 ^= cur;
|
||||
if (i & 0x04) rp9 ^= cur;
|
||||
if (i & 0x08) rp11 ^= cur;
|
||||
if (i & 0x10) rp13 ^= cur;
|
||||
if (i & 0x20) rp15 ^= cur;
|
||||
|
||||
and outside the loop added:
|
||||
rp4 = par ^ rp5;
|
||||
rp6 = par ^ rp7;
|
||||
rp8 = par ^ rp9;
|
||||
rp10 = par ^ rp11;
|
||||
rp12 = par ^ rp13;
|
||||
rp14 = par ^ rp15;
|
||||
|
||||
And after that the code takes about 30% more time, although the number of
|
||||
statements is reduced. This is also reflected in the assembly code.
|
||||
|
||||
|
||||
Analysis 3
|
||||
==========
|
||||
|
||||
Very weird. Guess it has to do with caching or instruction parallellism
|
||||
or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
|
||||
observation was that this one is only 30% slower (according to time)
|
||||
executing the code as my 3Ghz D920 processor.
|
||||
|
||||
Well, it was expected not to be easy so maybe instead move to a
|
||||
different track: let's move back to the code from attempt2 and do some
|
||||
loop unrolling. This will eliminate a few if statements. I'll try
|
||||
different amounts of unrolling to see what works best.
|
||||
|
||||
|
||||
Attempt 4
|
||||
=========
|
||||
|
||||
Unrolled the loop 1, 2, 3 and 4 times.
|
||||
For 4 the code starts with:
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
cur = *bp++;
|
||||
par ^= cur;
|
||||
rp4 ^= cur;
|
||||
rp6 ^= cur;
|
||||
rp8 ^= cur;
|
||||
rp10 ^= cur;
|
||||
if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
|
||||
if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
|
||||
cur = *bp++;
|
||||
par ^= cur;
|
||||
rp5 ^= cur;
|
||||
rp6 ^= cur;
|
||||
...
|
||||
|
||||
|
||||
Analysis 4
|
||||
==========
|
||||
|
||||
Unrolling once gains about 15%
|
||||
Unrolling twice keeps the gain at about 15%
|
||||
Unrolling three times gives a gain of 30% compared to attempt 2.
|
||||
Unrolling four times gives a marginal improvement compared to unrolling
|
||||
three times.
|
||||
|
||||
I decided to proceed with a four time unrolled loop anyway. It was my gut
|
||||
feeling that in the next steps I would obtain additional gain from it.
|
||||
|
||||
The next step was triggered by the fact that par contains the xor of all
|
||||
bytes and rp4 and rp5 each contain the xor of half of the bytes.
|
||||
So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
|
||||
that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
|
||||
eliminate rp5 (or rp4, but I already foresaw another optimisation).
|
||||
The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
|
||||
|
||||
|
||||
Attempt 5
|
||||
=========
|
||||
|
||||
Effectively so all odd digit rp assignments in the loop were removed.
|
||||
This included the else clause of the if statements.
|
||||
Of course after the loop we need to correct things by adding code like:
|
||||
rp5 = par ^ rp4;
|
||||
Also the initial assignments (rp5 = 0; etc) could be removed.
|
||||
Along the line I also removed the initialisation of rp0/1/2/3.
|
||||
|
||||
|
||||
Analysis 5
|
||||
==========
|
||||
|
||||
Measurements showed this was a good move. The run-time roughly halved
|
||||
compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
|
||||
of the processor time compared to the current code in the linux kernel.
|
||||
|
||||
However, still I thought there was more. I didn't like all the if
|
||||
statements. Why not keep a running parity and only keep the last if
|
||||
statement. Time for yet another version!
|
||||
|
||||
|
||||
Attempt 6
|
||||
=========
|
||||
|
||||
THe code within the for loop was changed to:
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
cur = *bp++; tmppar = cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
|
||||
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
|
||||
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp8 ^= cur;
|
||||
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur;
|
||||
|
||||
par ^= tmppar;
|
||||
if ((i & 0x1) == 0) rp12 ^= tmppar;
|
||||
if ((i & 0x2) == 0) rp14 ^= tmppar;
|
||||
}
|
||||
|
||||
As you can see tmppar is used to accumulate the parity within a for
|
||||
iteration. In the last 3 statements is is added to par and, if needed,
|
||||
to rp12 and rp14.
|
||||
|
||||
While making the changes I also found that I could exploit that tmppar
|
||||
contains the running parity for this iteration. So instead of having:
|
||||
rp4 ^= cur; rp6 = cur;
|
||||
I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
|
||||
statement. A similar change was done for rp8 and rp10
|
||||
|
||||
|
||||
Analysis 6
|
||||
==========
|
||||
|
||||
Measuring this code again showed big gain. When executing the original
|
||||
linux code 1 million times, this took about 1 second on my system.
|
||||
(using time to measure the performance). After this iteration I was back
|
||||
to 0.075 sec. Actually I had to decide to start measuring over 10
|
||||
million interations in order not to loose too much accuracy. This one
|
||||
definitely seemed to be the jackpot!
|
||||
|
||||
There is a little bit more room for improvement though. There are three
|
||||
places with statements:
|
||||
rp4 ^= cur; rp6 ^= cur;
|
||||
It seems more efficient to also maintain a variable rp4_6 in the while
|
||||
loop; This eliminates 3 statements per loop. Of course after the loop we
|
||||
need to correct by adding:
|
||||
rp4 ^= rp4_6;
|
||||
rp6 ^= rp4_6
|
||||
Furthermore there are 4 sequential assingments to rp8. This can be
|
||||
encoded slightly more efficient by saving tmppar before those 4 lines
|
||||
and later do rp8 = rp8 ^ tmppar ^ notrp8;
|
||||
(where notrp8 is the value of rp8 before those 4 lines).
|
||||
Again a use of the commutative property of xor.
|
||||
Time for a new test!
|
||||
|
||||
|
||||
Attempt 7
|
||||
=========
|
||||
|
||||
The new code now looks like:
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
cur = *bp++; tmppar = cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
|
||||
|
||||
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
|
||||
|
||||
notrp8 = tmppar;
|
||||
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur;
|
||||
rp8 = rp8 ^ tmppar ^ notrp8;
|
||||
|
||||
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
|
||||
cur = *bp++; tmppar ^= cur;
|
||||
|
||||
par ^= tmppar;
|
||||
if ((i & 0x1) == 0) rp12 ^= tmppar;
|
||||
if ((i & 0x2) == 0) rp14 ^= tmppar;
|
||||
}
|
||||
rp4 ^= rp4_6;
|
||||
rp6 ^= rp4_6;
|
||||
|
||||
|
||||
Not a big change, but every penny counts :-)
|
||||
|
||||
|
||||
Analysis 7
|
||||
==========
|
||||
|
||||
Acutally this made things worse. Not very much, but I don't want to move
|
||||
into the wrong direction. Maybe something to investigate later. Could
|
||||
have to do with caching again.
|
||||
|
||||
Guess that is what there is to win within the loop. Maybe unrolling one
|
||||
more time will help. I'll keep the optimisations from 7 for now.
|
||||
|
||||
|
||||
Attempt 8
|
||||
=========
|
||||
|
||||
Unrolled the loop one more time.
|
||||
|
||||
|
||||
Analysis 8
|
||||
==========
|
||||
|
||||
This makes things worse. Let's stick with attempt 6 and continue from there.
|
||||
Although it seems that the code within the loop cannot be optimised
|
||||
further there is still room to optimize the generation of the ecc codes.
|
||||
We can simply calcualate the total parity. If this is 0 then rp4 = rp5
|
||||
etc. If the parity is 1, then rp4 = !rp5;
|
||||
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
|
||||
in the result byte and then do something like
|
||||
code[0] |= (code[0] << 1);
|
||||
Lets test this.
|
||||
|
||||
|
||||
Attempt 9
|
||||
=========
|
||||
|
||||
Changed the code but again this slightly degrades performance. Tried all
|
||||
kind of other things, like having dedicated parity arrays to avoid the
|
||||
shift after parity[rp7] << 7; No gain.
|
||||
Change the lookup using the parity array by using shift operators (e.g.
|
||||
replace parity[rp7] << 7 with:
|
||||
rp7 ^= (rp7 << 4);
|
||||
rp7 ^= (rp7 << 2);
|
||||
rp7 ^= (rp7 << 1);
|
||||
rp7 &= 0x80;
|
||||
No gain.
|
||||
|
||||
The only marginal change was inverting the parity bits, so we can remove
|
||||
the last three invert statements.
|
||||
|
||||
Ah well, pity this does not deliver more. Then again 10 million
|
||||
iterations using the linux driver code takes between 13 and 13.5
|
||||
seconds, whereas my code now takes about 0.73 seconds for those 10
|
||||
million iterations. So basically I've improved the performance by a
|
||||
factor 18 on my system. Not that bad. Of course on different hardware
|
||||
you will get different results. No warranties!
|
||||
|
||||
But of course there is no such thing as a free lunch. The codesize almost
|
||||
tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
|
||||
|
||||
|
||||
Correcting errors
|
||||
=================
|
||||
|
||||
For correcting errors I again used the ST application note as a starter,
|
||||
but I also peeked at the existing code.
|
||||
The algorithm itself is pretty straightforward. Just xor the given and
|
||||
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
|
||||
are 1 we have one correctable bit error. If there is 1 bit 1, we have an
|
||||
error in the given ecc code.
|
||||
It proved to be fastest to do some table lookups. Performance gain
|
||||
introduced by this is about a factor 2 on my system when a repair had to
|
||||
be done, and 1% or so if no repair had to be done.
|
||||
Code size increased from 330 bytes to 686 bytes for this function.
|
||||
(gcc 4.2, -O3)
|
||||
|
||||
|
||||
Conclusion
|
||||
==========
|
||||
|
||||
The gain when calculating the ecc is tremendous. Om my development hardware
|
||||
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
|
||||
embedded system with a MIPS core a factor 7 was obtained.
|
||||
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
|
||||
5 (big endian mode, gcc 4.1.2, -O3)
|
||||
For correction not much gain could be obtained (as bitflips are rare). Then
|
||||
again there are also much less cycles spent there.
|
||||
|
||||
It seems there is not much more gain possible in this, at least when
|
||||
programmed in C. Of course it might be possible to squeeze something more
|
||||
out of it with an assembler program, but due to pipeline behaviour etc
|
||||
this is very tricky (at least for intel hw).
|
||||
|
||||
Author: Frans Meulenbroeks
|
||||
Copyright (C) 2008 Koninklijke Philips Electronics NV.
|
|
@ -95,7 +95,9 @@ On all - write a character to /proc/sysrq-trigger. e.g.:
|
|||
|
||||
'p' - Will dump the current registers and flags to your console.
|
||||
|
||||
'q' - Will dump a list of all running timers.
|
||||
'q' - Will dump per CPU lists of all armed hrtimers (but NOT regular
|
||||
timer_list timers) and detailed information about all
|
||||
clockevent devices.
|
||||
|
||||
'r' - Turns off keyboard raw mode and sets it to XLATE.
|
||||
|
||||
|
|
|
@ -0,0 +1,101 @@
|
|||
Using the Linux Kernel Tracepoints
|
||||
|
||||
Mathieu Desnoyers
|
||||
|
||||
|
||||
This document introduces Linux Kernel Tracepoints and their use. It provides
|
||||
examples of how to insert tracepoints in the kernel and connect probe functions
|
||||
to them and provides some examples of probe functions.
|
||||
|
||||
|
||||
* Purpose of tracepoints
|
||||
|
||||
A tracepoint placed in code provides a hook to call a function (probe) that you
|
||||
can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or
|
||||
"off" (no probe is attached). When a tracepoint is "off" it has no effect,
|
||||
except for adding a tiny time penalty (checking a condition for a branch) and
|
||||
space penalty (adding a few bytes for the function call at the end of the
|
||||
instrumented function and adds a data structure in a separate section). When a
|
||||
tracepoint is "on", the function you provide is called each time the tracepoint
|
||||
is executed, in the execution context of the caller. When the function provided
|
||||
ends its execution, it returns to the caller (continuing from the tracepoint
|
||||
site).
|
||||
|
||||
You can put tracepoints at important locations in the code. They are
|
||||
lightweight hooks that can pass an arbitrary number of parameters,
|
||||
which prototypes are described in a tracepoint declaration placed in a header
|
||||
file.
|
||||
|
||||
They can be used for tracing and performance accounting.
|
||||
|
||||
|
||||
* Usage
|
||||
|
||||
Two elements are required for tracepoints :
|
||||
|
||||
- A tracepoint definition, placed in a header file.
|
||||
- The tracepoint statement, in C code.
|
||||
|
||||
In order to use tracepoints, you should include linux/tracepoint.h.
|
||||
|
||||
In include/trace/subsys.h :
|
||||
|
||||
#include <linux/tracepoint.h>
|
||||
|
||||
DEFINE_TRACE(subsys_eventname,
|
||||
TPPTOTO(int firstarg, struct task_struct *p),
|
||||
TPARGS(firstarg, p));
|
||||
|
||||
In subsys/file.c (where the tracing statement must be added) :
|
||||
|
||||
#include <trace/subsys.h>
|
||||
|
||||
void somefct(void)
|
||||
{
|
||||
...
|
||||
trace_subsys_eventname(arg, task);
|
||||
...
|
||||
}
|
||||
|
||||
Where :
|
||||
- subsys_eventname is an identifier unique to your event
|
||||
- subsys is the name of your subsystem.
|
||||
- eventname is the name of the event to trace.
|
||||
- TPPTOTO(int firstarg, struct task_struct *p) is the prototype of the function
|
||||
called by this tracepoint.
|
||||
- TPARGS(firstarg, p) are the parameters names, same as found in the prototype.
|
||||
|
||||
Connecting a function (probe) to a tracepoint is done by providing a probe
|
||||
(function to call) for the specific tracepoint through
|
||||
register_trace_subsys_eventname(). Removing a probe is done through
|
||||
unregister_trace_subsys_eventname(); it will remove the probe sure there is no
|
||||
caller left using the probe when it returns. Probe removal is preempt-safe
|
||||
because preemption is disabled around the probe call. See the "Probe example"
|
||||
section below for a sample probe module.
|
||||
|
||||
The tracepoint mechanism supports inserting multiple instances of the same
|
||||
tracepoint, but a single definition must be made of a given tracepoint name over
|
||||
all the kernel to make sure no type conflict will occur. Name mangling of the
|
||||
tracepoints is done using the prototypes to make sure typing is correct.
|
||||
Verification of probe type correctness is done at the registration site by the
|
||||
compiler. Tracepoints can be put in inline functions, inlined static functions,
|
||||
and unrolled loops as well as regular functions.
|
||||
|
||||
The naming scheme "subsys_event" is suggested here as a convention intended
|
||||
to limit collisions. Tracepoint names are global to the kernel: they are
|
||||
considered as being the same whether they are in the core kernel image or in
|
||||
modules.
|
||||
|
||||
|
||||
* Probe / tracepoint example
|
||||
|
||||
See the example provided in samples/tracepoints/src
|
||||
|
||||
Compile them with your kernel.
|
||||
|
||||
Run, as root :
|
||||
modprobe tracepoint-example (insmod order is not important)
|
||||
modprobe tracepoint-probe-example
|
||||
cat /proc/tracepoint-example (returns an expected error)
|
||||
rmmod tracepoint-example tracepoint-probe-example
|
||||
dmesg
|
|
@ -36,7 +36,7 @@ $ mount -t debugfs debugfs /debug
|
|||
$ echo mmiotrace > /debug/tracing/current_tracer
|
||||
$ cat /debug/tracing/trace_pipe > mydump.txt &
|
||||
Start X or whatever.
|
||||
$ echo "X is up" > /debug/tracing/marker
|
||||
$ echo "X is up" > /debug/tracing/trace_marker
|
||||
$ echo none > /debug/tracing/current_tracer
|
||||
Check for lost events.
|
||||
|
||||
|
@ -59,9 +59,8 @@ The 'cat' process should stay running (sleeping) in the background.
|
|||
Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
|
||||
accesses to areas that are ioremapped while mmiotrace is active.
|
||||
|
||||
[Unimplemented feature:]
|
||||
During tracing you can place comments (markers) into the trace by
|
||||
$ echo "X is up" > /debug/tracing/marker
|
||||
$ echo "X is up" > /debug/tracing/trace_marker
|
||||
This makes it easier to see which part of the (huge) trace corresponds to
|
||||
which action. It is recommended to place descriptive markers about what you
|
||||
do.
|
||||
|
|
|
@ -0,0 +1,615 @@
|
|||
|
||||
This document describes the Linux memory management "Unevictable LRU"
|
||||
infrastructure and the use of this infrastructure to manage several types
|
||||
of "unevictable" pages. The document attempts to provide the overall
|
||||
rationale behind this mechanism and the rationale for some of the design
|
||||
decisions that drove the implementation. The latter design rationale is
|
||||
discussed in the context of an implementation description. Admittedly, one
|
||||
can obtain the implementation details--the "what does it do?"--by reading the
|
||||
code. One hopes that the descriptions below add value by provide the answer
|
||||
to "why does it do that?".
|
||||
|
||||
Unevictable LRU Infrastructure:
|
||||
|
||||
The Unevictable LRU adds an additional LRU list to track unevictable pages
|
||||
and to hide these pages from vmscan. This mechanism is based on a patch by
|
||||
Larry Woodman of Red Hat to address several scalability problems with page
|
||||
reclaim in Linux. The problems have been observed at customer sites on large
|
||||
memory x86_64 systems. For example, a non-numal x86_64 platform with 128GB
|
||||
of main memory will have over 32 million 4k pages in a single zone. When a
|
||||
large fraction of these pages are not evictable for any reason [see below],
|
||||
vmscan will spend a lot of time scanning the LRU lists looking for the small
|
||||
fraction of pages that are evictable. This can result in a situation where
|
||||
all cpus are spending 100% of their time in vmscan for hours or days on end,
|
||||
with the system completely unresponsive.
|
||||
|
||||
The Unevictable LRU infrastructure addresses the following classes of
|
||||
unevictable pages:
|
||||
|
||||
+ page owned by ramfs
|
||||
+ page mapped into SHM_LOCKed shared memory regions
|
||||
+ page mapped into VM_LOCKED [mlock()ed] vmas
|
||||
|
||||
The infrastructure might be able to handle other conditions that make pages
|
||||
unevictable, either by definition or by circumstance, in the future.
|
||||
|
||||
|
||||
The Unevictable LRU List
|
||||
|
||||
The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
|
||||
called the "unevictable" list and an associated page flag, PG_unevictable, to
|
||||
indicate that the page is being managed on the unevictable list. The
|
||||
PG_unevictable flag is analogous to, and mutually exclusive with, the PG_active
|
||||
flag in that it indicates on which LRU list a page resides when PG_lru is set.
|
||||
The unevictable LRU list is source configurable based on the UNEVICTABLE_LRU
|
||||
Kconfig option.
|
||||
|
||||
The Unevictable LRU infrastructure maintains unevictable pages on an additional
|
||||
LRU list for a few reasons:
|
||||
|
||||
1) We get to "treat unevictable pages just like we treat other pages in the
|
||||
system, which means we get to use the same code to manipulate them, the
|
||||
same code to isolate them (for migrate, etc.), the same code to keep track
|
||||
of the statistics, etc..." [Rik van Riel]
|
||||
|
||||
2) We want to be able to migrate unevictable pages between nodes--for memory
|
||||
defragmentation, workload management and memory hotplug. The linux kernel
|
||||
can only migrate pages that it can successfully isolate from the lru lists.
|
||||
If we were to maintain pages elsewise than on an lru-like list, where they
|
||||
can be found by isolate_lru_page(), we would prevent their migration, unless
|
||||
we reworked migration code to find the unevictable pages.
|
||||
|
||||
|
||||
The unevictable LRU list does not differentiate between file backed and swap
|
||||
backed [anon] pages. This differentiation is only important while the pages
|
||||
are, in fact, evictable.
|
||||
|
||||
The unevictable LRU list benefits from the "arrayification" of the per-zone
|
||||
LRU lists and statistics originally proposed and posted by Christoph Lameter.
|
||||
|
||||
The unevictable list does not use the lru pagevec mechanism. Rather,
|
||||
unevictable pages are placed directly on the page's zone's unevictable
|
||||
list under the zone lru_lock. The reason for this is to prevent stranding
|
||||
of pages on the unevictable list when one task has the page isolated from the
|
||||
lru and other tasks are changing the "evictability" state of the page.
|
||||
|
||||
|
||||
Unevictable LRU and Memory Controller Interaction
|
||||
|
||||
The memory controller data structure automatically gets a per zone unevictable
|
||||
lru list as a result of the "arrayification" of the per-zone LRU lists. The
|
||||
memory controller tracks the movement of pages to and from the unevictable list.
|
||||
When a memory control group comes under memory pressure, the controller will
|
||||
not attempt to reclaim pages on the unevictable list. This has a couple of
|
||||
effects. Because the pages are "hidden" from reclaim on the unevictable list,
|
||||
the reclaim process can be more efficient, dealing only with pages that have
|
||||
a chance of being reclaimed. On the other hand, if too many of the pages
|
||||
charged to the control group are unevictable, the evictable portion of the
|
||||
working set of the tasks in the control group may not fit into the available
|
||||
memory. This can cause the control group to thrash or to oom-kill tasks.
|
||||
|
||||
|
||||
Unevictable LRU: Detecting Unevictable Pages
|
||||
|
||||
The function page_evictable(page, vma) in vmscan.c determines whether a
|
||||
page is evictable or not. For ramfs pages and pages in SHM_LOCKed regions,
|
||||
page_evictable() tests a new address space flag, AS_UNEVICTABLE, in the page's
|
||||
address space using a wrapper function. Wrapper functions are used to set,
|
||||
clear and test the flag to reduce the requirement for #ifdef's throughout the
|
||||
source code. AS_UNEVICTABLE is set on ramfs inode/mapping when it is created.
|
||||
This flag remains for the life of the inode.
|
||||
|
||||
For shared memory regions, AS_UNEVICTABLE is set when an application
|
||||
successfully SHM_LOCKs the region and is removed when the region is
|
||||
SHM_UNLOCKed. Note that shmctl(SHM_LOCK, ...) does not populate the page
|
||||
tables for the region as does, for example, mlock(). So, we make no special
|
||||
effort to push any pages in the SHM_LOCKed region to the unevictable list.
|
||||
Vmscan will do this when/if it encounters the pages during reclaim. On
|
||||
SHM_UNLOCK, shmctl() scans the pages in the region and "rescues" them from the
|
||||
unevictable list if no other condition keeps them unevictable. If a SHM_LOCKed
|
||||
region is destroyed, the pages are also "rescued" from the unevictable list in
|
||||
the process of freeing them.
|
||||
|
||||
page_evictable() detects mlock()ed pages by testing an additional page flag,
|
||||
PG_mlocked via the PageMlocked() wrapper. If the page is NOT mlocked, and a
|
||||
non-NULL vma is supplied, page_evictable() will check whether the vma is
|
||||
VM_LOCKED via is_mlocked_vma(). is_mlocked_vma() will SetPageMlocked() and
|
||||
update the appropriate statistics if the vma is VM_LOCKED. This method allows
|
||||
efficient "culling" of pages in the fault path that are being faulted in to
|
||||
VM_LOCKED vmas.
|
||||
|
||||
|
||||
Unevictable Pages and Vmscan [shrink_*_list()]
|
||||
|
||||
If unevictable pages are culled in the fault path, or moved to the unevictable
|
||||
list at mlock() or mmap() time, vmscan will never encounter the pages until
|
||||
they have become evictable again, for example, via munlock() and have been
|
||||
"rescued" from the unevictable list. However, there may be situations where we
|
||||
decide, for the sake of expediency, to leave a unevictable page on one of the
|
||||
regular active/inactive LRU lists for vmscan to deal with. Vmscan checks for
|
||||
such pages in all of the shrink_{active|inactive|page}_list() functions and
|
||||
will "cull" such pages that it encounters--that is, it diverts those pages to
|
||||
the unevictable list for the zone being scanned.
|
||||
|
||||
There may be situations where a page is mapped into a VM_LOCKED vma, but the
|
||||
page is not marked as PageMlocked. Such pages will make it all the way to
|
||||
shrink_page_list() where they will be detected when vmscan walks the reverse
|
||||
map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, shrink_page_list()
|
||||
will cull the page at that point.
|
||||
|
||||
Note that for anonymous pages, shrink_page_list() attempts to add the page to
|
||||
the swap cache before it tries to unmap the page. To avoid this unnecessary
|
||||
consumption of swap space, shrink_page_list() calls try_to_munlock() to check
|
||||
whether any VM_LOCKED vmas map the page without attempting to unmap the page.
|
||||
If try_to_munlock() returns SWAP_MLOCK, shrink_page_list() will cull the page
|
||||
without consuming swap space. try_to_munlock() will be described below.
|
||||
|
||||
To "cull" an unevictable page, vmscan simply puts the page back on the lru
|
||||
list using putback_lru_page()--the inverse operation to isolate_lru_page()--
|
||||
after dropping the page lock. Because the condition which makes the page
|
||||
unevictable may change once the page is unlocked, putback_lru_page() will
|
||||
recheck the unevictable state of a page that it places on the unevictable lru
|
||||
list. If the page has become unevictable, putback_lru_page() removes it from
|
||||
the list and retries, including the page_unevictable() test. Because such a
|
||||
race is a rare event and movement of pages onto the unevictable list should be
|
||||
rare, these extra evictabilty checks should not occur in the majority of calls
|
||||
to putback_lru_page().
|
||||
|
||||
|
||||
Mlocked Page: Prior Work
|
||||
|
||||
The "Unevictable Mlocked Pages" infrastructure is based on work originally
|
||||
posted by Nick Piggin in an RFC patch entitled "mm: mlocked pages off LRU".
|
||||
Nick posted his patch as an alternative to a patch posted by Christoph
|
||||
Lameter to achieve the same objective--hiding mlocked pages from vmscan.
|
||||
In Nick's patch, he used one of the struct page lru list link fields as a count
|
||||
of VM_LOCKED vmas that map the page. This use of the link field for a count
|
||||
prevented the management of the pages on an LRU list. Thus, mlocked pages were
|
||||
not migratable as isolate_lru_page() could not find them and the lru list link
|
||||
field was not available to the migration subsystem. Nick resolved this by
|
||||
putting mlocked pages back on the lru list before attempting to isolate them,
|
||||
thus abandoning the count of VM_LOCKED vmas. When Nick's patch was integrated
|
||||
with the Unevictable LRU work, the count was replaced by walking the reverse
|
||||
map to determine whether any VM_LOCKED vmas mapped the page. More on this
|
||||
below.
|
||||
|
||||
|
||||
Mlocked Pages: Basic Management
|
||||
|
||||
Mlocked pages--pages mapped into a VM_LOCKED vma--represent one class of
|
||||
unevictable pages. When such a page has been "noticed" by the memory
|
||||
management subsystem, the page is marked with the PG_mlocked [PageMlocked()]
|
||||
flag. A PageMlocked() page will be placed on the unevictable LRU list when
|
||||
it is added to the LRU. Pages can be "noticed" by memory management in
|
||||
several places:
|
||||
|
||||
1) in the mlock()/mlockall() system call handlers.
|
||||
2) in the mmap() system call handler when mmap()ing a region with the
|
||||
MAP_LOCKED flag, or mmap()ing a region in a task that has called
|
||||
mlockall() with the MCL_FUTURE flag. Both of these conditions result
|
||||
in the VM_LOCKED flag being set for the vma.
|
||||
3) in the fault path, if mlocked pages are "culled" in the fault path,
|
||||
and when a VM_LOCKED stack segment is expanded.
|
||||
4) as mentioned above, in vmscan:shrink_page_list() with attempting to
|
||||
reclaim a page in a VM_LOCKED vma--via try_to_unmap() or try_to_munlock().
|
||||
|
||||
Mlocked pages become unlocked and rescued from the unevictable list when:
|
||||
|
||||
1) mapped in a range unlocked via the munlock()/munlockall() system calls.
|
||||
2) munmapped() out of the last VM_LOCKED vma that maps the page, including
|
||||
unmapping at task exit.
|
||||
3) when the page is truncated from the last VM_LOCKED vma of an mmap()ed file.
|
||||
4) before a page is COWed in a VM_LOCKED vma.
|
||||
|
||||
|
||||
Mlocked Pages: mlock()/mlockall() System Call Handling
|
||||
|
||||
Both [do_]mlock() and [do_]mlockall() system call handlers call mlock_fixup()
|
||||
for each vma in the range specified by the call. In the case of mlockall(),
|
||||
this is the entire active address space of the task. Note that mlock_fixup()
|
||||
is used for both mlock()ing and munlock()ing a range of memory. A call to
|
||||
mlock() an already VM_LOCKED vma, or to munlock() a vma that is not VM_LOCKED
|
||||
is treated as a no-op--mlock_fixup() simply returns.
|
||||
|
||||
If the vma passes some filtering described in "Mlocked Pages: Filtering Vmas"
|
||||
below, mlock_fixup() will attempt to merge the vma with its neighbors or split
|
||||
off a subset of the vma if the range does not cover the entire vma. Once the
|
||||
vma has been merged or split or neither, mlock_fixup() will call
|
||||
__mlock_vma_pages_range() to fault in the pages via get_user_pages() and
|
||||
to mark the pages as mlocked via mlock_vma_page().
|
||||
|
||||
Note that the vma being mlocked might be mapped with PROT_NONE. In this case,
|
||||
get_user_pages() will be unable to fault in the pages. That's OK. If pages
|
||||
do end up getting faulted into this VM_LOCKED vma, we'll handle them in the
|
||||
fault path or in vmscan.
|
||||
|
||||
Also note that a page returned by get_user_pages() could be truncated or
|
||||
migrated out from under us, while we're trying to mlock it. To detect
|
||||
this, __mlock_vma_pages_range() tests the page_mapping after acquiring
|
||||
the page lock. If the page is still associated with its mapping, we'll
|
||||
go ahead and call mlock_vma_page(). If the mapping is gone, we just
|
||||
unlock the page and move on. Worse case, this results in page mapped
|
||||
in a VM_LOCKED vma remaining on a normal LRU list without being
|
||||
PageMlocked(). Again, vmscan will detect and cull such pages.
|
||||
|
||||
mlock_vma_page(), called with the page locked [N.B., not "mlocked"], will
|
||||
TestSetPageMlocked() for each page returned by get_user_pages(). We use
|
||||
TestSetPageMlocked() because the page might already be mlocked by another
|
||||
task/vma and we don't want to do extra work. We especially do not want to
|
||||
count an mlocked page more than once in the statistics. If the page was
|
||||
already mlocked, mlock_vma_page() is done.
|
||||
|
||||
If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
|
||||
page from the LRU, as it is likely on the appropriate active or inactive list
|
||||
at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will
|
||||
putback the page--putback_lru_page()--which will notice that the page is now
|
||||
mlocked and divert the page to the zone's unevictable LRU list. If
|
||||
mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
|
||||
it later if/when it attempts to reclaim the page.
|
||||
|
||||
|
||||
Mlocked Pages: Filtering Special Vmas
|
||||
|
||||
mlock_fixup() filters several classes of "special" vmas:
|
||||
|
||||
1) vmas with VM_IO|VM_PFNMAP set are skipped entirely. The pages behind
|
||||
these mappings are inherently pinned, so we don't need to mark them as
|
||||
mlocked. In any case, most of the pages have no struct page in which to
|
||||
so mark the page. Because of this, get_user_pages() will fail for these
|
||||
vmas, so there is no sense in attempting to visit them.
|
||||
|
||||
2) vmas mapping hugetlbfs page are already effectively pinned into memory.
|
||||
We don't need nor want to mlock() these pages. However, to preserve the
|
||||
prior behavior of mlock()--before the unevictable/mlock changes--mlock_fixup()
|
||||
will call make_pages_present() in the hugetlbfs vma range to allocate the
|
||||
huge pages and populate the ptes.
|
||||
|
||||
3) vmas with VM_DONTEXPAND|VM_RESERVED are generally user space mappings of
|
||||
kernel pages, such as the vdso page, relay channel pages, etc. These pages
|
||||
are inherently unevictable and are not managed on the LRU lists.
|
||||
mlock_fixup() treats these vmas the same as hugetlbfs vmas. It calls
|
||||
make_pages_present() to populate the ptes.
|
||||
|
||||
Note that for all of these special vmas, mlock_fixup() does not set the
|
||||
VM_LOCKED flag. Therefore, we won't have to deal with them later during
|
||||
munlock() or munmap()--for example, at task exit. Neither does mlock_fixup()
|
||||
account these vmas against the task's "locked_vm".
|
||||
|
||||
Mlocked Pages: Downgrading the Mmap Semaphore.
|
||||
|
||||
mlock_fixup() must be called with the mmap semaphore held for write, because
|
||||
it may have to merge or split vmas. However, mlocking a large region of
|
||||
memory can take a long time--especially if vmscan must reclaim pages to
|
||||
satisfy the regions requirements. Faulting in a large region with the mmap
|
||||
semaphore held for write can hold off other faults on the address space, in
|
||||
the case of a multi-threaded task. It can also hold off scans of the task's
|
||||
address space via /proc. While testing under heavy load, it was observed that
|
||||
the ps(1) command could be held off for many minutes while a large segment was
|
||||
mlock()ed down.
|
||||
|
||||
To address this issue, and to make the system more responsive during mlock()ing
|
||||
of large segments, mlock_fixup() downgrades the mmap semaphore to read mode
|
||||
during the call to __mlock_vma_pages_range(). This works fine. However, the
|
||||
callers of mlock_fixup() expect the semaphore to be returned in write mode.
|
||||
So, mlock_fixup() "upgrades" the semphore to write mode. Linux does not
|
||||
support an atomic upgrade_sem() call, so mlock_fixup() must drop the semaphore
|
||||
and reacquire it in write mode. In a multi-threaded task, it is possible for
|
||||
the task memory map to change while the semaphore is dropped. Therefore,
|
||||
mlock_fixup() looks up the vma at the range start address after reacquiring
|
||||
the semaphore in write mode and verifies that it still covers the original
|
||||
range. If not, mlock_fixup() returns an error [-EAGAIN]. All callers of
|
||||
mlock_fixup() have been changed to deal with this new error condition.
|
||||
|
||||
Note: when munlocking a region, all of the pages should already be resident--
|
||||
unless we have racing threads mlocking() and munlocking() regions. So,
|
||||
unlocking should not have to wait for page allocations nor faults of any kind.
|
||||
Therefore mlock_fixup() does not downgrade the semaphore for munlock().
|
||||
|
||||
|
||||
Mlocked Pages: munlock()/munlockall() System Call Handling
|
||||
|
||||
The munlock() and munlockall() system calls are handled by the same functions--
|
||||
do_mlock[all]()--as the mlock() and mlockall() system calls with the unlock
|
||||
vs lock operation indicated by an argument. So, these system calls are also
|
||||
handled by mlock_fixup(). Again, if called for an already munlock()ed vma,
|
||||
mlock_fixup() simply returns. Because of the vma filtering discussed above,
|
||||
VM_LOCKED will not be set in any "special" vmas. So, these vmas will be
|
||||
ignored for munlock.
|
||||
|
||||
If the vma is VM_LOCKED, mlock_fixup() again attempts to merge or split off
|
||||
the specified range. The range is then munlocked via the function
|
||||
__mlock_vma_pages_range()--the same function used to mlock a vma range--
|
||||
passing a flag to indicate that munlock() is being performed.
|
||||
|
||||
Because the vma access protections could have been changed to PROT_NONE after
|
||||
faulting in and mlocking some pages, get_user_pages() was unreliable for visiting
|
||||
these pages for munlocking. Because we don't want to leave pages mlocked(),
|
||||
get_user_pages() was enhanced to accept a flag to ignore the permissions when
|
||||
fetching the pages--all of which should be resident as a result of previous
|
||||
mlock()ing.
|
||||
|
||||
For munlock(), __mlock_vma_pages_range() unlocks individual pages by calling
|
||||
munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked
|
||||
flag using TestClearPageMlocked(). As with mlock_vma_page(), munlock_vma_page()
|
||||
use the Test*PageMlocked() function to handle the case where the page might
|
||||
have already been unlocked by another task. If the page was mlocked,
|
||||
munlock_vma_page() updates that zone statistics for the number of mlocked
|
||||
pages. Note, however, that at this point we haven't checked whether the page
|
||||
is mapped by other VM_LOCKED vmas.
|
||||
|
||||
We can't call try_to_munlock(), the function that walks the reverse map to check
|
||||
for other VM_LOCKED vmas, without first isolating the page from the LRU.
|
||||
try_to_munlock() is a variant of try_to_unmap() and thus requires that the page
|
||||
not be on an lru list. [More on these below.] However, the call to
|
||||
isolate_lru_page() could fail, in which case we couldn't try_to_munlock().
|
||||
So, we go ahead and clear PG_mlocked up front, as this might be the only chance
|
||||
we have. If we can successfully isolate the page, we go ahead and
|
||||
try_to_munlock(), which will restore the PG_mlocked flag and update the zone
|
||||
page statistics if it finds another vma holding the page mlocked. If we fail
|
||||
to isolate the page, we'll have left a potentially mlocked page on the LRU.
|
||||
This is fine, because we'll catch it later when/if vmscan tries to reclaim the
|
||||
page. This should be relatively rare.
|
||||
|
||||
Mlocked Pages: Migrating Them...
|
||||
|
||||
A page that is being migrated has been isolated from the lru lists and is
|
||||
held locked across unmapping of the page, updating the page's mapping
|
||||
[address_space] entry and copying the contents and state, until the
|
||||
page table entry has been replaced with an entry that refers to the new
|
||||
page. Linux supports migration of mlocked pages and other unevictable
|
||||
pages. This involves simply moving the PageMlocked and PageUnevictable states
|
||||
from the old page to the new page.
|
||||
|
||||
Note that page migration can race with mlocking or munlocking of the same
|
||||
page. This has been discussed from the mlock/munlock perspective in the
|
||||
respective sections above. Both processes [migration, m[un]locking], hold
|
||||
the page locked. This provides the first level of synchronization. Page
|
||||
migration zeros out the page_mapping of the old page before unlocking it,
|
||||
so m[un]lock can skip these pages by testing the page mapping under page
|
||||
lock.
|
||||
|
||||
When completing page migration, we place the new and old pages back onto the
|
||||
lru after dropping the page lock. The "unneeded" page--old page on success,
|
||||
new page on failure--will be freed when the reference count held by the
|
||||
migration process is released. To ensure that we don't strand pages on the
|
||||
unevictable list because of a race between munlock and migration, page
|
||||
migration uses the putback_lru_page() function to add migrated pages back to
|
||||
the lru.
|
||||
|
||||
|
||||
Mlocked Pages: mmap(MAP_LOCKED) System Call Handling
|
||||
|
||||
In addition the the mlock()/mlockall() system calls, an application can request
|
||||
that a region of memory be mlocked using the MAP_LOCKED flag with the mmap()
|
||||
call. Furthermore, any mmap() call or brk() call that expands the heap by a
|
||||
task that has previously called mlockall() with the MCL_FUTURE flag will result
|
||||
in the newly mapped memory being mlocked. Before the unevictable/mlock changes,
|
||||
the kernel simply called make_pages_present() to allocate pages and populate
|
||||
the page table.
|
||||
|
||||
To mlock a range of memory under the unevictable/mlock infrastructure, the
|
||||
mmap() handler and task address space expansion functions call
|
||||
mlock_vma_pages_range() specifying the vma and the address range to mlock.
|
||||
mlock_vma_pages_range() filters vmas like mlock_fixup(), as described above in
|
||||
"Mlocked Pages: Filtering Vmas". It will clear the VM_LOCKED flag, which will
|
||||
have already been set by the caller, in filtered vmas. Thus these vma's need
|
||||
not be visited for munlock when the region is unmapped.
|
||||
|
||||
For "normal" vmas, mlock_vma_pages_range() calls __mlock_vma_pages_range() to
|
||||
fault/allocate the pages and mlock them. Again, like mlock_fixup(),
|
||||
mlock_vma_pages_range() downgrades the mmap semaphore to read mode before
|
||||
attempting to fault/allocate and mlock the pages; and "upgrades" the semaphore
|
||||
back to write mode before returning.
|
||||
|
||||
The callers of mlock_vma_pages_range() will have already added the memory
|
||||
range to be mlocked to the task's "locked_vm". To account for filtered vmas,
|
||||
mlock_vma_pages_range() returns the number of pages NOT mlocked. All of the
|
||||
callers then subtract a non-negative return value from the task's locked_vm.
|
||||
A negative return value represent an error--for example, from get_user_pages()
|
||||
attempting to fault in a vma with PROT_NONE access. In this case, we leave
|
||||
the memory range accounted as locked_vm, as the protections could be changed
|
||||
later and pages allocated into that region.
|
||||
|
||||
|
||||
Mlocked Pages: munmap()/exit()/exec() System Call Handling
|
||||
|
||||
When unmapping an mlocked region of memory, whether by an explicit call to
|
||||
munmap() or via an internal unmap from exit() or exec() processing, we must
|
||||
munlock the pages if we're removing the last VM_LOCKED vma that maps the pages.
|
||||
Before the unevictable/mlock changes, mlocking did not mark the pages in any way,
|
||||
so unmapping them required no processing.
|
||||
|
||||
To munlock a range of memory under the unevictable/mlock infrastructure, the
|
||||
munmap() hander and task address space tear down function call
|
||||
munlock_vma_pages_all(). The name reflects the observation that one always
|
||||
specifies the entire vma range when munlock()ing during unmap of a region.
|
||||
Because of the vma filtering when mlocking() regions, only "normal" vmas that
|
||||
actually contain mlocked pages will be passed to munlock_vma_pages_all().
|
||||
|
||||
munlock_vma_pages_all() clears the VM_LOCKED vma flag and, like mlock_fixup()
|
||||
for the munlock case, calls __munlock_vma_pages_range() to walk the page table
|
||||
for the vma's memory range and munlock_vma_page() each resident page mapped by
|
||||
the vma. This effectively munlocks the page, only if this is the last
|
||||
VM_LOCKED vma that maps the page.
|
||||
|
||||
|
||||
Mlocked Page: try_to_unmap()
|
||||
|
||||
[Note: the code changes represented by this section are really quite small
|
||||
compared to the text to describe what happening and why, and to discuss the
|
||||
implications.]
|
||||
|
||||
Pages can, of course, be mapped into multiple vmas. Some of these vmas may
|
||||
have VM_LOCKED flag set. It is possible for a page mapped into one or more
|
||||
VM_LOCKED vmas not to have the PG_mlocked flag set and therefore reside on one
|
||||
of the active or inactive LRU lists. This could happen if, for example, a
|
||||
task in the process of munlock()ing the page could not isolate the page from
|
||||
the LRU. As a result, vmscan/shrink_page_list() might encounter such a page
|
||||
as described in "Unevictable Pages and Vmscan [shrink_*_list()]". To
|
||||
handle this situation, try_to_unmap() has been enhanced to check for VM_LOCKED
|
||||
vmas while it is walking a page's reverse map.
|
||||
|
||||
try_to_unmap() is always called, by either vmscan for reclaim or for page
|
||||
migration, with the argument page locked and isolated from the LRU. BUG_ON()
|
||||
assertions enforce this requirement. Separate functions handle anonymous and
|
||||
mapped file pages, as these types of pages have different reverse map
|
||||
mechanisms.
|
||||
|
||||
try_to_unmap_anon()
|
||||
|
||||
To unmap anonymous pages, each vma in the list anchored in the anon_vma must be
|
||||
visited--at least until a VM_LOCKED vma is encountered. If the page is being
|
||||
unmapped for migration, VM_LOCKED vmas do not stop the process because mlocked
|
||||
pages are migratable. However, for reclaim, if the page is mapped into a
|
||||
VM_LOCKED vma, the scan stops. try_to_unmap() attempts to acquire the mmap
|
||||
semphore of the mm_struct to which the vma belongs in read mode. If this is
|
||||
successful, try_to_unmap() will mlock the page via mlock_vma_page()--we
|
||||
wouldn't have gotten to try_to_unmap() if the page were already mlocked--and
|
||||
will return SWAP_MLOCK, indicating that the page is unevictable. If the
|
||||
mmap semaphore cannot be acquired, we are not sure whether the page is really
|
||||
unevictable or not. In this case, try_to_unmap() will return SWAP_AGAIN.
|
||||
|
||||
try_to_unmap_file() -- linear mappings
|
||||
|
||||
Unmapping of a mapped file page works the same, except that the scan visits
|
||||
all vmas that maps the page's index/page offset in the page's mapping's
|
||||
reverse map priority search tree. It must also visit each vma in the page's
|
||||
mapping's non-linear list, if the list is non-empty. As for anonymous pages,
|
||||
on encountering a VM_LOCKED vma for a mapped file page, try_to_unmap() will
|
||||
attempt to acquire the associated mm_struct's mmap semaphore to mlock the page,
|
||||
returning SWAP_MLOCK if this is successful, and SWAP_AGAIN, if not.
|
||||
|
||||
try_to_unmap_file() -- non-linear mappings
|
||||
|
||||
If a page's mapping contains a non-empty non-linear mapping vma list, then
|
||||
try_to_un{map|lock}() must also visit each vma in that list to determine
|
||||
whether the page is mapped in a VM_LOCKED vma. Again, the scan must visit
|
||||
all vmas in the non-linear list to ensure that the pages is not/should not be
|
||||
mlocked. If a VM_LOCKED vma is found in the list, the scan could terminate.
|
||||
However, there is no easy way to determine whether the page is actually mapped
|
||||
in a given vma--either for unmapping or testing whether the VM_LOCKED vma
|
||||
actually pins the page.
|
||||
|
||||
So, try_to_unmap_file() handles non-linear mappings by scanning a certain
|
||||
number of pages--a "cluster"--in each non-linear vma associated with the page's
|
||||
mapping, for each file mapped page that vmscan tries to unmap. If this happens
|
||||
to unmap the page we're trying to unmap, try_to_unmap() will notice this on
|
||||
return--(page_mapcount(page) == 0)--and return SWAP_SUCCESS. Otherwise, it
|
||||
will return SWAP_AGAIN, causing vmscan to recirculate this page. We take
|
||||
advantage of the cluster scan in try_to_unmap_cluster() as follows:
|
||||
|
||||
For each non-linear vma, try_to_unmap_cluster() attempts to acquire the mmap
|
||||
semaphore of the associated mm_struct for read without blocking. If this
|
||||
attempt is successful and the vma is VM_LOCKED, try_to_unmap_cluster() will
|
||||
retain the mmap semaphore for the scan; otherwise it drops it here. Then,
|
||||
for each page in the cluster, if we're holding the mmap semaphore for a locked
|
||||
vma, try_to_unmap_cluster() calls mlock_vma_page() to mlock the page. This
|
||||
call is a no-op if the page is already locked, but will mlock any pages in
|
||||
the non-linear mapping that happen to be unlocked. If one of the pages so
|
||||
mlocked is the page passed in to try_to_unmap(), try_to_unmap_cluster() will
|
||||
return SWAP_MLOCK, rather than the default SWAP_AGAIN. This will allow vmscan
|
||||
to cull the page, rather than recirculating it on the inactive list. Again,
|
||||
if try_to_unmap_cluster() cannot acquire the vma's mmap sem, it returns
|
||||
SWAP_AGAIN, indicating that the page is mapped by a VM_LOCKED vma, but
|
||||
couldn't be mlocked.
|
||||
|
||||
|
||||
Mlocked pages: try_to_munlock() Reverse Map Scan
|
||||
|
||||
TODO/FIXME: a better name might be page_mlocked()--analogous to the
|
||||
page_referenced() reverse map walker--especially if we continue to call this
|
||||
from shrink_page_list(). See related TODO/FIXME below.
|
||||
|
||||
When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall() System
|
||||
Call Handling" above--tries to munlock a page, or when shrink_page_list()
|
||||
encounters an anonymous page that is not yet in the swap cache, they need to
|
||||
determine whether or not the page is mapped by any VM_LOCKED vma, without
|
||||
actually attempting to unmap all ptes from the page. For this purpose, the
|
||||
unevictable/mlock infrastructure introduced a variant of try_to_unmap() called
|
||||
try_to_munlock().
|
||||
|
||||
try_to_munlock() calls the same functions as try_to_unmap() for anonymous and
|
||||
mapped file pages with an additional argument specifing unlock versus unmap
|
||||
processing. Again, these functions walk the respective reverse maps looking
|
||||
for VM_LOCKED vmas. When such a vma is found for anonymous pages and file
|
||||
pages mapped in linear VMAs, as in the try_to_unmap() case, the functions
|
||||
attempt to acquire the associated mmap semphore, mlock the page via
|
||||
mlock_vma_page() and return SWAP_MLOCK. This effectively undoes the
|
||||
pre-clearing of the page's PG_mlocked done by munlock_vma_page() and informs
|
||||
shrink_page_list() that the anonymous page should be culled rather than added
|
||||
to the swap cache in preparation for a try_to_unmap() that will almost
|
||||
certainly fail.
|
||||
|
||||
If try_to_unmap() is unable to acquire a VM_LOCKED vma's associated mmap
|
||||
semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list()
|
||||
to recycle the page on the inactive list and hope that it has better luck
|
||||
with the page next time.
|
||||
|
||||
For file pages mapped into non-linear vmas, the try_to_munlock() logic works
|
||||
slightly differently. On encountering a VM_LOCKED non-linear vma that might
|
||||
map the page, try_to_munlock() returns SWAP_AGAIN without actually mlocking
|
||||
the page. munlock_vma_page() will just leave the page unlocked and let
|
||||
vmscan deal with it--the usual fallback position.
|
||||
|
||||
Note that try_to_munlock()'s reverse map walk must visit every vma in a pages'
|
||||
reverse map to determine that a page is NOT mapped into any VM_LOCKED vma.
|
||||
However, the scan can terminate when it encounters a VM_LOCKED vma and can
|
||||
successfully acquire the vma's mmap semphore for read and mlock the page.
|
||||
Although try_to_munlock() can be called many [very many!] times when
|
||||
munlock()ing a large region or tearing down a large address space that has been
|
||||
mlocked via mlockall(), overall this is a fairly rare event. In addition,
|
||||
although shrink_page_list() calls try_to_munlock() for every anonymous page that
|
||||
it handles that is not yet in the swap cache, on average anonymous pages will
|
||||
have very short reverse map lists.
|
||||
|
||||
Mlocked Page: Page Reclaim in shrink_*_list()
|
||||
|
||||
shrink_active_list() culls any obviously unevictable pages--i.e.,
|
||||
!page_evictable(page, NULL)--diverting these to the unevictable lru
|
||||
list. However, shrink_active_list() only sees unevictable pages that
|
||||
made it onto the active/inactive lru lists. Note that these pages do not
|
||||
have PageUnevictable set--otherwise, they would be on the unevictable list and
|
||||
shrink_active_list would never see them.
|
||||
|
||||
Some examples of these unevictable pages on the LRU lists are:
|
||||
|
||||
1) ramfs pages that have been placed on the lru lists when first allocated.
|
||||
|
||||
2) SHM_LOCKed shared memory pages. shmctl(SHM_LOCK) does not attempt to
|
||||
allocate or fault in the pages in the shared memory region. This happens
|
||||
when an application accesses the page the first time after SHM_LOCKing
|
||||
the segment.
|
||||
|
||||
3) Mlocked pages that could not be isolated from the lru and moved to the
|
||||
unevictable list in mlock_vma_page().
|
||||
|
||||
3) Pages mapped into multiple VM_LOCKED vmas, but try_to_munlock() couldn't
|
||||
acquire the vma's mmap semaphore to test the flags and set PageMlocked.
|
||||
munlock_vma_page() was forced to let the page back on to the normal
|
||||
LRU list for vmscan to handle.
|
||||
|
||||
shrink_inactive_list() also culls any unevictable pages that it finds
|
||||
on the inactive lists, again diverting them to the appropriate zone's unevictable
|
||||
lru list. shrink_inactive_list() should only see SHM_LOCKed pages that became
|
||||
SHM_LOCKed after shrink_active_list() had moved them to the inactive list, or
|
||||
pages mapped into VM_LOCKED vmas that munlock_vma_page() couldn't isolate from
|
||||
the lru to recheck via try_to_munlock(). shrink_inactive_list() won't notice
|
||||
the latter, but will pass on to shrink_page_list().
|
||||
|
||||
shrink_page_list() again culls obviously unevictable pages that it could
|
||||
encounter for similar reason to shrink_inactive_list(). As already discussed,
|
||||
shrink_page_list() proactively looks for anonymous pages that should have
|
||||
PG_mlocked set but don't--these would not be detected by page_evictable()--to
|
||||
avoid adding them to the swap cache unnecessarily. File pages mapped into
|
||||
VM_LOCKED vmas but without PG_mlocked set will make it all the way to
|
||||
try_to_unmap(). shrink_page_list() will divert them to the unevictable list when
|
||||
try_to_unmap() returns SWAP_MLOCK, as discussed above.
|
||||
|
||||
TODO/FIXME: If we can enhance the swap cache to reliably remove entries
|
||||
with page_count(page) > 2, as long as all ptes are mapped to the page and
|
||||
not the swap entry, we can probably remove the call to try_to_munlock() in
|
||||
shrink_page_list() and just remove the page from the swap cache when
|
||||
try_to_unmap() returns SWAP_MLOCK. Currently, remove_exclusive_swap_page()
|
||||
doesn't seem to allow that.
|
||||
|
||||
|
|
@ -1198,7 +1198,7 @@ S: Maintained
|
|||
|
||||
CPU FREQUENCY DRIVERS
|
||||
P: Dave Jones
|
||||
M: davej@codemonkey.org.uk
|
||||
M: davej@redhat.com
|
||||
L: cpufreq@vger.kernel.org
|
||||
W: http://www.codemonkey.org.uk/projects/cpufreq/
|
||||
T: git kernel.org/pub/scm/linux/kernel/git/davej/cpufreq.git
|
||||
|
|
|
@ -70,6 +70,7 @@ config AUTO_IRQ_AFFINITY
|
|||
default y
|
||||
|
||||
source "init/Kconfig"
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
|
||||
menu "System setup"
|
||||
|
|
|
@ -74,12 +74,14 @@ register struct thread_info *__current_thread_info __asm__("$8");
|
|||
#define TIF_UAC_SIGBUS 7
|
||||
#define TIF_MEMDIE 8
|
||||
#define TIF_RESTORE_SIGMASK 9 /* restore signal mask in do_signal */
|
||||
#define TIF_FREEZE 16 /* is freezing for suspend */
|
||||
|
||||
#define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE)
|
||||
#define _TIF_SIGPENDING (1<<TIF_SIGPENDING)
|
||||
#define _TIF_NEED_RESCHED (1<<TIF_NEED_RESCHED)
|
||||
#define _TIF_POLLING_NRFLAG (1<<TIF_POLLING_NRFLAG)
|
||||
#define _TIF_RESTORE_SIGMASK (1<<TIF_RESTORE_SIGMASK)
|
||||
#define _TIF_FREEZE (1<<TIF_FREEZE)
|
||||
|
||||
/* Work to do on interrupt/exception return. */
|
||||
#define _TIF_WORK_MASK (_TIF_SIGPENDING | _TIF_NEED_RESCHED)
|
||||
|
|
|
@ -655,7 +655,7 @@ __marvel_rtc_io(u8 b, unsigned long addr, int write)
|
|||
|
||||
case 0x71: /* RTC_PORT(1) */
|
||||
rtc_access.index = index;
|
||||
rtc_access.data = BCD_TO_BIN(b);
|
||||
rtc_access.data = bcd2bin(b);
|
||||
rtc_access.function = 0x48 + !write; /* GET/PUT_TOY */
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
@ -668,7 +668,7 @@ __marvel_rtc_io(u8 b, unsigned long addr, int write)
|
|||
#else
|
||||
__marvel_access_rtc(&rtc_access);
|
||||
#endif
|
||||
ret = BIN_TO_BCD(rtc_access.data);
|
||||
ret = bin2bcd(rtc_access.data);
|
||||
break;
|
||||
|
||||
default:
|
||||
|
|
|
@ -47,7 +47,7 @@ typedef struct irq_swizzle_struct
|
|||
|
||||
static irq_swizzle_t *sable_lynx_irq_swizzle;
|
||||
|
||||
static void sable_lynx_init_irq(int nr_irqs);
|
||||
static void sable_lynx_init_irq(int nr_of_irqs);
|
||||
|
||||
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_SABLE)
|
||||
|
||||
|
@ -530,11 +530,11 @@ sable_lynx_srm_device_interrupt(unsigned long vector)
|
|||
}
|
||||
|
||||
static void __init
|
||||
sable_lynx_init_irq(int nr_irqs)
|
||||
sable_lynx_init_irq(int nr_of_irqs)
|
||||
{
|
||||
long i;
|
||||
|
||||
for (i = 0; i < nr_irqs; ++i) {
|
||||
for (i = 0; i < nr_of_irqs; ++i) {
|
||||
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
|
||||
irq_desc[i].chip = &sable_lynx_irq_type;
|
||||
}
|
||||
|
|
|
@ -346,12 +346,12 @@ time_init(void)
|
|||
year = CMOS_READ(RTC_YEAR);
|
||||
|
||||
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
BCD_TO_BIN(sec);
|
||||
BCD_TO_BIN(min);
|
||||
BCD_TO_BIN(hour);
|
||||
BCD_TO_BIN(day);
|
||||
BCD_TO_BIN(mon);
|
||||
BCD_TO_BIN(year);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
}
|
||||
|
||||
/* PC-like is standard; used for year >= 70 */
|
||||
|
@ -525,7 +525,7 @@ set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
||||
BCD_TO_BIN(cmos_minutes);
|
||||
cmos_minutes = bcd2bin(cmos_minutes);
|
||||
|
||||
/*
|
||||
* since we're only adjusting minutes and seconds,
|
||||
|
@ -543,8 +543,8 @@ set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
BIN_TO_BCD(real_seconds);
|
||||
BIN_TO_BCD(real_minutes);
|
||||
real_seconds = bin2bcd(real_seconds);
|
||||
real_minutes = bin2bcd(real_minutes);
|
||||
}
|
||||
CMOS_WRITE(real_seconds,RTC_SECONDS);
|
||||
CMOS_WRITE(real_minutes,RTC_MINUTES);
|
||||
|
|
|
@ -192,6 +192,8 @@ config VECTORS_BASE
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "System Type"
|
||||
|
||||
choice
|
||||
|
@ -538,16 +540,15 @@ config ARCH_OMAP
|
|||
help
|
||||
Support for TI's OMAP platform (OMAP1 and OMAP2).
|
||||
|
||||
config ARCH_MSM7X00A
|
||||
bool "Qualcomm MSM7X00A"
|
||||
config ARCH_MSM
|
||||
bool "Qualcomm MSM"
|
||||
select GENERIC_TIME
|
||||
select GENERIC_CLOCKEVENTS
|
||||
help
|
||||
Support for Qualcomm MSM7X00A based systems. This runs on the ARM11
|
||||
apps processor of the MSM7X00A and depends on a shared memory
|
||||
Support for Qualcomm MSM7K based systems. This runs on the ARM11
|
||||
apps processor of the MSM7K and depends on a shared memory
|
||||
interface to the ARM9 modem processor which runs the baseband stack
|
||||
and controls some vital subsystems (clock and power control, etc).
|
||||
<http://www.cdmatech.com/products/msm7200_chipset_solution.jsp>
|
||||
|
||||
endchoice
|
||||
|
||||
|
|
|
@ -141,7 +141,7 @@ endif
|
|||
machine-$(CONFIG_ARCH_MX3) := mx3
|
||||
machine-$(CONFIG_ARCH_ORION5X) := orion5x
|
||||
plat-$(CONFIG_PLAT_ORION) := orion
|
||||
machine-$(CONFIG_ARCH_MSM7X00A) := msm
|
||||
machine-$(CONFIG_ARCH_MSM) := msm
|
||||
machine-$(CONFIG_ARCH_LOKI) := loki
|
||||
machine-$(CONFIG_ARCH_MV78XX0) := mv78xx0
|
||||
|
||||
|
|
|
@ -133,7 +133,7 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
|
|||
# CONFIG_ARCH_LH7A40X is not set
|
||||
# CONFIG_ARCH_DAVINCI is not set
|
||||
# CONFIG_ARCH_OMAP is not set
|
||||
CONFIG_ARCH_MSM7X00A=y
|
||||
CONFIG_ARCH_MSM=y
|
||||
|
||||
#
|
||||
# Boot options
|
||||
|
|
|
@ -41,7 +41,7 @@ static inline unsigned long iop13xx_core_freq(void)
|
|||
return 1200000000;
|
||||
default:
|
||||
printk("%s: warning unknown frequency, defaulting to 800Mhz\n",
|
||||
__FUNCTION__);
|
||||
__func__);
|
||||
}
|
||||
|
||||
return 800000000;
|
||||
|
@ -60,7 +60,7 @@ static inline unsigned long iop13xx_xsi_bus_ratio(void)
|
|||
return 4;
|
||||
default:
|
||||
printk("%s: warning unknown ratio, defaulting to 2\n",
|
||||
__FUNCTION__);
|
||||
__func__);
|
||||
}
|
||||
|
||||
return 2;
|
||||
|
|
|
@ -143,7 +143,7 @@ static struct irq_chip ixdp2x00_cpld_irq_chip = {
|
|||
.unmask = ixdp2x00_irq_unmask
|
||||
};
|
||||
|
||||
void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigned long *mask_reg, unsigned long nr_irqs)
|
||||
void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigned long *mask_reg, unsigned long nr_of_irqs)
|
||||
{
|
||||
unsigned int irq;
|
||||
|
||||
|
@ -154,7 +154,7 @@ void __init ixdp2x00_init_irq(volatile unsigned long *stat_reg, volatile unsigne
|
|||
|
||||
board_irq_stat = stat_reg;
|
||||
board_irq_mask = mask_reg;
|
||||
board_irq_count = nr_irqs;
|
||||
board_irq_count = nr_of_irqs;
|
||||
|
||||
*board_irq_mask = 0xffffffff;
|
||||
|
||||
|
|
|
@ -1,18 +1,13 @@
|
|||
if ARCH_MSM7X00A
|
||||
if ARCH_MSM
|
||||
|
||||
comment "MSM7X00A Board Type"
|
||||
depends on ARCH_MSM7X00A
|
||||
comment "MSM Board Type"
|
||||
depends on ARCH_MSM
|
||||
|
||||
config MACH_HALIBUT
|
||||
depends on ARCH_MSM7X00A
|
||||
depends on ARCH_MSM
|
||||
default y
|
||||
bool "Halibut Board (QCT SURF7200A)"
|
||||
bool "Halibut Board (QCT SURF7201A)"
|
||||
help
|
||||
Support for the Qualcomm SURF7200A eval board.
|
||||
|
||||
config MSM7X00A_IDLE
|
||||
depends on ARCH_MSM7X00A
|
||||
default y
|
||||
bool "Idle Support for MSM7X00A"
|
||||
Support for the Qualcomm SURF7201A eval board.
|
||||
|
||||
endif
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
obj-y += io.o idle.o irq.o timer.o dma.o
|
||||
|
||||
# Common code for board init
|
||||
obj-y += common.o
|
||||
obj-y += devices.o
|
||||
obj-y += proc_comm.o
|
||||
obj-y += vreg.o
|
||||
obj-y += clock.o clock-7x01a.o
|
||||
|
||||
obj-$(CONFIG_MACH_HALIBUT) += board-halibut.o
|
||||
|
||||
|
|
|
@ -33,6 +33,8 @@
|
|||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
#include "devices.h"
|
||||
|
||||
static struct resource smc91x_resources[] = {
|
||||
[0] = {
|
||||
.start = 0x9C004300,
|
||||
|
@ -53,31 +55,12 @@ static struct platform_device smc91x_device = {
|
|||
.resource = smc91x_resources,
|
||||
};
|
||||
|
||||
static void mddi0_panel_power(int on)
|
||||
{
|
||||
}
|
||||
|
||||
static struct msm_mddi_platform_data msm_mddi0_pdata = {
|
||||
.panel_power = mddi0_panel_power,
|
||||
.has_vsync_irq = 0,
|
||||
};
|
||||
|
||||
static struct platform_device msm_mddi0_device = {
|
||||
.name = "msm_mddi",
|
||||
.id = 0,
|
||||
.dev = {
|
||||
.platform_data = &msm_mddi0_pdata
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device msm_serial0_device = {
|
||||
.name = "msm_serial",
|
||||
.id = 0,
|
||||
};
|
||||
|
||||
static struct platform_device *devices[] __initdata = {
|
||||
&msm_serial0_device,
|
||||
&msm_mddi0_device,
|
||||
&msm_device_uart3,
|
||||
&msm_device_smd,
|
||||
&msm_device_nand,
|
||||
&msm_device_hsusb,
|
||||
&msm_device_i2c,
|
||||
&smc91x_device,
|
||||
};
|
||||
|
||||
|
@ -91,20 +74,15 @@ static void __init halibut_init_irq(void)
|
|||
static void __init halibut_init(void)
|
||||
{
|
||||
platform_add_devices(devices, ARRAY_SIZE(devices));
|
||||
msm_add_devices();
|
||||
}
|
||||
|
||||
static void __init halibut_map_io(void)
|
||||
{
|
||||
msm_map_common_io();
|
||||
msm_clock_init();
|
||||
}
|
||||
|
||||
MACHINE_START(HALIBUT, "Halibut Board (QCT SURF7200A)")
|
||||
|
||||
/* UART for LL DEBUG */
|
||||
.phys_io = MSM_UART1_PHYS,
|
||||
.io_pg_offst = ((MSM_UART1_BASE) >> 18) & 0xfffc,
|
||||
|
||||
.boot_params = 0x10000100,
|
||||
.map_io = halibut_map_io,
|
||||
.init_irq = halibut_init_irq,
|
||||
|
|
|
@ -0,0 +1,126 @@
|
|||
/* arch/arm/mach-msm/clock-7x01a.c
|
||||
*
|
||||
* Clock tables for MSM7X01A
|
||||
*
|
||||
* Copyright (C) 2007 Google, Inc.
|
||||
* Copyright (c) 2007 QUALCOMM Incorporated
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/platform_device.h>
|
||||
|
||||
#include "clock.h"
|
||||
#include "devices.h"
|
||||
|
||||
/* clock IDs used by the modem processor */
|
||||
|
||||
#define ACPU_CLK 0 /* Applications processor clock */
|
||||
#define ADM_CLK 1 /* Applications data mover clock */
|
||||
#define ADSP_CLK 2 /* ADSP clock */
|
||||
#define EBI1_CLK 3 /* External bus interface 1 clock */
|
||||
#define EBI2_CLK 4 /* External bus interface 2 clock */
|
||||
#define ECODEC_CLK 5 /* External CODEC clock */
|
||||
#define EMDH_CLK 6 /* External MDDI host clock */
|
||||
#define GP_CLK 7 /* General purpose clock */
|
||||
#define GRP_CLK 8 /* Graphics clock */
|
||||
#define I2C_CLK 9 /* I2C clock */
|
||||
#define ICODEC_RX_CLK 10 /* Internal CODEX RX clock */
|
||||
#define ICODEC_TX_CLK 11 /* Internal CODEX TX clock */
|
||||
#define IMEM_CLK 12 /* Internal graphics memory clock */
|
||||
#define MDC_CLK 13 /* MDDI client clock */
|
||||
#define MDP_CLK 14 /* Mobile display processor clock */
|
||||
#define PBUS_CLK 15 /* Peripheral bus clock */
|
||||
#define PCM_CLK 16 /* PCM clock */
|
||||
#define PMDH_CLK 17 /* Primary MDDI host clock */
|
||||
#define SDAC_CLK 18 /* Stereo DAC clock */
|
||||
#define SDC1_CLK 19 /* Secure Digital Card clocks */
|
||||
#define SDC1_PCLK 20
|
||||
#define SDC2_CLK 21
|
||||
#define SDC2_PCLK 22
|
||||
#define SDC3_CLK 23
|
||||
#define SDC3_PCLK 24
|
||||
#define SDC4_CLK 25
|
||||
#define SDC4_PCLK 26
|
||||
#define TSIF_CLK 27 /* Transport Stream Interface clocks */
|
||||
#define TSIF_REF_CLK 28
|
||||
#define TV_DAC_CLK 29 /* TV clocks */
|
||||
#define TV_ENC_CLK 30
|
||||
#define UART1_CLK 31 /* UART clocks */
|
||||
#define UART2_CLK 32
|
||||
#define UART3_CLK 33
|
||||
#define UART1DM_CLK 34
|
||||
#define UART2DM_CLK 35
|
||||
#define USB_HS_CLK 36 /* High speed USB core clock */
|
||||
#define USB_HS_PCLK 37 /* High speed USB pbus clock */
|
||||
#define USB_OTG_CLK 38 /* Full speed USB clock */
|
||||
#define VDC_CLK 39 /* Video controller clock */
|
||||
#define VFE_CLK 40 /* Camera / Video Front End clock */
|
||||
#define VFE_MDC_CLK 41 /* VFE MDDI client clock */
|
||||
|
||||
#define NR_CLKS 42
|
||||
|
||||
#define CLOCK(clk_name, clk_id, clk_dev, clk_flags) { \
|
||||
.name = clk_name, \
|
||||
.id = clk_id, \
|
||||
.flags = clk_flags, \
|
||||
.dev = clk_dev, \
|
||||
}
|
||||
|
||||
#define OFF CLKFLAG_AUTO_OFF
|
||||
#define MINMAX CLKFLAG_USE_MIN_MAX_TO_SET
|
||||
|
||||
struct clk msm_clocks[] = {
|
||||
CLOCK("adm_clk", ADM_CLK, NULL, 0),
|
||||
CLOCK("adsp_clk", ADSP_CLK, NULL, 0),
|
||||
CLOCK("ebi1_clk", EBI1_CLK, NULL, 0),
|
||||
CLOCK("ebi2_clk", EBI2_CLK, NULL, 0),
|
||||
CLOCK("ecodec_clk", ECODEC_CLK, NULL, 0),
|
||||
CLOCK("emdh_clk", EMDH_CLK, NULL, OFF),
|
||||
CLOCK("gp_clk", GP_CLK, NULL, 0),
|
||||
CLOCK("grp_clk", GRP_CLK, NULL, OFF),
|
||||
CLOCK("i2c_clk", I2C_CLK, &msm_device_i2c.dev, 0),
|
||||
CLOCK("icodec_rx_clk", ICODEC_RX_CLK, NULL, 0),
|
||||
CLOCK("icodec_tx_clk", ICODEC_TX_CLK, NULL, 0),
|
||||
CLOCK("imem_clk", IMEM_CLK, NULL, OFF),
|
||||
CLOCK("mdc_clk", MDC_CLK, NULL, 0),
|
||||
CLOCK("mdp_clk", MDP_CLK, NULL, OFF),
|
||||
CLOCK("pbus_clk", PBUS_CLK, NULL, 0),
|
||||
CLOCK("pcm_clk", PCM_CLK, NULL, 0),
|
||||
CLOCK("pmdh_clk", PMDH_CLK, NULL, OFF | MINMAX),
|
||||
CLOCK("sdac_clk", SDAC_CLK, NULL, OFF),
|
||||
CLOCK("sdc_clk", SDC1_CLK, &msm_device_sdc1.dev, OFF),
|
||||
CLOCK("sdc_pclk", SDC1_PCLK, &msm_device_sdc1.dev, OFF),
|
||||
CLOCK("sdc_clk", SDC2_CLK, &msm_device_sdc2.dev, OFF),
|
||||
CLOCK("sdc_pclk", SDC2_PCLK, &msm_device_sdc2.dev, OFF),
|
||||
CLOCK("sdc_clk", SDC3_CLK, &msm_device_sdc3.dev, OFF),
|
||||
CLOCK("sdc_pclk", SDC3_PCLK, &msm_device_sdc3.dev, OFF),
|
||||
CLOCK("sdc_clk", SDC4_CLK, &msm_device_sdc4.dev, OFF),
|
||||
CLOCK("sdc_pclk", SDC4_PCLK, &msm_device_sdc4.dev, OFF),
|
||||
CLOCK("tsif_clk", TSIF_CLK, NULL, 0),
|
||||
CLOCK("tsif_ref_clk", TSIF_REF_CLK, NULL, 0),
|
||||
CLOCK("tv_dac_clk", TV_DAC_CLK, NULL, 0),
|
||||
CLOCK("tv_enc_clk", TV_ENC_CLK, NULL, 0),
|
||||
CLOCK("uart_clk", UART1_CLK, &msm_device_uart1.dev, OFF),
|
||||
CLOCK("uart_clk", UART2_CLK, &msm_device_uart2.dev, 0),
|
||||
CLOCK("uart_clk", UART3_CLK, &msm_device_uart3.dev, OFF),
|
||||
CLOCK("uart1dm_clk", UART1DM_CLK, NULL, OFF),
|
||||
CLOCK("uart2dm_clk", UART2DM_CLK, NULL, 0),
|
||||
CLOCK("usb_hs_clk", USB_HS_CLK, &msm_device_hsusb.dev, OFF),
|
||||
CLOCK("usb_hs_pclk", USB_HS_PCLK, &msm_device_hsusb.dev, OFF),
|
||||
CLOCK("usb_otg_clk", USB_OTG_CLK, NULL, 0),
|
||||
CLOCK("vdc_clk", VDC_CLK, NULL, OFF | MINMAX),
|
||||
CLOCK("vfe_clk", VFE_CLK, NULL, OFF),
|
||||
CLOCK("vfe_mdc_clk", VFE_MDC_CLK, NULL, OFF),
|
||||
};
|
||||
|
||||
unsigned msm_num_clocks = ARRAY_SIZE(msm_clocks);
|
|
@ -0,0 +1,218 @@
|
|||
/* arch/arm/mach-msm/clock.c
|
||||
*
|
||||
* Copyright (C) 2007 Google, Inc.
|
||||
* Copyright (c) 2007 QUALCOMM Incorporated
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/version.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/clk.h>
|
||||
#include <linux/spinlock.h>
|
||||
|
||||
#include "clock.h"
|
||||
#include "proc_comm.h"
|
||||
|
||||
static DEFINE_MUTEX(clocks_mutex);
|
||||
static DEFINE_SPINLOCK(clocks_lock);
|
||||
static LIST_HEAD(clocks);
|
||||
|
||||
/*
|
||||
* glue for the proc_comm interface
|
||||
*/
|
||||
static inline int pc_clk_enable(unsigned id)
|
||||
{
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_ENABLE, &id, NULL);
|
||||
}
|
||||
|
||||
static inline void pc_clk_disable(unsigned id)
|
||||
{
|
||||
msm_proc_comm(PCOM_CLKCTL_RPC_DISABLE, &id, NULL);
|
||||
}
|
||||
|
||||
static inline int pc_clk_set_rate(unsigned id, unsigned rate)
|
||||
{
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_SET_RATE, &id, &rate);
|
||||
}
|
||||
|
||||
static inline int pc_clk_set_min_rate(unsigned id, unsigned rate)
|
||||
{
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_MIN_RATE, &id, &rate);
|
||||
}
|
||||
|
||||
static inline int pc_clk_set_max_rate(unsigned id, unsigned rate)
|
||||
{
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_MAX_RATE, &id, &rate);
|
||||
}
|
||||
|
||||
static inline int pc_clk_set_flags(unsigned id, unsigned flags)
|
||||
{
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_SET_FLAGS, &id, &flags);
|
||||
}
|
||||
|
||||
static inline unsigned pc_clk_get_rate(unsigned id)
|
||||
{
|
||||
if (msm_proc_comm(PCOM_CLKCTL_RPC_RATE, &id, NULL))
|
||||
return 0;
|
||||
else
|
||||
return id;
|
||||
}
|
||||
|
||||
static inline unsigned pc_clk_is_enabled(unsigned id)
|
||||
{
|
||||
if (msm_proc_comm(PCOM_CLKCTL_RPC_ENABLED, &id, NULL))
|
||||
return 0;
|
||||
else
|
||||
return id;
|
||||
}
|
||||
|
||||
static inline int pc_pll_request(unsigned id, unsigned on)
|
||||
{
|
||||
on = !!on;
|
||||
return msm_proc_comm(PCOM_CLKCTL_RPC_PLL_REQUEST, &id, &on);
|
||||
}
|
||||
|
||||
/*
|
||||
* Standard clock functions defined in include/linux/clk.h
|
||||
*/
|
||||
struct clk *clk_get(struct device *dev, const char *id)
|
||||
{
|
||||
struct clk *clk;
|
||||
|
||||
mutex_lock(&clocks_mutex);
|
||||
|
||||
list_for_each_entry(clk, &clocks, list)
|
||||
if (!strcmp(id, clk->name) && clk->dev == dev)
|
||||
goto found_it;
|
||||
|
||||
list_for_each_entry(clk, &clocks, list)
|
||||
if (!strcmp(id, clk->name) && clk->dev == NULL)
|
||||
goto found_it;
|
||||
|
||||
clk = ERR_PTR(-ENOENT);
|
||||
found_it:
|
||||
mutex_unlock(&clocks_mutex);
|
||||
return clk;
|
||||
}
|
||||
EXPORT_SYMBOL(clk_get);
|
||||
|
||||
void clk_put(struct clk *clk)
|
||||
{
|
||||
}
|
||||
EXPORT_SYMBOL(clk_put);
|
||||
|
||||
int clk_enable(struct clk *clk)
|
||||
{
|
||||
unsigned long flags;
|
||||
spin_lock_irqsave(&clocks_lock, flags);
|
||||
clk->count++;
|
||||
if (clk->count == 1)
|
||||
pc_clk_enable(clk->id);
|
||||
spin_unlock_irqrestore(&clocks_lock, flags);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(clk_enable);
|
||||
|
||||
void clk_disable(struct clk *clk)
|
||||
{
|
||||
unsigned long flags;
|
||||
spin_lock_irqsave(&clocks_lock, flags);
|
||||
BUG_ON(clk->count == 0);
|
||||
clk->count--;
|
||||
if (clk->count == 0)
|
||||
pc_clk_disable(clk->id);
|
||||
spin_unlock_irqrestore(&clocks_lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(clk_disable);
|
||||
|
||||
unsigned long clk_get_rate(struct clk *clk)
|
||||
{
|
||||
return pc_clk_get_rate(clk->id);
|
||||
}
|
||||
EXPORT_SYMBOL(clk_get_rate);
|
||||
|
||||
int clk_set_rate(struct clk *clk, unsigned long rate)
|
||||
{
|
||||
int ret;
|
||||
if (clk->flags & CLKFLAG_USE_MIN_MAX_TO_SET) {
|
||||
ret = pc_clk_set_max_rate(clk->id, rate);
|
||||
if (ret)
|
||||
return ret;
|
||||
return pc_clk_set_min_rate(clk->id, rate);
|
||||
}
|
||||
return pc_clk_set_rate(clk->id, rate);
|
||||
}
|
||||
EXPORT_SYMBOL(clk_set_rate);
|
||||
|
||||
int clk_set_parent(struct clk *clk, struct clk *parent)
|
||||
{
|
||||
return -ENOSYS;
|
||||
}
|
||||
EXPORT_SYMBOL(clk_set_parent);
|
||||
|
||||
struct clk *clk_get_parent(struct clk *clk)
|
||||
{
|
||||
return ERR_PTR(-ENOSYS);
|
||||
}
|
||||
EXPORT_SYMBOL(clk_get_parent);
|
||||
|
||||
int clk_set_flags(struct clk *clk, unsigned long flags)
|
||||
{
|
||||
if (clk == NULL || IS_ERR(clk))
|
||||
return -EINVAL;
|
||||
return pc_clk_set_flags(clk->id, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(clk_set_flags);
|
||||
|
||||
|
||||
void __init msm_clock_init(void)
|
||||
{
|
||||
unsigned n;
|
||||
|
||||
spin_lock_init(&clocks_lock);
|
||||
mutex_lock(&clocks_mutex);
|
||||
for (n = 0; n < msm_num_clocks; n++)
|
||||
list_add_tail(&msm_clocks[n].list, &clocks);
|
||||
mutex_unlock(&clocks_mutex);
|
||||
}
|
||||
|
||||
/* The bootloader and/or AMSS may have left various clocks enabled.
|
||||
* Disable any clocks that belong to us (CLKFLAG_AUTO_OFF) but have
|
||||
* not been explicitly enabled by a clk_enable() call.
|
||||
*/
|
||||
static int __init clock_late_init(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct clk *clk;
|
||||
unsigned count = 0;
|
||||
|
||||
mutex_lock(&clocks_mutex);
|
||||
list_for_each_entry(clk, &clocks, list) {
|
||||
if (clk->flags & CLKFLAG_AUTO_OFF) {
|
||||
spin_lock_irqsave(&clocks_lock, flags);
|
||||
if (!clk->count) {
|
||||
count++;
|
||||
pc_clk_disable(clk->id);
|
||||
}
|
||||
spin_unlock_irqrestore(&clocks_lock, flags);
|
||||
}
|
||||
}
|
||||
mutex_unlock(&clocks_mutex);
|
||||
pr_info("clock_late_init() disabled %d unused clocks\n", count);
|
||||
return 0;
|
||||
}
|
||||
|
||||
late_initcall(clock_late_init);
|
|
@ -0,0 +1,48 @@
|
|||
/* arch/arm/mach-msm/clock.h
|
||||
*
|
||||
* Copyright (C) 2007 Google, Inc.
|
||||
* Copyright (c) 2007 QUALCOMM Incorporated
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __ARCH_ARM_MACH_MSM_CLOCK_H
|
||||
#define __ARCH_ARM_MACH_MSM_CLOCK_H
|
||||
|
||||
#include <linux/list.h>
|
||||
|
||||
#define CLKFLAG_INVERT 0x00000001
|
||||
#define CLKFLAG_NOINVERT 0x00000002
|
||||
#define CLKFLAG_NONEST 0x00000004
|
||||
#define CLKFLAG_NORESET 0x00000008
|
||||
|
||||
#define CLK_FIRST_AVAILABLE_FLAG 0x00000100
|
||||
#define CLKFLAG_USE_MIN_MAX_TO_SET 0x00000200
|
||||
#define CLKFLAG_AUTO_OFF 0x00000400
|
||||
|
||||
struct clk {
|
||||
uint32_t id;
|
||||
uint32_t count;
|
||||
uint32_t flags;
|
||||
const char *name;
|
||||
struct list_head list;
|
||||
struct device *dev;
|
||||
};
|
||||
|
||||
#define A11S_CLK_CNTL_ADDR (MSM_CSR_BASE + 0x100)
|
||||
#define A11S_CLK_SEL_ADDR (MSM_CSR_BASE + 0x104)
|
||||
#define A11S_VDD_SVS_PLEVEL_ADDR (MSM_CSR_BASE + 0x124)
|
||||
|
||||
extern struct clk msm_clocks[];
|
||||
extern unsigned msm_num_clocks;
|
||||
|
||||
#endif
|
||||
|
|
@ -1,116 +0,0 @@
|
|||
/* linux/arch/arm/mach-msm/common.c
|
||||
*
|
||||
* Common setup code for MSM7K Boards
|
||||
*
|
||||
* Copyright (C) 2007 Google, Inc.
|
||||
* Author: Brian Swetland <swetland@google.com>
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/io.h>
|
||||
|
||||
#include <asm/mach/flash.h>
|
||||
|
||||
#include <asm/setup.h>
|
||||
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
#include <mach/msm_iomap.h>
|
||||
|
||||
#include <mach/board.h>
|
||||
|
||||
struct flash_platform_data msm_nand_data = {
|
||||
.parts = 0,
|
||||
.nr_parts = 0,
|
||||
};
|
||||
|
||||
static struct resource msm_nand_resources[] = {
|
||||
[0] = {
|
||||
.start = 7,
|
||||
.end = 7,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device msm_nand_device = {
|
||||
.name = "msm_nand",
|
||||
.id = -1,
|
||||
.num_resources = ARRAY_SIZE(msm_nand_resources),
|
||||
.resource = msm_nand_resources,
|
||||
.dev = {
|
||||
.platform_data = &msm_nand_data,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device msm_smd_device = {
|
||||
.name = "msm_smd",
|
||||
.id = -1,
|
||||
};
|
||||
|
||||
static struct resource msm_i2c_resources[] = {
|
||||
{
|
||||
.start = MSM_I2C_BASE,
|
||||
.end = MSM_I2C_BASE + MSM_I2C_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_PWB_I2C,
|
||||
.end = INT_PWB_I2C,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device msm_i2c_device = {
|
||||
.name = "msm_i2c",
|
||||
.id = 0,
|
||||
.num_resources = ARRAY_SIZE(msm_i2c_resources),
|
||||
.resource = msm_i2c_resources,
|
||||
};
|
||||
|
||||
static struct resource usb_resources[] = {
|
||||
{
|
||||
.start = MSM_HSUSB_PHYS,
|
||||
.end = MSM_HSUSB_PHYS + MSM_HSUSB_SIZE,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_USB_HS,
|
||||
.end = INT_USB_HS,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device msm_hsusb_device = {
|
||||
.name = "msm_hsusb",
|
||||
.id = -1,
|
||||
.num_resources = ARRAY_SIZE(usb_resources),
|
||||
.resource = usb_resources,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device *devices[] __initdata = {
|
||||
&msm_nand_device,
|
||||
&msm_smd_device,
|
||||
&msm_i2c_device,
|
||||
&msm_hsusb_device,
|
||||
};
|
||||
|
||||
void __init msm_add_devices(void)
|
||||
{
|
||||
platform_add_devices(devices, ARRAY_SIZE(devices));
|
||||
}
|
|
@ -0,0 +1,267 @@
|
|||
/* linux/arch/arm/mach-msm/devices.c
|
||||
*
|
||||
* Copyright (C) 2008 Google, Inc.
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/platform_device.h>
|
||||
|
||||
#include <mach/msm_iomap.h>
|
||||
#include "devices.h"
|
||||
|
||||
#include <asm/mach/flash.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
static struct resource resources_uart1[] = {
|
||||
{
|
||||
.start = INT_UART1,
|
||||
.end = INT_UART1,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = MSM_UART1_PHYS,
|
||||
.end = MSM_UART1_PHYS + MSM_UART1_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource resources_uart2[] = {
|
||||
{
|
||||
.start = INT_UART2,
|
||||
.end = INT_UART2,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = MSM_UART2_PHYS,
|
||||
.end = MSM_UART2_PHYS + MSM_UART2_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource resources_uart3[] = {
|
||||
{
|
||||
.start = INT_UART3,
|
||||
.end = INT_UART3,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = MSM_UART3_PHYS,
|
||||
.end = MSM_UART3_PHYS + MSM_UART3_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_uart1 = {
|
||||
.name = "msm_serial",
|
||||
.id = 0,
|
||||
.num_resources = ARRAY_SIZE(resources_uart1),
|
||||
.resource = resources_uart1,
|
||||
};
|
||||
|
||||
struct platform_device msm_device_uart2 = {
|
||||
.name = "msm_serial",
|
||||
.id = 1,
|
||||
.num_resources = ARRAY_SIZE(resources_uart2),
|
||||
.resource = resources_uart2,
|
||||
};
|
||||
|
||||
struct platform_device msm_device_uart3 = {
|
||||
.name = "msm_serial",
|
||||
.id = 2,
|
||||
.num_resources = ARRAY_SIZE(resources_uart3),
|
||||
.resource = resources_uart3,
|
||||
};
|
||||
|
||||
static struct resource resources_i2c[] = {
|
||||
{
|
||||
.start = MSM_I2C_PHYS,
|
||||
.end = MSM_I2C_PHYS + MSM_I2C_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_PWB_I2C,
|
||||
.end = INT_PWB_I2C,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_i2c = {
|
||||
.name = "msm_i2c",
|
||||
.id = 0,
|
||||
.num_resources = ARRAY_SIZE(resources_i2c),
|
||||
.resource = resources_i2c,
|
||||
};
|
||||
|
||||
static struct resource resources_hsusb[] = {
|
||||
{
|
||||
.start = MSM_HSUSB_PHYS,
|
||||
.end = MSM_HSUSB_PHYS + MSM_HSUSB_SIZE,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_USB_HS,
|
||||
.end = INT_USB_HS,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_hsusb = {
|
||||
.name = "msm_hsusb",
|
||||
.id = -1,
|
||||
.num_resources = ARRAY_SIZE(resources_hsusb),
|
||||
.resource = resources_hsusb,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
||||
|
||||
struct flash_platform_data msm_nand_data = {
|
||||
.parts = NULL,
|
||||
.nr_parts = 0,
|
||||
};
|
||||
|
||||
static struct resource resources_nand[] = {
|
||||
[0] = {
|
||||
.start = 7,
|
||||
.end = 7,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_nand = {
|
||||
.name = "msm_nand",
|
||||
.id = -1,
|
||||
.num_resources = ARRAY_SIZE(resources_nand),
|
||||
.resource = resources_nand,
|
||||
.dev = {
|
||||
.platform_data = &msm_nand_data,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_smd = {
|
||||
.name = "msm_smd",
|
||||
.id = -1,
|
||||
};
|
||||
|
||||
static struct resource resources_sdc1[] = {
|
||||
{
|
||||
.start = MSM_SDC1_PHYS,
|
||||
.end = MSM_SDC1_PHYS + MSM_SDC1_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_SDC1_0,
|
||||
.end = INT_SDC1_1,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = 8,
|
||||
.end = 8,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource resources_sdc2[] = {
|
||||
{
|
||||
.start = MSM_SDC2_PHYS,
|
||||
.end = MSM_SDC2_PHYS + MSM_SDC2_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_SDC2_0,
|
||||
.end = INT_SDC2_1,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = 8,
|
||||
.end = 8,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource resources_sdc3[] = {
|
||||
{
|
||||
.start = MSM_SDC3_PHYS,
|
||||
.end = MSM_SDC3_PHYS + MSM_SDC3_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_SDC3_0,
|
||||
.end = INT_SDC3_1,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = 8,
|
||||
.end = 8,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource resources_sdc4[] = {
|
||||
{
|
||||
.start = MSM_SDC4_PHYS,
|
||||
.end = MSM_SDC4_PHYS + MSM_SDC4_SIZE - 1,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
{
|
||||
.start = INT_SDC4_0,
|
||||
.end = INT_SDC4_1,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
{
|
||||
.start = 8,
|
||||
.end = 8,
|
||||
.flags = IORESOURCE_DMA,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_sdc1 = {
|
||||
.name = "msm_sdcc",
|
||||
.id = 1,
|
||||
.num_resources = ARRAY_SIZE(resources_sdc1),
|
||||
.resource = resources_sdc1,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_sdc2 = {
|
||||
.name = "msm_sdcc",
|
||||
.id = 2,
|
||||
.num_resources = ARRAY_SIZE(resources_sdc2),
|
||||
.resource = resources_sdc2,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_sdc3 = {
|
||||
.name = "msm_sdcc",
|
||||
.id = 3,
|
||||
.num_resources = ARRAY_SIZE(resources_sdc3),
|
||||
.resource = resources_sdc3,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
||||
|
||||
struct platform_device msm_device_sdc4 = {
|
||||
.name = "msm_sdcc",
|
||||
.id = 4,
|
||||
.num_resources = ARRAY_SIZE(resources_sdc4),
|
||||
.resource = resources_sdc4,
|
||||
.dev = {
|
||||
.coherent_dma_mask = 0xffffffff,
|
||||
},
|
||||
};
|
|
@ -0,0 +1,36 @@
|
|||
/* linux/arch/arm/mach-msm/devices.h
|
||||
*
|
||||
* Copyright (C) 2008 Google, Inc.
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __ARCH_ARM_MACH_MSM_DEVICES_H
|
||||
#define __ARCH_ARM_MACH_MSM_DEVICES_H
|
||||
|
||||
extern struct platform_device msm_device_uart1;
|
||||
extern struct platform_device msm_device_uart2;
|
||||
extern struct platform_device msm_device_uart3;
|
||||
|
||||
extern struct platform_device msm_device_sdc1;
|
||||
extern struct platform_device msm_device_sdc2;
|
||||
extern struct platform_device msm_device_sdc3;
|
||||
extern struct platform_device msm_device_sdc4;
|
||||
|
||||
extern struct platform_device msm_device_hsusb;
|
||||
|
||||
extern struct platform_device msm_device_i2c;
|
||||
|
||||
extern struct platform_device msm_device_smd;
|
||||
|
||||
extern struct platform_device msm_device_nand;
|
||||
|
||||
#endif
|
|
@ -26,7 +26,7 @@ enum {
|
|||
};
|
||||
|
||||
static DEFINE_SPINLOCK(msm_dmov_lock);
|
||||
static struct msm_dmov_cmd active_command;
|
||||
static unsigned int channel_active;
|
||||
static struct list_head ready_commands[MSM_DMOV_CHANNEL_COUNT];
|
||||
static struct list_head active_commands[MSM_DMOV_CHANNEL_COUNT];
|
||||
unsigned int msm_dmov_print_mask = MSM_DMOV_PRINT_ERRORS;
|
||||
|
@ -43,6 +43,11 @@ unsigned int msm_dmov_print_mask = MSM_DMOV_PRINT_ERRORS;
|
|||
#define PRINT_FLOW(format, args...) \
|
||||
MSM_DMOV_DPRINTF(MSM_DMOV_PRINT_FLOW, format, args);
|
||||
|
||||
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd, int graceful)
|
||||
{
|
||||
writel((graceful << 31), DMOV_FLUSH0(id));
|
||||
}
|
||||
|
||||
void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd)
|
||||
{
|
||||
unsigned long irq_flags;
|
||||
|
@ -60,6 +65,9 @@ void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd)
|
|||
#endif
|
||||
PRINT_IO("msm_dmov_enqueue_cmd(%d), start command, status %x\n", id, status);
|
||||
list_add_tail(&cmd->list, &active_commands[id]);
|
||||
if (!channel_active)
|
||||
enable_irq(INT_ADM_AARM);
|
||||
channel_active |= 1U << id;
|
||||
writel(cmd->cmdptr, DMOV_CMD_PTR(id));
|
||||
} else {
|
||||
if (list_empty(&active_commands[id]))
|
||||
|
@ -76,21 +84,19 @@ struct msm_dmov_exec_cmdptr_cmd {
|
|||
struct completion complete;
|
||||
unsigned id;
|
||||
unsigned int result;
|
||||
unsigned int flush[6];
|
||||
struct msm_dmov_errdata err;
|
||||
};
|
||||
|
||||
static void dmov_exec_cmdptr_complete_func(struct msm_dmov_cmd *_cmd, unsigned int result)
|
||||
static void
|
||||
dmov_exec_cmdptr_complete_func(struct msm_dmov_cmd *_cmd,
|
||||
unsigned int result,
|
||||
struct msm_dmov_errdata *err)
|
||||
{
|
||||
struct msm_dmov_exec_cmdptr_cmd *cmd = container_of(_cmd, struct msm_dmov_exec_cmdptr_cmd, dmov_cmd);
|
||||
cmd->result = result;
|
||||
if (result != 0x80000002) {
|
||||
cmd->flush[0] = readl(DMOV_FLUSH0(cmd->id));
|
||||
cmd->flush[1] = readl(DMOV_FLUSH1(cmd->id));
|
||||
cmd->flush[2] = readl(DMOV_FLUSH2(cmd->id));
|
||||
cmd->flush[3] = readl(DMOV_FLUSH3(cmd->id));
|
||||
cmd->flush[4] = readl(DMOV_FLUSH4(cmd->id));
|
||||
cmd->flush[5] = readl(DMOV_FLUSH5(cmd->id));
|
||||
}
|
||||
if (result != 0x80000002 && err)
|
||||
memcpy(&cmd->err, err, sizeof(struct msm_dmov_errdata));
|
||||
|
||||
complete(&cmd->complete);
|
||||
}
|
||||
|
||||
|
@ -111,7 +117,7 @@ int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr)
|
|||
if (cmd.result != 0x80000002) {
|
||||
PRINT_ERROR("dmov_exec_cmdptr(%d): ERROR, result: %x\n", id, cmd.result);
|
||||
PRINT_ERROR("dmov_exec_cmdptr(%d): flush: %x %x %x %x\n",
|
||||
id, cmd.flush[0], cmd.flush[1], cmd.flush[2], cmd.flush[3]);
|
||||
id, cmd.err.flush[0], cmd.err.flush[1], cmd.err.flush[2], cmd.err.flush[3]);
|
||||
return -EIO;
|
||||
}
|
||||
PRINT_FLOW("dmov_exec_cmdptr(%d, %x) done\n", id, cmdptr);
|
||||
|
@ -159,25 +165,40 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
|
|||
"for %p, result %x\n", id, cmd, ch_result);
|
||||
if (cmd) {
|
||||
list_del(&cmd->list);
|
||||
cmd->complete_func(cmd, ch_result);
|
||||
cmd->complete_func(cmd, ch_result, NULL);
|
||||
}
|
||||
}
|
||||
if (ch_result & DMOV_RSLT_FLUSH) {
|
||||
unsigned int flush0 = readl(DMOV_FLUSH0(id));
|
||||
struct msm_dmov_errdata errdata;
|
||||
|
||||
errdata.flush[0] = readl(DMOV_FLUSH0(id));
|
||||
errdata.flush[1] = readl(DMOV_FLUSH1(id));
|
||||
errdata.flush[2] = readl(DMOV_FLUSH2(id));
|
||||
errdata.flush[3] = readl(DMOV_FLUSH3(id));
|
||||
errdata.flush[4] = readl(DMOV_FLUSH4(id));
|
||||
errdata.flush[5] = readl(DMOV_FLUSH5(id));
|
||||
PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
|
||||
PRINT_FLOW("msm_datamover_irq_handler id %d, flush, result %x, flush0 %x\n", id, ch_result, flush0);
|
||||
PRINT_FLOW("msm_datamover_irq_handler id %d, flush, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]);
|
||||
if (cmd) {
|
||||
list_del(&cmd->list);
|
||||
cmd->complete_func(cmd, ch_result);
|
||||
cmd->complete_func(cmd, ch_result, &errdata);
|
||||
}
|
||||
}
|
||||
if (ch_result & DMOV_RSLT_ERROR) {
|
||||
unsigned int flush0 = readl(DMOV_FLUSH0(id));
|
||||
struct msm_dmov_errdata errdata;
|
||||
|
||||
errdata.flush[0] = readl(DMOV_FLUSH0(id));
|
||||
errdata.flush[1] = readl(DMOV_FLUSH1(id));
|
||||
errdata.flush[2] = readl(DMOV_FLUSH2(id));
|
||||
errdata.flush[3] = readl(DMOV_FLUSH3(id));
|
||||
errdata.flush[4] = readl(DMOV_FLUSH4(id));
|
||||
errdata.flush[5] = readl(DMOV_FLUSH5(id));
|
||||
|
||||
PRINT_ERROR("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
|
||||
PRINT_ERROR("msm_datamover_irq_handler id %d, error, result %x, flush0 %x\n", id, ch_result, flush0);
|
||||
PRINT_ERROR("msm_datamover_irq_handler id %d, error, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]);
|
||||
if (cmd) {
|
||||
list_del(&cmd->list);
|
||||
cmd->complete_func(cmd, ch_result);
|
||||
cmd->complete_func(cmd, ch_result, &errdata);
|
||||
}
|
||||
/* this does not seem to work, once we get an error */
|
||||
/* the datamover will no longer accept commands */
|
||||
|
@ -193,8 +214,14 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
|
|||
writel(cmd->cmdptr, DMOV_CMD_PTR(id));
|
||||
}
|
||||
} while (ch_status & DMOV_STATUS_RSLT_VALID);
|
||||
if (list_empty(&active_commands[id]) && list_empty(&ready_commands[id]))
|
||||
channel_active &= ~(1U << id);
|
||||
PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status);
|
||||
}
|
||||
|
||||
if (!channel_active)
|
||||
disable_irq(INT_ADM_AARM);
|
||||
|
||||
spin_unlock_irqrestore(&msm_dmov_lock, irq_flags);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
@ -202,12 +229,17 @@ static irqreturn_t msm_datamover_irq_handler(int irq, void *dev_id)
|
|||
static int __init msm_init_datamover(void)
|
||||
{
|
||||
int i;
|
||||
int ret;
|
||||
for (i = 0; i < MSM_DMOV_CHANNEL_COUNT; i++) {
|
||||
INIT_LIST_HEAD(&ready_commands[i]);
|
||||
INIT_LIST_HEAD(&active_commands[i]);
|
||||
writel(DMOV_CONFIG_IRQ_EN | DMOV_CONFIG_FORCE_TOP_PTR_RSLT | DMOV_CONFIG_FORCE_FLUSH_RSLT, DMOV_CONFIG(i));
|
||||
}
|
||||
return request_irq(INT_ADM_AARM, msm_datamover_irq_handler, 0, "msmdatamover", NULL);
|
||||
ret = request_irq(INT_ADM_AARM, msm_datamover_irq_handler, 0, "msmdatamover", NULL);
|
||||
if (ret)
|
||||
return ret;
|
||||
disable_irq(INT_ADM_AARM);
|
||||
return 0;
|
||||
}
|
||||
|
||||
arch_initcall(msm_init_datamover);
|
||||
|
|
|
@ -33,5 +33,6 @@ void __init msm_add_devices(void);
|
|||
void __init msm_map_common_io(void);
|
||||
void __init msm_init_irq(void);
|
||||
void __init msm_init_gpio(void);
|
||||
void __init msm_clock_init(void);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -22,18 +22,22 @@
|
|||
mrc p15, 0, \rx, c1, c0
|
||||
tst \rx, #1
|
||||
ldreq \rx, =MSM_UART1_PHYS
|
||||
ldrne \rx, =MSM_UART1_BASE
|
||||
movne \rx, #0
|
||||
.endm
|
||||
|
||||
.macro senduart,rd,rx
|
||||
str \rd, [\rx, #0x0C]
|
||||
teq \rx, #0
|
||||
strne \rd, [\rx, #0x0C]
|
||||
.endm
|
||||
|
||||
.macro waituart,rd,rx
|
||||
@ wait for TX_READY
|
||||
teq \rx, #0
|
||||
bne 2f
|
||||
1: ldr \rd, [\rx, #0x08]
|
||||
tst \rd, #0x04
|
||||
beq 1b
|
||||
2:
|
||||
.endm
|
||||
|
||||
.macro busyuart,rd,rx
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* arch/arm/mach-msm/include/mach/dma.h
|
||||
/* linux/include/asm-arm/arch-msm/dma.h
|
||||
*
|
||||
* Copyright (C) 2007 Google, Inc.
|
||||
*
|
||||
|
@ -18,17 +18,21 @@
|
|||
#include <linux/list.h>
|
||||
#include <mach/msm_iomap.h>
|
||||
|
||||
struct msm_dmov_errdata {
|
||||
uint32_t flush[6];
|
||||
};
|
||||
|
||||
struct msm_dmov_cmd {
|
||||
struct list_head list;
|
||||
unsigned int cmdptr;
|
||||
void (*complete_func)(struct msm_dmov_cmd *cmd, unsigned int result);
|
||||
/* void (*user_result_func)(struct msm_dmov_cmd *cmd); */
|
||||
void (*complete_func)(struct msm_dmov_cmd *cmd,
|
||||
unsigned int result,
|
||||
struct msm_dmov_errdata *err);
|
||||
};
|
||||
|
||||
void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd);
|
||||
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd);
|
||||
void msm_dmov_stop_cmd(unsigned id, struct msm_dmov_cmd *cmd, int graceful);
|
||||
int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr);
|
||||
/* int msm_dmov_exec_cmd_etc(unsigned id, unsigned int cmdptr, int timeout, int interruptible); */
|
||||
|
||||
|
||||
|
||||
|
@ -122,6 +126,16 @@ typedef struct {
|
|||
unsigned _reserved;
|
||||
} dmov_sg;
|
||||
|
||||
/* Box mode */
|
||||
typedef struct {
|
||||
uint32_t cmd;
|
||||
uint32_t src_row_addr;
|
||||
uint32_t dst_row_addr;
|
||||
uint32_t src_dst_len;
|
||||
uint32_t num_rows;
|
||||
uint32_t row_offset;
|
||||
} dmov_box;
|
||||
|
||||
/* bits for the cmd field of the above structures */
|
||||
|
||||
#define CMD_LC (1 << 31) /* last command */
|
||||
|
|
|
@ -37,11 +37,17 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#define MSM_VIC_BASE 0xE0000000
|
||||
#ifdef __ASSEMBLY__
|
||||
#define IOMEM(x) x
|
||||
#else
|
||||
#define IOMEM(x) ((void __force __iomem *)(x))
|
||||
#endif
|
||||
|
||||
#define MSM_VIC_BASE IOMEM(0xE0000000)
|
||||
#define MSM_VIC_PHYS 0xC0000000
|
||||
#define MSM_VIC_SIZE SZ_4K
|
||||
|
||||
#define MSM_CSR_BASE 0xE0001000
|
||||
#define MSM_CSR_BASE IOMEM(0xE0001000)
|
||||
#define MSM_CSR_PHYS 0xC0100000
|
||||
#define MSM_CSR_SIZE SZ_4K
|
||||
|
||||
|
@ -49,56 +55,67 @@
|
|||
#define MSM_GPT_BASE MSM_CSR_BASE
|
||||
#define MSM_GPT_SIZE SZ_4K
|
||||
|
||||
#define MSM_DMOV_BASE 0xE0002000
|
||||
#define MSM_DMOV_BASE IOMEM(0xE0002000)
|
||||
#define MSM_DMOV_PHYS 0xA9700000
|
||||
#define MSM_DMOV_SIZE SZ_4K
|
||||
|
||||
#define MSM_UART1_BASE 0xE0003000
|
||||
#define MSM_UART1_PHYS 0xA9A00000
|
||||
#define MSM_UART1_SIZE SZ_4K
|
||||
|
||||
#define MSM_UART2_BASE 0xE0004000
|
||||
#define MSM_UART2_PHYS 0xA9B00000
|
||||
#define MSM_UART2_SIZE SZ_4K
|
||||
|
||||
#define MSM_UART3_BASE 0xE0005000
|
||||
#define MSM_UART3_PHYS 0xA9C00000
|
||||
#define MSM_UART3_SIZE SZ_4K
|
||||
|
||||
#define MSM_I2C_BASE 0xE0006000
|
||||
#define MSM_I2C_PHYS 0xA9900000
|
||||
#define MSM_I2C_SIZE SZ_4K
|
||||
|
||||
#define MSM_GPIO1_BASE 0xE0007000
|
||||
#define MSM_GPIO1_BASE IOMEM(0xE0003000)
|
||||
#define MSM_GPIO1_PHYS 0xA9200000
|
||||
#define MSM_GPIO1_SIZE SZ_4K
|
||||
|
||||
#define MSM_GPIO2_BASE 0xE0008000
|
||||
#define MSM_GPIO2_BASE IOMEM(0xE0004000)
|
||||
#define MSM_GPIO2_PHYS 0xA9300000
|
||||
#define MSM_GPIO2_SIZE SZ_4K
|
||||
|
||||
#define MSM_HSUSB_BASE 0xE0009000
|
||||
#define MSM_HSUSB_PHYS 0xA0800000
|
||||
#define MSM_HSUSB_SIZE SZ_4K
|
||||
|
||||
#define MSM_CLK_CTL_BASE 0xE000A000
|
||||
#define MSM_CLK_CTL_BASE IOMEM(0xE0005000)
|
||||
#define MSM_CLK_CTL_PHYS 0xA8600000
|
||||
#define MSM_CLK_CTL_SIZE SZ_4K
|
||||
|
||||
#define MSM_PMDH_BASE 0xE000B000
|
||||
#define MSM_PMDH_PHYS 0xAA600000
|
||||
#define MSM_PMDH_SIZE SZ_4K
|
||||
|
||||
#define MSM_EMDH_BASE 0xE000C000
|
||||
#define MSM_EMDH_PHYS 0xAA700000
|
||||
#define MSM_EMDH_SIZE SZ_4K
|
||||
|
||||
#define MSM_MDP_BASE 0xE0010000
|
||||
#define MSM_MDP_PHYS 0xAA200000
|
||||
#define MSM_MDP_SIZE 0x000F0000
|
||||
|
||||
#define MSM_SHARED_RAM_BASE 0xE0100000
|
||||
#define MSM_SHARED_RAM_BASE IOMEM(0xE0100000)
|
||||
#define MSM_SHARED_RAM_PHYS 0x01F00000
|
||||
#define MSM_SHARED_RAM_SIZE SZ_1M
|
||||
|
||||
#define MSM_UART1_PHYS 0xA9A00000
|
||||
#define MSM_UART1_SIZE SZ_4K
|
||||
|
||||
#define MSM_UART2_PHYS 0xA9B00000
|
||||
#define MSM_UART2_SIZE SZ_4K
|
||||
|
||||
#define MSM_UART3_PHYS 0xA9C00000
|
||||
#define MSM_UART3_SIZE SZ_4K
|
||||
|
||||
#define MSM_SDC1_PHYS 0xA0400000
|
||||
#define MSM_SDC1_SIZE SZ_4K
|
||||
|
||||
#define MSM_SDC2_PHYS 0xA0500000
|
||||
#define MSM_SDC2_SIZE SZ_4K
|
||||
|
||||
#define MSM_SDC3_PHYS 0xA0600000
|
||||
#define MSM_SDC3_SIZE SZ_4K
|
||||
|
||||
#define MSM_SDC4_PHYS 0xA0700000
|
||||
#define MSM_SDC4_SIZE SZ_4K
|
||||
|
||||
#define MSM_I2C_PHYS 0xA9900000
|
||||
#define MSM_I2C_SIZE SZ_4K
|
||||
|
||||
#define MSM_HSUSB_PHYS 0xA0800000
|
||||
#define MSM_HSUSB_SIZE SZ_4K
|
||||
|
||||
#define MSM_PMDH_PHYS 0xAA600000
|
||||
#define MSM_PMDH_SIZE SZ_4K
|
||||
|
||||
#define MSM_EMDH_PHYS 0xAA700000
|
||||
#define MSM_EMDH_SIZE SZ_4K
|
||||
|
||||
#define MSM_MDP_PHYS 0xAA200000
|
||||
#define MSM_MDP_SIZE 0x000F0000
|
||||
|
||||
#define MSM_MDC_PHYS 0xAA500000
|
||||
#define MSM_MDC_SIZE SZ_1M
|
||||
|
||||
#define MSM_AD5_PHYS 0xAC000000
|
||||
#define MSM_AD5_SIZE (SZ_1M*13)
|
||||
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
/* linux/include/asm-arm/arch-msm/vreg.h
|
||||
*
|
||||
* Copyright (C) 2008 Google, Inc.
|
||||
* Author: Brian Swetland <swetland@google.com>
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __ARCH_ARM_MACH_MSM_VREG_H
|
||||
#define __ARCH_ARM_MACH_MSM_VREG_H
|
||||
|
||||
struct vreg;
|
||||
|
||||
struct vreg *vreg_get(struct device *dev, const char *id);
|
||||
void vreg_put(struct vreg *vreg);
|
||||
|
||||
int vreg_enable(struct vreg *vreg);
|
||||
void vreg_disable(struct vreg *vreg);
|
||||
int vreg_set_level(struct vreg *vreg, unsigned mv);
|
||||
|
||||
#endif
|
|
@ -28,7 +28,7 @@
|
|||
#include <mach/board.h>
|
||||
|
||||
#define MSM_DEVICE(name) { \
|
||||
.virtual = MSM_##name##_BASE, \
|
||||
.virtual = (unsigned long) MSM_##name##_BASE, \
|
||||
.pfn = __phys_to_pfn(MSM_##name##_PHYS), \
|
||||
.length = MSM_##name##_SIZE, \
|
||||
.type = MT_DEVICE_NONSHARED, \
|
||||
|
@ -39,19 +39,11 @@ static struct map_desc msm_io_desc[] __initdata = {
|
|||
MSM_DEVICE(CSR),
|
||||
MSM_DEVICE(GPT),
|
||||
MSM_DEVICE(DMOV),
|
||||
MSM_DEVICE(UART1),
|
||||
MSM_DEVICE(UART2),
|
||||
MSM_DEVICE(UART3),
|
||||
MSM_DEVICE(I2C),
|
||||
MSM_DEVICE(GPIO1),
|
||||
MSM_DEVICE(GPIO2),
|
||||
MSM_DEVICE(HSUSB),
|
||||
MSM_DEVICE(CLK_CTL),
|
||||
MSM_DEVICE(PMDH),
|
||||
MSM_DEVICE(EMDH),
|
||||
MSM_DEVICE(MDP),
|
||||
{
|
||||
.virtual = MSM_SHARED_RAM_BASE,
|
||||
.virtual = (unsigned long) MSM_SHARED_RAM_BASE,
|
||||
.pfn = __phys_to_pfn(MSM_SHARED_RAM_PHYS),
|
||||
.length = MSM_SHARED_RAM_SIZE,
|
||||
.type = MT_DEVICE,
|
||||
|
|
|
@ -66,20 +66,20 @@
|
|||
|
||||
static void msm_irq_ack(unsigned int irq)
|
||||
{
|
||||
unsigned reg = VIC_INT_CLEAR0 + ((irq & 32) ? 4 : 0);
|
||||
void __iomem *reg = VIC_INT_CLEAR0 + ((irq & 32) ? 4 : 0);
|
||||
irq = 1 << (irq & 31);
|
||||
writel(irq, reg);
|
||||
}
|
||||
|
||||
static void msm_irq_mask(unsigned int irq)
|
||||
{
|
||||
unsigned reg = VIC_INT_ENCLEAR0 + ((irq & 32) ? 4 : 0);
|
||||
void __iomem *reg = VIC_INT_ENCLEAR0 + ((irq & 32) ? 4 : 0);
|
||||
writel(1 << (irq & 31), reg);
|
||||
}
|
||||
|
||||
static void msm_irq_unmask(unsigned int irq)
|
||||
{
|
||||
unsigned reg = VIC_INT_ENSET0 + ((irq & 32) ? 4 : 0);
|
||||
void __iomem *reg = VIC_INT_ENSET0 + ((irq & 32) ? 4 : 0);
|
||||
writel(1 << (irq & 31), reg);
|
||||
}
|
||||
|
||||
|
@ -90,8 +90,8 @@ static int msm_irq_set_wake(unsigned int irq, unsigned int on)
|
|||
|
||||
static int msm_irq_set_type(unsigned int irq, unsigned int flow_type)
|
||||
{
|
||||
unsigned treg = VIC_INT_TYPE0 + ((irq & 32) ? 4 : 0);
|
||||
unsigned preg = VIC_INT_POLARITY0 + ((irq & 32) ? 4 : 0);
|
||||
void __iomem *treg = VIC_INT_TYPE0 + ((irq & 32) ? 4 : 0);
|
||||
void __iomem *preg = VIC_INT_POLARITY0 + ((irq & 32) ? 4 : 0);
|
||||
int b = 1 << (irq & 31);
|
||||
|
||||
if (flow_type & (IRQF_TRIGGER_FALLING | IRQF_TRIGGER_LOW))
|
||||
|
|
|
@ -0,0 +1,110 @@
|
|||
/* arch/arm/mach-msm/proc_comm.c
|
||||
*
|
||||
* Copyright (C) 2007-2008 Google, Inc.
|
||||
* Author: Brian Swetland <swetland@google.com>
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/delay.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <mach/msm_iomap.h>
|
||||
#include <mach/system.h>
|
||||
|
||||
#include "proc_comm.h"
|
||||
|
||||
#define MSM_A2M_INT(n) (MSM_CSR_BASE + 0x400 + (n) * 4)
|
||||
|
||||
static inline void notify_other_proc_comm(void)
|
||||
{
|
||||
writel(1, MSM_A2M_INT(6));
|
||||
}
|
||||
|
||||
#define APP_COMMAND 0x00
|
||||
#define APP_STATUS 0x04
|
||||
#define APP_DATA1 0x08
|
||||
#define APP_DATA2 0x0C
|
||||
|
||||
#define MDM_COMMAND 0x10
|
||||
#define MDM_STATUS 0x14
|
||||
#define MDM_DATA1 0x18
|
||||
#define MDM_DATA2 0x1C
|
||||
|
||||
static DEFINE_SPINLOCK(proc_comm_lock);
|
||||
|
||||
/* The higher level SMD support will install this to
|
||||
* provide a way to check for and handle modem restart.
|
||||
*/
|
||||
int (*msm_check_for_modem_crash)(void);
|
||||
|
||||
/* Poll for a state change, checking for possible
|
||||
* modem crashes along the way (so we don't wait
|
||||
* forever while the ARM9 is blowing up).
|
||||
*
|
||||
* Return an error in the event of a modem crash and
|
||||
* restart so the msm_proc_comm() routine can restart
|
||||
* the operation from the beginning.
|
||||
*/
|
||||
static int proc_comm_wait_for(void __iomem *addr, unsigned value)
|
||||
{
|
||||
for (;;) {
|
||||
if (readl(addr) == value)
|
||||
return 0;
|
||||
|
||||
if (msm_check_for_modem_crash)
|
||||
if (msm_check_for_modem_crash())
|
||||
return -EAGAIN;
|
||||
}
|
||||
}
|
||||
|
||||
int msm_proc_comm(unsigned cmd, unsigned *data1, unsigned *data2)
|
||||
{
|
||||
void __iomem *base = MSM_SHARED_RAM_BASE;
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
|
||||
spin_lock_irqsave(&proc_comm_lock, flags);
|
||||
|
||||
for (;;) {
|
||||
if (proc_comm_wait_for(base + MDM_STATUS, PCOM_READY))
|
||||
continue;
|
||||
|
||||
writel(cmd, base + APP_COMMAND);
|
||||
writel(data1 ? *data1 : 0, base + APP_DATA1);
|
||||
writel(data2 ? *data2 : 0, base + APP_DATA2);
|
||||
|
||||
notify_other_proc_comm();
|
||||
|
||||
if (proc_comm_wait_for(base + APP_COMMAND, PCOM_CMD_DONE))
|
||||
continue;
|
||||
|
||||
if (readl(base + APP_STATUS) != PCOM_CMD_FAIL) {
|
||||
if (data1)
|
||||
*data1 = readl(base + APP_DATA1);
|
||||
if (data2)
|
||||
*data2 = readl(base + APP_DATA2);
|
||||
ret = 0;
|
||||
} else {
|
||||
ret = -EIO;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
writel(PCOM_CMD_IDLE, base + APP_COMMAND);
|
||||
|
||||
spin_unlock_irqrestore(&proc_comm_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
@ -0,0 +1,165 @@
|
|||
/* arch/arm/mach-msm/proc_comm.h
|
||||
*
|
||||
* Copyright (c) 2007 QUALCOMM Incorporated
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _ARCH_ARM_MACH_MSM_PROC_COMM_H_
|
||||
#define _ARCH_ARM_MACH_MSM_PROC_COMM_H_
|
||||
|
||||
enum {
|
||||
PCOM_CMD_IDLE = 0x0,
|
||||
PCOM_CMD_DONE,
|
||||
PCOM_RESET_APPS,
|
||||
PCOM_RESET_CHIP,
|
||||
PCOM_CONFIG_NAND_MPU,
|
||||
PCOM_CONFIG_USB_CLKS,
|
||||
PCOM_GET_POWER_ON_STATUS,
|
||||
PCOM_GET_WAKE_UP_STATUS,
|
||||
PCOM_GET_BATT_LEVEL,
|
||||
PCOM_CHG_IS_CHARGING,
|
||||
PCOM_POWER_DOWN,
|
||||
PCOM_USB_PIN_CONFIG,
|
||||
PCOM_USB_PIN_SEL,
|
||||
PCOM_SET_RTC_ALARM,
|
||||
PCOM_NV_READ,
|
||||
PCOM_NV_WRITE,
|
||||
PCOM_GET_UUID_HIGH,
|
||||
PCOM_GET_UUID_LOW,
|
||||
PCOM_GET_HW_ENTROPY,
|
||||
PCOM_RPC_GPIO_TLMM_CONFIG_REMOTE,
|
||||
PCOM_CLKCTL_RPC_ENABLE,
|
||||
PCOM_CLKCTL_RPC_DISABLE,
|
||||
PCOM_CLKCTL_RPC_RESET,
|
||||
PCOM_CLKCTL_RPC_SET_FLAGS,
|
||||
PCOM_CLKCTL_RPC_SET_RATE,
|
||||
PCOM_CLKCTL_RPC_MIN_RATE,
|
||||
PCOM_CLKCTL_RPC_MAX_RATE,
|
||||
PCOM_CLKCTL_RPC_RATE,
|
||||
PCOM_CLKCTL_RPC_PLL_REQUEST,
|
||||
PCOM_CLKCTL_RPC_ENABLED,
|
||||
PCOM_VREG_SWITCH,
|
||||
PCOM_VREG_SET_LEVEL,
|
||||
PCOM_GPIO_TLMM_CONFIG_GROUP,
|
||||
PCOM_GPIO_TLMM_UNCONFIG_GROUP,
|
||||
PCOM_NV_WRITE_BYTES_4_7,
|
||||
PCOM_CONFIG_DISP,
|
||||
PCOM_GET_FTM_BOOT_COUNT,
|
||||
PCOM_RPC_GPIO_TLMM_CONFIG_EX,
|
||||
PCOM_PM_MPP_CONFIG,
|
||||
PCOM_GPIO_IN,
|
||||
PCOM_GPIO_OUT,
|
||||
PCOM_RESET_MODEM,
|
||||
PCOM_RESET_CHIP_IMM,
|
||||
PCOM_PM_VID_EN,
|
||||
PCOM_VREG_PULLDOWN,
|
||||
PCOM_NUM_CMDS,
|
||||
};
|
||||
|
||||
enum {
|
||||
PCOM_INVALID_STATUS = 0x0,
|
||||
PCOM_READY,
|
||||
PCOM_CMD_RUNNING,
|
||||
PCOM_CMD_SUCCESS,
|
||||
PCOM_CMD_FAIL,
|
||||
};
|
||||
|
||||
/* List of VREGs that support the Pull Down Resistor setting. */
|
||||
enum {
|
||||
PM_VREG_PDOWN_MSMA_ID,
|
||||
PM_VREG_PDOWN_MSMP_ID,
|
||||
PM_VREG_PDOWN_MSME1_ID, /* Not supported in Panoramix */
|
||||
PM_VREG_PDOWN_MSMC1_ID, /* Not supported in PM6620 */
|
||||
PM_VREG_PDOWN_MSMC2_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_GP3_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_MSME2_ID, /* Supported in PM7500 and Panoramix only */
|
||||
PM_VREG_PDOWN_GP4_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_GP1_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_TCXO_ID,
|
||||
PM_VREG_PDOWN_PA_ID,
|
||||
PM_VREG_PDOWN_RFTX_ID,
|
||||
PM_VREG_PDOWN_RFRX1_ID,
|
||||
PM_VREG_PDOWN_RFRX2_ID,
|
||||
PM_VREG_PDOWN_SYNT_ID,
|
||||
PM_VREG_PDOWN_WLAN_ID,
|
||||
PM_VREG_PDOWN_USB_ID,
|
||||
PM_VREG_PDOWN_MMC_ID,
|
||||
PM_VREG_PDOWN_RUIM_ID,
|
||||
PM_VREG_PDOWN_MSMC0_ID, /* Supported in PM6610 only */
|
||||
PM_VREG_PDOWN_GP2_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_GP5_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_GP6_ID, /* Supported in PM7500 only */
|
||||
PM_VREG_PDOWN_RF_ID,
|
||||
PM_VREG_PDOWN_RF_VCO_ID,
|
||||
PM_VREG_PDOWN_MPLL_ID,
|
||||
PM_VREG_PDOWN_S2_ID,
|
||||
PM_VREG_PDOWN_S3_ID,
|
||||
PM_VREG_PDOWN_RFUBM_ID,
|
||||
|
||||
/* new for HAN */
|
||||
PM_VREG_PDOWN_RF1_ID,
|
||||
PM_VREG_PDOWN_RF2_ID,
|
||||
PM_VREG_PDOWN_RFA_ID,
|
||||
PM_VREG_PDOWN_CDC2_ID,
|
||||
PM_VREG_PDOWN_RFTX2_ID,
|
||||
PM_VREG_PDOWN_USIM_ID,
|
||||
PM_VREG_PDOWN_USB2P6_ID,
|
||||
PM_VREG_PDOWN_USB3P3_ID,
|
||||
PM_VREG_PDOWN_INVALID_ID,
|
||||
|
||||
/* backward compatible enums only */
|
||||
PM_VREG_PDOWN_CAM_ID = PM_VREG_PDOWN_GP1_ID,
|
||||
PM_VREG_PDOWN_MDDI_ID = PM_VREG_PDOWN_GP2_ID,
|
||||
PM_VREG_PDOWN_RUIM2_ID = PM_VREG_PDOWN_GP3_ID,
|
||||
PM_VREG_PDOWN_AUX_ID = PM_VREG_PDOWN_GP4_ID,
|
||||
PM_VREG_PDOWN_AUX2_ID = PM_VREG_PDOWN_GP5_ID,
|
||||
PM_VREG_PDOWN_BT_ID = PM_VREG_PDOWN_GP6_ID,
|
||||
|
||||
PM_VREG_PDOWN_MSME_ID = PM_VREG_PDOWN_MSME1_ID,
|
||||
PM_VREG_PDOWN_MSMC_ID = PM_VREG_PDOWN_MSMC1_ID,
|
||||
PM_VREG_PDOWN_RFA1_ID = PM_VREG_PDOWN_RFRX2_ID,
|
||||
PM_VREG_PDOWN_RFA2_ID = PM_VREG_PDOWN_RFTX2_ID,
|
||||
PM_VREG_PDOWN_XO_ID = PM_VREG_PDOWN_TCXO_ID
|
||||
};
|
||||
|
||||
/* gpio info for PCOM_RPC_GPIO_TLMM_CONFIG_EX */
|
||||
|
||||
#define GPIO_ENABLE 0
|
||||
#define GPIO_DISABLE 1
|
||||
|
||||
#define GPIO_INPUT 0
|
||||
#define GPIO_OUTPUT 1
|
||||
|
||||
#define GPIO_NO_PULL 0
|
||||
#define GPIO_PULL_DOWN 1
|
||||
#define GPIO_KEEPER 2
|
||||
#define GPIO_PULL_UP 3
|
||||
|
||||
#define GPIO_2MA 0
|
||||
#define GPIO_4MA 1
|
||||
#define GPIO_6MA 2
|
||||
#define GPIO_8MA 3
|
||||
#define GPIO_10MA 4
|
||||
#define GPIO_12MA 5
|
||||
#define GPIO_14MA 6
|
||||
#define GPIO_16MA 7
|
||||
|
||||
#define PCOM_GPIO_CFG(gpio, func, dir, pull, drvstr) \
|
||||
((((gpio) & 0x3FF) << 4) | \
|
||||
((func) & 0xf) | \
|
||||
(((dir) & 0x1) << 14) | \
|
||||
(((pull) & 0x3) << 15) | \
|
||||
(((drvstr) & 0xF) << 17))
|
||||
|
||||
int msm_proc_comm(unsigned cmd, unsigned *data1, unsigned *data2);
|
||||
|
||||
#endif
|
|
@ -45,7 +45,7 @@ struct msm_clock {
|
|||
struct clock_event_device clockevent;
|
||||
struct clocksource clocksource;
|
||||
struct irqaction irq;
|
||||
uint32_t regbase;
|
||||
void __iomem *regbase;
|
||||
uint32_t freq;
|
||||
uint32_t shift;
|
||||
};
|
||||
|
|
|
@ -0,0 +1,143 @@
|
|||
/* arch/arm/mach-msm/vreg.c
|
||||
*
|
||||
* Copyright (C) 2008 Google, Inc.
|
||||
* Author: Brian Swetland <swetland@google.com>
|
||||
*
|
||||
* This software is licensed under the terms of the GNU General Public
|
||||
* License version 2, as published by the Free Software Foundation, and
|
||||
* may be copied, distributed, and modified under those terms.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <mach/vreg.h>
|
||||
|
||||
#include "proc_comm.h"
|
||||
|
||||
struct vreg {
|
||||
const char *name;
|
||||
unsigned id;
|
||||
};
|
||||
|
||||
#define VREG(_name, _id) { .name = _name, .id = _id, }
|
||||
|
||||
static struct vreg vregs[] = {
|
||||
VREG("msma", 0),
|
||||
VREG("msmp", 1),
|
||||
VREG("msme1", 2),
|
||||
VREG("msmc1", 3),
|
||||
VREG("msmc2", 4),
|
||||
VREG("gp3", 5),
|
||||
VREG("msme2", 6),
|
||||
VREG("gp4", 7),
|
||||
VREG("gp1", 8),
|
||||
VREG("tcxo", 9),
|
||||
VREG("pa", 10),
|
||||
VREG("rftx", 11),
|
||||
VREG("rfrx1", 12),
|
||||
VREG("rfrx2", 13),
|
||||
VREG("synt", 14),
|
||||
VREG("wlan", 15),
|
||||
VREG("usb", 16),
|
||||
VREG("boost", 17),
|
||||
VREG("mmc", 18),
|
||||
VREG("ruim", 19),
|
||||
VREG("msmc0", 20),
|
||||
VREG("gp2", 21),
|
||||
VREG("gp5", 22),
|
||||
VREG("gp6", 23),
|
||||
VREG("rf", 24),
|
||||
VREG("rf_vco", 26),
|
||||
VREG("mpll", 27),
|
||||
VREG("s2", 28),
|
||||
VREG("s3", 29),
|
||||
VREG("rfubm", 30),
|
||||
VREG("ncp", 31),
|
||||
};
|
||||
|
||||
struct vreg *vreg_get(struct device *dev, const char *id)
|
||||
{
|
||||
int n;
|
||||
for (n = 0; n < ARRAY_SIZE(vregs); n++) {
|
||||
if (!strcmp(vregs[n].name, id))
|
||||
return vregs + n;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void vreg_put(struct vreg *vreg)
|
||||
{
|
||||
}
|
||||
|
||||
int vreg_enable(struct vreg *vreg)
|
||||
{
|
||||
unsigned id = vreg->id;
|
||||
unsigned enable = 1;
|
||||
return msm_proc_comm(PCOM_VREG_SWITCH, &id, &enable);
|
||||
}
|
||||
|
||||
void vreg_disable(struct vreg *vreg)
|
||||
{
|
||||
unsigned id = vreg->id;
|
||||
unsigned enable = 0;
|
||||
msm_proc_comm(PCOM_VREG_SWITCH, &id, &enable);
|
||||
}
|
||||
|
||||
int vreg_set_level(struct vreg *vreg, unsigned mv)
|
||||
{
|
||||
unsigned id = vreg->id;
|
||||
return msm_proc_comm(PCOM_VREG_SET_LEVEL, &id, &mv);
|
||||
}
|
||||
|
||||
#if defined(CONFIG_DEBUG_FS)
|
||||
|
||||
static int vreg_debug_set(void *data, u64 val)
|
||||
{
|
||||
struct vreg *vreg = data;
|
||||
switch (val) {
|
||||
case 0:
|
||||
vreg_disable(vreg);
|
||||
break;
|
||||
case 1:
|
||||
vreg_enable(vreg);
|
||||
break;
|
||||
default:
|
||||
vreg_set_level(vreg, val);
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vreg_debug_get(void *data, u64 *val)
|
||||
{
|
||||
return -ENOSYS;
|
||||
}
|
||||
|
||||
DEFINE_SIMPLE_ATTRIBUTE(vreg_fops, vreg_debug_get, vreg_debug_set, "%llu\n");
|
||||
|
||||
static int __init vreg_debug_init(void)
|
||||
{
|
||||
struct dentry *dent;
|
||||
int n;
|
||||
|
||||
dent = debugfs_create_dir("vreg", 0);
|
||||
if (IS_ERR(dent))
|
||||
return 0;
|
||||
|
||||
for (n = 0; n < ARRAY_SIZE(vregs); n++)
|
||||
(void) debugfs_create_file(vregs[n].name, 0644,
|
||||
dent, vregs + n, &vreg_fops);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
device_initcall(vreg_debug_init);
|
||||
#endif
|
|
@ -119,7 +119,7 @@ static void __init omap_irq_bank_init_one(struct omap_irq_bank *bank)
|
|||
|
||||
void __init omap_init_irq(void)
|
||||
{
|
||||
unsigned long nr_irqs = 0;
|
||||
unsigned long nr_of_irqs = 0;
|
||||
unsigned int nr_banks = 0;
|
||||
int i;
|
||||
|
||||
|
@ -133,14 +133,14 @@ void __init omap_init_irq(void)
|
|||
|
||||
omap_irq_bank_init_one(bank);
|
||||
|
||||
nr_irqs += bank->nr_irqs;
|
||||
nr_of_irqs += bank->nr_irqs;
|
||||
nr_banks++;
|
||||
}
|
||||
|
||||
printk(KERN_INFO "Total of %ld interrupts on %d active controller%s\n",
|
||||
nr_irqs, nr_banks, nr_banks > 1 ? "s" : "");
|
||||
nr_of_irqs, nr_banks, nr_banks > 1 ? "s" : "");
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
for (i = 0; i < nr_of_irqs; i++) {
|
||||
set_irq_chip(i, &omap_irq_chip);
|
||||
set_irq_handler(i, handle_level_irq);
|
||||
set_irq_flags(i, IRQF_VALID);
|
||||
|
|
|
@ -4,6 +4,43 @@
|
|||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
|
||||
struct pxa3xx_nand_timing {
|
||||
unsigned int tCH; /* Enable signal hold time */
|
||||
unsigned int tCS; /* Enable signal setup time */
|
||||
unsigned int tWH; /* ND_nWE high duration */
|
||||
unsigned int tWP; /* ND_nWE pulse time */
|
||||
unsigned int tRH; /* ND_nRE high duration */
|
||||
unsigned int tRP; /* ND_nRE pulse width */
|
||||
unsigned int tR; /* ND_nWE high to ND_nRE low for read */
|
||||
unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
|
||||
unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
|
||||
};
|
||||
|
||||
struct pxa3xx_nand_cmdset {
|
||||
uint16_t read1;
|
||||
uint16_t read2;
|
||||
uint16_t program;
|
||||
uint16_t read_status;
|
||||
uint16_t read_id;
|
||||
uint16_t erase;
|
||||
uint16_t reset;
|
||||
uint16_t lock;
|
||||
uint16_t unlock;
|
||||
uint16_t lock_status;
|
||||
};
|
||||
|
||||
struct pxa3xx_nand_flash {
|
||||
const struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
|
||||
const struct pxa3xx_nand_cmdset *cmdset;
|
||||
|
||||
uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */
|
||||
uint32_t page_size; /* Page size in bytes (PAGE_SZ) */
|
||||
uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */
|
||||
uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */
|
||||
uint32_t num_blocks; /* Number of physical blocks in Flash */
|
||||
uint32_t chip_id;
|
||||
};
|
||||
|
||||
struct pxa3xx_nand_platform_data {
|
||||
|
||||
/* the data flash bus is shared between the Static Memory
|
||||
|
@ -12,8 +49,11 @@ struct pxa3xx_nand_platform_data {
|
|||
*/
|
||||
int enable_arbiter;
|
||||
|
||||
struct mtd_partition *parts;
|
||||
unsigned int nr_parts;
|
||||
const struct mtd_partition *parts;
|
||||
unsigned int nr_parts;
|
||||
|
||||
const struct pxa3xx_nand_flash * flash;
|
||||
size_t num_flash;
|
||||
};
|
||||
|
||||
extern void pxa3xx_set_nand_info(struct pxa3xx_nand_platform_data *info);
|
||||
|
|
|
@ -59,8 +59,6 @@
|
|||
* TC6393XB GPIOs
|
||||
*/
|
||||
#define TOSA_TC6393XB_GPIO_BASE (NR_BUILTIN_GPIO + 2 * 12)
|
||||
#define TOSA_TC6393XB_GPIO(i) (TOSA_TC6393XB_GPIO_BASE + (i))
|
||||
#define TOSA_TC6393XB_GPIO_BIT(gpio) (1 << (gpio - TOSA_TC6393XB_GPIO_BASE))
|
||||
|
||||
#define TOSA_GPIO_TG_ON (TOSA_TC6393XB_GPIO_BASE + 0)
|
||||
#define TOSA_GPIO_L_MUTE (TOSA_TC6393XB_GPIO_BASE + 1)
|
||||
|
|
|
@ -30,7 +30,7 @@ extern void zylonite_pxa300_init(void);
|
|||
static inline void zylonite_pxa300_init(void)
|
||||
{
|
||||
if (cpu_is_pxa300() || cpu_is_pxa310())
|
||||
panic("%s: PXA300/PXA310 not supported\n", __FUNCTION__);
|
||||
panic("%s: PXA300/PXA310 not supported\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -40,7 +40,7 @@ extern void zylonite_pxa320_init(void);
|
|||
static inline void zylonite_pxa320_init(void)
|
||||
{
|
||||
if (cpu_is_pxa320())
|
||||
panic("%s: PXA320 not supported\n", __FUNCTION__);
|
||||
panic("%s: PXA320 not supported\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -706,16 +706,39 @@ static struct tmio_nand_data tosa_tc6393xb_nand_config = {
|
|||
.badblock_pattern = &tosa_tc6393xb_nand_bbt,
|
||||
};
|
||||
|
||||
static struct tc6393xb_platform_data tosa_tc6393xb_setup = {
|
||||
static int tosa_tc6393xb_setup(struct platform_device *dev)
|
||||
{
|
||||
int rc;
|
||||
|
||||
rc = gpio_request(TOSA_GPIO_CARD_VCC_ON, "CARD_VCC_ON");
|
||||
if (rc)
|
||||
goto err_req;
|
||||
|
||||
rc = gpio_direction_output(TOSA_GPIO_CARD_VCC_ON, 1);
|
||||
if (rc)
|
||||
goto err_dir;
|
||||
|
||||
return rc;
|
||||
|
||||
err_dir:
|
||||
gpio_free(TOSA_GPIO_CARD_VCC_ON);
|
||||
err_req:
|
||||
return rc;
|
||||
}
|
||||
|
||||
static void tosa_tc6393xb_teardown(struct platform_device *dev)
|
||||
{
|
||||
gpio_free(TOSA_GPIO_CARD_VCC_ON);
|
||||
}
|
||||
|
||||
static struct tc6393xb_platform_data tosa_tc6393xb_data = {
|
||||
.scr_pll2cr = 0x0cc1,
|
||||
.scr_gper = 0x3300,
|
||||
.scr_gpo_dsr =
|
||||
TOSA_TC6393XB_GPIO_BIT(TOSA_GPIO_CARD_VCC_ON),
|
||||
.scr_gpo_doecr =
|
||||
TOSA_TC6393XB_GPIO_BIT(TOSA_GPIO_CARD_VCC_ON),
|
||||
|
||||
.irq_base = IRQ_BOARD_START,
|
||||
.gpio_base = TOSA_TC6393XB_GPIO_BASE,
|
||||
.setup = tosa_tc6393xb_setup,
|
||||
.teardown = tosa_tc6393xb_teardown,
|
||||
|
||||
.enable = tosa_tc6393xb_enable,
|
||||
.disable = tosa_tc6393xb_disable,
|
||||
|
@ -723,6 +746,8 @@ static struct tc6393xb_platform_data tosa_tc6393xb_setup = {
|
|||
.resume = tosa_tc6393xb_resume,
|
||||
|
||||
.nand_data = &tosa_tc6393xb_nand_config,
|
||||
|
||||
.resume_restore = 1,
|
||||
};
|
||||
|
||||
|
||||
|
@ -730,7 +755,7 @@ static struct platform_device tc6393xb_device = {
|
|||
.name = "tc6393xb",
|
||||
.id = -1,
|
||||
.dev = {
|
||||
.platform_data = &tosa_tc6393xb_setup,
|
||||
.platform_data = &tosa_tc6393xb_data,
|
||||
},
|
||||
.num_resources = ARRAY_SIZE(tc6393xb_resources),
|
||||
.resource = tc6393xb_resources,
|
||||
|
|
|
@ -1,75 +0,0 @@
|
|||
/*
|
||||
* arch/arm/mach-sa1100/include/mach/ide.h
|
||||
*
|
||||
* Copyright (c) 1998 Hugo Fiennes & Nicolas Pitre
|
||||
*
|
||||
* 18-aug-2000: Cleanup by Erik Mouw (J.A.K.Mouw@its.tudelft.nl)
|
||||
* Get rid of the special ide_init_hwif_ports() functions
|
||||
* and make a generalised function that can be used by all
|
||||
* architectures.
|
||||
*/
|
||||
|
||||
#include <asm/irq.h>
|
||||
#include <mach/hardware.h>
|
||||
#include <asm/mach-types.h>
|
||||
|
||||
#error "This code is broken and needs update to match with current ide support"
|
||||
|
||||
|
||||
/*
|
||||
* Set up a hw structure for a specified data port, control port and IRQ.
|
||||
* This should follow whatever the default interface uses.
|
||||
*/
|
||||
static inline void ide_init_hwif_ports(hw_regs_t *hw, unsigned long data_port,
|
||||
unsigned long ctrl_port, int *irq)
|
||||
{
|
||||
unsigned long reg = data_port;
|
||||
int i;
|
||||
int regincr = 1;
|
||||
|
||||
/* The Empeg board has the first two address lines unused */
|
||||
if (machine_is_empeg())
|
||||
regincr = 1 << 2;
|
||||
|
||||
/* The LART doesn't use A0 for IDE */
|
||||
if (machine_is_lart())
|
||||
regincr = 1 << 1;
|
||||
|
||||
memset(hw, 0, sizeof(*hw));
|
||||
|
||||
for (i = 0; i <= 7; i++) {
|
||||
hw->io_ports_array[i] = reg;
|
||||
reg += regincr;
|
||||
}
|
||||
|
||||
hw->io_ports.ctl_addr = ctrl_port;
|
||||
|
||||
if (irq)
|
||||
*irq = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This registers the standard ports for this architecture with the IDE
|
||||
* driver.
|
||||
*/
|
||||
static __inline__ void
|
||||
ide_init_default_hwifs(void)
|
||||
{
|
||||
if (machine_is_lart()) {
|
||||
#ifdef CONFIG_SA1100_LART
|
||||
hw_regs_t hw;
|
||||
|
||||
/* Enable GPIO as interrupt line */
|
||||
GPDR &= ~LART_GPIO_IDE;
|
||||
set_irq_type(LART_IRQ_IDE, IRQ_TYPE_EDGE_RISING);
|
||||
|
||||
/* set PCMCIA interface timing */
|
||||
MECR = 0x00060006;
|
||||
|
||||
/* init the interface */
|
||||
ide_init_hwif_ports(&hw, PCMCIA_IO_0_BASE + 0x0000, PCMCIA_IO_0_BASE + 0x1000, NULL);
|
||||
hw.irq = LART_IRQ_IDE;
|
||||
ide_register_hw(&hw);
|
||||
#endif
|
||||
}
|
||||
}
|
|
@ -400,9 +400,9 @@ config CPU_FEROCEON_OLD_ID
|
|||
# ARMv6
|
||||
config CPU_V6
|
||||
bool "Support ARM V6 processor"
|
||||
depends on ARCH_INTEGRATOR || MACH_REALVIEW_EB || ARCH_OMAP2 || ARCH_MX3 || ARCH_MSM7X00A || MACH_REALVIEW_PB11MP || MACH_REALVIEW_PB1176
|
||||
depends on ARCH_INTEGRATOR || MACH_REALVIEW_EB || ARCH_OMAP2 || ARCH_MX3 || ARCH_MSM || MACH_REALVIEW_PB11MP || MACH_REALVIEW_PB1176
|
||||
default y if ARCH_MX3
|
||||
default y if ARCH_MSM7X00A
|
||||
default y if ARCH_MSM
|
||||
select CPU_32v6
|
||||
select CPU_ABRT_EV6
|
||||
select CPU_PABRT_NOIFAR
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
/*
|
||||
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
|
||||
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
* MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
#ifndef __ASM_ARCH_NAND_H
|
||||
#define __ASM_ARCH_NAND_H
|
||||
|
||||
struct mxc_nand_platform_data {
|
||||
int width; /* data bus width in bytes */
|
||||
int hw_ecc; /* 0 if supress hardware ECC */
|
||||
};
|
||||
#endif /* __ASM_ARCH_NAND_H */
|
|
@ -16,6 +16,10 @@ struct omap_onenand_platform_data {
|
|||
int gpio_irq;
|
||||
struct mtd_partition *parts;
|
||||
int nr_parts;
|
||||
int (*onenand_setup)(void __iomem *);
|
||||
int (*onenand_setup)(void __iomem *, int freq);
|
||||
int dma_channel;
|
||||
};
|
||||
|
||||
int omap2_onenand_rephase(void);
|
||||
|
||||
#define ONENAND_MAX_PARTITIONS 8
|
||||
|
|
|
@ -72,6 +72,8 @@ config GENERIC_BUG
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "System Type and features"
|
||||
|
||||
source "kernel/time/Kconfig"
|
||||
|
|
|
@ -96,6 +96,7 @@ static inline struct thread_info *current_thread_info(void)
|
|||
#define _TIF_MEMDIE (1 << TIF_MEMDIE)
|
||||
#define _TIF_RESTORE_SIGMASK (1 << TIF_RESTORE_SIGMASK)
|
||||
#define _TIF_CPU_GOING_TO_SLEEP (1 << TIF_CPU_GOING_TO_SLEEP)
|
||||
#define _TIF_FREEZE (1 << TIF_FREEZE)
|
||||
|
||||
/* Note: The masks below must never span more than 16 bits! */
|
||||
|
||||
|
|
|
@ -191,7 +191,7 @@ static int __init eic_probe(struct platform_device *pdev)
|
|||
struct eic *eic;
|
||||
struct resource *regs;
|
||||
unsigned int i;
|
||||
unsigned int nr_irqs;
|
||||
unsigned int nr_of_irqs;
|
||||
unsigned int int_irq;
|
||||
int ret;
|
||||
u32 pattern;
|
||||
|
@ -224,7 +224,7 @@ static int __init eic_probe(struct platform_device *pdev)
|
|||
eic_writel(eic, IDR, ~0UL);
|
||||
eic_writel(eic, MODE, ~0UL);
|
||||
pattern = eic_readl(eic, MODE);
|
||||
nr_irqs = fls(pattern);
|
||||
nr_of_irqs = fls(pattern);
|
||||
|
||||
/* Trigger on low level unless overridden by driver */
|
||||
eic_writel(eic, EDGE, 0UL);
|
||||
|
@ -232,7 +232,7 @@ static int __init eic_probe(struct platform_device *pdev)
|
|||
|
||||
eic->chip = &eic_chip;
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
for (i = 0; i < nr_of_irqs; i++) {
|
||||
set_irq_chip_and_handler(eic->first_irq + i, &eic_chip,
|
||||
handle_level_irq);
|
||||
set_irq_chip_data(eic->first_irq + i, eic);
|
||||
|
@ -256,7 +256,7 @@ static int __init eic_probe(struct platform_device *pdev)
|
|||
eic->regs, int_irq);
|
||||
dev_info(&pdev->dev,
|
||||
"Handling %u external IRQs, starting with IRQ %u\n",
|
||||
nr_irqs, eic->first_irq);
|
||||
nr_of_irqs, eic->first_irq);
|
||||
|
||||
return 0;
|
||||
|
||||
|
|
|
@ -64,8 +64,11 @@ config HARDWARE_PM
|
|||
depends on OPROFILE
|
||||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.preempt"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "Blackfin Processor Options"
|
||||
|
||||
comment "Processor and Board Settings"
|
||||
|
|
|
@ -62,6 +62,8 @@ config HZ
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "General setup"
|
||||
|
||||
source "fs/Kconfig.binfmt"
|
||||
|
|
|
@ -215,12 +215,12 @@ get_rtc_time(struct rtc_time *rtc_tm)
|
|||
|
||||
local_irq_restore(flags);
|
||||
|
||||
BCD_TO_BIN(rtc_tm->tm_sec);
|
||||
BCD_TO_BIN(rtc_tm->tm_min);
|
||||
BCD_TO_BIN(rtc_tm->tm_hour);
|
||||
BCD_TO_BIN(rtc_tm->tm_mday);
|
||||
BCD_TO_BIN(rtc_tm->tm_mon);
|
||||
BCD_TO_BIN(rtc_tm->tm_year);
|
||||
rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
|
||||
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
|
||||
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
|
||||
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
|
||||
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
|
||||
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
|
||||
|
||||
/*
|
||||
* Account for differences between how the RTC uses the values
|
||||
|
@ -295,12 +295,12 @@ rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
|
|||
else
|
||||
yrs -= 1900; /* RTC (70, 71, ... 99) */
|
||||
|
||||
BIN_TO_BCD(sec);
|
||||
BIN_TO_BCD(min);
|
||||
BIN_TO_BCD(hrs);
|
||||
BIN_TO_BCD(day);
|
||||
BIN_TO_BCD(mon);
|
||||
BIN_TO_BCD(yrs);
|
||||
sec = bin2bcd(sec);
|
||||
min = bin2bcd(min);
|
||||
hrs = bin2bcd(hrs);
|
||||
day = bin2bcd(day);
|
||||
mon = bin2bcd(mon);
|
||||
yrs = bin2bcd(yrs);
|
||||
|
||||
local_irq_save(flags);
|
||||
CMOS_WRITE(yrs, RTC_YEAR);
|
||||
|
|
|
@ -122,7 +122,7 @@ get_rtc_time(struct rtc_time *tm)
|
|||
"information is no longer guaranteed!\n", PCF8563_NAME);
|
||||
}
|
||||
|
||||
tm->tm_year = BCD_TO_BIN(tm->tm_year) +
|
||||
tm->tm_year = bcd2bin(tm->tm_year) +
|
||||
((tm->tm_mon & 0x80) ? 100 : 0);
|
||||
tm->tm_sec &= 0x7F;
|
||||
tm->tm_min &= 0x7F;
|
||||
|
@ -131,11 +131,11 @@ get_rtc_time(struct rtc_time *tm)
|
|||
tm->tm_wday &= 0x07; /* Not coded in BCD. */
|
||||
tm->tm_mon &= 0x1F;
|
||||
|
||||
BCD_TO_BIN(tm->tm_sec);
|
||||
BCD_TO_BIN(tm->tm_min);
|
||||
BCD_TO_BIN(tm->tm_hour);
|
||||
BCD_TO_BIN(tm->tm_mday);
|
||||
BCD_TO_BIN(tm->tm_mon);
|
||||
tm->tm_sec = bcd2bin(tm->tm_sec);
|
||||
tm->tm_min = bcd2bin(tm->tm_min);
|
||||
tm->tm_hour = bcd2bin(tm->tm_hour);
|
||||
tm->tm_mday = bcd2bin(tm->tm_mday);
|
||||
tm->tm_mon = bcd2bin(tm->tm_mon);
|
||||
tm->tm_mon--; /* Month is 1..12 in RTC but 0..11 in linux */
|
||||
}
|
||||
|
||||
|
@ -282,12 +282,12 @@ int pcf8563_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
|
|||
century = (tm.tm_year >= 2000) ? 0x80 : 0;
|
||||
tm.tm_year = tm.tm_year % 100;
|
||||
|
||||
BIN_TO_BCD(tm.tm_year);
|
||||
BIN_TO_BCD(tm.tm_mon);
|
||||
BIN_TO_BCD(tm.tm_mday);
|
||||
BIN_TO_BCD(tm.tm_hour);
|
||||
BIN_TO_BCD(tm.tm_min);
|
||||
BIN_TO_BCD(tm.tm_sec);
|
||||
tm.tm_year = bin2bcd(tm.tm_year);
|
||||
tm.tm_mon = bin2bcd(tm.tm_mon);
|
||||
tm.tm_mday = bin2bcd(tm.tm_mday);
|
||||
tm.tm_hour = bin2bcd(tm.tm_hour);
|
||||
tm.tm_min = bin2bcd(tm.tm_min);
|
||||
tm.tm_sec = bin2bcd(tm.tm_sec);
|
||||
tm.tm_mon |= century;
|
||||
|
||||
mutex_lock(&rtc_lock);
|
||||
|
|
|
@ -118,7 +118,7 @@ get_rtc_time(struct rtc_time *tm)
|
|||
"information is no longer guaranteed!\n", PCF8563_NAME);
|
||||
}
|
||||
|
||||
tm->tm_year = BCD_TO_BIN(tm->tm_year) +
|
||||
tm->tm_year = bcd2bin(tm->tm_year) +
|
||||
((tm->tm_mon & 0x80) ? 100 : 0);
|
||||
tm->tm_sec &= 0x7F;
|
||||
tm->tm_min &= 0x7F;
|
||||
|
@ -127,11 +127,11 @@ get_rtc_time(struct rtc_time *tm)
|
|||
tm->tm_wday &= 0x07; /* Not coded in BCD. */
|
||||
tm->tm_mon &= 0x1F;
|
||||
|
||||
BCD_TO_BIN(tm->tm_sec);
|
||||
BCD_TO_BIN(tm->tm_min);
|
||||
BCD_TO_BIN(tm->tm_hour);
|
||||
BCD_TO_BIN(tm->tm_mday);
|
||||
BCD_TO_BIN(tm->tm_mon);
|
||||
tm->tm_sec = bcd2bin(tm->tm_sec);
|
||||
tm->tm_min = bcd2bin(tm->tm_min);
|
||||
tm->tm_hour = bcd2bin(tm->tm_hour);
|
||||
tm->tm_mday = bcd2bin(tm->tm_mday);
|
||||
tm->tm_mon = bcd2bin(tm->tm_mon);
|
||||
tm->tm_mon--; /* Month is 1..12 in RTC but 0..11 in linux */
|
||||
}
|
||||
|
||||
|
@ -279,12 +279,12 @@ int pcf8563_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
|
|||
century = (tm.tm_year >= 2000) ? 0x80 : 0;
|
||||
tm.tm_year = tm.tm_year % 100;
|
||||
|
||||
BIN_TO_BCD(tm.tm_year);
|
||||
BIN_TO_BCD(tm.tm_mon);
|
||||
BIN_TO_BCD(tm.tm_mday);
|
||||
BIN_TO_BCD(tm.tm_hour);
|
||||
BIN_TO_BCD(tm.tm_min);
|
||||
BIN_TO_BCD(tm.tm_sec);
|
||||
tm.tm_year = bin2bcd(tm.tm_year);
|
||||
tm.tm_mon = bin2bcd(tm.tm_mon);
|
||||
tm.tm_mday = bin2bcd(tm.tm_mday);
|
||||
tm.tm_hour = bin2bcd(tm.tm_hour);
|
||||
tm.tm_min = bin2bcd(tm.tm_min);
|
||||
tm.tm_sec = bin2bcd(tm.tm_sec);
|
||||
tm.tm_mon |= century;
|
||||
|
||||
mutex_lock(&rtc_lock);
|
||||
|
|
|
@ -127,7 +127,7 @@ int set_rtc_mmss(unsigned long nowtime)
|
|||
return 0;
|
||||
|
||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||
BCD_TO_BIN(cmos_minutes);
|
||||
cmos_minutes = bcd2bin(cmos_minutes);
|
||||
|
||||
/*
|
||||
* since we're only adjusting minutes and seconds,
|
||||
|
@ -142,8 +142,8 @@ int set_rtc_mmss(unsigned long nowtime)
|
|||
real_minutes %= 60;
|
||||
|
||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||
BIN_TO_BCD(real_seconds);
|
||||
BIN_TO_BCD(real_minutes);
|
||||
real_seconds = bin2bcd(real_seconds);
|
||||
real_minutes = bin2bcd(real_minutes);
|
||||
CMOS_WRITE(real_seconds,RTC_SECONDS);
|
||||
CMOS_WRITE(real_minutes,RTC_MINUTES);
|
||||
} else {
|
||||
|
@ -170,12 +170,12 @@ get_cmos_time(void)
|
|||
mon = CMOS_READ(RTC_MONTH);
|
||||
year = CMOS_READ(RTC_YEAR);
|
||||
|
||||
BCD_TO_BIN(sec);
|
||||
BCD_TO_BIN(min);
|
||||
BCD_TO_BIN(hour);
|
||||
BCD_TO_BIN(day);
|
||||
BCD_TO_BIN(mon);
|
||||
BCD_TO_BIN(year);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
|
||||
if ((year += 1900) < 1970)
|
||||
year += 100;
|
||||
|
|
|
@ -66,6 +66,8 @@ mainmenu "Fujitsu FR-V Kernel Configuration"
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
|
||||
menu "Fujitsu FR-V system setup"
|
||||
|
||||
|
|
|
@ -90,6 +90,8 @@ config HZ
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
source "arch/h8300/Kconfig.cpu"
|
||||
|
||||
menu "Executable file formats"
|
||||
|
|
|
@ -89,6 +89,7 @@ static inline struct thread_info *current_thread_info(void)
|
|||
TIF_NEED_RESCHED */
|
||||
#define TIF_MEMDIE 4
|
||||
#define TIF_RESTORE_SIGMASK 5 /* restore signal mask in do_signal() */
|
||||
#define TIF_FREEZE 16 /* is freezing for suspend */
|
||||
|
||||
/* as above, but as bit values */
|
||||
#define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE)
|
||||
|
@ -96,6 +97,7 @@ static inline struct thread_info *current_thread_info(void)
|
|||
#define _TIF_NEED_RESCHED (1<<TIF_NEED_RESCHED)
|
||||
#define _TIF_POLLING_NRFLAG (1<<TIF_POLLING_NRFLAG)
|
||||
#define _TIF_RESTORE_SIGMASK (1<<TIF_RESTORE_SIGMASK)
|
||||
#define _TIF_FREEZE (1<<TIF_FREEZE)
|
||||
|
||||
#define _TIF_WORK_MASK 0x0000FFFE /* work to do on interrupt/exception return */
|
||||
|
||||
|
|
|
@ -7,6 +7,8 @@ mainmenu "IA-64 Linux Kernel Configuration"
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "Processor type and features"
|
||||
|
||||
config IA64
|
||||
|
|
|
@ -2070,14 +2070,13 @@ sba_init(void)
|
|||
if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
|
||||
return 0;
|
||||
|
||||
#if defined(CONFIG_IA64_GENERIC) && defined(CONFIG_CRASH_DUMP) && \
|
||||
defined(CONFIG_PROC_FS)
|
||||
#if defined(CONFIG_IA64_GENERIC)
|
||||
/* If we are booting a kdump kernel, the sba_iommu will
|
||||
* cause devices that were not shutdown properly to MCA
|
||||
* as soon as they are turned back on. Our only option for
|
||||
* a successful kdump kernel boot is to use the swiotlb.
|
||||
*/
|
||||
if (elfcorehdr_addr < ELFCORE_ADDR_MAX) {
|
||||
if (is_kdump_kernel()) {
|
||||
if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
|
||||
panic("Unable to initialize software I/O TLB:"
|
||||
" Try machvec=dig boot option");
|
||||
|
|
|
@ -95,16 +95,8 @@ extern int pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
|
|||
enum pci_mmap_state mmap_state, int write_combine);
|
||||
#define HAVE_PCI_LEGACY
|
||||
extern int pci_mmap_legacy_page_range(struct pci_bus *bus,
|
||||
struct vm_area_struct *vma);
|
||||
extern ssize_t pci_read_legacy_io(struct kobject *kobj,
|
||||
struct bin_attribute *bin_attr,
|
||||
char *buf, loff_t off, size_t count);
|
||||
extern ssize_t pci_write_legacy_io(struct kobject *kobj,
|
||||
struct bin_attribute *bin_attr,
|
||||
char *buf, loff_t off, size_t count);
|
||||
extern int pci_mmap_legacy_mem(struct kobject *kobj,
|
||||
struct bin_attribute *attr,
|
||||
struct vm_area_struct *vma);
|
||||
struct vm_area_struct *vma,
|
||||
enum pci_mmap_state mmap_state);
|
||||
|
||||
#define pci_get_legacy_mem platform_pci_get_legacy_mem
|
||||
#define pci_legacy_read platform_pci_legacy_read
|
||||
|
|
|
@ -8,10 +8,14 @@
|
|||
|
||||
#include <linux/errno.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/crash_dump.h>
|
||||
|
||||
#include <asm/page.h>
|
||||
#include <asm/uaccess.h>
|
||||
|
||||
/* Stores the physical address of elf header of crash image. */
|
||||
unsigned long long elfcorehdr_addr = ELFCORE_ADDR_MAX;
|
||||
|
||||
/**
|
||||
* copy_oldmem_page - copy one page from "oldmem"
|
||||
* @pfn: page frame number to be copied
|
||||
|
|
|
@ -1335,7 +1335,7 @@ kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_PROC_VMCORE
|
||||
#ifdef CONFIG_CRASH_DUMP
|
||||
/* locate the size find a the descriptor at a certain address */
|
||||
unsigned long __init
|
||||
vmcore_find_descriptor_size (unsigned long address)
|
||||
|
|
|
@ -352,7 +352,7 @@ reserve_memory (void)
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_PROC_VMCORE
|
||||
#ifdef CONFIG_CRASH_KERNEL
|
||||
if (reserve_elfcorehdr(&rsvd_region[n].start,
|
||||
&rsvd_region[n].end) == 0)
|
||||
n++;
|
||||
|
@ -478,7 +478,12 @@ static __init int setup_nomca(char *s)
|
|||
}
|
||||
early_param("nomca", setup_nomca);
|
||||
|
||||
#ifdef CONFIG_PROC_VMCORE
|
||||
/*
|
||||
* Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
|
||||
* is_kdump_kernel() to determine if we are booting after a panic. Hence
|
||||
* ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
|
||||
*/
|
||||
#ifdef CONFIG_CRASH_DUMP
|
||||
/* elfcorehdr= specifies the location of elf core header
|
||||
* stored by the crashed kernel.
|
||||
*/
|
||||
|
@ -502,11 +507,11 @@ int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
|
|||
* to work properly.
|
||||
*/
|
||||
|
||||
if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
|
||||
if (!is_vmcore_usable())
|
||||
return -EINVAL;
|
||||
|
||||
if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
|
||||
elfcorehdr_addr = ELFCORE_ADDR_MAX;
|
||||
vmcore_unusable();
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
|
|
|
@ -700,23 +700,6 @@ int arch_add_memory(int nid, u64 start, u64 size)
|
|||
|
||||
return ret;
|
||||
}
|
||||
#ifdef CONFIG_MEMORY_HOTREMOVE
|
||||
int remove_memory(u64 start, u64 size)
|
||||
{
|
||||
unsigned long start_pfn, end_pfn;
|
||||
unsigned long timeout = 120 * HZ;
|
||||
int ret;
|
||||
start_pfn = start >> PAGE_SHIFT;
|
||||
end_pfn = start_pfn + (size >> PAGE_SHIFT);
|
||||
ret = offline_pages(start_pfn, end_pfn, timeout);
|
||||
if (ret)
|
||||
goto out;
|
||||
/* we can free mem_map at this point */
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(remove_memory);
|
||||
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
|
|
@ -614,12 +614,17 @@ char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
|
|||
* vector to get the base address.
|
||||
*/
|
||||
int
|
||||
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
|
||||
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
|
||||
enum pci_mmap_state mmap_state)
|
||||
{
|
||||
unsigned long size = vma->vm_end - vma->vm_start;
|
||||
pgprot_t prot;
|
||||
char *addr;
|
||||
|
||||
/* We only support mmap'ing of legacy memory space */
|
||||
if (mmap_state != pci_mmap_mem)
|
||||
return -ENOSYS;
|
||||
|
||||
/*
|
||||
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
|
||||
* for more details.
|
||||
|
|
|
@ -42,6 +42,8 @@ config HZ
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
|
||||
menu "Processor type and features"
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@
|
|||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mm.h>
|
||||
|
|
|
@ -62,6 +62,8 @@ mainmenu "Linux/68k Kernel Configuration"
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "Platform dependent setup"
|
||||
|
||||
config EISA
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
#include <linux/poll.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mc146818rtc.h> /* For struct rtc_time and ioctls, etc */
|
||||
#include <linux/smp_lock.h>
|
||||
#include <linux/bcd.h>
|
||||
#include <asm/bvme6000hw.h>
|
||||
|
||||
|
|
|
@ -75,6 +75,8 @@ config NO_IOPORT
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "Processor type and features"
|
||||
|
||||
choice
|
||||
|
|
|
@ -84,12 +84,14 @@ static inline struct thread_info *current_thread_info(void)
|
|||
#define TIF_POLLING_NRFLAG 3 /* true if poll_idle() is polling
|
||||
TIF_NEED_RESCHED */
|
||||
#define TIF_MEMDIE 4
|
||||
#define TIF_FREEZE 16 /* is freezing for suspend */
|
||||
|
||||
/* as above, but as bit values */
|
||||
#define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE)
|
||||
#define _TIF_SIGPENDING (1<<TIF_SIGPENDING)
|
||||
#define _TIF_NEED_RESCHED (1<<TIF_NEED_RESCHED)
|
||||
#define _TIF_POLLING_NRFLAG (1<<TIF_POLLING_NRFLAG)
|
||||
#define _TIF_FREEZE (1<<TIF_FREEZE)
|
||||
|
||||
#define _TIF_WORK_MASK 0x0000FFFE /* work to do on interrupt/exception return */
|
||||
|
||||
|
|
|
@ -1885,6 +1885,8 @@ config PROBE_INITRD_HEADER
|
|||
add initrd or initramfs image to the kernel image.
|
||||
Otherwise, say N.
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
menu "Bus options (PCI, PCMCIA, EISA, ISA, TC)"
|
||||
|
||||
config HW_HAS_EISA
|
||||
|
|
|
@ -45,12 +45,12 @@ unsigned long read_persistent_clock(void)
|
|||
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||
|
||||
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
sec = BCD2BIN(sec);
|
||||
min = BCD2BIN(min);
|
||||
hour = BCD2BIN(hour);
|
||||
day = BCD2BIN(day);
|
||||
mon = BCD2BIN(mon);
|
||||
year = BCD2BIN(year);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
}
|
||||
|
||||
year += real_year - 72 + 2000;
|
||||
|
@ -83,7 +83,7 @@ int rtc_mips_set_mmss(unsigned long nowtime)
|
|||
|
||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
||||
cmos_minutes = BCD2BIN(cmos_minutes);
|
||||
cmos_minutes = bcd2bin(cmos_minutes);
|
||||
|
||||
/*
|
||||
* since we're only adjusting minutes and seconds,
|
||||
|
@ -99,8 +99,8 @@ int rtc_mips_set_mmss(unsigned long nowtime)
|
|||
|
||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
real_seconds = BIN2BCD(real_seconds);
|
||||
real_minutes = BIN2BCD(real_minutes);
|
||||
real_seconds = bin2bcd(real_seconds);
|
||||
real_minutes = bin2bcd(real_minutes);
|
||||
}
|
||||
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
||||
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
||||
|
|
|
@ -44,7 +44,7 @@ static inline int mc146818_set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
||||
BCD_TO_BIN(cmos_minutes);
|
||||
cmos_minutes = bcd2bin(cmos_minutes);
|
||||
|
||||
/*
|
||||
* since we're only adjusting minutes and seconds,
|
||||
|
@ -60,8 +60,8 @@ static inline int mc146818_set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
BIN_TO_BCD(real_seconds);
|
||||
BIN_TO_BCD(real_minutes);
|
||||
real_seconds = bin2bcd(real_seconds);
|
||||
real_minutes = bin2bcd(real_minutes);
|
||||
}
|
||||
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
||||
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
||||
|
@ -103,12 +103,12 @@ static inline unsigned long mc146818_get_cmos_time(void)
|
|||
} while (sec != CMOS_READ(RTC_SECONDS));
|
||||
|
||||
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
BCD_TO_BIN(sec);
|
||||
BCD_TO_BIN(min);
|
||||
BCD_TO_BIN(hour);
|
||||
BCD_TO_BIN(day);
|
||||
BCD_TO_BIN(mon);
|
||||
BCD_TO_BIN(year);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
}
|
||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||
year = mc146818_decode_year(year);
|
||||
|
|
|
@ -79,14 +79,14 @@ unsigned long read_persistent_clock(void)
|
|||
/* Stop the update to the time */
|
||||
m48t37_base->control = 0x40;
|
||||
|
||||
year = BCD2BIN(m48t37_base->year);
|
||||
year += BCD2BIN(m48t37_base->century) * 100;
|
||||
year = bcd2bin(m48t37_base->year);
|
||||
year += bcd2bin(m48t37_base->century) * 100;
|
||||
|
||||
month = BCD2BIN(m48t37_base->month);
|
||||
day = BCD2BIN(m48t37_base->date);
|
||||
hour = BCD2BIN(m48t37_base->hour);
|
||||
min = BCD2BIN(m48t37_base->min);
|
||||
sec = BCD2BIN(m48t37_base->sec);
|
||||
month = bcd2bin(m48t37_base->month);
|
||||
day = bcd2bin(m48t37_base->date);
|
||||
hour = bcd2bin(m48t37_base->hour);
|
||||
min = bcd2bin(m48t37_base->min);
|
||||
sec = bcd2bin(m48t37_base->sec);
|
||||
|
||||
/* Start the update to the time again */
|
||||
m48t37_base->control = 0x00;
|
||||
|
@ -113,22 +113,22 @@ int rtc_mips_set_time(unsigned long tim)
|
|||
m48t37_base->control = 0x80;
|
||||
|
||||
/* year */
|
||||
m48t37_base->year = BIN2BCD(tm.tm_year % 100);
|
||||
m48t37_base->century = BIN2BCD(tm.tm_year / 100);
|
||||
m48t37_base->year = bin2bcd(tm.tm_year % 100);
|
||||
m48t37_base->century = bin2bcd(tm.tm_year / 100);
|
||||
|
||||
/* month */
|
||||
m48t37_base->month = BIN2BCD(tm.tm_mon);
|
||||
m48t37_base->month = bin2bcd(tm.tm_mon);
|
||||
|
||||
/* day */
|
||||
m48t37_base->date = BIN2BCD(tm.tm_mday);
|
||||
m48t37_base->date = bin2bcd(tm.tm_mday);
|
||||
|
||||
/* hour/min/sec */
|
||||
m48t37_base->hour = BIN2BCD(tm.tm_hour);
|
||||
m48t37_base->min = BIN2BCD(tm.tm_min);
|
||||
m48t37_base->sec = BIN2BCD(tm.tm_sec);
|
||||
m48t37_base->hour = bin2bcd(tm.tm_hour);
|
||||
m48t37_base->min = bin2bcd(tm.tm_min);
|
||||
m48t37_base->sec = bin2bcd(tm.tm_sec);
|
||||
|
||||
/* day of week -- not really used, but let's keep it up-to-date */
|
||||
m48t37_base->day = BIN2BCD(tm.tm_wday + 1);
|
||||
m48t37_base->day = bin2bcd(tm.tm_wday + 1);
|
||||
|
||||
/* disable writing */
|
||||
m48t37_base->control = 0x00;
|
||||
|
|
|
@ -156,32 +156,32 @@ int m41t81_set_time(unsigned long t)
|
|||
*/
|
||||
|
||||
spin_lock_irqsave(&rtc_lock, flags);
|
||||
tm.tm_sec = BIN2BCD(tm.tm_sec);
|
||||
tm.tm_sec = bin2bcd(tm.tm_sec);
|
||||
m41t81_write(M41T81REG_SC, tm.tm_sec);
|
||||
|
||||
tm.tm_min = BIN2BCD(tm.tm_min);
|
||||
tm.tm_min = bin2bcd(tm.tm_min);
|
||||
m41t81_write(M41T81REG_MN, tm.tm_min);
|
||||
|
||||
tm.tm_hour = BIN2BCD(tm.tm_hour);
|
||||
tm.tm_hour = bin2bcd(tm.tm_hour);
|
||||
tm.tm_hour = (tm.tm_hour & 0x3f) | (m41t81_read(M41T81REG_HR) & 0xc0);
|
||||
m41t81_write(M41T81REG_HR, tm.tm_hour);
|
||||
|
||||
/* tm_wday starts from 0 to 6 */
|
||||
if (tm.tm_wday == 0) tm.tm_wday = 7;
|
||||
tm.tm_wday = BIN2BCD(tm.tm_wday);
|
||||
tm.tm_wday = bin2bcd(tm.tm_wday);
|
||||
m41t81_write(M41T81REG_DY, tm.tm_wday);
|
||||
|
||||
tm.tm_mday = BIN2BCD(tm.tm_mday);
|
||||
tm.tm_mday = bin2bcd(tm.tm_mday);
|
||||
m41t81_write(M41T81REG_DT, tm.tm_mday);
|
||||
|
||||
/* tm_mon starts from 0, *ick* */
|
||||
tm.tm_mon ++;
|
||||
tm.tm_mon = BIN2BCD(tm.tm_mon);
|
||||
tm.tm_mon = bin2bcd(tm.tm_mon);
|
||||
m41t81_write(M41T81REG_MO, tm.tm_mon);
|
||||
|
||||
/* we don't do century, everything is beyond 2000 */
|
||||
tm.tm_year %= 100;
|
||||
tm.tm_year = BIN2BCD(tm.tm_year);
|
||||
tm.tm_year = bin2bcd(tm.tm_year);
|
||||
m41t81_write(M41T81REG_YR, tm.tm_year);
|
||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||
|
||||
|
@ -209,12 +209,12 @@ unsigned long m41t81_get_time(void)
|
|||
year = m41t81_read(M41T81REG_YR);
|
||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||
|
||||
sec = BCD2BIN(sec);
|
||||
min = BCD2BIN(min);
|
||||
hour = BCD2BIN(hour);
|
||||
day = BCD2BIN(day);
|
||||
mon = BCD2BIN(mon);
|
||||
year = BCD2BIN(year);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
|
||||
year += 2000;
|
||||
|
||||
|
|
|
@ -124,18 +124,18 @@ int xicor_set_time(unsigned long t)
|
|||
xicor_write(X1241REG_SR, X1241REG_SR_WEL | X1241REG_SR_RWEL);
|
||||
|
||||
/* trivial ones */
|
||||
tm.tm_sec = BIN2BCD(tm.tm_sec);
|
||||
tm.tm_sec = bin2bcd(tm.tm_sec);
|
||||
xicor_write(X1241REG_SC, tm.tm_sec);
|
||||
|
||||
tm.tm_min = BIN2BCD(tm.tm_min);
|
||||
tm.tm_min = bin2bcd(tm.tm_min);
|
||||
xicor_write(X1241REG_MN, tm.tm_min);
|
||||
|
||||
tm.tm_mday = BIN2BCD(tm.tm_mday);
|
||||
tm.tm_mday = bin2bcd(tm.tm_mday);
|
||||
xicor_write(X1241REG_DT, tm.tm_mday);
|
||||
|
||||
/* tm_mon starts from 0, *ick* */
|
||||
tm.tm_mon ++;
|
||||
tm.tm_mon = BIN2BCD(tm.tm_mon);
|
||||
tm.tm_mon = bin2bcd(tm.tm_mon);
|
||||
xicor_write(X1241REG_MO, tm.tm_mon);
|
||||
|
||||
/* year is split */
|
||||
|
@ -148,7 +148,7 @@ int xicor_set_time(unsigned long t)
|
|||
tmp = xicor_read(X1241REG_HR);
|
||||
if (tmp & X1241REG_HR_MIL) {
|
||||
/* 24 hour format */
|
||||
tm.tm_hour = BIN2BCD(tm.tm_hour);
|
||||
tm.tm_hour = bin2bcd(tm.tm_hour);
|
||||
tmp = (tmp & ~0x3f) | (tm.tm_hour & 0x3f);
|
||||
} else {
|
||||
/* 12 hour format, with 0x2 for pm */
|
||||
|
@ -157,7 +157,7 @@ int xicor_set_time(unsigned long t)
|
|||
tmp |= 0x20;
|
||||
tm.tm_hour -= 12;
|
||||
}
|
||||
tm.tm_hour = BIN2BCD(tm.tm_hour);
|
||||
tm.tm_hour = bin2bcd(tm.tm_hour);
|
||||
tmp |= tm.tm_hour;
|
||||
}
|
||||
xicor_write(X1241REG_HR, tmp);
|
||||
|
@ -191,13 +191,13 @@ unsigned long xicor_get_time(void)
|
|||
y2k = xicor_read(X1241REG_Y2K);
|
||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||
|
||||
sec = BCD2BIN(sec);
|
||||
min = BCD2BIN(min);
|
||||
hour = BCD2BIN(hour);
|
||||
day = BCD2BIN(day);
|
||||
mon = BCD2BIN(mon);
|
||||
year = BCD2BIN(year);
|
||||
y2k = BCD2BIN(y2k);
|
||||
sec = bcd2bin(sec);
|
||||
min = bcd2bin(min);
|
||||
hour = bcd2bin(hour);
|
||||
day = bcd2bin(day);
|
||||
mon = bcd2bin(mon);
|
||||
year = bcd2bin(year);
|
||||
y2k = bcd2bin(y2k);
|
||||
|
||||
year += (y2k * 100);
|
||||
|
||||
|
|
|
@ -68,6 +68,8 @@ mainmenu "Matsushita MN10300/AM33 Kernel Configuration"
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
|
||||
menu "Matsushita MN10300 system setup"
|
||||
|
||||
|
|
|
@ -67,7 +67,7 @@ static int set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
||||
BCD_TO_BIN(cmos_minutes);
|
||||
cmos_minutes = bcd2bin(cmos_minutes);
|
||||
|
||||
/*
|
||||
* since we're only adjusting minutes and seconds,
|
||||
|
@ -84,8 +84,8 @@ static int set_rtc_mmss(unsigned long nowtime)
|
|||
|
||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||||
BIN_TO_BCD(real_seconds);
|
||||
BIN_TO_BCD(real_minutes);
|
||||
real_seconds = bin2bcd(real_seconds);
|
||||
real_minutes = bin2bcd(real_minutes);
|
||||
}
|
||||
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
||||
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
||||
|
|
|
@ -9,6 +9,8 @@ config PARISC
|
|||
def_bool y
|
||||
select HAVE_IDE
|
||||
select HAVE_OPROFILE
|
||||
select RTC_CLASS
|
||||
select RTC_DRV_PARISC
|
||||
help
|
||||
The PA-RISC microprocessor is designed by Hewlett-Packard and used
|
||||
in many of their workstations & servers (HP9000 700 and 800 series,
|
||||
|
@ -90,6 +92,8 @@ config ARCH_MAY_HAVE_PC_FDC
|
|||
|
||||
source "init/Kconfig"
|
||||
|
||||
source "kernel/Kconfig.freezer"
|
||||
|
||||
|
||||
menu "Processor type and features"
|
||||
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue