Merge ../linux-2.6/

Conflicts:

	drivers/scsi/aacraid/comminit.c

Fixed up by removing the now renamed CONFIG_IOMMU option from
aacraid

Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
This commit is contained in:
James Bottomley 2006-06-28 14:06:39 -04:00
commit f28e71617d
1119 changed files with 51327 additions and 19522 deletions

View File

@ -24,6 +24,11 @@ S: C. Negri 6, bl. D3
S: Iasi 6600
S: Romania
N: Mark Adler
E: madler@alumni.caltech.edu
W: http://alumnus.caltech.edu/~madler/
D: zlib decompression
N: Monalisa Agrawal
E: magrawal@nortelnetworks.com
D: Basic Interphase 5575 driver with UBR and ABR support.

View File

@ -1590,7 +1590,7 @@ the amount of locking which needs to be done.
<para>
Our final dilemma is this: when can we actually destroy the
removed element? Remember, a reader might be stepping through
this element in the list right now: it we free this element and
this element in the list right now: if we free this element and
the <symbol>next</symbol> pointer changes, the reader will jump
off into garbage and crash. We need to wait until we know that
all the readers who were traversing the list when we deleted the

View File

@ -7,7 +7,7 @@ The CONFIG_RCU_TORTURE_TEST config option is available for all RCU
implementations. It creates an rcutorture kernel module that can
be loaded to run a torture test. The test periodically outputs
status messages via printk(), which can be examined via the dmesg
command (perhaps grepping for "rcutorture"). The test is started
command (perhaps grepping for "torture"). The test is started
when the module is loaded, and stops when the module is unloaded.
However, actually setting this config option to "y" results in the system
@ -35,6 +35,19 @@ stat_interval The number of seconds between output of torture
be printed -only- when the module is unloaded, and this
is the default.
shuffle_interval
The number of seconds to keep the test threads affinitied
to a particular subset of the CPUs. Used in conjunction
with test_no_idle_hz.
test_no_idle_hz Whether or not to test the ability of RCU to operate in
a kernel that disables the scheduling-clock interrupt to
idle CPUs. Boolean parameter, "1" to test, "0" otherwise.
torture_type The type of RCU to test: "rcu" for the rcu_read_lock()
API, "rcu_bh" for the rcu_read_lock_bh() API, and "srcu"
for the "srcu_read_lock()" API.
verbose Enable debug printk()s. Default is disabled.
@ -42,14 +55,14 @@ OUTPUT
The statistics output is as follows:
rcutorture: --- Start of test: nreaders=16 stat_interval=0 verbose=0
rcutorture: rtc: 0000000000000000 ver: 1916 tfle: 0 rta: 1916 rtaf: 0 rtf: 1915
rcutorture: Reader Pipe: 1466408 9747 0 0 0 0 0 0 0 0 0
rcutorture: Reader Batch: 1464477 11678 0 0 0 0 0 0 0 0
rcutorture: Free-Block Circulation: 1915 1915 1915 1915 1915 1915 1915 1915 1915 1915 0
rcutorture: --- End of test
rcu-torture: --- Start of test: nreaders=16 stat_interval=0 verbose=0
rcu-torture: rtc: 0000000000000000 ver: 1916 tfle: 0 rta: 1916 rtaf: 0 rtf: 1915
rcu-torture: Reader Pipe: 1466408 9747 0 0 0 0 0 0 0 0 0
rcu-torture: Reader Batch: 1464477 11678 0 0 0 0 0 0 0 0
rcu-torture: Free-Block Circulation: 1915 1915 1915 1915 1915 1915 1915 1915 1915 1915 0
rcu-torture: --- End of test
The command "dmesg | grep rcutorture:" will extract this information on
The command "dmesg | grep torture:" will extract this information on
most systems. On more esoteric configurations, it may be necessary to
use other commands to access the output of the printk()s used by
the RCU torture test. The printk()s use KERN_ALERT, so they should
@ -115,8 +128,9 @@ The following script may be used to torture RCU:
modprobe rcutorture
sleep 100
rmmod rcutorture
dmesg | grep rcutorture:
dmesg | grep torture:
The output can be manually inspected for the error flag of "!!!".
One could of course create a more elaborate script that automatically
checked for such errors.
checked for such errors. The "rmmod" command forces a "SUCCESS" or
"FAILURE" indication to be printk()ed.

View File

@ -7,11 +7,13 @@ Introduction
------------
The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported
by the 's3c2410' architecture of ARM Linux. Currently the S3C2410 and
the S3C2440 are supported CPUs.
by the 's3c2410' architecture of ARM Linux. Currently the S3C2410,
S3C2440 and S3C2442 devices are supported.
Support for the S3C2400 series is in progress.
Support for the S3C2412 and S3C2413 CPUs is being merged.
Configuration
-------------
@ -43,9 +45,18 @@ Machines
Samsung's own development board, geared for PDA work.
Samsung/Aiji SMDK2412
The S3C2412 version of the SMDK2440.
Samsung/Aiji SMDK2413
The S3C2412 version of the SMDK2440.
Samsung/Meritech SMDK2440
The S3C2440 compatible version of the SMDK2440
The S3C2440 compatible version of the SMDK2440, which has the
option of an S3C2440 or S3C2442 CPU module.
Thorcom VR1000
@ -211,24 +222,6 @@ Port Contributors
Lucas Correia Villa Real (S3C2400 port)
Document Changes
----------------
05 Sep 2004 - BJD - Added Document Changes section
05 Sep 2004 - BJD - Added Klaus Fetscher to list of contributors
25 Oct 2004 - BJD - Added Dimitry Andric to list of contributors
25 Oct 2004 - BJD - Updated the MTD from the 2.6.9 merge
21 Jan 2005 - BJD - Added rx3715, added Shannon to contributors
10 Feb 2005 - BJD - Added Guillaume Gourat to contributors
02 Mar 2005 - BJD - Added SMDK2440 to list of machines
06 Mar 2005 - BJD - Added Christer Weinigel
08 Mar 2005 - BJD - Added LCVR to list of people, updated introduction
08 Mar 2005 - BJD - Added section on adding machines
09 Sep 2005 - BJD - Added section on platform data
11 Feb 2006 - BJD - Added I2C, RTC and Watchdog sections
11 Feb 2006 - BJD - Added Osiris machine, and S3C2400 information
Document Author
---------------

View File

@ -0,0 +1,120 @@
S3C2412 ARM Linux Overview
==========================
Introduction
------------
The S3C2412 is part of the S3C24XX range of ARM9 System-on-Chip CPUs
from Samsung. This part has an ARM926-EJS core, capable of running up
to 266MHz (see data-sheet for more information)
Clock
-----
The core clock code provides a set of clocks to the drivers, and allows
for source selection and a number of other features.
Power
-----
No support for suspend/resume to RAM in the current system.
DMA
---
No current support for DMA.
GPIO
----
There is support for setting the GPIO to input/output/special function
and reading or writing to them.
UART
----
The UART hardware is similar to the S3C2440, and is supported by the
s3c2410 driver in the drivers/serial directory.
NAND
----
The NAND hardware is similar to the S3C2440, and is supported by the
s3c2410 driver in the drivers/mtd/nand directory.
USB Host
--------
The USB hardware is similar to the S3C2410, with extended clock source
control. The OHCI portion is supported by the ohci-s3c2410 driver, and
the clock control selection is supported by the core clock code.
USB Device
----------
No current support in the kernel
IRQs
----
All the standard, and external interrupt sources are supported. The
extra sub-sources are not yet supported.
RTC
---
The RTC hardware is similar to the S3C2410, and is supported by the
s3c2410-rtc driver.
Watchdog
--------
The watchdog harware is the same as the S3C2410, and is supported by
the s3c2410_wdt driver.
MMC/SD/SDIO
-----------
No current support for the MMC/SD/SDIO block.
IIC
---
The IIC hardware is the same as the S3C2410, and is supported by the
i2c-s3c24xx driver.
IIS
---
No current support for the IIS interface.
SPI
---
No current support for the SPI interfaces.
ATA
---
No current support for the on-board ATA block.
Document Author
---------------
Ben Dooks, (c) 2006 Simtec Electronics

View File

@ -0,0 +1,21 @@
S3C2413 ARM Linux Overview
==========================
Introduction
------------
The S3C2413 is an extended version of the S3C2412, with an camera
interface and mobile DDR memory support. See the S3C2412 support
documentation for more information.
Camera Interface
---------------
This block is currently not supported.
Document Author
---------------
Ben Dooks, (c) 2006 Simtec Electronics

View File

@ -157,13 +157,13 @@ For example, smp_mb__before_atomic_dec() can be used like so:
smp_mb__before_atomic_dec();
atomic_dec(&obj->ref_count);
It makes sure that all memory operations preceeding the atomic_dec()
It makes sure that all memory operations preceding the atomic_dec()
call are strongly ordered with respect to the atomic counter
operation. In the above example, it guarentees that the assignment of
operation. In the above example, it guarantees that the assignment of
"1" to obj->dead will be globally visible to other cpus before the
atomic counter decrement.
Without the explicitl smp_mb__before_atomic_dec() call, the
Without the explicit smp_mb__before_atomic_dec() call, the
implementation could legally allow the atomic counter update visible
to other cpus before the "obj->dead = 1;" assignment.
@ -173,11 +173,11 @@ ordering with respect to memory operations after an atomic_dec() call
(smp_mb__{before,after}_atomic_inc()).
A missing memory barrier in the cases where they are required by the
atomic_t implementation above can have disasterous results. Here is
an example, which follows a pattern occuring frequently in the Linux
atomic_t implementation above can have disastrous results. Here is
an example, which follows a pattern occurring frequently in the Linux
kernel. It is the use of atomic counters to implement reference
counting, and it works such that once the counter falls to zero it can
be guarenteed that no other entity can be accessing the object:
be guaranteed that no other entity can be accessing the object:
static void obj_list_add(struct obj *obj)
{
@ -291,9 +291,9 @@ to the size of an "unsigned long" C data type, and are least of that
size. The endianness of the bits within each "unsigned long" are the
native endianness of the cpu.
void set_bit(unsigned long nr, volatils unsigned long *addr);
void clear_bit(unsigned long nr, volatils unsigned long *addr);
void change_bit(unsigned long nr, volatils unsigned long *addr);
void set_bit(unsigned long nr, volatile unsigned long *addr);
void clear_bit(unsigned long nr, volatile unsigned long *addr);
void change_bit(unsigned long nr, volatile unsigned long *addr);
These routines set, clear, and change, respectively, the bit number
indicated by "nr" on the bit mask pointed to by "ADDR".
@ -301,9 +301,9 @@ indicated by "nr" on the bit mask pointed to by "ADDR".
They must execute atomically, yet there are no implicit memory barrier
semantics required of these interfaces.
int test_and_set_bit(unsigned long nr, volatils unsigned long *addr);
int test_and_clear_bit(unsigned long nr, volatils unsigned long *addr);
int test_and_change_bit(unsigned long nr, volatils unsigned long *addr);
int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
Like the above, except that these routines return a boolean which
indicates whether the changed bit was set _BEFORE_ the atomic bit
@ -335,7 +335,7 @@ subsequent memory operation is made visible. For example:
/* ... */;
obj->killed = 1;
The implementation of test_and_set_bit() must guarentee that
The implementation of test_and_set_bit() must guarantee that
"obj->dead = 1;" is visible to cpus before the atomic memory operation
done by test_and_set_bit() becomes visible. Likewise, the atomic
memory operation done by test_and_set_bit() must become visible before
@ -474,7 +474,7 @@ Now, as far as memory barriers go, as long as spin_lock()
strictly orders all subsequent memory operations (including
the cas()) with respect to itself, things will be fine.
Said another way, _atomic_dec_and_lock() must guarentee that
Said another way, _atomic_dec_and_lock() must guarantee that
a counter dropping to zero is never made visible before the
spinlock being acquired.

View File

@ -0,0 +1,144 @@
Console Drivers
===============
The linux kernel has 2 general types of console drivers. The first type is
assigned by the kernel to all the virtual consoles during the boot process.
This type will be called 'system driver', and only one system driver is allowed
to exist. The system driver is persistent and it can never be unloaded, though
it may become inactive.
The second type has to be explicitly loaded and unloaded. This will be called
'modular driver' by this document. Multiple modular drivers can coexist at
any time with each driver sharing the console with other drivers including
the system driver. However, modular drivers cannot take over the console
that is currently occupied by another modular driver. (Exception: Drivers that
call take_over_console() will succeed in the takeover regardless of the type
of driver occupying the consoles.) They can only take over the console that is
occupied by the system driver. In the same token, if the modular driver is
released by the console, the system driver will take over.
Modular drivers, from the programmer's point of view, has to call:
take_over_console() - load and bind driver to console layer
give_up_console() - unbind and unload driver
In newer kernels, the following are also available:
register_con_driver()
unregister_con_driver()
If sysfs is enabled, the contents of /sys/class/vtconsole can be
examined. This shows the console backends currently registered by the
system which are named vtcon<n> where <n> is an integer fro 0 to 15. Thus:
ls /sys/class/vtconsole
. .. vtcon0 vtcon1
Each directory in /sys/class/vtconsole has 3 files:
ls /sys/class/vtconsole/vtcon0
. .. bind name uevent
What do these files signify?
1. bind - this is a read/write file. It shows the status of the driver if
read, or acts to bind or unbind the driver to the virtual consoles
when written to. The possible values are:
0 - means the driver is not bound and if echo'ed, commands the driver
to unbind
1 - means the driver is bound and if echo'ed, commands the driver to
bind
2. name - read-only file. Shows the name of the driver in this format:
cat /sys/class/vtconsole/vtcon0/name
(S) VGA+
'(S)' stands for a (S)ystem driver, ie, it cannot be directly
commanded to bind or unbind
'VGA+' is the name of the driver
cat /sys/class/vtconsole/vtcon1/name
(M) frame buffer device
In this case, '(M)' stands for a (M)odular driver, one that can be
directly commanded to bind or unbind.
3. uevent - ignore this file
When unbinding, the modular driver is detached first, and then the system
driver takes over the consoles vacated by the driver. Binding, on the other
hand, will bind the driver to the consoles that are currently occupied by a
system driver.
NOTE1: Binding and binding must be selected in Kconfig. It's under:
Device Drivers -> Character devices -> Support for binding and unbinding
console drivers
NOTE2: If any of the virtual consoles are in KD_GRAPHICS mode, then binding or
unbinding will not succeed. An example of an application that sets the console
to KD_GRAPHICS is X.
How useful is this feature? This is very useful for console driver
developers. By unbinding the driver from the console layer, one can unload the
driver, make changes, recompile, reload and rebind the driver without any need
for rebooting the kernel. For regular users who may want to switch from
framebuffer console to VGA console and vice versa, this feature also makes
this possible. (NOTE NOTE NOTE: Please read fbcon.txt under Documentation/fb
for more details).
Notes for developers:
=====================
take_over_console() is now broken up into:
register_con_driver()
bind_con_driver() - private function
give_up_console() is a wrapper to unregister_con_driver(), and a driver must
be fully unbound for this call to succeed. con_is_bound() will check if the
driver is bound or not.
Guidelines for console driver writers:
=====================================
In order for binding to and unbinding from the console to properly work,
console drivers must follow these guidelines:
1. All drivers, except system drivers, must call either register_con_driver()
or take_over_console(). register_con_driver() will just add the driver to
the console's internal list. It won't take over the
console. take_over_console(), as it name implies, will also take over (or
bind to) the console.
2. All resources allocated during con->con_init() must be released in
con->con_deinit().
3. All resources allocated in con->con_startup() must be released when the
driver, which was previously bound, becomes unbound. The console layer
does not have a complementary call to con->con_startup() so it's up to the
driver to check when it's legal to release these resources. Calling
con_is_bound() in con->con_deinit() will help. If the call returned
false(), then it's safe to release the resources. This balance has to be
ensured because con->con_startup() can be called again when a request to
rebind the driver to the console arrives.
4. Upon exit of the driver, ensure that the driver is totally unbound. If the
condition is satisfied, then the driver must call unregister_con_driver()
or give_up_console().
5. unregister_con_driver() can also be called on conditions which make it
impossible for the driver to service console requests. This can happen
with the framebuffer console that suddenly lost all of its drivers.
The current crop of console drivers should still work correctly, but binding
and unbinding them may cause problems. With minimal fixes, these drivers can
be made to work correctly.
==========================
Antonino Daplas <adaplas@pol.net>

View File

@ -18,7 +18,7 @@ Traditional driver models implemented some sort of tree-like structure
(sometimes just a list) for the devices they control. There wasn't any
uniformity across the different bus types.
The current driver model provides a comon, uniform data model for describing
The current driver model provides a common, uniform data model for describing
a bus and the devices that can appear under the bus. The unified bus
model includes a set of common attributes which all busses carry, and a set
of common callbacks, such as device discovery during bus probing, bus

View File

@ -135,10 +135,10 @@ C. Boot options
The angle can be changed anytime afterwards by 'echoing' the same
numbers to any one of the 2 attributes found in
/sys/class/graphics/fb{x}
/sys/class/graphics/fbcon
con_rotate - rotate the display of the active console
con_rotate_all - rotate the display of all consoles
rotate - rotate the display of the active console
rotate_all - rotate the display of all consoles
Console rotation will only become available if Console Rotation
Support is compiled in your kernel.
@ -148,5 +148,177 @@ C. Boot options
Actually, the underlying fb driver is totally ignorant of console
rotation.
---
C. Attaching, Detaching and Unloading
Before going on on how to attach, detach and unload the framebuffer console, an
illustration of the dependencies may help.
The console layer, as with most subsystems, needs a driver that interfaces with
the hardware. Thus, in a VGA console:
console ---> VGA driver ---> hardware.
Assuming the VGA driver can be unloaded, one must first unbind the VGA driver
from the console layer before unloading the driver. The VGA driver cannot be
unloaded if it is still bound to the console layer. (See
Documentation/console/console.txt for more information).
This is more complicated in the case of the the framebuffer console (fbcon),
because fbcon is an intermediate layer between the console and the drivers:
console ---> fbcon ---> fbdev drivers ---> hardware
The fbdev drivers cannot be unloaded if it's bound to fbcon, and fbcon cannot
be unloaded if it's bound to the console layer.
So to unload the fbdev drivers, one must first unbind fbcon from the console,
then unbind the fbdev drivers from fbcon. Fortunately, unbinding fbcon from
the console layer will automatically unbind framebuffer drivers from
fbcon. Thus, there is no need to explicitly unbind the fbdev drivers from
fbcon.
So, how do we unbind fbcon from the console? Part of the answer is in
Documentation/console/console.txt. To summarize:
Echo a value to the bind file that represents the framebuffer console
driver. So assuming vtcon1 represents fbcon, then:
echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
console layer
echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
console layer
If fbcon is detached from the console layer, your boot console driver (which is
usually VGA text mode) will take over. A few drivers (rivafb and i810fb) will
restore VGA text mode for you. With the rest, before detaching fbcon, you
must take a few additional steps to make sure that your VGA text mode is
restored properly. The following is one of the several methods that you can do:
1. Download or install vbetool. This utility is included with most
distributions nowadays, and is usually part of the suspend/resume tool.
2. In your kernel configuration, ensure that CONFIG_FRAMEBUFFER_CONSOLE is set
to 'y' or 'm'. Enable one or more of your favorite framebuffer drivers.
3. Boot into text mode and as root run:
vbetool vbestate save > <vga state file>
The above command saves the register contents of your graphics
hardware to <vga state file>. You need to do this step only once as
the state file can be reused.
4. If fbcon is compiled as a module, load fbcon by doing:
modprobe fbcon
5. Now to detach fbcon:
vbetool vbestate restore < <vga state file> && \
echo 0 > /sys/class/vtconsole/vtcon1/bind
6. That's it, you're back to VGA mode. And if you compiled fbcon as a module,
you can unload it by 'rmmod fbcon'
7. To reattach fbcon:
echo 1 > /sys/class/vtconsole/vtcon1/bind
8. Once fbcon is unbound, all drivers registered to the system will also
become unbound. This means that fbcon and individual framebuffer drivers
can be unloaded or reloaded at will. Reloading the drivers or fbcon will
automatically bind the console, fbcon and the drivers together. Unloading
all the drivers without unloading fbcon will make it impossible for the
console to bind fbcon.
Notes for vesafb users:
=======================
Unfortunately, if your bootline includes a vga=xxx parameter that sets the
hardware in graphics mode, such as when loading vesafb, vgacon will not load.
Instead, vgacon will replace the default boot console with dummycon, and you
won't get any display after detaching fbcon. Your machine is still alive, so
you can reattach vesafb. However, to reattach vesafb, you need to do one of
the following:
Variation 1:
a. Before detaching fbcon, do
vbetool vbemode save > <vesa state file> # do once for each vesafb mode,
# the file can be reused
b. Detach fbcon as in step 5.
c. Attach fbcon
vbetool vbestate restore < <vesa state file> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind
Variation 2:
a. Before detaching fbcon, do:
echo <ID> > /sys/class/tty/console/bind
vbetool vbemode get
b. Take note of the mode number
b. Detach fbcon as in step 5.
c. Attach fbcon:
vbetool vbemode set <mode number> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind
Samples:
========
Here are 2 sample bash scripts that you can use to bind or unbind the
framebuffer console driver if you are in an X86 box:
---------------------------------------------------------------------------
#!/bin/bash
# Unbind fbcon
# Change this to where your actual vgastate file is located
# Or Use VGASTATE=$1 to indicate the state file at runtime
VGASTATE=/tmp/vgastate
# path to vbetool
VBETOOL=/usr/local/bin
for (( i = 0; i < 16; i++))
do
if test -x /sys/class/vtconsole/vtcon$i; then
if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
= 1 ]; then
if test -x $VBETOOL/vbetool; then
echo Unbinding vtcon$i
$VBETOOL/vbetool vbestate restore < $VGASTATE
echo 0 > /sys/class/vtconsole/vtcon$i/bind
fi
fi
fi
done
---------------------------------------------------------------------------
#!/bin/bash
# Bind fbcon
for (( i = 0; i < 16; i++))
do
if test -x /sys/class/vtconsole/vtcon$i; then
if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
= 1 ]; then
echo Unbinding vtcon$i
echo 1 > /sys/class/vtconsole/vtcon$i/bind
fi
fi
done
---------------------------------------------------------------------------
--
Antonino Daplas <adaplas@pol.net>

View File

@ -113,6 +113,14 @@ noquota
grpquota
usrquota
bh (*) ext3 associates buffer heads to data pages to
nobh (a) cache disk block mapping information
(b) link pages into transaction to provide
ordering guarantees.
"bh" option forces use of buffer heads.
"nobh" option tries to avoid associating buffer
heads (supported only for "writeback" mode).
Specification
=============

View File

@ -1123,6 +1123,14 @@ The top Makefile exports the following variables:
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may
override this value on the command line if desired.
INSTALL_MOD_STRIP
If this variable is specified, will cause modules to be stripped
after they are installed. If INSTALL_MOD_STRIP is '1', then the
default option --strip-debug will be used. Otherwise,
INSTALL_MOD_STRIP will used as the option(s) to the strip command.
=== 8 Makefile language
The kernel Makefiles are designed to run with GNU Make. The Makefiles

View File

@ -175,7 +175,7 @@ end
document trapinfo
Run info threads and lookup pid of thread #1
'trapinfo <pid>' will tell you by which trap & possibly
addresthe kernel paniced.
address the kernel panicked.
end

View File

@ -61,6 +61,7 @@ parameter is applicable:
MTD MTD support is enabled.
NET Appropriate network support is enabled.
NUMA NUMA support is enabled.
GENERIC_TIME The generic timeofday code is enabled.
NFS Appropriate NFS support is enabled.
OSS OSS sound support is enabled.
PARIDE The ParIDE subsystem is enabled.
@ -179,6 +180,11 @@ running once the system is up.
override platform specific driver.
See also Documentation/acpi-hotkey.txt.
acpi_pm_good [IA-32,X86-64]
Override the pmtimer bug detection: force the kernel
to assume that this machine's pmtimer latches its value
and always returns good values.
enable_timer_pin_1 [i386,x86-64]
Enable PIN 1 of APIC timer
Can be useful to work around chipset bugs
@ -341,10 +347,11 @@ running once the system is up.
Value can be changed at runtime via
/selinux/checkreqprot.
clock= [BUGS=IA-32,HW] gettimeofday timesource override.
Forces specified timesource (if avaliable) to be used
when calculating gettimeofday(). If specicified
timesource is not avalible, it defaults to PIT.
clock= [BUGS=IA-32, HW] gettimeofday clocksource override.
[Deprecated]
Forces specified clocksource (if avaliable) to be used
when calculating gettimeofday(). If specified
clocksource is not avalible, it defaults to PIT.
Format: { pit | tsc | cyclone | pmtmr }
disable_8254_timer
@ -1617,6 +1624,10 @@ running once the system is up.
time Show timing data prefixed to each printk message line
clocksource= [GENERIC_TIME] Override the default clocksource
Override the default clocksource and use the clocksource
with the name specified.
tipar.timeout= [HW,PPT]
Set communications timeout in tenths of a second
(default 15).
@ -1658,6 +1669,10 @@ running once the system is up.
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.
vdso= [IA-32]
vdso=1: enable VDSO (default)
vdso=0: disable VDSO mapping
video= [FB] Frame buffer configuration
See Documentation/fb/modedb.txt.

View File

@ -241,25 +241,30 @@ The security class "key" has been added to SELinux so that mandatory access
controls can be applied to keys created within various contexts. This support
is preliminary, and is likely to change quite significantly in the near future.
Currently, all of the basic permissions explained above are provided in SELinux
as well; SE Linux is simply invoked after all basic permission checks have been
as well; SELinux is simply invoked after all basic permission checks have been
performed.
Each key is labeled with the same context as the task to which it belongs.
Typically, this is the same task that was running when the key was created.
The default keyrings are handled differently, but in a way that is very
intuitive:
The value of the file /proc/self/attr/keycreate influences the labeling of
newly-created keys. If the contents of that file correspond to an SELinux
security context, then the key will be assigned that context. Otherwise, the
key will be assigned the current context of the task that invoked the key
creation request. Tasks must be granted explicit permission to assign a
particular context to newly-created keys, using the "create" permission in the
key security class.
(*) The user and user session keyrings that are created when the user logs in
are currently labeled with the context of the login manager.
(*) The keyrings associated with new threads are each labeled with the context
of their associated thread, and both session and process keyrings are
handled similarly.
The default keyrings associated with users will be labeled with the default
context of the user if and only if the login programs have been instrumented to
properly initialize keycreate during the login process. Otherwise, they will
be labeled with the context of the login program itself.
Note, however, that the default keyrings associated with the root user are
labeled with the default kernel context, since they are created early in the
boot process, before root has a chance to log in.
The keyrings associated with new threads are each labeled with the context of
their associated thread, and both session and process keyrings are handled
similarly.
================
NEW PROCFS FILES
@ -270,9 +275,17 @@ about the status of the key service:
(*) /proc/keys
This lists all the keys on the system, giving information about their
type, description and permissions. The payload of the key is not available
this way:
This lists the keys that are currently viewable by the task reading the
file, giving information about their type, description and permissions.
It is not possible to view the payload of the key this way, though some
information about it may be given.
The only keys included in the list are those that grant View permission to
the reading process whether or not it possesses them. Note that LSM
security checks are still performed, and may further filter out keys that
the current process is not authorised to view.
The contents of the file look like this:
SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY
00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4
@ -300,7 +313,7 @@ about the status of the key service:
(*) /proc/key-users
This file lists the tracking data for each user that has at least one key
on the system. Such data includes quota information and statistics:
on the system. Such data includes quota information and statistics:
[root@andromeda root]# cat /proc/key-users
0: 46 45/45 1/100 13/10000

View File

@ -200,6 +200,17 @@ All md devices contain:
This can be written only while the array is being assembled, not
after it is started.
layout
The "layout" for the array for the particular level. This is
simply a number that is interpretted differently by different
levels. It can be written while assembling an array.
resync_start
The point at which resync should start. If no resync is needed,
this will be a very large number. At array creation it will
default to 0, though starting the array as 'clean' will
set it much larger.
new_dev
This file can be written but not read. The value written should
be a block device number as major:minor. e.g. 8:0
@ -207,6 +218,54 @@ All md devices contain:
available. It will then appear at md/dev-XXX (depending on the
name of the device) and further configuration is then possible.
safe_mode_delay
When an md array has seen no write requests for a certain period
of time, it will be marked as 'clean'. When another write
request arrive, the array is marked as 'dirty' before the write
commenses. This is known as 'safe_mode'.
The 'certain period' is controlled by this file which stores the
period as a number of seconds. The default is 200msec (0.200).
Writing a value of 0 disables safemode.
array_state
This file contains a single word which describes the current
state of the array. In many cases, the state can be set by
writing the word for the desired state, however some states
cannot be explicitly set, and some transitions are not allowed.
clear
No devices, no size, no level
Writing is equivalent to STOP_ARRAY ioctl
inactive
May have some settings, but array is not active
all IO results in error
When written, doesn't tear down array, but just stops it
suspended (not supported yet)
All IO requests will block. The array can be reconfigured.
Writing this, if accepted, will block until array is quiessent
readonly
no resync can happen. no superblocks get written.
write requests fail
read-auto
like readonly, but behaves like 'clean' on a write request.
clean - no pending writes, but otherwise active.
When written to inactive array, starts without resync
If a write request arrives then
if metadata is known, mark 'dirty' and switch to 'active'.
if not known, block and switch to write-pending
If written to an active array that has pending writes, then fails.
active
fully active: IO and resync can be happening.
When written to inactive array, starts with resync
write-pending
clean, but writes are blocked waiting for 'active' to be written.
active-idle
like active, but no writes have been seen for a while (safe_mode_delay).
sync_speed_min
sync_speed_max
This are similar to /proc/sys/dev/raid/speed_limit_{min,max}
@ -250,10 +309,18 @@ Each directory contains:
faulty - device has been kicked from active use due to
a detected fault
in_sync - device is a fully in-sync member of the array
writemostly - device will only be subject to read
requests if there are no other options.
This applies only to raid1 arrays.
spare - device is working, but not a full member.
This includes spares that are in the process
of being recoverred to
This list make grow in future.
This can be written to.
Writing "faulty" simulates a failure on the device.
Writing "remove" removes the device from the array.
Writing "writemostly" sets the writemostly flag.
Writing "-writemostly" clears the writemostly flag.
errors
An approximate count of read errors that have been detected on

121
Documentation/pi-futex.txt Normal file
View File

@ -0,0 +1,121 @@
Lightweight PI-futexes
----------------------
We are calling them lightweight for 3 reasons:
- in the user-space fastpath a PI-enabled futex involves no kernel work
(or any other PI complexity) at all. No registration, no extra kernel
calls - just pure fast atomic ops in userspace.
- even in the slowpath, the system call and scheduling pattern is very
similar to normal futexes.
- the in-kernel PI implementation is streamlined around the mutex
abstraction, with strict rules that keep the implementation
relatively simple: only a single owner may own a lock (i.e. no
read-write lock support), only the owner may unlock a lock, no
recursive locking, etc.
Priority Inheritance - why?
---------------------------
The short reply: user-space PI helps achieving/improving determinism for
user-space applications. In the best-case, it can help achieve
determinism and well-bound latencies. Even in the worst-case, PI will
improve the statistical distribution of locking related application
delays.
The longer reply:
-----------------
Firstly, sharing locks between multiple tasks is a common programming
technique that often cannot be replaced with lockless algorithms. As we
can see it in the kernel [which is a quite complex program in itself],
lockless structures are rather the exception than the norm - the current
ratio of lockless vs. locky code for shared data structures is somewhere
between 1:10 and 1:100. Lockless is hard, and the complexity of lockless
algorithms often endangers to ability to do robust reviews of said code.
I.e. critical RT apps often choose lock structures to protect critical
data structures, instead of lockless algorithms. Furthermore, there are
cases (like shared hardware, or other resource limits) where lockless
access is mathematically impossible.
Media players (such as Jack) are an example of reasonable application
design with multiple tasks (with multiple priority levels) sharing
short-held locks: for example, a highprio audio playback thread is
combined with medium-prio construct-audio-data threads and low-prio
display-colory-stuff threads. Add video and decoding to the mix and
we've got even more priority levels.
So once we accept that synchronization objects (locks) are an
unavoidable fact of life, and once we accept that multi-task userspace
apps have a very fair expectation of being able to use locks, we've got
to think about how to offer the option of a deterministic locking
implementation to user-space.
Most of the technical counter-arguments against doing priority
inheritance only apply to kernel-space locks. But user-space locks are
different, there we cannot disable interrupts or make the task
non-preemptible in a critical section, so the 'use spinlocks' argument
does not apply (user-space spinlocks have the same priority inversion
problems as other user-space locking constructs). Fact is, pretty much
the only technique that currently enables good determinism for userspace
locks (such as futex-based pthread mutexes) is priority inheritance:
Currently (without PI), if a high-prio and a low-prio task shares a lock
[this is a quite common scenario for most non-trivial RT applications],
even if all critical sections are coded carefully to be deterministic
(i.e. all critical sections are short in duration and only execute a
limited number of instructions), the kernel cannot guarantee any
deterministic execution of the high-prio task: any medium-priority task
could preempt the low-prio task while it holds the shared lock and
executes the critical section, and could delay it indefinitely.
Implementation:
---------------
As mentioned before, the userspace fastpath of PI-enabled pthread
mutexes involves no kernel work at all - they behave quite similarly to
normal futex-based locks: a 0 value means unlocked, and a value==TID
means locked. (This is the same method as used by list-based robust
futexes.) Userspace uses atomic ops to lock/unlock these mutexes without
entering the kernel.
To handle the slowpath, we have added two new futex ops:
FUTEX_LOCK_PI
FUTEX_UNLOCK_PI
If the lock-acquire fastpath fails, [i.e. an atomic transition from 0 to
TID fails], then FUTEX_LOCK_PI is called. The kernel does all the
remaining work: if there is no futex-queue attached to the futex address
yet then the code looks up the task that owns the futex [it has put its
own TID into the futex value], and attaches a 'PI state' structure to
the futex-queue. The pi_state includes an rt-mutex, which is a PI-aware,
kernel-based synchronization object. The 'other' task is made the owner
of the rt-mutex, and the FUTEX_WAITERS bit is atomically set in the
futex value. Then this task tries to lock the rt-mutex, on which it
blocks. Once it returns, it has the mutex acquired, and it sets the
futex value to its own TID and returns. Userspace has no other work to
perform - it now owns the lock, and futex value contains
FUTEX_WAITERS|TID.
If the unlock side fastpath succeeds, [i.e. userspace manages to do a
TID -> 0 atomic transition of the futex value], then no kernel work is
triggered.
If the unlock fastpath fails (because the FUTEX_WAITERS bit is set),
then FUTEX_UNLOCK_PI is called, and the kernel unlocks the futex on the
behalf of userspace - and it also unlocks the attached
pi_state->rt_mutex and thus wakes up any potential waiters.
Note that under this approach, contrary to previous PI-futex approaches,
there is no prior 'registration' of a PI-futex. [which is not quite
possible anyway, due to existing ABI properties of pthread mutexes.]
Also, under this scheme, 'robustness' and 'PI' are two orthogonal
properties of futexes, and all four combinations are possible: futex,
robust-futex, PI-futex, robust+PI-futex.
More details about priority inheritance can be found in
Documentation/rtmutex.txt.

View File

@ -95,7 +95,7 @@ comparison. If the thread has registered a list, then normally the list
is empty. If the thread/process crashed or terminated in some incorrect
way then the list might be non-empty: in this case the kernel carefully
walks the list [not trusting it], and marks all locks that are owned by
this thread with the FUTEX_OWNER_DEAD bit, and wakes up one waiter (if
this thread with the FUTEX_OWNER_DIED bit, and wakes up one waiter (if
any).
The list is guaranteed to be private and per-thread at do_exit() time,

View File

@ -0,0 +1,781 @@
#
# Copyright (c) 2006 Steven Rostedt
# Licensed under the GNU Free Documentation License, Version 1.2
#
RT-mutex implementation design
------------------------------
This document tries to describe the design of the rtmutex.c implementation.
It doesn't describe the reasons why rtmutex.c exists. For that please see
Documentation/rt-mutex.txt. Although this document does explain problems
that happen without this code, but that is in the concept to understand
what the code actually is doing.
The goal of this document is to help others understand the priority
inheritance (PI) algorithm that is used, as well as reasons for the
decisions that were made to implement PI in the manner that was done.
Unbounded Priority Inversion
----------------------------
Priority inversion is when a lower priority process executes while a higher
priority process wants to run. This happens for several reasons, and
most of the time it can't be helped. Anytime a high priority process wants
to use a resource that a lower priority process has (a mutex for example),
the high priority process must wait until the lower priority process is done
with the resource. This is a priority inversion. What we want to prevent
is something called unbounded priority inversion. That is when the high
priority process is prevented from running by a lower priority process for
an undetermined amount of time.
The classic example of unbounded priority inversion is were you have three
processes, let's call them processes A, B, and C, where A is the highest
priority process, C is the lowest, and B is in between. A tries to grab a lock
that C owns and must wait and lets C run to release the lock. But in the
meantime, B executes, and since B is of a higher priority than C, it preempts C,
but by doing so, it is in fact preempting A which is a higher priority process.
Now there's no way of knowing how long A will be sleeping waiting for C
to release the lock, because for all we know, B is a CPU hog and will
never give C a chance to release the lock. This is called unbounded priority
inversion.
Here's a little ASCII art to show the problem.
grab lock L1 (owned by C)
|
A ---+
C preempted by B
|
C +----+
B +-------->
B now keeps A from running.
Priority Inheritance (PI)
-------------------------
There are several ways to solve this issue, but other ways are out of scope
for this document. Here we only discuss PI.
PI is where a process inherits the priority of another process if the other
process blocks on a lock owned by the current process. To make this easier
to understand, let's use the previous example, with processes A, B, and C again.
This time, when A blocks on the lock owned by C, C would inherit the priority
of A. So now if B becomes runnable, it would not preempt C, since C now has
the high priority of A. As soon as C releases the lock, it loses its
inherited priority, and A then can continue with the resource that C had.
Terminology
-----------
Here I explain some terminology that is used in this document to help describe
the design that is used to implement PI.
PI chain - The PI chain is an ordered series of locks and processes that cause
processes to inherit priorities from a previous process that is
blocked on one of its locks. This is described in more detail
later in this document.
mutex - In this document, to differentiate from locks that implement
PI and spin locks that are used in the PI code, from now on
the PI locks will be called a mutex.
lock - In this document from now on, I will use the term lock when
referring to spin locks that are used to protect parts of the PI
algorithm. These locks disable preemption for UP (when
CONFIG_PREEMPT is enabled) and on SMP prevents multiple CPUs from
entering critical sections simultaneously.
spin lock - Same as lock above.
waiter - A waiter is a struct that is stored on the stack of a blocked
process. Since the scope of the waiter is within the code for
a process being blocked on the mutex, it is fine to allocate
the waiter on the process's stack (local variable). This
structure holds a pointer to the task, as well as the mutex that
the task is blocked on. It also has the plist node structures to
place the task in the waiter_list of a mutex as well as the
pi_list of a mutex owner task (described below).
waiter is sometimes used in reference to the task that is waiting
on a mutex. This is the same as waiter->task.
waiters - A list of processes that are blocked on a mutex.
top waiter - The highest priority process waiting on a specific mutex.
top pi waiter - The highest priority process waiting on one of the mutexes
that a specific process owns.
Note: task and process are used interchangeably in this document, mostly to
differentiate between two processes that are being described together.
PI chain
--------
The PI chain is a list of processes and mutexes that may cause priority
inheritance to take place. Multiple chains may converge, but a chain
would never diverge, since a process can't be blocked on more than one
mutex at a time.
Example:
Process: A, B, C, D, E
Mutexes: L1, L2, L3, L4
A owns: L1
B blocked on L1
B owns L2
C blocked on L2
C owns L3
D blocked on L3
D owns L4
E blocked on L4
The chain would be:
E->L4->D->L3->C->L2->B->L1->A
To show where two chains merge, we could add another process F and
another mutex L5 where B owns L5 and F is blocked on mutex L5.
The chain for F would be:
F->L5->B->L1->A
Since a process may own more than one mutex, but never be blocked on more than
one, the chains merge.
Here we show both chains:
E->L4->D->L3->C->L2-+
|
+->B->L1->A
|
F->L5-+
For PI to work, the processes at the right end of these chains (or we may
also call it the Top of the chain) must be equal to or higher in priority
than the processes to the left or below in the chain.
Also since a mutex may have more than one process blocked on it, we can
have multiple chains merge at mutexes. If we add another process G that is
blocked on mutex L2:
G->L2->B->L1->A
And once again, to show how this can grow I will show the merging chains
again.
E->L4->D->L3->C-+
+->L2-+
| |
G-+ +->B->L1->A
|
F->L5-+
Plist
-----
Before I go further and talk about how the PI chain is stored through lists
on both mutexes and processes, I'll explain the plist. This is similar to
the struct list_head functionality that is already in the kernel.
The implementation of plist is out of scope for this document, but it is
very important to understand what it does.
There are a few differences between plist and list, the most important one
being that plist is a priority sorted linked list. This means that the
priorities of the plist are sorted, such that it takes O(1) to retrieve the
highest priority item in the list. Obviously this is useful to store processes
based on their priorities.
Another difference, which is important for implementation, is that, unlike
list, the head of the list is a different element than the nodes of a list.
So the head of the list is declared as struct plist_head and nodes that will
be added to the list are declared as struct plist_node.
Mutex Waiter List
-----------------
Every mutex keeps track of all the waiters that are blocked on itself. The mutex
has a plist to store these waiters by priority. This list is protected by
a spin lock that is located in the struct of the mutex. This lock is called
wait_lock. Since the modification of the waiter list is never done in
interrupt context, the wait_lock can be taken without disabling interrupts.
Task PI List
------------
To keep track of the PI chains, each process has its own PI list. This is
a list of all top waiters of the mutexes that are owned by the process.
Note that this list only holds the top waiters and not all waiters that are
blocked on mutexes owned by the process.
The top of the task's PI list is always the highest priority task that
is waiting on a mutex that is owned by the task. So if the task has
inherited a priority, it will always be the priority of the task that is
at the top of this list.
This list is stored in the task structure of a process as a plist called
pi_list. This list is protected by a spin lock also in the task structure,
called pi_lock. This lock may also be taken in interrupt context, so when
locking the pi_lock, interrupts must be disabled.
Depth of the PI Chain
---------------------
The maximum depth of the PI chain is not dynamic, and could actually be
defined. But is very complex to figure it out, since it depends on all
the nesting of mutexes. Let's look at the example where we have 3 mutexes,
L1, L2, and L3, and four separate functions func1, func2, func3 and func4.
The following shows a locking order of L1->L2->L3, but may not actually
be directly nested that way.
void func1(void)
{
mutex_lock(L1);
/* do anything */
mutex_unlock(L1);
}
void func2(void)
{
mutex_lock(L1);
mutex_lock(L2);
/* do something */
mutex_unlock(L2);
mutex_unlock(L1);
}
void func3(void)
{
mutex_lock(L2);
mutex_lock(L3);
/* do something else */
mutex_unlock(L3);
mutex_unlock(L2);
}
void func4(void)
{
mutex_lock(L3);
/* do something again */
mutex_unlock(L3);
}
Now we add 4 processes that run each of these functions separately.
Processes A, B, C, and D which run functions func1, func2, func3 and func4
respectively, and such that D runs first and A last. With D being preempted
in func4 in the "do something again" area, we have a locking that follows:
D owns L3
C blocked on L3
C owns L2
B blocked on L2
B owns L1
A blocked on L1
And thus we have the chain A->L1->B->L2->C->L3->D.
This gives us a PI depth of 4 (four processes), but looking at any of the
functions individually, it seems as though they only have at most a locking
depth of two. So, although the locking depth is defined at compile time,
it still is very difficult to find the possibilities of that depth.
Now since mutexes can be defined by user-land applications, we don't want a DOS
type of application that nests large amounts of mutexes to create a large
PI chain, and have the code holding spin locks while looking at a large
amount of data. So to prevent this, the implementation not only implements
a maximum lock depth, but also only holds at most two different locks at a
time, as it walks the PI chain. More about this below.
Mutex owner and flags
---------------------
The mutex structure contains a pointer to the owner of the mutex. If the
mutex is not owned, this owner is set to NULL. Since all architectures
have the task structure on at least a four byte alignment (and if this is
not true, the rtmutex.c code will be broken!), this allows for the two
least significant bits to be used as flags. This part is also described
in Documentation/rt-mutex.txt, but will also be briefly described here.
Bit 0 is used as the "Pending Owner" flag. This is described later.
Bit 1 is used as the "Has Waiters" flags. This is also described later
in more detail, but is set whenever there are waiters on a mutex.
cmpxchg Tricks
--------------
Some architectures implement an atomic cmpxchg (Compare and Exchange). This
is used (when applicable) to keep the fast path of grabbing and releasing
mutexes short.
cmpxchg is basically the following function performed atomically:
unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
{
unsigned long T = *A;
if (*A == *B) {
*A = *C;
}
return T;
}
#define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
This is really nice to have, since it allows you to only update a variable
if the variable is what you expect it to be. You know if it succeeded if
the return value (the old value of A) is equal to B.
The macro rt_mutex_cmpxchg is used to try to lock and unlock mutexes. If
the architecture does not support CMPXCHG, then this macro is simply set
to fail every time. But if CMPXCHG is supported, then this will
help out extremely to keep the fast path short.
The use of rt_mutex_cmpxchg with the flags in the owner field help optimize
the system for architectures that support it. This will also be explained
later in this document.
Priority adjustments
--------------------
The implementation of the PI code in rtmutex.c has several places that a
process must adjust its priority. With the help of the pi_list of a
process this is rather easy to know what needs to be adjusted.
The functions implementing the task adjustments are rt_mutex_adjust_prio,
__rt_mutex_adjust_prio (same as the former, but expects the task pi_lock
to already be taken), rt_mutex_get_prio, and rt_mutex_setprio.
rt_mutex_getprio and rt_mutex_setprio are only used in __rt_mutex_adjust_prio.
rt_mutex_getprio returns the priority that the task should have. Either the
task's own normal priority, or if a process of a higher priority is waiting on
a mutex owned by the task, then that higher priority should be returned.
Since the pi_list of a task holds an order by priority list of all the top
waiters of all the mutexes that the task owns, rt_mutex_getprio simply needs
to compare the top pi waiter to its own normal priority, and return the higher
priority back.
(Note: if looking at the code, you will notice that the lower number of
prio is returned. This is because the prio field in the task structure
is an inverse order of the actual priority. So a "prio" of 5 is
of higher priority than a "prio" of 10.)
__rt_mutex_adjust_prio examines the result of rt_mutex_getprio, and if the
result does not equal the task's current priority, then rt_mutex_setprio
is called to adjust the priority of the task to the new priority.
Note that rt_mutex_setprio is defined in kernel/sched.c to implement the
actual change in priority.
It is interesting to note that __rt_mutex_adjust_prio can either increase
or decrease the priority of the task. In the case that a higher priority
process has just blocked on a mutex owned by the task, __rt_mutex_adjust_prio
would increase/boost the task's priority. But if a higher priority task
were for some reason to leave the mutex (timeout or signal), this same function
would decrease/unboost the priority of the task. That is because the pi_list
always contains the highest priority task that is waiting on a mutex owned
by the task, so we only need to compare the priority of that top pi waiter
to the normal priority of the given task.
High level overview of the PI chain walk
----------------------------------------
The PI chain walk is implemented by the function rt_mutex_adjust_prio_chain.
The implementation has gone through several iterations, and has ended up
with what we believe is the best. It walks the PI chain by only grabbing
at most two locks at a time, and is very efficient.
The rt_mutex_adjust_prio_chain can be used either to boost or lower process
priorities.
rt_mutex_adjust_prio_chain is called with a task to be checked for PI
(de)boosting (the owner of a mutex that a process is blocking on), a flag to
check for deadlocking, the mutex that the task owns, and a pointer to a waiter
that is the process's waiter struct that is blocked on the mutex (although this
parameter may be NULL for deboosting).
For this explanation, I will not mention deadlock detection. This explanation
will try to stay at a high level.
When this function is called, there are no locks held. That also means
that the state of the owner and lock can change when entered into this function.
Before this function is called, the task has already had rt_mutex_adjust_prio
performed on it. This means that the task is set to the priority that it
should be at, but the plist nodes of the task's waiter have not been updated
with the new priorities, and that this task may not be in the proper locations
in the pi_lists and wait_lists that the task is blocked on. This function
solves all that.
A loop is entered, where task is the owner to be checked for PI changes that
was passed by parameter (for the first iteration). The pi_lock of this task is
taken to prevent any more changes to the pi_list of the task. This also
prevents new tasks from completing the blocking on a mutex that is owned by this
task.
If the task is not blocked on a mutex then the loop is exited. We are at
the top of the PI chain.
A check is now done to see if the original waiter (the process that is blocked
on the current mutex) is the top pi waiter of the task. That is, is this
waiter on the top of the task's pi_list. If it is not, it either means that
there is another process higher in priority that is blocked on one of the
mutexes that the task owns, or that the waiter has just woken up via a signal
or timeout and has left the PI chain. In either case, the loop is exited, since
we don't need to do any more changes to the priority of the current task, or any
task that owns a mutex that this current task is waiting on. A priority chain
walk is only needed when a new top pi waiter is made to a task.
The next check sees if the task's waiter plist node has the priority equal to
the priority the task is set at. If they are equal, then we are done with
the loop. Remember that the function started with the priority of the
task adjusted, but the plist nodes that hold the task in other processes
pi_lists have not been adjusted.
Next, we look at the mutex that the task is blocked on. The mutex's wait_lock
is taken. This is done by a spin_trylock, because the locking order of the
pi_lock and wait_lock goes in the opposite direction. If we fail to grab the
lock, the pi_lock is released, and we restart the loop.
Now that we have both the pi_lock of the task as well as the wait_lock of
the mutex the task is blocked on, we update the task's waiter's plist node
that is located on the mutex's wait_list.
Now we release the pi_lock of the task.
Next the owner of the mutex has its pi_lock taken, so we can update the
task's entry in the owner's pi_list. If the task is the highest priority
process on the mutex's wait_list, then we remove the previous top waiter
from the owner's pi_list, and replace it with the task.
Note: It is possible that the task was the current top waiter on the mutex,
in which case the task is not yet on the pi_list of the waiter. This
is OK, since plist_del does nothing if the plist node is not on any
list.
If the task was not the top waiter of the mutex, but it was before we
did the priority updates, that means we are deboosting/lowering the
task. In this case, the task is removed from the pi_list of the owner,
and the new top waiter is added.
Lastly, we unlock both the pi_lock of the task, as well as the mutex's
wait_lock, and continue the loop again. On the next iteration of the
loop, the previous owner of the mutex will be the task that will be
processed.
Note: One might think that the owner of this mutex might have changed
since we just grab the mutex's wait_lock. And one could be right.
The important thing to remember is that the owner could not have
become the task that is being processed in the PI chain, since
we have taken that task's pi_lock at the beginning of the loop.
So as long as there is an owner of this mutex that is not the same
process as the tasked being worked on, we are OK.
Looking closely at the code, one might be confused. The check for the
end of the PI chain is when the task isn't blocked on anything or the
task's waiter structure "task" element is NULL. This check is
protected only by the task's pi_lock. But the code to unlock the mutex
sets the task's waiter structure "task" element to NULL with only
the protection of the mutex's wait_lock, which was not taken yet.
Isn't this a race condition if the task becomes the new owner?
The answer is No! The trick is the spin_trylock of the mutex's
wait_lock. If we fail that lock, we release the pi_lock of the
task and continue the loop, doing the end of PI chain check again.
In the code to release the lock, the wait_lock of the mutex is held
the entire time, and it is not let go when we grab the pi_lock of the
new owner of the mutex. So if the switch of a new owner were to happen
after the check for end of the PI chain and the grabbing of the
wait_lock, the unlocking code would spin on the new owner's pi_lock
but never give up the wait_lock. So the PI chain loop is guaranteed to
fail the spin_trylock on the wait_lock, release the pi_lock, and
try again.
If you don't quite understand the above, that's OK. You don't have to,
unless you really want to make a proof out of it ;)
Pending Owners and Lock stealing
--------------------------------
One of the flags in the owner field of the mutex structure is "Pending Owner".
What this means is that an owner was chosen by the process releasing the
mutex, but that owner has yet to wake up and actually take the mutex.
Why is this important? Why can't we just give the mutex to another process
and be done with it?
The PI code is to help with real-time processes, and to let the highest
priority process run as long as possible with little latencies and delays.
If a high priority process owns a mutex that a lower priority process is
blocked on, when the mutex is released it would be given to the lower priority
process. What if the higher priority process wants to take that mutex again.
The high priority process would fail to take that mutex that it just gave up
and it would need to boost the lower priority process to run with full
latency of that critical section (since the low priority process just entered
it).
There's no reason a high priority process that gives up a mutex should be
penalized if it tries to take that mutex again. If the new owner of the
mutex has not woken up yet, there's no reason that the higher priority process
could not take that mutex away.
To solve this, we introduced Pending Ownership and Lock Stealing. When a
new process is given a mutex that it was blocked on, it is only given
pending ownership. This means that it's the new owner, unless a higher
priority process comes in and tries to grab that mutex. If a higher priority
process does come along and wants that mutex, we let the higher priority
process "steal" the mutex from the pending owner (only if it is still pending)
and continue with the mutex.
Taking of a mutex (The walk through)
------------------------------------
OK, now let's take a look at the detailed walk through of what happens when
taking a mutex.
The first thing that is tried is the fast taking of the mutex. This is
done when we have CMPXCHG enabled (otherwise the fast taking automatically
fails). Only when the owner field of the mutex is NULL can the lock be
taken with the CMPXCHG and nothing else needs to be done.
If there is contention on the lock, whether it is owned or pending owner
we go about the slow path (rt_mutex_slowlock).
The slow path function is where the task's waiter structure is created on
the stack. This is because the waiter structure is only needed for the
scope of this function. The waiter structure holds the nodes to store
the task on the wait_list of the mutex, and if need be, the pi_list of
the owner.
The wait_lock of the mutex is taken since the slow path of unlocking the
mutex also takes this lock.
We then call try_to_take_rt_mutex. This is where the architecture that
does not implement CMPXCHG would always grab the lock (if there's no
contention).
try_to_take_rt_mutex is used every time the task tries to grab a mutex in the
slow path. The first thing that is done here is an atomic setting of
the "Has Waiters" flag of the mutex's owner field. Yes, this could really
be false, because if the the mutex has no owner, there are no waiters and
the current task also won't have any waiters. But we don't have the lock
yet, so we assume we are going to be a waiter. The reason for this is to
play nice for those architectures that do have CMPXCHG. By setting this flag
now, the owner of the mutex can't release the mutex without going into the
slow unlock path, and it would then need to grab the wait_lock, which this
code currently holds. So setting the "Has Waiters" flag forces the owner
to synchronize with this code.
Now that we know that we can't have any races with the owner releasing the
mutex, we check to see if we can take the ownership. This is done if the
mutex doesn't have a owner, or if we can steal the mutex from a pending
owner. Let's look at the situations we have here.
1) Has owner that is pending
----------------------------
The mutex has a owner, but it hasn't woken up and the mutex flag
"Pending Owner" is set. The first check is to see if the owner isn't the
current task. This is because this function is also used for the pending
owner to grab the mutex. When a pending owner wakes up, it checks to see
if it can take the mutex, and this is done if the owner is already set to
itself. If so, we succeed and leave the function, clearing the "Pending
Owner" bit.
If the pending owner is not current, we check to see if the current priority is
higher than the pending owner. If not, we fail the function and return.
There's also something special about a pending owner. That is a pending owner
is never blocked on a mutex. So there is no PI chain to worry about. It also
means that if the mutex doesn't have any waiters, there's no accounting needed
to update the pending owner's pi_list, since we only worry about processes
blocked on the current mutex.
If there are waiters on this mutex, and we just stole the ownership, we need
to take the top waiter, remove it from the pi_list of the pending owner, and
add it to the current pi_list. Note that at this moment, the pending owner
is no longer on the list of waiters. This is fine, since the pending owner
would add itself back when it realizes that it had the ownership stolen
from itself. When the pending owner tries to grab the mutex, it will fail
in try_to_take_rt_mutex if the owner field points to another process.
2) No owner
-----------
If there is no owner (or we successfully stole the lock), we set the owner
of the mutex to current, and set the flag of "Has Waiters" if the current
mutex actually has waiters, or we clear the flag if it doesn't. See, it was
OK that we set that flag early, since now it is cleared.
3) Failed to grab ownership
---------------------------
The most interesting case is when we fail to take ownership. This means that
there exists an owner, or there's a pending owner with equal or higher
priority than the current task.
We'll continue on the failed case.
If the mutex has a timeout, we set up a timer to go off to break us out
of this mutex if we failed to get it after a specified amount of time.
Now we enter a loop that will continue to try to take ownership of the mutex, or
fail from a timeout or signal.
Once again we try to take the mutex. This will usually fail the first time
in the loop, since it had just failed to get the mutex. But the second time
in the loop, this would likely succeed, since the task would likely be
the pending owner.
If the mutex is TASK_INTERRUPTIBLE a check for signals and timeout is done
here.
The waiter structure has a "task" field that points to the task that is blocked
on the mutex. This field can be NULL the first time it goes through the loop
or if the task is a pending owner and had it's mutex stolen. If the "task"
field is NULL then we need to set up the accounting for it.
Task blocks on mutex
--------------------
The accounting of a mutex and process is done with the waiter structure of
the process. The "task" field is set to the process, and the "lock" field
to the mutex. The plist nodes are initialized to the processes current
priority.
Since the wait_lock was taken at the entry of the slow lock, we can safely
add the waiter to the wait_list. If the current process is the highest
priority process currently waiting on this mutex, then we remove the
previous top waiter process (if it exists) from the pi_list of the owner,
and add the current process to that list. Since the pi_list of the owner
has changed, we call rt_mutex_adjust_prio on the owner to see if the owner
should adjust its priority accordingly.
If the owner is also blocked on a lock, and had its pi_list changed
(or deadlock checking is on), we unlock the wait_lock of the mutex and go ahead
and run rt_mutex_adjust_prio_chain on the owner, as described earlier.
Now all locks are released, and if the current process is still blocked on a
mutex (waiter "task" field is not NULL), then we go to sleep (call schedule).
Waking up in the loop
---------------------
The schedule can then wake up for a few reasons.
1) we were given pending ownership of the mutex.
2) we received a signal and was TASK_INTERRUPTIBLE
3) we had a timeout and was TASK_INTERRUPTIBLE
In any of these cases, we continue the loop and once again try to grab the
ownership of the mutex. If we succeed, we exit the loop, otherwise we continue
and on signal and timeout, will exit the loop, or if we had the mutex stolen
we just simply add ourselves back on the lists and go back to sleep.
Note: For various reasons, because of timeout and signals, the steal mutex
algorithm needs to be careful. This is because the current process is
still on the wait_list. And because of dynamic changing of priorities,
especially on SCHED_OTHER tasks, the current process can be the
highest priority task on the wait_list.
Failed to get mutex on Timeout or Signal
----------------------------------------
If a timeout or signal occurred, the waiter's "task" field would not be
NULL and the task needs to be taken off the wait_list of the mutex and perhaps
pi_list of the owner. If this process was a high priority process, then
the rt_mutex_adjust_prio_chain needs to be executed again on the owner,
but this time it will be lowering the priorities.
Unlocking the Mutex
-------------------
The unlocking of a mutex also has a fast path for those architectures with
CMPXCHG. Since the taking of a mutex on contention always sets the
"Has Waiters" flag of the mutex's owner, we use this to know if we need to
take the slow path when unlocking the mutex. If the mutex doesn't have any
waiters, the owner field of the mutex would equal the current process and
the mutex can be unlocked by just replacing the owner field with NULL.
If the owner field has the "Has Waiters" bit set (or CMPXCHG is not available),
the slow unlock path is taken.
The first thing done in the slow unlock path is to take the wait_lock of the
mutex. This synchronizes the locking and unlocking of the mutex.
A check is made to see if the mutex has waiters or not. On architectures that
do not have CMPXCHG, this is the location that the owner of the mutex will
determine if a waiter needs to be awoken or not. On architectures that
do have CMPXCHG, that check is done in the fast path, but it is still needed
in the slow path too. If a waiter of a mutex woke up because of a signal
or timeout between the time the owner failed the fast path CMPXCHG check and
the grabbing of the wait_lock, the mutex may not have any waiters, thus the
owner still needs to make this check. If there are no waiters than the mutex
owner field is set to NULL, the wait_lock is released and nothing more is
needed.
If there are waiters, then we need to wake one up and give that waiter
pending ownership.
On the wake up code, the pi_lock of the current owner is taken. The top
waiter of the lock is found and removed from the wait_list of the mutex
as well as the pi_list of the current owner. The task field of the new
pending owner's waiter structure is set to NULL, and the owner field of the
mutex is set to the new owner with the "Pending Owner" bit set, as well
as the "Has Waiters" bit if there still are other processes blocked on the
mutex.
The pi_lock of the previous owner is released, and the new pending owner's
pi_lock is taken. Remember that this is the trick to prevent the race
condition in rt_mutex_adjust_prio_chain from adding itself as a waiter
on the mutex.
We now clear the "pi_blocked_on" field of the new pending owner, and if
the mutex still has waiters pending, we add the new top waiter to the pi_list
of the pending owner.
Finally we unlock the pi_lock of the pending owner and wake it up.
Contact
-------
For updates on this document, please email Steven Rostedt <rostedt@goodmis.org>
Credits
-------
Author: Steven Rostedt <rostedt@goodmis.org>
Reviewers: Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and Randy Dunlap
Updates
-------
This document was originally written for 2.6.17-rc3-mm1

View File

@ -0,0 +1,79 @@
RT-mutex subsystem with PI support
----------------------------------
RT-mutexes with priority inheritance are used to support PI-futexes,
which enable pthread_mutex_t priority inheritance attributes
(PTHREAD_PRIO_INHERIT). [See Documentation/pi-futex.txt for more details
about PI-futexes.]
This technology was developed in the -rt tree and streamlined for
pthread_mutex support.
Basic principles:
-----------------
RT-mutexes extend the semantics of simple mutexes by the priority
inheritance protocol.
A low priority owner of a rt-mutex inherits the priority of a higher
priority waiter until the rt-mutex is released. If the temporarily
boosted owner blocks on a rt-mutex itself it propagates the priority
boosting to the owner of the other rt_mutex it gets blocked on. The
priority boosting is immediately removed once the rt_mutex has been
unlocked.
This approach allows us to shorten the block of high-prio tasks on
mutexes which protect shared resources. Priority inheritance is not a
magic bullet for poorly designed applications, but it allows
well-designed applications to use userspace locks in critical parts of
an high priority thread, without losing determinism.
The enqueueing of the waiters into the rtmutex waiter list is done in
priority order. For same priorities FIFO order is chosen. For each
rtmutex, only the top priority waiter is enqueued into the owner's
priority waiters list. This list too queues in priority order. Whenever
the top priority waiter of a task changes (for example it timed out or
got a signal), the priority of the owner task is readjusted. [The
priority enqueueing is handled by "plists", see include/linux/plist.h
for more details.]
RT-mutexes are optimized for fastpath operations and have no internal
locking overhead when locking an uncontended mutex or unlocking a mutex
without waiters. The optimized fastpath operations require cmpxchg
support. [If that is not available then the rt-mutex internal spinlock
is used]
The state of the rt-mutex is tracked via the owner field of the rt-mutex
structure:
rt_mutex->owner holds the task_struct pointer of the owner. Bit 0 and 1
are used to keep track of the "owner is pending" and "rtmutex has
waiters" state.
owner bit1 bit0
NULL 0 0 mutex is free (fast acquire possible)
NULL 0 1 invalid state
NULL 1 0 Transitional state*
NULL 1 1 invalid state
taskpointer 0 0 mutex is held (fast release possible)
taskpointer 0 1 task is pending owner
taskpointer 1 0 mutex is held and has waiters
taskpointer 1 1 task is pending owner and mutex has waiters
Pending-ownership handling is a performance optimization:
pending-ownership is assigned to the first (highest priority) waiter of
the mutex, when the mutex is released. The thread is woken up and once
it starts executing it can acquire the mutex. Until the mutex is taken
by it (bit 0 is cleared) a competing higher priority thread can "steal"
the mutex which puts the woken up thread back on the waiters list.
The pending-ownership optimization is especially important for the
uninterrupted workflow of high-prio tasks which repeatedly
takes/releases locks that have lower-prio waiters. Without this
optimization the higher-prio thread would ping-pong to the lower-prio
task [because at unlock time we always assign a new owner].
(*) The "mutex has waiters" bit gets set to take the lock. If the lock
doesn't already have an owner, this bit is quickly cleared if there are
no waiters. So this is a transitional state to synchronize with looking
at the owner field of the mutex and the mutex owner releasing the lock.

View File

@ -12,5 +12,3 @@ http://www.torque.net/parport/
Email list for Linux Parport
linux-parport@torque.net
Email for problems with ZIP or ZIP Plus drivers
campbell@torque.net

View File

@ -80,13 +80,6 @@ receive_buf() - Hand buffers of bytes from the driver to the ldisc
for processing. Semantics currently rather
mysterious 8(
receive_room() - Can be called by the driver layer at any time when
the ldisc is opened. The ldisc must be able to
handle the reported amount of data at that instant.
Synchronization between active receive_buf and
receive_room calls is down to the driver not the
ldisc. Must not sleep.
write_wakeup() - May be called at any point between open and close.
The TTY_DO_WRITE_WAKEUP flag indicates if a call
is needed but always races versus calls. Thus the

View File

@ -0,0 +1,212 @@
$Id$
Mike Isely <isely@pobox.com>
pvrusb2 driver
Background:
This driver is intended for the "Hauppauge WinTV PVR USB 2.0", which
is a USB 2.0 hosted TV Tuner. This driver is a work in progress.
Its history started with the reverse-engineering effort by Björn
Danielsson <pvrusb2@dax.nu> whose web page can be found here:
http://pvrusb2.dax.nu/
From there Aurelien Alleaume <slts@free.fr> began an effort to
create a video4linux compatible driver. I began with Aurelien's
last known snapshot and evolved the driver to the state it is in
here.
More information on this driver can be found at:
http://www.isely.net/pvrusb2.html
This driver has a strong separation of layers. They are very
roughly:
1a. Low level wire-protocol implementation with the device.
1b. I2C adaptor implementation and corresponding I2C client drivers
implemented elsewhere in V4L.
1c. High level hardware driver implementation which coordinates all
activities that ensure correct operation of the device.
2. A "context" layer which manages instancing of driver, setup,
tear-down, arbitration, and interaction with high level
interfaces appropriately as devices are hotplugged in the
system.
3. High level interfaces which glue the driver to various published
Linux APIs (V4L, sysfs, maybe DVB in the future).
The most important shearing layer is between the top 2 layers. A
lot of work went into the driver to ensure that any kind of
conceivable API can be laid on top of the core driver. (Yes, the
driver internally leverages V4L to do its work but that really has
nothing to do with the API published by the driver to the outside
world.) The architecture allows for different APIs to
simultaneously access the driver. I have a strong sense of fairness
about APIs and also feel that it is a good design principle to keep
implementation and interface isolated from each other. Thus while
right now the V4L high level interface is the most complete, the
sysfs high level interface will work equally well for similar
functions, and there's no reason I see right now why it shouldn't be
possible to produce a DVB high level interface that can sit right
alongside V4L.
NOTE: Complete documentation on the pvrusb2 driver is contained in
the html files within the doc directory; these are exactly the same
as what is on the web site at the time. Browse those files
(especially the FAQ) before asking questions.
Building
To build these modules essentially amounts to just running "Make",
but you need the kernel source tree nearby and you will likely also
want to set a few controlling environment variables first in order
to link things up with that source tree. Please see the Makefile
here for comments that explain how to do that.
Source file list / functional overview:
(Note: The term "module" used below generally refers to loosely
defined functional units within the pvrusb2 driver and bears no
relation to the Linux kernel's concept of a loadable module.)
pvrusb2-audio.[ch] - This is glue logic that resides between this
driver and the msp3400.ko I2C client driver (which is found
elsewhere in V4L).
pvrusb2-context.[ch] - This module implements the context for an
instance of the driver. Everything else eventually ties back to
or is otherwise instanced within the data structures implemented
here. Hotplugging is ultimately coordinated here. All high level
interfaces tie into the driver through this module. This module
helps arbitrate each interface's access to the actual driver core,
and is designed to allow concurrent access through multiple
instances of multiple interfaces (thus you can for example change
the tuner's frequency through sysfs while simultaneously streaming
video through V4L out to an instance of mplayer).
pvrusb2-debug.h - This header defines a printk() wrapper and a mask
of debugging bit definitions for the various kinds of debug
messages that can be enabled within the driver.
pvrusb2-debugifc.[ch] - This module implements a crude command line
oriented debug interface into the driver. Aside from being part
of the process for implementing manual firmware extraction (see
the pvrusb2 web site mentioned earlier), probably I'm the only one
who has ever used this. It is mainly a debugging aid.
pvrusb2-eeprom.[ch] - This is glue logic that resides between this
driver the tveeprom.ko module, which is itself implemented
elsewhere in V4L.
pvrusb2-encoder.[ch] - This module implements all protocol needed to
interact with the Conexant mpeg2 encoder chip within the pvrusb2
device. It is a crude echo of corresponding logic in ivtv,
however the design goals (strict isolation) and physical layer
(proxy through USB instead of PCI) are enough different that this
implementation had to be completely different.
pvrusb2-hdw-internal.h - This header defines the core data structure
in the driver used to track ALL internal state related to control
of the hardware. Nobody outside of the core hardware-handling
modules should have any business using this header. All external
access to the driver should be through one of the high level
interfaces (e.g. V4L, sysfs, etc), and in fact even those high
level interfaces are restricted to the API defined in
pvrusb2-hdw.h and NOT this header.
pvrusb2-hdw.h - This header defines the full internal API for
controlling the hardware. High level interfaces (e.g. V4L, sysfs)
will work through here.
pvrusb2-hdw.c - This module implements all the various bits of logic
that handle overall control of a specific pvrusb2 device.
(Policy, instantiation, and arbitration of pvrusb2 devices fall
within the jurisdiction of pvrusb-context not here).
pvrusb2-i2c-chips-*.c - These modules implement the glue logic to
tie together and configure various I2C modules as they attach to
the I2C bus. There are two versions of this file. The "v4l2"
version is intended to be used in-tree alongside V4L, where we
implement just the logic that makes sense for a pure V4L
environment. The "all" version is intended for use outside of
V4L, where we might encounter other possibly "challenging" modules
from ivtv or older kernel snapshots (or even the support modules
in the standalone snapshot).
pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1
compatible commands to the I2C modules. It is here where state
changes inside the pvrusb2 driver are translated into V4L1
commands that are in turn send to the various I2C modules.
pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2
compatible commands to the I2C modules. It is here where state
changes inside the pvrusb2 driver are translated into V4L2
commands that are in turn send to the various I2C modules.
pvrusb2-i2c-core.[ch] - This module provides an implementation of a
kernel-friendly I2C adaptor driver, through which other external
I2C client drivers (e.g. msp3400, tuner, lirc) may connect and
operate corresponding chips within the the pvrusb2 device. It is
through here that other V4L modules can reach into this driver to
operate specific pieces (and those modules are in turn driven by
glue logic which is coordinated by pvrusb2-hdw, doled out by
pvrusb2-context, and then ultimately made available to users
through one of the high level interfaces).
pvrusb2-io.[ch] - This module implements a very low level ring of
transfer buffers, required in order to stream data from the
device. This module is *very* low level. It only operates the
buffers and makes no attempt to define any policy or mechanism for
how such buffers might be used.
pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch]
to provide a streaming API usable by a read() system call style of
I/O. Right now this is the only layer on top of pvrusb2-io.[ch],
however the underlying architecture here was intended to allow for
other styles of I/O to be implemented with additonal modules, like
mmap()'ed buffers or something even more exotic.
pvrusb2-main.c - This is the top level of the driver. Module level
and USB core entry points are here. This is our "main".
pvrusb2-sysfs.[ch] - This is the high level interface which ties the
pvrusb2 driver into sysfs. Through this interface you can do
everything with the driver except actually stream data.
pvrusb2-tuner.[ch] - This is glue logic that resides between this
driver and the tuner.ko I2C client driver (which is found
elsewhere in V4L).
pvrusb2-util.h - This header defines some common macros used
throughout the driver. These macros are not really specific to
the driver, but they had to go somewhere.
pvrusb2-v4l2.[ch] - This is the high level interface which ties the
pvrusb2 driver into video4linux. It is through here that V4L
applications can open and operate the driver in the usual V4L
ways. Note that **ALL** V4L functionality is published only
through here and nowhere else.
pvrusb2-video-*.[ch] - This is glue logic that resides between this
driver and the saa711x.ko I2C client driver (which is found
elsewhere in V4L). Note that saa711x.ko used to be known as
saa7115.ko in ivtv. There are two versions of this; one is
selected depending on the particular saa711[5x].ko that is found.
pvrusb2.h - This header contains compile time tunable parameters
(and at the moment the driver has very little that needs to be
tuned).
-Mike Isely
isely@pobox.com

View File

@ -205,6 +205,27 @@ IOMMU
pages Prereserve that many 128K pages for the software IO bounce buffering.
force Force all IO through the software TLB.
calgary=[64k,128k,256k,512k,1M,2M,4M,8M]
calgary=[translate_empty_slots]
calgary=[disable=<PCI bus number>]
64k,...,8M - Set the size of each PCI slot's translation table
when using the Calgary IOMMU. This is the size of the translation
table itself in main memory. The smallest table, 64k, covers an IO
space of 32MB; the largest, 8MB table, can cover an IO space of
4GB. Normally the kernel will make the right choice by itself.
translate_empty_slots - Enable translation even on slots that have
no devices attached to them, in case a device will be hotplugged
in the future.
disable=<PCI bus number> - Disable translation on a given PHB. For
example, the built-in graphics adapter resides on the first bridge
(PCI bus number 0); if translation (isolation) is enabled on this
bridge, X servers that access the hardware directly from user
space might stop working. Use this option if you have devices that
are accessed from userspace directly on some PCI host bridge.
Debugging
oops=panic Always panic on oopses. Default is to just kill the process,

View File

@ -1118,6 +1118,11 @@ L: lm-sensors@lm-sensors.org
W: http://www.lm-sensors.nu/
S: Maintained
HARDWARE RANDOM NUMBER GENERATOR CORE
P: Michael Buesch
M: mb@bu3sch.de
S: Maintained
HARD DRIVE ACTIVE PROTECTION SYSTEM (HDAPS) DRIVER
P: Robert Love
M: rlove@rlove.org
@ -1396,7 +1401,8 @@ S: Supported
INPUT (KEYBOARD, MOUSE, JOYSTICK) DRIVERS
P: Dmitry Torokhov
M: dtor_core@ameritech.net
M: dmitry.torokhov@gmail.com
M: dtor@mail.ru
L: linux-input@atrey.karlin.mff.cuni.cz
L: linux-joystick@atrey.karlin.mff.cuni.cz
T: git kernel.org:/pub/scm/linux/kernel/git/dtor/input.git
@ -1436,6 +1442,11 @@ P: Tigran Aivazian
M: tigran@veritas.com
S: Maintained
INTEL IXP4XX RANDOM NUMBER GENERATOR SUPPORT
P: Deepak Saxena
M: dsaxena@plexity.net
S: Maintained
INTEL PRO/100 ETHERNET SUPPORT
P: John Ronciak
M: john.ronciak@intel.com
@ -2725,6 +2736,11 @@ P: Christoph Hellwig
M: hch@infradead.org
S: Maintained
TI OMAP RANDOM NUMBER GENERATOR SUPPORT
P: Deepak Saxena
M: dsaxena@plexity.net
S: Maintained
TI PARALLEL LINK CABLE DRIVER
P: Romain Lievin
M: roms@lpg.ticalc.org

213
Makefile
View File

@ -71,7 +71,7 @@ endif
# In both cases the working directory must be the root of the kernel src.
# 1) O=
# Use "make O=dir/to/store/output/files/"
#
#
# 2) Set KBUILD_OUTPUT
# Set the environment variable KBUILD_OUTPUT to point to the directory
# where the output files shall be placed.
@ -178,18 +178,20 @@ CROSS_COMPILE ?=
# Architecture as present in compile.h
UTS_MACHINE := $(ARCH)
KCONFIG_CONFIG ?= .config
# SHELL used by kbuild
CONFIG_SHELL := $(shell if [ -x "$$BASH" ]; then echo $$BASH; \
else if [ -x /bin/bash ]; then echo /bin/bash; \
else echo sh; fi ; fi)
HOSTCC = gcc
HOSTCXX = g++
HOSTCFLAGS = -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer
HOSTCXXFLAGS = -O2
HOSTCC = gcc
HOSTCXX = g++
HOSTCFLAGS = -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer
HOSTCXXFLAGS = -O2
# Decide whether to build built-in, modular, or both.
# Normally, just do built-in.
# Decide whether to build built-in, modular, or both.
# Normally, just do built-in.
KBUILD_MODULES :=
KBUILD_BUILTIN := 1
@ -197,7 +199,7 @@ KBUILD_BUILTIN := 1
# If we have only "make modules", don't compile built-in objects.
# When we're building modules with modversions, we need to consider
# the built-in objects during the descend as well, in order to
# make sure the checksums are uptodate before we record them.
# make sure the checksums are up to date before we record them.
ifeq ($(MAKECMDGOALS),modules)
KBUILD_BUILTIN := $(if $(CONFIG_MODVERSIONS),1)
@ -230,7 +232,7 @@ export KBUILD_CHECKSRC KBUILD_SRC KBUILD_EXTMOD
#
# If $(quiet) is empty, the whole command will be printed.
# If it is set to "quiet_", only the short version will be printed.
# If it is set to "silent_", nothing wil be printed at all, since
# If it is set to "silent_", nothing will be printed at all, since
# the variable $(silent_cmd_cc_o_c) doesn't exist.
#
# A simple variant is to prefix commands with $(Q) - that's useful
@ -265,10 +267,9 @@ MAKEFLAGS += --include-dir=$(srctree)
# We need some generic definitions
include $(srctree)/scripts/Kbuild.include
# For maximum performance (+ possibly random breakage, uncomment
# the following)
#MAKEFLAGS += -rR
# Do not use make's built-in rules and variables
# This increases performance and avoid hard-to-debug behavour
MAKEFLAGS += -rR
# Make variables (CC, etc...)
@ -305,21 +306,21 @@ LINUXINCLUDE := -Iinclude \
CPPFLAGS := -D__KERNEL__ $(LINUXINCLUDE)
CFLAGS := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \
-fno-strict-aliasing -fno-common
AFLAGS := -D__ASSEMBLY__
CFLAGS := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \
-fno-strict-aliasing -fno-common
AFLAGS := -D__ASSEMBLY__
# Read KERNELRELEASE from .kernelrelease (if it exists)
KERNELRELEASE = $(shell cat .kernelrelease 2> /dev/null)
# Read KERNELRELEASE from include/config/kernel.release (if it exists)
KERNELRELEASE = $(shell cat include/config/kernel.release 2> /dev/null)
KERNELVERSION = $(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)
export VERSION PATCHLEVEL SUBLEVEL KERNELRELEASE KERNELVERSION \
ARCH CONFIG_SHELL HOSTCC HOSTCFLAGS CROSS_COMPILE AS LD CC \
CPP AR NM STRIP OBJCOPY OBJDUMP MAKE AWK GENKSYMS PERL UTS_MACHINE \
HOSTCXX HOSTCXXFLAGS LDFLAGS_MODULE CHECK CHECKFLAGS
export VERSION PATCHLEVEL SUBLEVEL KERNELRELEASE KERNELVERSION
export ARCH CONFIG_SHELL HOSTCC HOSTCFLAGS CROSS_COMPILE AS LD CC
export CPP AR NM STRIP OBJCOPY OBJDUMP MAKE AWK GENKSYMS PERL UTS_MACHINE
export HOSTCXX HOSTCXXFLAGS LDFLAGS_MODULE CHECK CHECKFLAGS
export CPPFLAGS NOSTDINC_FLAGS LINUXINCLUDE OBJCOPYFLAGS LDFLAGS
export CFLAGS CFLAGS_KERNEL CFLAGS_MODULE
export CFLAGS CFLAGS_KERNEL CFLAGS_MODULE
export AFLAGS AFLAGS_KERNEL AFLAGS_MODULE
# When compiling out-of-tree modules, put MODVERDIR in the module
@ -357,12 +358,13 @@ endif
# catch them early, and hand them over to scripts/kconfig/Makefile
# It is allowed to specify more targets when calling make, including
# mixing *config targets and build targets.
# For example 'make oldconfig all'.
# For example 'make oldconfig all'.
# Detect when mixed targets is specified, and make a second invocation
# of make so .config is not included in this case either (for *config).
no-dot-config-targets := clean mrproper distclean \
cscope TAGS tags help %docs check%
cscope TAGS tags help %docs check% \
kernelrelease kernelversion
config-targets := 0
mixed-targets := 0
@ -404,9 +406,8 @@ include $(srctree)/arch/$(ARCH)/Makefile
export KBUILD_DEFCONFIG
config %config: scripts_basic outputmakefile FORCE
$(Q)mkdir -p include/linux
$(Q)mkdir -p include/linux include/config
$(Q)$(MAKE) $(build)=scripts/kconfig $@
$(Q)$(MAKE) -C $(srctree) KBUILD_SRC= .kernelrelease
else
# ===========================================================================
@ -416,13 +417,11 @@ else
ifeq ($(KBUILD_EXTMOD),)
# Additional helpers built in scripts/
# Carefully list dependencies so we do not try to build scripts twice
# in parrallel
# in parallel
PHONY += scripts
scripts: scripts_basic include/config/MARKER
scripts: scripts_basic include/config/auto.conf
$(Q)$(MAKE) $(build)=$(@)
scripts_basic: include/linux/autoconf.h
# Objects we will link into vmlinux / subdirs we need to visit
init-y := init/
drivers-y := drivers/ sound/
@ -436,31 +435,32 @@ ifeq ($(dot-config),1)
# Read in dependencies to all Kconfig* files, make sure to run
# oldconfig if changes are detected.
-include .kconfig.d
-include include/config/auto.conf.cmd
-include include/config/auto.conf
include .config
# If .config needs to be updated, it will be done via the dependency
# that autoconf has on .config.
# To avoid any implicit rule to kick in, define an empty command
.config .kconfig.d: ;
$(KCONFIG_CONFIG) include/config/auto.conf.cmd: ;
# If .config is newer than include/linux/autoconf.h, someone tinkered
# If .config is newer than include/config/auto.conf, someone tinkered
# with it and forgot to run make oldconfig.
# If kconfig.d is missing then we are probarly in a cleaned tree so
# if auto.conf.cmd is missing then we are probably in a cleaned tree so
# we execute the config step to be sure to catch updated Kconfig files
include/linux/autoconf.h: .kconfig.d .config
$(Q)mkdir -p include/linux
include/config/auto.conf: $(KCONFIG_CONFIG) include/config/auto.conf.cmd
ifeq ($(KBUILD_EXTMOD),)
$(Q)$(MAKE) -f $(srctree)/Makefile silentoldconfig
else
$(error kernel configuration not valid - run 'make prepare' in $(srctree) to update it)
endif
else
# Dummy target needed, because used as prerequisite
include/linux/autoconf.h: ;
include/config/auto.conf: ;
endif
# The all: target is the default when no target is given on the
# command line.
# This allow a user to issue only 'make' to build a kernel including modules
# Defaults vmlinux but it is usually overriden in the arch makefile
# Defaults vmlinux but it is usually overridden in the arch makefile
all: vmlinux
ifdef CONFIG_CC_OPTIMIZE_FOR_SIZE
@ -492,11 +492,11 @@ CHECKFLAGS += $(NOSTDINC_FLAGS)
# warn about C99 declaration after statement
CFLAGS += $(call cc-option,-Wdeclaration-after-statement,)
# disable pointer signedness warnings in gcc 4.0
# disable pointer signed / unsigned warnings in gcc 4.0
CFLAGS += $(call cc-option,-Wno-pointer-sign,)
# Default kernel image to build when no specific target is given.
# KBUILD_IMAGE may be overruled on the commandline or
# KBUILD_IMAGE may be overruled on the command line or
# set in the environment
# Also any assignments in arch/$(ARCH)/Makefile take precedence over
# this default value
@ -510,12 +510,29 @@ export INSTALL_PATH ?= /boot
#
# INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory
# relocations required by build roots. This is not defined in the
# makefile but the arguement can be passed to make if needed.
# makefile but the argument can be passed to make if needed.
#
MODLIB = $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
export MODLIB
#
# INSTALL_MOD_STRIP, if defined, will cause modules to be
# stripped after they are installed. If INSTALL_MOD_STRIP is '1', then
# the default option --strip-debug will be used. Otherwise,
# INSTALL_MOD_STRIP will used as the options to the strip command.
ifdef INSTALL_MOD_STRIP
ifeq ($(INSTALL_MOD_STRIP),1)
mod_strip_cmd = $STRIP) --strip-debug
else
mod_strip_cmd = $(STRIP) $(INSTALL_MOD_STRIP)
endif # INSTALL_MOD_STRIP=1
else
mod_strip_cmd = true
endif # INSTALL_MOD_STRIP
export mod_strip_cmd
ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/
@ -539,7 +556,7 @@ libs-y := $(libs-y1) $(libs-y2)
# Build vmlinux
# ---------------------------------------------------------------------------
# vmlinux is build from the objects selected by $(vmlinux-init) and
# vmlinux is built from the objects selected by $(vmlinux-init) and
# $(vmlinux-main). Most are built-in.o files from top-level directories
# in the kernel tree, others are specified in arch/$(ARCH)Makefile.
# Ordering when linking is important, and $(vmlinux-init) must be first.
@ -590,7 +607,7 @@ quiet_cmd_vmlinux_version = GEN .version
$(MAKE) $(build)=init
# Generate System.map
quiet_cmd_sysmap = SYSMAP
quiet_cmd_sysmap = SYSMAP
cmd_sysmap = $(CONFIG_SHELL) $(srctree)/scripts/mksysmap
# Link of vmlinux
@ -719,7 +736,7 @@ $(vmlinux-dirs): prepare scripts
$(Q)$(MAKE) $(build)=$@
# Build the kernel release string
# The KERNELRELEASE is stored in a file named .kernelrelease
# The KERNELRELEASE is stored in a file named include/config/kernel.release
# to be used when executing for example make install or make modules_install
#
# Take the contents of any files called localversion* and the config
@ -737,10 +754,10 @@ _localver = $(foreach f, $(__localver), $(if $(findstring ~, $(f)),,$(f)))
localver = $(subst $(space),, \
$(shell cat /dev/null $(_localver)) \
$(patsubst "%",%,$(CONFIG_LOCALVERSION)))
# If CONFIG_LOCALVERSION_AUTO is set scripts/setlocalversion is called
# and if the SCM is know a tag from the SCM is appended.
# The appended tag is determinded by the SCM used.
# The appended tag is determined by the SCM used.
#
# Currently, only git is supported.
# Other SCMs can edit scripts/setlocalversion and add the appropriate
@ -753,9 +770,9 @@ endif
localver-full = $(localver)$(localver-auto)
# Store (new) KERNELRELASE string in .kernelrelease
# Store (new) KERNELRELASE string in include/config/kernel.release
kernelrelease = $(KERNELVERSION)$(localver-full)
.kernelrelease: FORCE
include/config/kernel.release: include/config/auto.conf FORCE
$(Q)rm -f $@
$(Q)echo $(kernelrelease) > $@
@ -776,10 +793,10 @@ PHONY += prepare-all
# and if so do:
# 1) Check that make has not been executed in the kernel src $(srctree)
# 2) Create the include2 directory, used for the second asm symlink
prepare3: .kernelrelease
prepare3: include/config/kernel.release
ifneq ($(KBUILD_SRC),)
@echo ' Using $(srctree) as source for kernel'
$(Q)if [ -f $(srctree)/.config ]; then \
$(Q)if [ -f $(srctree)/.config -o -d $(srctree)/include/config ]; then \
echo " $(srctree) is not clean, please run 'make mrproper'";\
echo " in the '$(srctree)' directory.";\
/bin/false; \
@ -792,7 +809,7 @@ endif
prepare2: prepare3 outputmakefile
prepare1: prepare2 include/linux/version.h include/asm \
include/config/MARKER
include/config/auto.conf
ifneq ($(KBUILD_MODULES),)
$(Q)mkdir -p $(MODVERDIR)
$(Q)rm -f $(MODVERDIR)/*
@ -806,27 +823,20 @@ prepare0: archprepare FORCE
# All the preparing..
prepare prepare-all: prepare0
# Leave this as default for preprocessing vmlinux.lds.S, which is now
# done in arch/$(ARCH)/kernel/Makefile
# Leave this as default for preprocessing vmlinux.lds.S, which is now
# done in arch/$(ARCH)/kernel/Makefile
export CPPFLAGS_vmlinux.lds += -P -C -U$(ARCH)
# FIXME: The asm symlink changes when $(ARCH) changes. That's
# hard to detect, but I suppose "make mrproper" is a good idea
# before switching between archs anyway.
# FIXME: The asm symlink changes when $(ARCH) changes. That's
# hard to detect, but I suppose "make mrproper" is a good idea
# before switching between archs anyway.
include/asm:
@echo ' SYMLINK $@ -> include/asm-$(ARCH)'
$(Q)if [ ! -d include ]; then mkdir -p include; fi;
@ln -fsn asm-$(ARCH) $@
# Split autoconf.h into include/linux/config/*
include/config/MARKER: scripts/basic/split-include include/linux/autoconf.h
@echo ' SPLIT include/linux/autoconf.h -> include/config/*'
@scripts/basic/split-include include/linux/autoconf.h include/config
@touch $@
# Generate some files
# ---------------------------------------------------------------------------
@ -846,7 +856,7 @@ define filechk_version.h
)
endef
include/linux/version.h: $(srctree)/Makefile .config .kernelrelease FORCE
include/linux/version.h: $(srctree)/Makefile include/config/kernel.release FORCE
$(call filechk,version.h)
# ---------------------------------------------------------------------------
@ -860,7 +870,7 @@ depend dep:
ifdef CONFIG_MODULES
# By default, build modules as well
# By default, build modules as well
all: modules
@ -942,7 +952,7 @@ CLEAN_FILES += vmlinux System.map \
MRPROPER_DIRS += include/config include2
MRPROPER_FILES += .config .config.old include/asm .version .old_version \
include/linux/autoconf.h include/linux/version.h \
.kernelrelease Module.symvers tags TAGS cscope*
Module.symvers tags TAGS cscope*
# clean - Delete most, but leave enough to build external modules
#
@ -958,8 +968,9 @@ clean: archclean $(clean-dirs)
$(call cmd,rmdirs)
$(call cmd,rmfiles)
@find . $(RCS_FIND_IGNORE) \
\( -name '*.[oas]' -o -name '*.ko' -o -name '.*.cmd' \
-o -name '.*.d' -o -name '.*.tmp' -o -name '*.mod.c' \) \
\( -name '*.[oas]' -o -name '*.ko' -o -name '.*.cmd' \
-o -name '.*.d' -o -name '.*.tmp' -o -name '*.mod.c' \
-o -name '*.symtypes' \) \
-type f -print | xargs rm -f
# mrproper - Delete all generated files, including .config
@ -982,9 +993,9 @@ PHONY += distclean
distclean: mrproper
@find $(srctree) $(RCS_FIND_IGNORE) \
\( -name '*.orig' -o -name '*.rej' -o -name '*~' \
\( -name '*.orig' -o -name '*.rej' -o -name '*~' \
-o -name '*.bak' -o -name '#*#' -o -name '.*.orig' \
-o -name '.*.rej' -o -size 0 \
-o -name '.*.rej' -o -size 0 \
-o -name '*%' -o -name '.*.cmd' -o -name 'core' \) \
-type f -print | xargs rm -f
@ -994,9 +1005,9 @@ distclean: mrproper
# rpm target kept for backward compatibility
package-dir := $(srctree)/scripts/package
%pkg: FORCE
%pkg: include/config/kernel.release FORCE
$(Q)$(MAKE) $(build)=$(package-dir) $@
rpm: FORCE
rpm: include/config/kernel.release FORCE
$(Q)$(MAKE) $(build)=$(package-dir) $@
@ -1077,7 +1088,7 @@ else # KBUILD_EXTMOD
# make M=dir modules Make all modules in specified dir
# make M=dir Same as 'make M=dir modules'
# make M=dir modules_install
# Install the modules build in the module directory
# Install the modules built in the module directory
# Assumes install directory is already created
# We are always building modules
@ -1136,7 +1147,7 @@ clean: rm-dirs := $(MODVERDIR)
clean: $(clean-dirs)
$(call cmd,rmdirs)
@find $(KBUILD_EXTMOD) $(RCS_FIND_IGNORE) \
\( -name '*.[oas]' -o -name '*.ko' -o -name '.*.cmd' \
\( -name '*.[oas]' -o -name '*.ko' -o -name '.*.cmd' \
-o -name '.*.d' -o -name '.*.tmp' -o -name '*.mod.c' \) \
-type f -print | xargs rm -f
@ -1175,31 +1186,41 @@ else
ALLINCLUDE_ARCHS := $(ARCH)
endif
else
#Allow user to specify only ALLSOURCE_PATHS on the command line, keeping existing behaviour.
#Allow user to specify only ALLSOURCE_PATHS on the command line, keeping existing behavour.
ALLINCLUDE_ARCHS := $(ALLSOURCE_ARCHS)
endif
ALLSOURCE_ARCHS := $(ARCH)
define all-sources
( find $(__srctree) $(RCS_FIND_IGNORE) \
define find-sources
( find $(__srctree) $(RCS_FIND_IGNORE) \
\( -name include -o -name arch \) -prune -o \
-name '*.[chS]' -print; \
-name $1 -print; \
for ARCH in $(ALLSOURCE_ARCHS) ; do \
find $(__srctree)arch/$${ARCH} $(RCS_FIND_IGNORE) \
-name '*.[chS]' -print; \
-name $1 -print; \
done ; \
find $(__srctree)security/selinux/include $(RCS_FIND_IGNORE) \
-name '*.[chS]' -print; \
-name $1 -print; \
find $(__srctree)include $(RCS_FIND_IGNORE) \
\( -name config -o -name 'asm-*' \) -prune \
-o -name '*.[chS]' -print; \
-o -name $1 -print; \
for ARCH in $(ALLINCLUDE_ARCHS) ; do \
find $(__srctree)include/asm-$${ARCH} $(RCS_FIND_IGNORE) \
-name '*.[chS]' -print; \
-name $1 -print; \
done ; \
find $(__srctree)include/asm-generic $(RCS_FIND_IGNORE) \
-name '*.[chS]' -print )
-name $1 -print )
endef
define all-sources
$(call find-sources,'*.[chS]')
endef
define all-kconfigs
$(call find-sources,'Kconfig*')
endef
define all-defconfigs
$(call find-sources,'defconfig')
endef
quiet_cmd_cscope-file = FILELST cscope.files
@ -1219,7 +1240,13 @@ define cmd_TAGS
echo "-I __initdata,__exitdata,__acquires,__releases \
-I EXPORT_SYMBOL,EXPORT_SYMBOL_GPL \
--extra=+f --c-kinds=+px"`; \
$(all-sources) | xargs etags $$ETAGSF -a
$(all-sources) | xargs etags $$ETAGSF -a; \
if test "x$$ETAGSF" = x; then \
$(all-kconfigs) | xargs etags -a \
--regex='/^config[ \t]+\([a-zA-Z0-9_]+\)/\1/'; \
$(all-defconfigs) | xargs etags -a \
--regex='/^#?[ \t]?\(CONFIG_[a-zA-Z0-9_]+\)/\1/'; \
fi
endef
TAGS: FORCE
@ -1259,14 +1286,14 @@ namespacecheck:
endif #ifeq ($(config-targets),1)
endif #ifeq ($(mixed-targets),1)
PHONY += checkstack
PHONY += checkstack kernelrelease kernelversion
checkstack:
$(OBJDUMP) -d vmlinux $$(find . -name '*.ko') | \
$(PERL) $(src)/scripts/checkstack.pl $(ARCH)
kernelrelease:
$(if $(wildcard .kernelrelease), $(Q)echo $(KERNELRELEASE), \
$(error kernelrelease not valid - run 'make *config' to update it))
$(if $(wildcard include/config/kernel.release), $(Q)echo $(KERNELRELEASE), \
$(error kernelrelease not valid - run 'make prepare' to update it))
kernelversion:
@echo $(KERNELVERSION)
@ -1301,6 +1328,8 @@ endif
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
%.o: %.S prepare scripts FORCE
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
%.symtypes: %.c prepare scripts FORCE
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
# Modules
/ %/: prepare scripts FORCE

View File

@ -481,7 +481,7 @@ register_cpus(void)
struct cpu *p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
register_cpu(p, i, NULL);
register_cpu(p, i);
}
return 0;
}

View File

@ -112,7 +112,7 @@ op_axp_create_files(struct super_block * sb, struct dentry * root)
for (i = 0; i < model->num_counters; ++i) {
struct dentry *dir;
char buf[3];
char buf[4];
snprintf(buf, sizeof buf, "%d", i);
dir = oprofilefs_mkdir(sb, root, buf);

View File

@ -253,7 +253,7 @@ config ARCH_SA1100
Support for StrongARM 11x0 based boards.
config ARCH_S3C2410
bool "Samsung S3C2410"
bool "Samsung S3C2410, S3C2412, S3C2413, S3C2440, S3C2442"
help
Samsung S3C2410X CPU based systems, such as the Simtec Electronics
BAST (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or
@ -372,7 +372,7 @@ config ISA_DMA_API
bool
config PCI
bool "PCI support" if ARCH_INTEGRATOR_AP || ARCH_VERSATILE_PB
bool "PCI support" if ARCH_INTEGRATOR_AP || ARCH_VERSATILE_PB || ARCH_IXP4XX
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside

View File

@ -177,7 +177,7 @@ boot := arch/arm/boot
# them changed. We use .arch to indicate when they were updated
# last, otherwise make uses the target directory mtime.
include/asm-arm/.arch: $(wildcard include/config/arch/*.h) include/config/MARKER
include/asm-arm/.arch: $(wildcard include/config/arch/*.h) include/config/auto.conf
@echo ' SYMLINK include/asm-arm/arch -> include/asm-arm/$(INCDIR)'
ifneq ($(KBUILD_SRC),)
$(Q)mkdir -p include/asm-arm

View File

@ -61,6 +61,12 @@
cmp r7, r3
beq 99f
@ Ajeco 1ARM : 1075
mov r3, #(MACH_TYPE_ONEARM & 0xff)
orr r3, r3, #(MACH_TYPE_ONEARM & 0xff00)
cmp r7, r3
beq 99f
@ Unknown board, use the AT91RM9200DK board
@ mov r7, #MACH_TYPE_AT91RM9200
mov r7, #(MACH_TYPE_AT91RM9200DK & 0xff)

View File

@ -77,7 +77,7 @@ Lrow4bpplp:
subne r1, r1, #1
ldrneb r7, [r6, r1]
bne Lrow4bpplp
LOADREGS(fd, sp!, {r4 - r7, pc})
ldmfd sp!, {r4 - r7, pc}
@
@ Smashable regs: {r0 - r3}, [r4], {r5 - r7}, (r8 - fp), [ip], (sp), {lr}, (pc)
@ -105,7 +105,7 @@ Lrow8bpplp:
subne r1, r1, #1
ldrneb r7, [r6, r1]
bne Lrow8bpplp
LOADREGS(fd, sp!, {r4 - r7, pc})
ldmfd sp!, {r4 - r7, pc}
@
@ Smashable regs: {r0 - r3}, [r4], {r5, r6}, [r7], (r8 - fp), [ip], (sp), [lr], (pc)
@ -127,7 +127,7 @@ Lrow1bpp:
strb r7, [r0], r5
mov r7, r7, lsr #8
strb r7, [r0], r5
LOADREGS(fd, sp!, {r4 - r7, pc})
ldmfd sp!, {r4 - r7, pc}
.bss
ENTRY(con_charconvtable)

View File

@ -629,21 +629,6 @@ static int locomo_resume(struct platform_device *dev)
#endif
#define LCM_ALC_EN 0x8000
void frontlight_set(struct locomo *lchip, int duty, int vr, int bpwf)
{
unsigned long flags;
spin_lock_irqsave(&lchip->lock, flags);
locomo_writel(bpwf, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
udelay(100);
locomo_writel(duty, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALD);
locomo_writel(bpwf | LCM_ALC_EN, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
spin_unlock_irqrestore(&lchip->lock, flags);
}
/**
* locomo_probe - probe for a single LoCoMo chip.
* @phys_addr: physical address of device.
@ -698,14 +683,10 @@ __locomo_probe(struct device *me, struct resource *mem, int irq)
, lchip->base + LOCOMO_GPD);
locomo_writel(0, lchip->base + LOCOMO_GIE);
/* FrontLight */
/* Frontlight */
locomo_writel(0, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
locomo_writel(0, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALD);
/* Same constants can be used for collie and poodle
(depending on CONFIG options in original sharp code)? */
frontlight_set(lchip, 163, 0, 148);
/* Longtime timer */
locomo_writel(0, lchip->base + LOCOMO_LTINT);
/* SPI */
@ -1062,6 +1043,30 @@ void locomo_m62332_senddata(struct locomo_dev *ldev, unsigned int dac_data, int
spin_unlock_irqrestore(&lchip->lock, flags);
}
/*
* Frontlight control
*/
static struct locomo *locomo_chip_driver(struct locomo_dev *ldev);
void locomo_frontlight_set(struct locomo_dev *dev, int duty, int vr, int bpwf)
{
unsigned long flags;
struct locomo *lchip = locomo_chip_driver(dev);
if (vr)
locomo_gpio_write(dev, LOCOMO_GPIO_FL_VR, 1);
else
locomo_gpio_write(dev, LOCOMO_GPIO_FL_VR, 0);
spin_lock_irqsave(&lchip->lock, flags);
locomo_writel(bpwf, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
udelay(100);
locomo_writel(duty, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALD);
locomo_writel(bpwf | LOCOMO_ALC_EN, lchip->base + LOCOMO_FRONTLIGHT + LOCOMO_ALS);
spin_unlock_irqrestore(&lchip->lock, flags);
}
/*
* LoCoMo "Register Access Bus."
*

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,7 @@
#
# Automatically generated make config: don't edit
# Linux kernel version: 2.6.17
# Tue Jun 20 18:57:01 2006
# Linux kernel version: 2.6.17-git9
# Sun Jun 25 23:56:32 2006
#
CONFIG_ARM=y
CONFIG_MMU=y
@ -49,7 +49,6 @@ CONFIG_SLAB=y
# CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
# CONFIG_SLOB is not set
CONFIG_OBSOLETE_INTERMODULE=y
#
# Loadable module support
@ -81,18 +80,26 @@ CONFIG_DEFAULT_IOSCHED="anticipatory"
#
# System Type
#
# CONFIG_ARCH_AAEC2000 is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_REALVIEW is not set
# CONFIG_ARCH_VERSATILE is not set
# CONFIG_ARCH_AT91RM9200 is not set
# CONFIG_ARCH_CLPS7500 is not set
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_EP93XX is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_NETX is not set
# CONFIG_ARCH_H720X is not set
# CONFIG_ARCH_IMX is not set
# CONFIG_ARCH_IOP3XX is not set
# CONFIG_ARCH_IXP4XX is not set
# CONFIG_ARCH_IXP2000 is not set
# CONFIG_ARCH_IXP23XX is not set
# CONFIG_ARCH_L7200 is not set
# CONFIG_ARCH_PNX4008 is not set
# CONFIG_ARCH_PXA is not set
# CONFIG_ARCH_RPC is not set
# CONFIG_ARCH_SA1100 is not set
@ -100,14 +107,6 @@ CONFIG_ARCH_S3C2410=y
# CONFIG_ARCH_SHARK is not set
# CONFIG_ARCH_LH7A40X is not set
# CONFIG_ARCH_OMAP is not set
# CONFIG_ARCH_VERSATILE is not set
# CONFIG_ARCH_REALVIEW is not set
# CONFIG_ARCH_IMX is not set
# CONFIG_ARCH_H720X is not set
# CONFIG_ARCH_AAEC2000 is not set
# CONFIG_ARCH_AT91RM9200 is not set
# CONFIG_ARCH_PNX4008 is not set
# CONFIG_ARCH_NETX is not set
#
# S3C24XX Implementations
@ -123,11 +122,14 @@ CONFIG_ARCH_SMDK2410=y
CONFIG_ARCH_S3C2440=y
CONFIG_SMDK2440_CPU2440=y
CONFIG_SMDK2440_CPU2442=y
CONFIG_MACH_SMDK2413=y
CONFIG_MACH_VR1000=y
CONFIG_MACH_RX3715=y
CONFIG_MACH_OTOM=y
CONFIG_MACH_NEXCODER_2440=y
CONFIG_S3C2410_CLOCK=y
CONFIG_CPU_S3C2410=y
CONFIG_CPU_S3C2412=y
CONFIG_CPU_S3C244X=y
CONFIG_CPU_S3C2440=y
CONFIG_CPU_S3C2442=y
@ -153,8 +155,11 @@ CONFIG_S3C2410_LOWLEVEL_UART_PORT=0
#
CONFIG_CPU_32=y
CONFIG_CPU_ARM920T=y
CONFIG_CPU_ARM926T=y
CONFIG_CPU_32v4=y
CONFIG_CPU_32v5=y
CONFIG_CPU_ABRT_EV4T=y
CONFIG_CPU_ABRT_EV5TJ=y
CONFIG_CPU_CACHE_V4WT=y
CONFIG_CPU_CACHE_VIVT=y
CONFIG_CPU_COPY_V4WB=y
@ -167,6 +172,7 @@ CONFIG_CPU_TLB_V4WBI=y
# CONFIG_CPU_ICACHE_DISABLE is not set
# CONFIG_CPU_DCACHE_DISABLE is not set
# CONFIG_CPU_DCACHE_WRITETHROUGH is not set
# CONFIG_CPU_CACHE_ROUND_ROBIN is not set
#
# Bus support
@ -214,6 +220,7 @@ CONFIG_CMDLINE="root=/dev/hda1 ro init=/bin/bash console=ttySAC0"
CONFIG_FPE_NWFPE=y
# CONFIG_FPE_NWFPE_XP is not set
# CONFIG_FPE_FASTFPE is not set
# CONFIG_VFP is not set
#
# Userspace binary formats
@ -242,6 +249,8 @@ CONFIG_NET=y
# CONFIG_NETDEBUG is not set
# CONFIG_PACKET is not set
CONFIG_UNIX=y
CONFIG_XFRM=y
# CONFIG_XFRM_USER is not set
# CONFIG_NET_KEY is not set
CONFIG_INET=y
# CONFIG_IP_MULTICAST is not set
@ -260,6 +269,8 @@ CONFIG_IP_PNP_BOOTP=y
# CONFIG_INET_IPCOMP is not set
# CONFIG_INET_XFRM_TUNNEL is not set
# CONFIG_INET_TUNNEL is not set
CONFIG_INET_XFRM_MODE_TRANSPORT=y
CONFIG_INET_XFRM_MODE_TUNNEL=y
CONFIG_INET_DIAG=y
CONFIG_INET_TCP_DIAG=y
# CONFIG_TCP_CONG_ADVANCED is not set
@ -267,6 +278,7 @@ CONFIG_TCP_CONG_BIC=y
# CONFIG_IPV6 is not set
# CONFIG_INET6_XFRM_TUNNEL is not set
# CONFIG_INET6_TUNNEL is not set
# CONFIG_NETWORK_SECMARK is not set
# CONFIG_NETFILTER is not set
#
@ -321,6 +333,7 @@ CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
# CONFIG_FW_LOADER is not set
# CONFIG_DEBUG_DRIVER is not set
# CONFIG_SYS_HYPERVISOR is not set
#
# Connector - unified userspace <-> kernelspace linker
@ -408,10 +421,12 @@ CONFIG_MTD_BAST_MAXSIZE=4
#
CONFIG_MTD_NAND=y
# CONFIG_MTD_NAND_VERIFY_WRITE is not set
# CONFIG_MTD_NAND_ECC_SMC is not set
CONFIG_MTD_NAND_IDS=y
CONFIG_MTD_NAND_S3C2410=y
# CONFIG_MTD_NAND_S3C2410_DEBUG is not set
# CONFIG_MTD_NAND_S3C2410_HWECC is not set
# CONFIG_MTD_NAND_S3C2410_CLKSTOP is not set
# CONFIG_MTD_NAND_DISKONCHIP is not set
# CONFIG_MTD_NAND_NANDSIM is not set
@ -425,8 +440,8 @@ CONFIG_MTD_NAND_S3C2410=y
#
CONFIG_PARPORT=y
# CONFIG_PARPORT_PC is not set
# CONFIG_PARPORT_ARC is not set
# CONFIG_PARPORT_GSC is not set
# CONFIG_PARPORT_AX88796 is not set
CONFIG_PARPORT_1284=y
#
@ -735,6 +750,7 @@ CONFIG_I2C_ALGOBIT=m
#
# CONFIG_I2C_ELEKTOR is not set
CONFIG_I2C_ISA=m
# CONFIG_I2C_OCORES is not set
# CONFIG_I2C_PARPORT is not set
# CONFIG_I2C_PARPORT_LIGHT is not set
CONFIG_I2C_S3C2410=y
@ -765,13 +781,13 @@ CONFIG_SENSORS_EEPROM=m
#
# Dallas's 1-wire bus
#
# CONFIG_W1 is not set
#
# Hardware Monitoring support
#
CONFIG_HWMON=y
CONFIG_HWMON_VID=m
# CONFIG_SENSORS_ABITUGURU is not set
# CONFIG_SENSORS_ADM1021 is not set
# CONFIG_SENSORS_ADM1025 is not set
# CONFIG_SENSORS_ADM1026 is not set
@ -799,8 +815,10 @@ CONFIG_SENSORS_LM85=m
# CONFIG_SENSORS_MAX1619 is not set
# CONFIG_SENSORS_PC87360 is not set
# CONFIG_SENSORS_SMSC47M1 is not set
# CONFIG_SENSORS_SMSC47M192 is not set
# CONFIG_SENSORS_SMSC47B397 is not set
# CONFIG_SENSORS_W83781D is not set
# CONFIG_SENSORS_W83791D is not set
# CONFIG_SENSORS_W83792D is not set
# CONFIG_SENSORS_W83L785TS is not set
# CONFIG_SENSORS_W83627HF is not set
@ -845,6 +863,7 @@ CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
# CONFIG_FB_MACMODES is not set
CONFIG_FB_FIRMWARE_EDID=y
# CONFIG_FB_BACKLIGHT is not set
CONFIG_FB_MODE_HELPERS=y
# CONFIG_FB_TILEBLITTING is not set
# CONFIG_FB_S1D13XXX is not set
@ -976,10 +995,12 @@ CONFIG_USB_MON=y
# CONFIG_USB_LEGOTOWER is not set
# CONFIG_USB_LCD is not set
# CONFIG_USB_LED is not set
# CONFIG_USB_CY7C63 is not set
# CONFIG_USB_CYTHERM is not set
# CONFIG_USB_PHIDGETKIT is not set
# CONFIG_USB_PHIDGETSERVO is not set
# CONFIG_USB_IDMOUSE is not set
# CONFIG_USB_APPLEDISPLAY is not set
# CONFIG_USB_LD is not set
# CONFIG_USB_TEST is not set
@ -1024,6 +1045,7 @@ CONFIG_FS_MBCACHE=y
# CONFIG_MINIX_FS is not set
CONFIG_ROMFS_FS=y
CONFIG_INOTIFY=y
CONFIG_INOTIFY_USER=y
# CONFIG_QUOTA is not set
CONFIG_DNOTIFY=y
# CONFIG_AUTOFS_FS is not set

View File

@ -340,7 +340,7 @@ sys_mmap2:
streq r5, [sp, #4]
beq do_mmap2
mov r0, #-EINVAL
RETINSTR(mov,pc, lr)
mov pc, lr
#else
str r5, [sp, #4]
b do_mmap2

View File

@ -39,7 +39,7 @@
__INIT
.type stext, %function
ENTRY(stext)
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
@ and irqs disabled
mrc p15, 0, r9, c0, c0 @ get processor id
bl __lookup_processor_type @ r5=procinfo r9=cpuid

View File

@ -71,7 +71,7 @@
__INIT
.type stext, %function
ENTRY(stext)
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
@ and irqs disabled
mrc p15, 0, r9, c0, c0 @ get processor id
bl __lookup_processor_type @ r5=procinfo r9=cpuid
@ -104,7 +104,7 @@ ENTRY(secondary_startup)
* the processor type - there is no need to check the machine type
* as it has already been validated by the primary processor.
*/
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC
msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE
mrc p15, 0, r9, c0, c0 @ get processor id
bl __lookup_processor_type
movs r10, r5 @ invalid processor?

View File

@ -808,7 +808,7 @@ static int __init topology_init(void)
int cpu;
for_each_possible_cpu(cpu)
register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu, NULL);
register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
return 0;
}

View File

@ -41,7 +41,7 @@ ENTRY(c_backtrace)
movne r0, #0
movs frame, r0
1: moveq r0, #-2
LOADREGS(eqfd, sp!, {r4 - r8, pc})
ldmeqfd sp!, {r4 - r8, pc}
2: stmfd sp!, {pc} @ calculate offset of PC in STMIA instruction
ldr r0, [sp], #4
@ -85,7 +85,7 @@ ENTRY(c_backtrace)
* A zero next framepointer means we're done.
*/
teq next, #0
LOADREGS(eqfd, sp!, {r4 - r8, pc})
ldmeqfd sp!, {r4 - r8, pc}
/*
* The next framepointer must be above the
@ -104,7 +104,7 @@ ENTRY(c_backtrace)
1007: ldr r0, =.Lbad
mov r1, frame
bl printk
LOADREGS(fd, sp!, {r4 - r8, pc})
ldmfd sp!, {r4 - r8, pc}
.ltorg
.previous
@ -145,7 +145,7 @@ ENTRY(c_backtrace)
adrne r0, .Lcr
blne printk
mov r0, stack
LOADREGS(fd, sp!, {instr, reg, stack, r7, r8, pc})
ldmfd sp!, {instr, reg, stack, r7, r8, pc}
.Lfp: .asciz " r%d = %08X%c"
.Lcr: .asciz "\n"

View File

@ -43,10 +43,10 @@ USER( strnebt r2, [r0], #1)
tst r1, #1 @ x1 x0 x1 x0 x1 x0 x1
USER( strnebt r2, [r0], #1)
mov r0, #0
LOADREGS(fd,sp!, {r1, pc})
ldmfd sp!, {r1, pc}
.section .fixup,"ax"
.align 0
9001: LOADREGS(fd,sp!, {r0, pc})
9001: ldmfd sp!, {r0, pc}
.previous

View File

@ -43,4 +43,4 @@ ENTRY(copy_page)
bgt 1b @ 1
PLD( ldmeqia r1!, {r3, r4, ip, lr} )
PLD( beq 2b )
LOADREGS(fd, sp!, {r4, pc}) @ 3
ldmfd sp!, {r4, pc} @ 3

View File

@ -28,5 +28,5 @@ ENTRY(__csum_ipv6_magic)
adcs r0, r0, r3
adcs r0, r0, r2
adcs r0, r0, #0
LOADREGS(fd, sp!, {pc})
ldmfd sp!, {pc}

View File

@ -31,7 +31,7 @@ ENTRY(__const_udelay) @ 0 <= r0 <= 0x7fffff06
mov r2, r2, lsr #10 @ max = 0x00007fff
mul r0, r2, r0 @ max = 2^32-1
movs r0, r0, lsr #6
RETINSTR(moveq,pc,lr)
moveq pc, lr
/*
* loops = r0 * HZ * loops_per_jiffy / 1000000
@ -43,20 +43,20 @@ ENTRY(__const_udelay) @ 0 <= r0 <= 0x7fffff06
ENTRY(__delay)
subs r0, r0, #1
#if 0
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
RETINSTR(movls,pc,lr)
movls pc, lr
subs r0, r0, #1
#endif
bhi __delay
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -29,7 +29,7 @@ ENTRY(ecard_loader_read)
CPSR2SPSR(r0)
mov lr, pc
mov pc, r2
LOADREGS(fd, sp!, {r4 - r12, pc})
ldmfd sp!, {r4 - r12, pc}
@ Purpose: call an expansion card loader to reset the card
@ Proto : void read_loader(int card_base, char *loader);
@ -41,5 +41,5 @@ ENTRY(ecard_loader_reset)
CPSR2SPSR(r0)
mov lr, pc
add pc, r1, #8
LOADREGS(fd, sp!, {r4 - r12, pc})
ldmfd sp!, {r4 - r12, pc}

View File

@ -32,7 +32,7 @@ ENTRY(_find_first_zero_bit_le)
2: cmp r2, r1 @ any more?
blo 1b
3: mov r0, r1 @ no free bits
RETINSTR(mov,pc,lr)
mov pc, lr
/*
* Purpose : Find next 'zero' bit
@ -66,7 +66,7 @@ ENTRY(_find_first_bit_le)
2: cmp r2, r1 @ any more?
blo 1b
3: mov r0, r1 @ no free bits
RETINSTR(mov,pc,lr)
mov pc, lr
/*
* Purpose : Find next 'one' bit
@ -98,7 +98,7 @@ ENTRY(_find_first_zero_bit_be)
2: cmp r2, r1 @ any more?
blo 1b
3: mov r0, r1 @ no free bits
RETINSTR(mov,pc,lr)
mov pc, lr
ENTRY(_find_next_zero_bit_be)
teq r1, #0
@ -126,7 +126,7 @@ ENTRY(_find_first_bit_be)
2: cmp r2, r1 @ any more?
blo 1b
3: mov r0, r1 @ no free bits
RETINSTR(mov,pc,lr)
mov pc, lr
ENTRY(_find_next_bit_be)
teq r1, #0
@ -164,5 +164,5 @@ ENTRY(_find_next_bit_be)
addeq r2, r2, #1
mov r0, r2
#endif
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -72,7 +72,7 @@ ENTRY(__raw_readsb)
bpl .Linsb_16_lp
tst r2, #15
LOADREGS(eqfd, sp!, {r4 - r6, pc})
ldmeqfd sp!, {r4 - r6, pc}
.Linsb_no_16: tst r2, #8
beq .Linsb_no_8
@ -109,7 +109,7 @@ ENTRY(__raw_readsb)
str r3, [r1], #4
.Linsb_no_4: ands r2, r2, #3
LOADREGS(eqfd, sp!, {r4 - r6, pc})
ldmeqfd sp!, {r4 - r6, pc}
cmp r2, #2
ldrb r3, [r0]
@ -119,4 +119,4 @@ ENTRY(__raw_readsb)
ldrgtb r3, [r0]
strgtb r3, [r1]
LOADREGS(fd, sp!, {r4 - r6, pc})
ldmfd sp!, {r4 - r6, pc}

View File

@ -28,7 +28,7 @@
strb r3, [r1], #1
subs r2, r2, #1
RETINSTR(moveq, pc, lr)
moveq pc, lr
ENTRY(__raw_readsw)
teq r2, #0 @ do we have to check for the zero len?
@ -69,7 +69,7 @@ ENTRY(__raw_readsw)
bpl .Linsw_8_lp
tst r2, #7
LOADREGS(eqfd, sp!, {r4, r5, r6, pc})
ldmeqfd sp!, {r4, r5, r6, pc}
.Lno_insw_8: tst r2, #4
beq .Lno_insw_4
@ -102,6 +102,6 @@ ENTRY(__raw_readsw)
movne r3, r3, lsr #8
strneb r3, [r1]
LOADREGS(fd, sp!, {r4, r5, r6, pc})
ldmfd sp!, {r4, r5, r6, pc}

View File

@ -64,7 +64,7 @@ ENTRY(__raw_writesb)
bpl .Loutsb_16_lp
tst r2, #15
LOADREGS(eqfd, sp!, {r4, r5, pc})
ldmeqfd sp!, {r4, r5, pc}
.Loutsb_no_16: tst r2, #8
beq .Loutsb_no_8
@ -80,7 +80,7 @@ ENTRY(__raw_writesb)
outword r3
.Loutsb_no_4: ands r2, r2, #3
LOADREGS(eqfd, sp!, {r4, r5, pc})
ldmeqfd sp!, {r4, r5, pc}
cmp r2, #2
ldrb r3, [r1], #1
@ -90,4 +90,4 @@ ENTRY(__raw_writesb)
ldrgtb r3, [r1]
strgtb r3, [r0]
LOADREGS(fd, sp!, {r4, r5, pc})
ldmfd sp!, {r4, r5, pc}

View File

@ -29,7 +29,7 @@
orr r3, r3, r3, lsl #16
str r3, [r0]
subs r2, r2, #1
RETINSTR(moveq, pc, lr)
moveq pc, lr
ENTRY(__raw_writesw)
teq r2, #0 @ do we have to check for the zero len?
@ -80,7 +80,7 @@ ENTRY(__raw_writesw)
bpl .Loutsw_8_lp
tst r2, #7
LOADREGS(eqfd, sp!, {r4, r5, r6, pc})
ldmeqfd sp!, {r4, r5, r6, pc}
.Lno_outsw_8: tst r2, #4
beq .Lno_outsw_4
@ -124,4 +124,4 @@ ENTRY(__raw_writesw)
orrne ip, ip, ip, lsr #16
strne ip, [r0]
LOADREGS(fd, sp!, {r4, r5, r6, pc})
ldmfd sp!, {r4, r5, r6, pc}

View File

@ -22,4 +22,4 @@ ENTRY(memchr)
bne 1b
sub r0, r0, #1
2: movne r0, #0
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -53,7 +53,7 @@ ENTRY(memset)
stmgeia r0!, {r1, r3, ip, lr}
stmgeia r0!, {r1, r3, ip, lr}
bgt 2b
LOADREGS(eqfd, sp!, {pc}) @ Now <64 bytes to go.
ldmeqfd sp!, {pc} @ Now <64 bytes to go.
/*
* No need to correct the count; we're only testing bits from now on
*/
@ -77,4 +77,4 @@ ENTRY(memset)
strneb r1, [r0], #1
tst r2, #1
strneb r1, [r0], #1
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -53,7 +53,7 @@ ENTRY(__memzero)
stmgeia r0!, {r2, r3, ip, lr} @ 4
stmgeia r0!, {r2, r3, ip, lr} @ 4
bgt 3b @ 1
LOADREGS(eqfd, sp!, {pc}) @ 1/2 quick exit
ldmeqfd sp!, {pc} @ 1/2 quick exit
/*
* No need to correct the count; we're only testing bits from now on
*/
@ -77,4 +77,4 @@ ENTRY(__memzero)
strneb r2, [r0], #1 @ 1
tst r1, #1 @ 1 a byte left over
strneb r2, [r0], #1 @ 1
RETINSTR(mov,pc,lr) @ 1
mov pc, lr @ 1

View File

@ -23,4 +23,4 @@ ENTRY(strchr)
teq r2, r1
movne r0, #0
subeq r0, r0, #1
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -21,7 +21,6 @@
* -EFAULT on exception, or "len" if we fill the whole buffer
*/
ENTRY(__arch_strncpy_from_user)
save_lr
mov ip, r1
1: subs r2, r2, #1
USER( ldrplbt r3, [r1], #1)
@ -31,13 +30,13 @@ USER( ldrplbt r3, [r1], #1)
bne 1b
sub r1, r1, #1 @ take NUL character out of count
2: sub r0, r1, ip
restore_pc
mov pc, lr
.section .fixup,"ax"
.align 0
9001: mov r3, #0
strb r3, [r0, #0] @ null terminate
mov r0, #-EFAULT
restore_pc
mov pc, lr
.previous

View File

@ -21,7 +21,6 @@
* or zero on exception, or n + 1 if too long
*/
ENTRY(__arch_strnlen_user)
save_lr
mov r2, r0
1:
USER( ldrbt r3, [r0], #1)
@ -31,10 +30,10 @@ USER( ldrbt r3, [r0], #1)
bne 1b
add r0, r0, #1
2: sub r0, r0, r2
restore_pc
mov pc, lr
.section .fixup,"ax"
.align 0
9001: mov r0, #0
restore_pc
mov pc, lr
.previous

View File

@ -22,4 +22,4 @@ ENTRY(strrchr)
teq r2, #0
bne 1b
mov r0, r3
RETINSTR(mov,pc,lr)
mov pc, lr

View File

@ -105,7 +105,7 @@ USER( strgtbt r3, [r0], #1) @ May fault
movs ip, r2
bne .Lc2u_nowords
.Lc2u_finished: mov r0, #0
LOADREGS(fd,sp!,{r2, r4 - r7, pc})
ldmfd sp!, {r2, r4 - r7, pc}
.Lc2u_src_not_aligned:
bic r1, r1, #3
@ -280,7 +280,7 @@ USER( strgtbt r3, [r0], #1) @ May fault
.section .fixup,"ax"
.align 0
9001: LOADREGS(fd,sp!, {r0, r4 - r7, pc})
9001: ldmfd sp!, {r0, r4 - r7, pc}
.previous
/* Prototype: unsigned long __arch_copy_from_user(void *to,const void *from,unsigned long n);
@ -369,7 +369,7 @@ USER( ldrgtbt r3, [r1], #1) @ May fault
bne .Lcfu_nowords
.Lcfu_finished: mov r0, #0
add sp, sp, #8
LOADREGS(fd,sp!,{r4 - r7, pc})
ldmfd sp!, {r4 - r7, pc}
.Lcfu_src_not_aligned:
bic r1, r1, #3
@ -556,6 +556,6 @@ USER( ldrgtbt r3, [r1], #1) @ May fault
movne r1, r4
blne __memzero
mov r0, r4
LOADREGS(fd,sp!, {r4 - r7, pc})
ldmfd sp!, {r4 - r7, pc}
.previous

View File

@ -4,6 +4,12 @@ menu "AT91RM9200 Implementations"
comment "AT91RM9200 Board Type"
config MACH_ONEARM
bool "Ajeco 1ARM Single Board Computer"
depends on ARCH_AT91RM9200
help
Select this if you are using Ajeco's 1ARM Single Board Computer
config ARCH_AT91RM9200DK
bool "Atmel AT91RM9200-DK Development board"
depends on ARCH_AT91RM9200

View File

@ -10,6 +10,7 @@ obj- :=
obj-$(CONFIG_PM) += pm.o
# Board-specific support
obj-$(CONFIG_MACH_ONEARM) += board-1arm.o
obj-$(CONFIG_ARCH_AT91RM9200DK) += board-dk.o
obj-$(CONFIG_MACH_AT91RM9200EK) += board-ek.o
obj-$(CONFIG_MACH_CSB337) += board-csb337.o

View File

@ -0,0 +1,109 @@
/*
* linux/arch/arm/mach-at91rm9200/board-1arm.c
*
* Copyright (C) 2005 SAN People
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <asm/hardware.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <asm/irq.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include <asm/mach/irq.h>
#include <asm/hardware.h>
#include <asm/arch/board.h>
#include <asm/arch/gpio.h>
#include "generic.h"
static void __init onearm_init_irq(void)
{
/* Initialize AIC controller */
at91rm9200_init_irq(NULL);
/* Set up the GPIO interrupts */
at91_gpio_irq_setup(PQFP_GPIO_BANKS);
}
/*
* Serial port configuration.
* 0 .. 3 = USART0 .. USART3
* 4 = DBGU
*/
static struct at91_uart_config __initdata onearm_uart_config = {
.console_tty = 0, /* ttyS0 */
.nr_tty = 3,
.tty_map = { 4, 0, 1, -1, -1 }, /* ttyS0, ..., ttyS4 */
};
static void __init onearm_map_io(void)
{
at91rm9200_map_io();
/* Initialize clocks: 18.432 MHz crystal */
at91_clock_init(18432000);
/* Setup the serial ports and console */
at91_init_serial(&onearm_uart_config);
}
static struct at91_eth_data __initdata onearm_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};
static struct at91_usbh_data __initdata onearm_usbh_data = {
.ports = 1,
};
static struct at91_udc_data __initdata onearm_udc_data = {
.vbus_pin = AT91_PIN_PC2,
.pullup_pin = AT91_PIN_PC3,
};
static void __init onearm_board_init(void)
{
/* Serial */
at91_add_device_serial();
/* Ethernet */
at91_add_device_eth(&onearm_eth_data);
/* USB Host */
at91_add_device_usbh(&onearm_usbh_data);
/* USB Device */
at91_add_device_udc(&onearm_udc_data);
}
MACHINE_START(ONEARM, "Ajeco 1ARM single board computer")
/* Maintainer: Lennert Buytenhek <buytenh@wantstofly.org> */
.phys_io = AT91_BASE_SYS,
.io_pg_offst = (AT91_VA_BASE_SYS >> 18) & 0xfffc,
.boot_params = AT91_SDRAM_BASE + 0x100,
.timer = &at91rm9200_timer,
.map_io = onearm_map_io,
.init_irq = onearm_init_irq,
.init_machine = onearm_board_init,
MACHINE_END

View File

@ -35,7 +35,6 @@ config ARCH_ADI_COYOTE
config ARCH_IXDP425
bool "IXDP425"
select PCI
help
Say 'Y' here if you want your kernel to support Intel's
IXDP425 Development Platform (Also known as Richfield).
@ -43,7 +42,6 @@ config ARCH_IXDP425
config MACH_IXDPG425
bool "IXDPG425"
select PCI
help
Say 'Y' here if you want your kernel to support Intel's
IXDPG425 Development Platform (Also known as Montajade).
@ -51,7 +49,6 @@ config MACH_IXDPG425
config MACH_IXDP465
bool "IXDP465"
select PCI
help
Say 'Y' here if you want your kernel to support Intel's
IXDP465 Development Platform (Also known as BMP).

View File

@ -2,13 +2,23 @@
# Makefile for the linux kernel.
#
obj-pci-y :=
obj-pci-n :=
obj-pci-$(CONFIG_ARCH_IXDP4XX) += ixdp425-pci.o
obj-pci-$(CONFIG_MACH_IXDPG425) += ixdpg425-pci.o
obj-pci-$(CONFIG_ARCH_ADI_COYOTE) += coyote-pci.o
obj-pci-$(CONFIG_MACH_GTWX5715) += gtwx5715-pci.o
obj-pci-$(CONFIG_MACH_NSLU2) += nslu2-pci.o
obj-pci-$(CONFIG_MACH_NAS100D) += nas100d-pci.o
obj-y += common.o
obj-$(CONFIG_PCI) += common-pci.o
obj-$(CONFIG_ARCH_IXDP4XX) += ixdp425-pci.o ixdp425-setup.o
obj-$(CONFIG_MACH_IXDPG425) += ixdpg425-pci.o coyote-setup.o
obj-$(CONFIG_ARCH_ADI_COYOTE) += coyote-pci.o coyote-setup.o
obj-$(CONFIG_MACH_GTWX5715) += gtwx5715-pci.o gtwx5715-setup.o
obj-$(CONFIG_MACH_NSLU2) += nslu2-pci.o nslu2-setup.o nslu2-power.o
obj-$(CONFIG_MACH_NAS100D) += nas100d-pci.o nas100d-setup.o nas100d-power.o
obj-$(CONFIG_ARCH_IXDP4XX) += ixdp425-setup.o
obj-$(CONFIG_MACH_IXDPG425) += coyote-setup.o
obj-$(CONFIG_ARCH_ADI_COYOTE) += coyote-setup.o
obj-$(CONFIG_MACH_GTWX5715) += gtwx5715-setup.o
obj-$(CONFIG_MACH_NSLU2) += nslu2-setup.o nslu2-power.o
obj-$(CONFIG_MACH_NAS100D) += nas100d-setup.o nas100d-power.o
obj-$(CONFIG_PCI) += $(obj-pci-$(CONFIG_PCI)) common-pci.o

View File

@ -189,7 +189,7 @@ ENTRY(pxa_cpu_suspend)
.data
.align 5
ENTRY(pxa_cpu_resume)
mov r0, #PSR_I_BIT | PSR_F_BIT | MODE_SVC @ set SVC, irqs off
mov r0, #PSR_I_BIT | PSR_F_BIT | SVC_MODE @ set SVC, irqs off
msr cpsr_c, r0
ldr r0, sleep_save_sp @ stack phys addr

View File

@ -71,13 +71,13 @@ config ARCH_S3C2440
Say Y here if you are using the SMDK2440.
config SMDK2440_CPU2440
bool "SMDK2440 with S3C2440 cpu module"
bool "SMDK2440 with S3C2440 CPU module"
depends on ARCH_S3C2440
default y if ARCH_S3C2440
select CPU_S3C2440
config SMDK2440_CPU2442
bool "SMDM2440 with S3C2442 cpu module"
bool "SMDM2440 with S3C2442 CPU module"
depends on ARCH_S3C2440
select CPU_S3C2442

View File

@ -128,7 +128,7 @@ s3c2410_sleep_save_phys:
*/
ENTRY(s3c2410_cpu_resume)
mov r0, #PSR_I_BIT | PSR_F_BIT | MODE_SVC
mov r0, #PSR_I_BIT | PSR_F_BIT | SVC_MODE
msr cpsr_c, r0
@@ load UART to allow us to print the two characters for

View File

@ -177,7 +177,7 @@ sa1110_sdram_controller_fix:
.data
.align 5
ENTRY(sa1100_cpu_resume)
mov r0, #PSR_F_BIT | PSR_I_BIT | MODE_SVC
mov r0, #PSR_F_BIT | PSR_I_BIT | SVC_MODE
msr cpsr_c, r0 @ set SVC, irqs off
ldr r0, sleep_save_sp @ stack phys addr

View File

@ -35,7 +35,7 @@ ENTRY(v3_copy_user_page)
stmia r0!, {r3, r4, ip, lr} @ 4
ldmneia r1!, {r3, r4, ip, lr} @ 4
bne 1b @ 1
LOADREGS(fd, sp!, {r4, pc}) @ 3
ldmfd sp!, {r4, pc} @ 3
.align 5
/*

View File

@ -29,38 +29,6 @@
#define TTB_RGN_WT (2 << 3)
#define TTB_RGN_WB (3 << 3)
.macro cpsie, flags
.ifc \flags, f
.long 0xf1080040
.exitm
.endif
.ifc \flags, i
.long 0xf1080080
.exitm
.endif
.ifc \flags, if
.long 0xf10800c0
.exitm
.endif
.err
.endm
.macro cpsid, flags
.ifc \flags, f
.long 0xf10c0040
.exitm
.endif
.ifc \flags, i
.long 0xf10c0080
.exitm
.endif
.ifc \flags, if
.long 0xf10c00c0
.exitm
.endif
.err
.endm
ENTRY(cpu_v6_proc_init)
mov pc, lr

View File

@ -26,7 +26,7 @@
It is called from the kernel with code similar to this:
mov fp, #0
teqp pc, #PSR_I_BIT | MODE_SVC
teqp pc, #PSR_I_BIT | SVC_MODE
ldr r4, .LC2
ldr pc, [r4] @ Call FP module USR entry point

View File

@ -12,7 +12,7 @@
#
# http://www.arm.linux.org.uk/developer/machines/?action=new
#
# Last update: Mon May 8 20:11:05 2006
# Last update: Mon Jun 26 22:26:08 2006
#
# machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number
#
@ -566,8 +566,8 @@ switchgrass MACH_SWITCHGRASS SWITCHGRASS 549
ens_cmu MACH_ENS_CMU ENS_CMU 550
mm6_sdb MACH_MM6_SDB MM6_SDB 551
saturn MACH_SATURN SATURN 552
i30030evb MACH_ARGONPLUSEVB ARGONPLUSEVB 553
mxc27530evb MACH_SCMA11EVB SCMA11EVB 554
i30030evb MACH_I30030EVB I30030EVB 553
mxc27530evb MACH_MXC27530EVB MXC27530EVB 554
smdk2800 MACH_SMDK2800 SMDK2800 555
mtwilson MACH_MTWILSON MTWILSON 556
ziti MACH_ZITI ZITI 557
@ -647,7 +647,7 @@ sendt MACH_SENDT SENDT 630
mx2jazz MACH_MX2JAZZ MX2JAZZ 631
multiio MACH_MULTIIO MULTIIO 632
hrdisplay MACH_HRDISPLAY HRDISPLAY 633
mxc27530ads MACH_SCMA11BB SCMA11BB 634
mxc27530ads MACH_MXC27530ADS MXC27530ADS 634
trizeps3 MACH_TRIZEPS3 TRIZEPS3 635
zefeerdza MACH_ZEFEERDZA ZEFEERDZA 636
zefeerdzb MACH_ZEFEERDZB ZEFEERDZB 637
@ -721,7 +721,7 @@ gp32 MACH_GP32 GP32 706
gem MACH_GEM GEM 707
i858 MACH_I858 I858 708
hx2750 MACH_HX2750 HX2750 709
mxc91131evb MACH_ZEUSEVB ZEUSEVB 710
mxc91131evb MACH_MXC91131EVB MXC91131EVB 710
p700 MACH_P700 P700 711
cpe MACH_CPE CPE 712
spitz MACH_SPITZ SPITZ 713
@ -802,7 +802,7 @@ cpuat91 MACH_CPUAT91 CPUAT91 787
rea9200 MACH_REA9200 REA9200 788
acts_pune_sa1110 MACH_ACTS_PUNE_SA1110 ACTS_PUNE_SA1110 789
ixp425 MACH_IXP425 IXP425 790
i30030ads MACH_ARGONPLUSODYSSEY ARGONPLUSODYSSEY 791
i30030ads MACH_I30030ADS I30030ADS 791
perch MACH_PERCH PERCH 792
eis05r1 MACH_EIS05R1 EIS05R1 793
pepperpad MACH_PEPPERPAD PEPPERPAD 794
@ -930,7 +930,7 @@ netclient MACH_NETCLIENT NETCLIENT 916
xscale_palmtt5 MACH_XSCALE_PALMTT5 XSCALE_PALMTT5 917
xscale_palmtc MACH_OMAP_PALMTC OMAP_PALMTC 918
omap_apollon MACH_OMAP_APOLLON OMAP_APOLLON 919
mxc30030evb MACH_ARGONLVEVB ARGONLVEVB 920
mxc30030evb MACH_MXC30030EVB MXC30030EVB 920
rea_2d MACH_REA_2D REA_2D 921
eti3e524 MACH_TI3E524 TI3E524 922
ateb9200 MACH_ATEB9200 ATEB9200 923
@ -986,7 +986,7 @@ redfox MACH_REDFOX REDFOX 972
mysh_ep9315_1 MACH_MYSH_EP9315_1 MYSH_EP9315_1 973
tpf106 MACH_TPF106 TPF106 974
at91rm9200kg MACH_AT91RM9200KG AT91RM9200KG 975
racemt2 MACH_SLEDB SLEDB 976
rcmt2 MACH_SLEDB SLEDB 976
ontrack MACH_ONTRACK ONTRACK 977
pm1200 MACH_PM1200 PM1200 978
ess24562 MACH_ESS24XXX ESS24XXX 979
@ -1022,7 +1022,7 @@ smdk2440 MACH_SMDK2440 SMDK2440 1008
smdk2412 MACH_SMDK2412 SMDK2412 1009
webbox MACH_WEBBOX WEBBOX 1010
cwwndp MACH_CWWNDP CWWNDP 1011
dragon MACH_DRAGON DRAGON 1012
i839 MACH_DRAGON DRAGON 1012
opendo_cpu_board MACH_OPENDO_CPU_BOARD OPENDO_CPU_BOARD 1013
ccm2200 MACH_CCM2200 CCM2200 1014
etwarm MACH_ETWARM ETWARM 1015
@ -1040,3 +1040,56 @@ edg79524 MACH_EDG79524 EDG79524 1026
ai2410 MACH_AI2410 AI2410 1027
ixp465 MACH_IXP465 IXP465 1028
balloon3 MACH_BALLOON3 BALLOON3 1029
heins MACH_HEINS HEINS 1030
mpluseva MACH_MPLUSEVA MPLUSEVA 1031
rt042 MACH_RT042 RT042 1032
cwiem MACH_CWIEM CWIEM 1033
cm_x270 MACH_CM_X270 CM_X270 1034
cm_x255 MACH_CM_X255 CM_X255 1035
esh_at91 MACH_ESH_AT91 ESH_AT91 1036
sandgate3 MACH_SANDGATE3 SANDGATE3 1037
primo MACH_PRIMO PRIMO 1038
gemstone MACH_GEMSTONE GEMSTONE 1039
pronghorn_metro MACH_PRONGHORNMETRO PRONGHORNMETRO 1040
sidewinder MACH_SIDEWINDER SIDEWINDER 1041
picomod1 MACH_PICOMOD1 PICOMOD1 1042
sg590 MACH_SG590 SG590 1043
akai9307 MACH_AKAI9307 AKAI9307 1044
fontaine MACH_FONTAINE FONTAINE 1045
wombat MACH_WOMBAT WOMBAT 1046
acq300 MACH_ACQ300 ACQ300 1047
mod_270 MACH_MOD_270 MOD_270 1048
vmc_vc0820 MACH_VC0820 VC0820 1049
ani_aim MACH_ANI_AIM ANI_AIM 1050
jellyfish MACH_JELLYFISH JELLYFISH 1051
amanita MACH_AMANITA AMANITA 1052
vlink MACH_VLINK VLINK 1053
dexflex MACH_DEXFLEX DEXFLEX 1054
eigen_ttq MACH_EIGEN_TTQ EIGEN_TTQ 1055
arcom_titan MACH_ARCOM_TITAN ARCOM_TITAN 1056
tabla MACH_TABLA TABLA 1057
mdirac3 MACH_MDIRAC3 MDIRAC3 1058
mrhfbp2 MACH_MRHFBP2 MRHFBP2 1059
at91rm9200rb MACH_AT91RM9200RB AT91RM9200RB 1060
ani_apm MACH_ANI_APM ANI_APM 1061
ella1 MACH_ELLA1 ELLA1 1062
inhand_pxa27x MACH_INHAND_PXA27X INHAND_PXA27X 1063
inhand_pxa25x MACH_INHAND_PXA25X INHAND_PXA25X 1064
empos_xm MACH_EMPOS_XM EMPOS_XM 1065
empos MACH_EMPOS EMPOS 1066
empos_tiny MACH_EMPOS_TINY EMPOS_TINY 1067
empos_sm MACH_EMPOS_SM EMPOS_SM 1068
egret MACH_EGRET EGRET 1069
ostrich MACH_OSTRICH OSTRICH 1070
n50 MACH_N50 N50 1071
ecbat91 MACH_ECBAT91 ECBAT91 1072
stareast MACH_STAREAST STAREAST 1073
dspg_dw MACH_DSPG_DW DSPG_DW 1074
onearm MACH_ONEARM ONEARM 1075
mrg110_6 MACH_MRG110_6 MRG110_6 1076
wrt300nv2 MACH_WRT300NV2 WRT300NV2 1077
xm_bulverde MACH_XM_BULVERDE XM_BULVERDE 1078
msm6100 MACH_MSM6100 MSM6100 1079
eti_b1 MACH_ETI_B1 ETI_B1 1080
za9l_series MACH_ZILOG_ZA9L ZILOG_ZA9L 1081
bit2440 MACH_BIT2440 BIT2440 1082

View File

@ -14,6 +14,10 @@ config X86_32
486, 586, Pentiums, and various instruction-set-compatible chips by
AMD, Cyrix, and others.
config GENERIC_TIME
bool
default y
config SEMAPHORE_SLEEPERS
bool
default y
@ -229,7 +233,7 @@ config NR_CPUS
config SCHED_SMT
bool "SMT (Hyperthreading) scheduler support"
depends on SMP
depends on X86_HT
help
SMT scheduler support improves the CPU scheduler's decision making
when dealing with Intel Pentium 4 chips with HyperThreading at a
@ -238,7 +242,7 @@ config SCHED_SMT
config SCHED_MC
bool "Multi-core scheduler support"
depends on SMP
depends on X86_HT
default y
help
Multi-core scheduler support improves the CPU scheduler's decision
@ -324,6 +328,15 @@ config X86_MCE_P4THERMAL
Enabling this feature will cause a message to be printed when the P4
enters thermal throttling.
config VM86
default y
bool "Enable VM86 support" if EMBEDDED
help
This option is required by programs like DOSEMU to run 16-bit legacy
code on X86 processors. It also may be needed by software like
XFree86 to initialize some video cards via BIOS. Disabling this
option saves about 6k.
config TOSHIBA
tristate "Toshiba Laptop support"
---help---
@ -721,7 +734,7 @@ config KEXEC
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is indepedent of the system firmware. And like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
The name comes from the similiarity to the exec system call.
@ -767,6 +780,17 @@ config HOTPLUG_CPU
enable suspend on SMP systems. CPUs can be controlled through
/sys/devices/system/cpu.
config COMPAT_VDSO
bool "Compat VDSO support"
default y
help
Map the VDSO to the predictable old-style address too.
---help---
Say N here if you are running a sufficiently recent glibc
version (2.3.3 or later), to remove the high-mapped
VDSO mapping and to exclusively use the randomized VDSO.
If unsure, say Y.
endmenu
@ -1046,13 +1070,27 @@ config SCx200
tristate "NatSemi SCx200 support"
depends on !X86_VOYAGER
help
This provides basic support for the National Semiconductor SCx200
processor. Right now this is just a driver for the GPIO pins.
This provides basic support for National Semiconductor's
(now AMD's) Geode processors. The driver probes for the
PCI-IDs of several on-chip devices, so its a good dependency
for other scx200_* drivers.
If you don't know what to do here, say N.
If compiled as a module, the driver is named scx200.
This support is also available as a module. If compiled as a
module, it will be called scx200.
config SCx200HR_TIMER
tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
depends on SCx200 && GENERIC_TIME
default y
help
This driver provides a clocksource built upon the on-chip
27MHz high-resolution timer. Its also a workaround for
NSC Geode SC-1100's buggy TSC, which loses time when the
processor goes idle (as is done by the scheduler). The
other workaround is idle=poll boot option.
config K8_NB
def_bool y
depends on AGP_AMD64
source "drivers/pcmcia/Kconfig"

View File

@ -41,7 +41,7 @@ config M386
- "GeodeGX1" for Geode GX1 (Cyrix MediaGX).
- "Geode GX/LX" For AMD Geode GX and LX processors.
- "CyrixIII/VIA C3" for VIA Cyrix III or VIA C3.
- "VIA C3-2 for VIA C3-2 "Nehemiah" (model 9 and above).
- "VIA C3-2" for VIA C3-2 "Nehemiah" (model 9 and above).
If you don't know what to do, choose "386".

View File

@ -109,8 +109,13 @@ fdimage288: $(BOOTIMAGE) $(obj)/mtools.conf
isoimage: $(BOOTIMAGE)
-rm -rf $(obj)/isoimage
mkdir $(obj)/isoimage
cp `echo /usr/lib*/syslinux/isolinux.bin | awk '{ print $1; }'` \
$(obj)/isoimage
for i in lib lib64 share end ; do \
if [ -f /usr/$$i/syslinux/isolinux.bin ] ; then \
cp /usr/$$i/syslinux/isolinux.bin $(obj)/isoimage ; \
break ; \
fi ; \
if [ $$i = end ] ; then exit 1 ; fi ; \
done
cp $(BOOTIMAGE) $(obj)/isoimage/linux
echo '$(image_cmdline)' > $(obj)/isoimage/isolinux.cfg
if [ -f '$(FDINITRD)' ] ; then \

View File

@ -24,14 +24,6 @@
#undef memset
#undef memcpy
/*
* Why do we do this? Don't ask me..
*
* Incomprehensible are the ways of bootloaders.
*/
static void* memset(void *, int, size_t);
static void* memcpy(void *, __const void *, size_t);
#define memzero(s, n) memset ((s), 0, (n))
typedef unsigned char uch;
@ -93,7 +85,7 @@ static unsigned char *real_mode; /* Pointer to real-mode data */
#endif
#define RM_SCREEN_INFO (*(struct screen_info *)(real_mode+0))
extern char input_data[];
extern unsigned char input_data[];
extern int input_len;
static long bytes_out = 0;
@ -103,6 +95,9 @@ static unsigned long output_ptr = 0;
static void *malloc(int size);
static void free(void *where);
static void *memset(void *s, int c, unsigned n);
static void *memcpy(void *dest, const void *src, unsigned n);
static void putstr(const char *);
extern int end;
@ -205,7 +200,7 @@ static void putstr(const char *s)
outb_p(0xff & (pos >> 1), vidport+1);
}
static void* memset(void* s, int c, size_t n)
static void* memset(void* s, int c, unsigned n)
{
int i;
char *ss = (char*)s;
@ -214,14 +209,13 @@ static void* memset(void* s, int c, size_t n)
return s;
}
static void* memcpy(void* __dest, __const void* __src,
size_t __n)
static void* memcpy(void* dest, const void* src, unsigned n)
{
int i;
char *d = (char *)__dest, *s = (char *)__src;
char *d = (char *)dest, *s = (char *)src;
for (i=0;i<__n;i++) d[i] = s[i];
return __dest;
for (i=0;i<n;i++) d[i] = s[i];
return dest;
}
/* ===========================================================================
@ -309,7 +303,7 @@ static void setup_normal_output_buffer(void)
#else
if ((RM_ALT_MEM_K > RM_EXT_MEM_K ? RM_ALT_MEM_K : RM_EXT_MEM_K) < 1024) error("Less than 2MB of memory");
#endif
output_data = (char *)__PHYSICAL_START; /* Normally Points to 1M */
output_data = (unsigned char *)__PHYSICAL_START; /* Normally Points to 1M */
free_mem_end_ptr = (long)real_mode;
}
@ -324,11 +318,9 @@ static void setup_output_buffer_if_we_run_high(struct moveparams *mv)
#ifdef STANDARD_MEMORY_BIOS_CALL
if (RM_EXT_MEM_K < (3*1024)) error("Less than 4MB of memory");
#else
if ((RM_ALT_MEM_K > RM_EXT_MEM_K ? RM_ALT_MEM_K : RM_EXT_MEM_K) <
(3*1024))
error("Less than 4MB of memory");
if ((RM_ALT_MEM_K > RM_EXT_MEM_K ? RM_ALT_MEM_K : RM_EXT_MEM_K) < (3*1024)) error("Less than 4MB of memory");
#endif
mv->low_buffer_start = output_data = (char *)LOW_BUFFER_START;
mv->low_buffer_start = output_data = (unsigned char *)LOW_BUFFER_START;
low_buffer_end = ((unsigned int)real_mode > LOW_BUFFER_MAX
? LOW_BUFFER_MAX : (unsigned int)real_mode) & ~0xfff;
low_buffer_size = low_buffer_end - LOW_BUFFER_START;

View File

@ -1929,7 +1929,7 @@ skip10: movb %ah, %al
ret
store_edid:
#ifdef CONFIG_FB_FIRMWARE_EDID
#ifdef CONFIG_FIRMWARE_EDID
pushw %es # just save all registers
pushw %ax
pushw %bx
@ -1947,6 +1947,22 @@ store_edid:
rep
stosl
pushw %es # save ES
xorw %di, %di # Report Capability
pushw %di
popw %es # ES:DI must be 0:0
movw $0x4f15, %ax
xorw %bx, %bx
xorw %cx, %cx
int $0x10
popw %es # restore ES
cmpb $0x00, %ah # call successful
jne no_edid
cmpb $0x4f, %al # function supported
jne no_edid
movw $0x4f15, %ax # do VBE/DDC
movw $0x01, %bx
movw $0x00, %cx
@ -1954,6 +1970,7 @@ store_edid:
movw $0x140, %di
int $0x10
no_edid:
popw %di # restore all registers
popw %dx
popw %cx

View File

@ -36,22 +36,19 @@
.file "aes-i586-asm.S"
.text
// aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
// aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
#include <asm/asm-offsets.h>
#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)
// offsets to parameters with one register pushed onto stack
/* offsets to parameters with one register pushed onto stack */
#define tfm 8
#define out_blk 12
#define in_blk 16
#define in_blk 8 // input byte array address parameter
#define out_blk 12 // output byte array address parameter
#define ctx 16 // AES context structure
// offsets in context structure
#define ekey 0 // encryption key schedule base address
#define nrnd 256 // number of rounds
#define dkey 260 // decryption key schedule base address
/* offsets in crypto_tfm structure */
#define ekey (crypto_tfm_ctx_offset + 0)
#define nrnd (crypto_tfm_ctx_offset + 256)
#define dkey (crypto_tfm_ctx_offset + 260)
// register mapping for encrypt and decrypt subroutines
@ -220,6 +217,7 @@
do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */
// AES (Rijndael) Encryption Subroutine
/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
.global aes_enc_blk
@ -230,7 +228,7 @@
aes_enc_blk:
push %ebp
mov ctx(%esp),%ebp // pointer to context
mov tfm(%esp),%ebp
// CAUTION: the order and the values used in these assigns
// rely on the register mappings
@ -295,6 +293,7 @@ aes_enc_blk:
ret
// AES (Rijndael) Decryption Subroutine
/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
.global aes_dec_blk
@ -305,7 +304,7 @@ aes_enc_blk:
aes_dec_blk:
push %ebp
mov ctx(%esp),%ebp // pointer to context
mov tfm(%esp),%ebp
// CAUTION: the order and the values used in these assigns
// rely on the register mappings

View File

@ -45,8 +45,8 @@
#include <linux/crypto.h>
#include <linux/linkage.h>
asmlinkage void aes_enc_blk(const u8 *src, u8 *dst, void *ctx);
asmlinkage void aes_dec_blk(const u8 *src, u8 *dst, void *ctx);
asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
#define AES_MIN_KEY_SIZE 16
#define AES_MAX_KEY_SIZE 32
@ -378,12 +378,12 @@ static void gen_tabs(void)
k[8*(i)+11] = ss[3]; \
}
static int
aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len, u32 *flags)
{
int i;
u32 ss[8];
struct aes_ctx *ctx = ctx_arg;
struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
/* encryption schedule */
@ -464,15 +464,15 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
return 0;
}
static inline void aes_encrypt(void *ctx, u8 *dst, const u8 *src)
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
aes_enc_blk(src, dst, ctx);
}
static inline void aes_decrypt(void *ctx, u8 *dst, const u8 *src)
{
aes_dec_blk(src, dst, ctx);
aes_enc_blk(tfm, dst, src);
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
aes_dec_blk(tfm, dst, src);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",

View File

@ -7,10 +7,9 @@ extra-y := head.o init_task.o vmlinux.lds
obj-y := process.o semaphore.o signal.o entry.o traps.o irq.o \
ptrace.o time.o ioport.o ldt.o setup.o i8259.o sys_i386.o \
pci-dma.o i386_ksyms.o i387.o bootflag.o \
quirks.o i8237.o topology.o alternative.o
quirks.o i8237.o topology.o alternative.o i8253.o tsc.o
obj-y += cpu/
obj-y += timers/
obj-y += acpi/
obj-$(CONFIG_X86_BIOS_REBOOT) += reboot.o
obj-$(CONFIG_MCA) += mca.o
@ -37,6 +36,8 @@ obj-$(CONFIG_EFI) += efi.o efi_stub.o
obj-$(CONFIG_DOUBLEFAULT) += doublefault.o
obj-$(CONFIG_VM86) += vm86.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_HPET_TIMER) += hpet.o
obj-$(CONFIG_K8_NB) += k8.o
EXTRA_AFLAGS := -traditional
@ -76,3 +77,6 @@ SYSCFLAGS_vsyscall-syms.o = -r
$(obj)/vsyscall-syms.o: $(src)/vsyscall.lds \
$(obj)/vsyscall-sysenter.o $(obj)/vsyscall-note.o FORCE
$(call if_changed,syscall)
k8-y += ../../x86_64/kernel/k8.o

View File

@ -4,27 +4,41 @@
#include <asm/alternative.h>
#include <asm/sections.h>
#define DEBUG 0
#if DEBUG
# define DPRINTK(fmt, args...) printk(fmt, args)
#else
# define DPRINTK(fmt, args...)
#endif
static int no_replacement = 0;
static int smp_alt_once = 0;
static int debug_alternative = 0;
static int __init noreplacement_setup(char *s)
{
no_replacement = 1;
return 1;
}
static int __init bootonly(char *str)
{
smp_alt_once = 1;
return 1;
}
static int __init debug_alt(char *str)
{
debug_alternative = 1;
return 1;
}
__setup("noreplacement", noreplacement_setup);
__setup("smp-alt-boot", bootonly);
__setup("debug-alternative", debug_alt);
#define DPRINTK(fmt, args...) if (debug_alternative) \
printk(KERN_DEBUG fmt, args)
#ifdef GENERIC_NOP1
/* Use inline assembly to define this because the nops are defined
as inline assembly strings in the include files and we cannot
get them easily into strings. */
asm("\t.data\nintelnops: "
GENERIC_NOP1 GENERIC_NOP2 GENERIC_NOP3 GENERIC_NOP4 GENERIC_NOP5 GENERIC_NOP6
GENERIC_NOP7 GENERIC_NOP8);
asm("\t.data\nk8nops: "
K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
K8_NOP7 K8_NOP8);
asm("\t.data\nk7nops: "
K7_NOP1 K7_NOP2 K7_NOP3 K7_NOP4 K7_NOP5 K7_NOP6
K7_NOP7 K7_NOP8);
extern unsigned char intelnops[], k8nops[], k7nops[];
extern unsigned char intelnops[];
static unsigned char *intel_nops[ASM_NOP_MAX+1] = {
NULL,
intelnops,
@ -36,6 +50,13 @@ static unsigned char *intel_nops[ASM_NOP_MAX+1] = {
intelnops + 1 + 2 + 3 + 4 + 5 + 6,
intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
};
#endif
#ifdef K8_NOP1
asm("\t.data\nk8nops: "
K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
K8_NOP7 K8_NOP8);
extern unsigned char k8nops[];
static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
NULL,
k8nops,
@ -47,6 +68,13 @@ static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
k8nops + 1 + 2 + 3 + 4 + 5 + 6,
k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
};
#endif
#ifdef K7_NOP1
asm("\t.data\nk7nops: "
K7_NOP1 K7_NOP2 K7_NOP3 K7_NOP4 K7_NOP5 K7_NOP6
K7_NOP7 K7_NOP8);
extern unsigned char k7nops[];
static unsigned char *k7_nops[ASM_NOP_MAX+1] = {
NULL,
k7nops,
@ -58,6 +86,18 @@ static unsigned char *k7_nops[ASM_NOP_MAX+1] = {
k7nops + 1 + 2 + 3 + 4 + 5 + 6,
k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
};
#endif
#ifdef CONFIG_X86_64
extern char __vsyscall_0;
static inline unsigned char** find_nop_table(void)
{
return k8_nops;
}
#else /* CONFIG_X86_64 */
static struct nop {
int cpuid;
unsigned char **noptable;
@ -67,14 +107,6 @@ static struct nop {
{ -1, NULL }
};
extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
extern struct alt_instr __smp_alt_instructions[], __smp_alt_instructions_end[];
extern u8 *__smp_locks[], *__smp_locks_end[];
extern u8 __smp_alt_begin[], __smp_alt_end[];
static unsigned char** find_nop_table(void)
{
unsigned char **noptable = intel_nops;
@ -89,6 +121,14 @@ static unsigned char** find_nop_table(void)
return noptable;
}
#endif /* CONFIG_X86_64 */
extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
extern struct alt_instr __smp_alt_instructions[], __smp_alt_instructions_end[];
extern u8 *__smp_locks[], *__smp_locks_end[];
extern u8 __smp_alt_begin[], __smp_alt_end[];
/* Replace instructions with better alternatives for this CPU type.
This runs before SMP is initialized to avoid SMP problems with
self modifying code. This implies that assymetric systems where
@ -99,6 +139,7 @@ void apply_alternatives(struct alt_instr *start, struct alt_instr *end)
{
unsigned char **noptable = find_nop_table();
struct alt_instr *a;
u8 *instr;
int diff, i, k;
DPRINTK("%s: alt table %p -> %p\n", __FUNCTION__, start, end);
@ -106,7 +147,16 @@ void apply_alternatives(struct alt_instr *start, struct alt_instr *end)
BUG_ON(a->replacementlen > a->instrlen);
if (!boot_cpu_has(a->cpuid))
continue;
memcpy(a->instr, a->replacement, a->replacementlen);
instr = a->instr;
#ifdef CONFIG_X86_64
/* vsyscall code is not mapped yet. resolve it manually. */
if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END) {
instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
DPRINTK("%s: vsyscall fixup: %p => %p\n",
__FUNCTION__, a->instr, instr);
}
#endif
memcpy(instr, a->replacement, a->replacementlen);
diff = a->instrlen - a->replacementlen;
/* Pad the rest with nops */
for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
@ -186,14 +236,6 @@ struct smp_alt_module {
static LIST_HEAD(smp_alt_modules);
static DEFINE_SPINLOCK(smp_alt);
static int smp_alt_once = 0;
static int __init bootonly(char *str)
{
smp_alt_once = 1;
return 1;
}
__setup("smp-alt-boot", bootonly);
void alternatives_smp_module_add(struct module *mod, char *name,
void *locks, void *locks_end,
void *text, void *text_end)
@ -201,6 +243,9 @@ void alternatives_smp_module_add(struct module *mod, char *name,
struct smp_alt_module *smp;
unsigned long flags;
if (no_replacement)
return;
if (smp_alt_once) {
if (boot_cpu_has(X86_FEATURE_UP))
alternatives_smp_unlock(locks, locks_end,
@ -235,7 +280,7 @@ void alternatives_smp_module_del(struct module *mod)
struct smp_alt_module *item;
unsigned long flags;
if (smp_alt_once)
if (no_replacement || smp_alt_once)
return;
spin_lock_irqsave(&smp_alt, flags);
@ -256,7 +301,7 @@ void alternatives_smp_switch(int smp)
struct smp_alt_module *mod;
unsigned long flags;
if (smp_alt_once)
if (no_replacement || smp_alt_once)
return;
BUG_ON(!smp && (num_online_cpus() > 1));
@ -285,6 +330,13 @@ void alternatives_smp_switch(int smp)
void __init alternative_instructions(void)
{
if (no_replacement) {
printk(KERN_INFO "(SMP-)alternatives turned off\n");
free_init_pages("SMP alternatives",
(unsigned long)__smp_alt_begin,
(unsigned long)__smp_alt_end);
return;
}
apply_alternatives(__alt_instructions, __alt_instructions_end);
/* switch to patch-once-at-boottime-only mode and free the

View File

@ -36,6 +36,7 @@
#include <asm/arch_hooks.h>
#include <asm/hpet.h>
#include <asm/i8253.h>
#include <asm/nmi.h>
#include <mach_apic.h>
#include <mach_apicdef.h>
@ -156,7 +157,7 @@ void clear_local_APIC(void)
maxlvt = get_maxlvt();
/*
* Masking an LVT entry on a P6 can trigger a local APIC error
* Masking an LVT entry can trigger a local APIC error
* if the vector is zero. Mask LVTERR first to prevent this.
*/
if (maxlvt >= 3) {
@ -1117,7 +1118,18 @@ void disable_APIC_timer(void)
unsigned long v;
v = apic_read(APIC_LVTT);
apic_write_around(APIC_LVTT, v | APIC_LVT_MASKED);
/*
* When an illegal vector value (0-15) is written to an LVT
* entry and delivery mode is Fixed, the APIC may signal an
* illegal vector error, with out regard to whether the mask
* bit is set or whether an interrupt is actually seen on input.
*
* Boot sequence might call this function when the LVTT has
* '0' vector value. So make sure vector field is set to
* valid value.
*/
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
apic_write_around(APIC_LVTT, v);
}
}

View File

@ -764,9 +764,9 @@ static int apm_do_idle(void)
int idled = 0;
int polling;
polling = test_thread_flag(TIF_POLLING_NRFLAG);
polling = !!(current_thread_info()->status & TS_POLLING);
if (polling) {
clear_thread_flag(TIF_POLLING_NRFLAG);
current_thread_info()->status &= ~TS_POLLING;
smp_mb__after_clear_bit();
}
if (!need_resched()) {
@ -774,7 +774,7 @@ static int apm_do_idle(void)
ret = apm_bios_call_simple(APM_FUNC_IDLE, 0, 0, &eax);
}
if (polling)
set_thread_flag(TIF_POLLING_NRFLAG);
current_thread_info()->status |= TS_POLLING;
if (!idled)
return 0;

View File

@ -4,6 +4,7 @@
* to extract and format the required data.
*/
#include <linux/crypto.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/personality.h>
@ -13,6 +14,7 @@
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/elf.h>
#define DEFINE(sym, val) \
asm volatile("\n->" #sym " %0 " #val : : "i" (val))
@ -53,6 +55,7 @@ void foo(void)
OFFSET(TI_preempt_count, thread_info, preempt_count);
OFFSET(TI_addr_limit, thread_info, addr_limit);
OFFSET(TI_restart_block, thread_info, restart_block);
OFFSET(TI_sysenter_return, thread_info, sysenter_return);
BLANK();
OFFSET(EXEC_DOMAIN_handler, exec_domain, handler);
@ -68,5 +71,7 @@ void foo(void)
sizeof(struct tss_struct));
DEFINE(PAGE_SIZE_asm, PAGE_SIZE);
DEFINE(VSYSCALL_BASE, __fix_to_virt(FIX_VSYSCALL));
DEFINE(VDSO_PRELINK, VDSO_PRELINK);
OFFSET(crypto_tfm_ctx_offset, crypto_tfm, __crt_ctx);
}

View File

@ -224,22 +224,26 @@ static void __init init_amd(struct cpuinfo_x86 *c)
#ifdef CONFIG_X86_HT
/*
* On a AMD dual core setup the lower bits of the APIC id
* distingush the cores. Assumes number of cores is a power
* of two.
* On a AMD multi core setup the lower bits of the APIC id
* distingush the cores.
*/
if (c->x86_max_cores > 1) {
int cpu = smp_processor_id();
unsigned bits = 0;
while ((1 << bits) < c->x86_max_cores)
bits++;
cpu_core_id[cpu] = phys_proc_id[cpu] & ((1<<bits)-1);
phys_proc_id[cpu] >>= bits;
unsigned bits = (cpuid_ecx(0x80000008) >> 12) & 0xf;
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
c->cpu_core_id = c->phys_proc_id & ((1<<bits)-1);
c->phys_proc_id >>= bits;
printk(KERN_INFO "CPU %d(%d) -> Core %d\n",
cpu, c->x86_max_cores, cpu_core_id[cpu]);
cpu, c->x86_max_cores, c->cpu_core_id);
}
#endif
if (cpuid_eax(0x80000000) >= 0x80000006)
num_cache_leaves = 3;
}
static unsigned int amd_size_cache(struct cpuinfo_x86 * c, unsigned int size)

View File

@ -294,7 +294,7 @@ void __cpuinit generic_identify(struct cpuinfo_x86 * c)
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
c->x86_mask = tfms & 15;
#ifdef CONFIG_SMP
#ifdef CONFIG_X86_HT
c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
#else
c->apicid = (ebx >> 24) & 0xFF;
@ -319,7 +319,7 @@ void __cpuinit generic_identify(struct cpuinfo_x86 * c)
early_intel_workaround(c);
#ifdef CONFIG_X86_HT
phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
#endif
}
@ -477,11 +477,9 @@ void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
int cpu = smp_processor_id();
cpuid(1, &eax, &ebx, &ecx, &edx);
if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
return;
@ -492,16 +490,17 @@ void __cpuinit detect_ht(struct cpuinfo_x86 *c)
} else if (smp_num_siblings > 1 ) {
if (smp_num_siblings > NR_CPUS) {
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
printk(KERN_WARNING "CPU: Unsupported number of the "
"siblings %d", smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
phys_proc_id[cpu] = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
phys_proc_id[cpu]);
c->phys_proc_id);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
@ -509,12 +508,12 @@ void __cpuinit detect_ht(struct cpuinfo_x86 *c)
core_bits = get_count_order(c->x86_max_cores);
cpu_core_id[cpu] = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
((1 << core_bits) - 1);
if (c->x86_max_cores > 1)
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
cpu_core_id[cpu]);
c->cpu_core_id);
}
}
#endif
@ -613,6 +612,12 @@ void __cpuinit cpu_init(void)
set_in_cr4(X86_CR4_TSD);
}
/* The CPU hotplug case */
if (cpu_gdt_descr->address) {
gdt = (struct desc_struct *)cpu_gdt_descr->address;
memset(gdt, 0, PAGE_SIZE);
goto old_gdt;
}
/*
* This is a horrible hack to allocate the GDT. The problem
* is that cpu_init() is called really early for the boot CPU
@ -631,7 +636,7 @@ void __cpuinit cpu_init(void)
local_irq_enable();
}
}
old_gdt:
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:

View File

@ -354,7 +354,7 @@ static void __init init_nsc(struct cpuinfo_x86 *c)
* This function only handles the GX processor, and kicks every
* thing else to the Cyrix init function above - that should
* cover any processors that might have been branded differently
* after NSC aquired Cyrix.
* after NSC acquired Cyrix.
*
* If this breaks your GX1 horribly, please e-mail
* info-linux@ldcmail.amd.com to tell us.

View File

@ -122,6 +122,12 @@ static void __cpuinit init_intel(struct cpuinfo_x86 *c)
select_idle_routine(c);
l2 = init_intel_cacheinfo(c);
if (c->cpuid_level > 9 ) {
unsigned eax = cpuid_eax(10);
/* Check for version and the number of counters */
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
set_bit(X86_FEATURE_ARCH_PERFMON, c->x86_capability);
}
/* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until model 3 mask 3 */
if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)

View File

@ -4,6 +4,7 @@
* Changes:
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
* Andi Kleen : CPUID4 emulation on AMD.
*/
#include <linux/init.h>
@ -130,25 +131,111 @@ struct _cpuid4_info {
cpumask_t shared_cpu_map;
};
static unsigned short num_cache_leaves;
unsigned short num_cache_leaves;
/* AMD doesn't have CPUID4. Emulate it here to report the same
information to the user. This makes some assumptions about the machine:
No L3, L2 not shared, no SMT etc. that is currently true on AMD CPUs.
In theory the TLBs could be reported as fake type (they are in "dummy").
Maybe later */
union l1_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 8;
unsigned assoc : 8;
unsigned size_in_kb : 8;
};
unsigned val;
};
union l2_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 4;
unsigned assoc : 4;
unsigned size_in_kb : 16;
};
unsigned val;
};
static const unsigned short assocs[] = {
[1] = 1, [2] = 2, [4] = 4, [6] = 8,
[8] = 16,
[0xf] = 0xffff // ??
};
static const unsigned char levels[] = { 1, 1, 2 };
static const unsigned char types[] = { 1, 2, 3 };
static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx,
union _cpuid4_leaf_ecx *ecx)
{
unsigned dummy;
unsigned line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d;
union l2_cache l2;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &dummy);
if (leaf > 2 || !l1d.val || !l1i.val || !l2.val)
return;
eax->split.is_self_initializing = 1;
eax->split.type = types[leaf];
eax->split.level = levels[leaf];
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
if (leaf <= 1) {
union l1_cache *l1 = leaf == 0 ? &l1d : &l1i;
assoc = l1->assoc;
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
} else {
assoc = l2.assoc;
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
/* cpu_data has errata corrections for K7 applied */
size_in_kb = current_cpu_data.x86_cache_size;
}
if (assoc == 0xf)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assocs[assoc] - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
unsigned int eax, ebx, ecx, edx;
union _cpuid4_leaf_eax cache_eax;
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned edx;
cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
if (cache_eax.split.type == CACHE_TYPE_NULL)
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
amd_cpuid4(index, &eax, &ebx, &ecx);
else
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
if (eax.split.type == CACHE_TYPE_NULL)
return -EIO; /* better error ? */
this_leaf->eax.full = eax;
this_leaf->ebx.full = ebx;
this_leaf->ecx.full = ecx;
this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
(this_leaf->ebx.split.coherency_line_size + 1) *
(this_leaf->ebx.split.physical_line_partition + 1) *
(this_leaf->ebx.split.ways_of_associativity + 1);
this_leaf->eax = eax;
this_leaf->ebx = ebx;
this_leaf->ecx = ecx;
this_leaf->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
@ -174,7 +261,7 @@ unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_SMP
#ifdef CONFIG_X86_HT
unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
#endif
@ -296,14 +383,14 @@ unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
if (new_l2) {
l2 = new_l2;
#ifdef CONFIG_SMP
#ifdef CONFIG_X86_HT
cpu_llc_id[cpu] = l2_id;
#endif
}
if (new_l3) {
l3 = new_l3;
#ifdef CONFIG_SMP
#ifdef CONFIG_X86_HT
cpu_llc_id[cpu] = l3_id;
#endif
}
@ -642,7 +729,7 @@ static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
return;
}
static int cacheinfo_cpu_callback(struct notifier_block *nfb,
static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
@ -660,7 +747,7 @@ static int cacheinfo_cpu_callback(struct notifier_block *nfb,
return NOTIFY_OK;
}
static struct notifier_block cacheinfo_cpu_notifier =
static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
{
.notifier_call = cacheinfo_cpu_callback,
};

View File

@ -18,7 +18,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static char *x86_cap_flags[] = {
static const char * const x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
@ -62,7 +62,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static char *x86_power_flags[] = {
static const char * const x86_power_flags[] = {
"ts", /* temperature sensor */
"fid", /* frequency id control */
"vid", /* voltage id control */
@ -109,9 +109,9 @@ static int show_cpuinfo(struct seq_file *m, void *v)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
#ifdef CONFIG_X86_HT
if (c->x86_max_cores * smp_num_siblings > 1) {
seq_printf(m, "physical id\t: %d\n", phys_proc_id[n]);
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[n]));
seq_printf(m, "core id\t\t: %d\n", cpu_core_id[n]);
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
}
#endif

View File

@ -183,7 +183,7 @@ static int cpuid_class_cpu_callback(struct notifier_block *nfb, unsigned long ac
return NOTIFY_OK;
}
static struct notifier_block cpuid_class_cpu_notifier =
static struct notifier_block __cpuinitdata cpuid_class_cpu_notifier =
{
.notifier_call = cpuid_class_cpu_callback,
};

View File

@ -120,14 +120,9 @@ static int crash_nmi_callback(struct pt_regs *regs, int cpu)
return 1;
}
/*
* By using the NMI code instead of a vector we just sneak thru the
* word generator coming out with just what we want. AND it does
* not matter if clustered_apic_mode is set or not.
*/
static void smp_send_nmi_allbutself(void)
{
send_IPI_allbutself(APIC_DM_NMI);
send_IPI_allbutself(NMI_VECTOR);
}
static void nmi_shootdown_cpus(void)
@ -163,7 +158,7 @@ static void nmi_shootdown_cpus(void)
void machine_crash_shutdown(struct pt_regs *regs)
{
/* This function is only called after the system
* has paniced or is otherwise in a critical state.
* has panicked or is otherwise in a critical state.
* The minimum amount of code to allow a kexec'd kernel
* to run successfully needs to happen here.
*

View File

@ -48,6 +48,7 @@
#include <asm/smp.h>
#include <asm/page.h>
#include <asm/desc.h>
#include <asm/dwarf2.h>
#include "irq_vectors.h"
#define nr_syscalls ((syscall_table_size)/4)
@ -82,34 +83,76 @@ VM_MASK = 0x00020000
#define resume_kernel restore_nocheck
#endif
#ifdef CONFIG_VM86
#define resume_userspace_sig check_userspace
#else
#define resume_userspace_sig resume_userspace
#endif
#define SAVE_ALL \
cld; \
pushl %es; \
CFI_ADJUST_CFA_OFFSET 4;\
/*CFI_REL_OFFSET es, 0;*/\
pushl %ds; \
CFI_ADJUST_CFA_OFFSET 4;\
/*CFI_REL_OFFSET ds, 0;*/\
pushl %eax; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET eax, 0;\
pushl %ebp; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET ebp, 0;\
pushl %edi; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET edi, 0;\
pushl %esi; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET esi, 0;\
pushl %edx; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET edx, 0;\
pushl %ecx; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET ecx, 0;\
pushl %ebx; \
CFI_ADJUST_CFA_OFFSET 4;\
CFI_REL_OFFSET ebx, 0;\
movl $(__USER_DS), %edx; \
movl %edx, %ds; \
movl %edx, %es;
#define RESTORE_INT_REGS \
popl %ebx; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE ebx;\
popl %ecx; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE ecx;\
popl %edx; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE edx;\
popl %esi; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE esi;\
popl %edi; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE edi;\
popl %ebp; \
popl %eax
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE ebp;\
popl %eax; \
CFI_ADJUST_CFA_OFFSET -4;\
CFI_RESTORE eax
#define RESTORE_REGS \
RESTORE_INT_REGS; \
1: popl %ds; \
CFI_ADJUST_CFA_OFFSET -4;\
/*CFI_RESTORE ds;*/\
2: popl %es; \
CFI_ADJUST_CFA_OFFSET -4;\
/*CFI_RESTORE es;*/\
.section .fixup,"ax"; \
3: movl $0,(%esp); \
jmp 1b; \
@ -122,13 +165,43 @@ VM_MASK = 0x00020000
.long 2b,4b; \
.previous
#define RING0_INT_FRAME \
CFI_STARTPROC simple;\
CFI_DEF_CFA esp, 3*4;\
/*CFI_OFFSET cs, -2*4;*/\
CFI_OFFSET eip, -3*4
#define RING0_EC_FRAME \
CFI_STARTPROC simple;\
CFI_DEF_CFA esp, 4*4;\
/*CFI_OFFSET cs, -2*4;*/\
CFI_OFFSET eip, -3*4
#define RING0_PTREGS_FRAME \
CFI_STARTPROC simple;\
CFI_DEF_CFA esp, OLDESP-EBX;\
/*CFI_OFFSET cs, CS-OLDESP;*/\
CFI_OFFSET eip, EIP-OLDESP;\
/*CFI_OFFSET es, ES-OLDESP;*/\
/*CFI_OFFSET ds, DS-OLDESP;*/\
CFI_OFFSET eax, EAX-OLDESP;\
CFI_OFFSET ebp, EBP-OLDESP;\
CFI_OFFSET edi, EDI-OLDESP;\
CFI_OFFSET esi, ESI-OLDESP;\
CFI_OFFSET edx, EDX-OLDESP;\
CFI_OFFSET ecx, ECX-OLDESP;\
CFI_OFFSET ebx, EBX-OLDESP
ENTRY(ret_from_fork)
CFI_STARTPROC
pushl %eax
CFI_ADJUST_CFA_OFFSET -4
call schedule_tail
GET_THREAD_INFO(%ebp)
popl %eax
CFI_ADJUST_CFA_OFFSET -4
jmp syscall_exit
CFI_ENDPROC
/*
* Return to user mode is not as complex as all this looks,
@ -139,10 +212,12 @@ ENTRY(ret_from_fork)
# userspace resumption stub bypassing syscall exit tracing
ALIGN
RING0_PTREGS_FRAME
ret_from_exception:
preempt_stop
ret_from_intr:
GET_THREAD_INFO(%ebp)
check_userspace:
movl EFLAGS(%esp), %eax # mix EFLAGS and CS
movb CS(%esp), %al
testl $(VM_MASK | 3), %eax
@ -171,20 +246,38 @@ need_resched:
call preempt_schedule_irq
jmp need_resched
#endif
CFI_ENDPROC
/* SYSENTER_RETURN points to after the "sysenter" instruction in
the vsyscall page. See vsyscall-sysentry.S, which defines the symbol. */
# sysenter call handler stub
ENTRY(sysenter_entry)
CFI_STARTPROC simple
CFI_DEF_CFA esp, 0
CFI_REGISTER esp, ebp
movl TSS_sysenter_esp0(%esp),%esp
sysenter_past_esp:
sti
pushl $(__USER_DS)
CFI_ADJUST_CFA_OFFSET 4
/*CFI_REL_OFFSET ss, 0*/
pushl %ebp
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET esp, 0
pushfl
CFI_ADJUST_CFA_OFFSET 4
pushl $(__USER_CS)
pushl $SYSENTER_RETURN
CFI_ADJUST_CFA_OFFSET 4
/*CFI_REL_OFFSET cs, 0*/
/*
* Push current_thread_info()->sysenter_return to the stack.
* A tiny bit of offset fixup is necessary - 4*4 means the 4 words
* pushed above; +8 corresponds to copy_thread's esp0 setting.
*/
pushl (TI_sysenter_return-THREAD_SIZE+8+4*4)(%esp)
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET eip, 0
/*
* Load the potential sixth argument from user stack.
@ -199,6 +292,7 @@ sysenter_past_esp:
.previous
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
GET_THREAD_INFO(%ebp)
@ -219,11 +313,14 @@ sysenter_past_esp:
xorl %ebp,%ebp
sti
sysexit
CFI_ENDPROC
# system call handler stub
ENTRY(system_call)
RING0_INT_FRAME # can't unwind into user space anyway
pushl %eax # save orig_eax
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
GET_THREAD_INFO(%ebp)
testl $TF_MASK,EFLAGS(%esp)
@ -256,10 +353,12 @@ restore_all:
movb CS(%esp), %al
andl $(VM_MASK | (4 << 8) | 3), %eax
cmpl $((4 << 8) | 3), %eax
CFI_REMEMBER_STATE
je ldt_ss # returning to user-space with LDT SS
restore_nocheck:
RESTORE_REGS
addl $4, %esp
CFI_ADJUST_CFA_OFFSET -4
1: iret
.section .fixup,"ax"
iret_exc:
@ -273,6 +372,7 @@ iret_exc:
.long 1b,iret_exc
.previous
CFI_RESTORE_STATE
ldt_ss:
larl OLDSS(%esp), %eax
jnz restore_nocheck
@ -285,11 +385,13 @@ ldt_ss:
* CPUs, which we can try to work around to make
* dosemu and wine happy. */
subl $8, %esp # reserve space for switch16 pointer
CFI_ADJUST_CFA_OFFSET 8
cli
movl %esp, %eax
/* Set up the 16bit stack frame with switch32 pointer on top,
* and a switch16 pointer on top of the current frame. */
call setup_x86_bogus_stack
CFI_ADJUST_CFA_OFFSET -8 # frame has moved
RESTORE_REGS
lss 20+4(%esp), %esp # switch to 16bit stack
1: iret
@ -297,9 +399,11 @@ ldt_ss:
.align 4
.long 1b,iret_exc
.previous
CFI_ENDPROC
# perform work that needs to be done immediately before resumption
ALIGN
RING0_PTREGS_FRAME # can't unwind into user space anyway
work_pending:
testb $_TIF_NEED_RESCHED, %cl
jz work_notifysig
@ -323,18 +427,20 @@ work_notifysig: # deal with pending signals and
# vm86-space
xorl %edx, %edx
call do_notify_resume
jmp resume_userspace
jmp resume_userspace_sig
ALIGN
work_notifysig_v86:
#ifdef CONFIG_VM86
pushl %ecx # save ti_flags for do_notify_resume
CFI_ADJUST_CFA_OFFSET 4
call save_v86_state # %eax contains pt_regs pointer
popl %ecx
CFI_ADJUST_CFA_OFFSET -4
movl %eax, %esp
xorl %edx, %edx
call do_notify_resume
jmp resume_userspace
jmp resume_userspace_sig
#endif
# perform syscall exit tracing
@ -363,19 +469,21 @@ syscall_exit_work:
movl $1, %edx
call do_syscall_trace
jmp resume_userspace
CFI_ENDPROC
ALIGN
RING0_INT_FRAME # can't unwind into user space anyway
syscall_fault:
pushl %eax # save orig_eax
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
GET_THREAD_INFO(%ebp)
movl $-EFAULT,EAX(%esp)
jmp resume_userspace
ALIGN
syscall_badsys:
movl $-ENOSYS,EAX(%esp)
jmp resume_userspace
CFI_ENDPROC
#define FIXUP_ESPFIX_STACK \
movl %esp, %eax; \
@ -387,16 +495,21 @@ syscall_badsys:
movl %eax, %esp;
#define UNWIND_ESPFIX_STACK \
pushl %eax; \
CFI_ADJUST_CFA_OFFSET 4; \
movl %ss, %eax; \
/* see if on 16bit stack */ \
cmpw $__ESPFIX_SS, %ax; \
jne 28f; \
movl $__KERNEL_DS, %edx; \
movl %edx, %ds; \
movl %edx, %es; \
je 28f; \
27: popl %eax; \
CFI_ADJUST_CFA_OFFSET -4; \
.section .fixup,"ax"; \
28: movl $__KERNEL_DS, %eax; \
movl %eax, %ds; \
movl %eax, %es; \
/* switch to 32bit stack */ \
FIXUP_ESPFIX_STACK \
28: popl %eax;
FIXUP_ESPFIX_STACK; \
jmp 27b; \
.previous
/*
* Build the entry stubs and pointer table with
@ -408,9 +521,14 @@ ENTRY(interrupt)
vector=0
ENTRY(irq_entries_start)
RING0_INT_FRAME
.rept NR_IRQS
ALIGN
1: pushl $vector-256
.if vector
CFI_ADJUST_CFA_OFFSET -4
.endif
1: pushl $~(vector)
CFI_ADJUST_CFA_OFFSET 4
jmp common_interrupt
.data
.long 1b
@ -424,60 +542,99 @@ common_interrupt:
movl %esp,%eax
call do_IRQ
jmp ret_from_intr
CFI_ENDPROC
#define BUILD_INTERRUPT(name, nr) \
ENTRY(name) \
pushl $nr-256; \
SAVE_ALL \
RING0_INT_FRAME; \
pushl $~(nr); \
CFI_ADJUST_CFA_OFFSET 4; \
SAVE_ALL; \
movl %esp,%eax; \
call smp_/**/name; \
jmp ret_from_intr;
jmp ret_from_intr; \
CFI_ENDPROC
/* The include is where all of the SMP etc. interrupts come from */
#include "entry_arch.h"
ENTRY(divide_error)
RING0_INT_FRAME
pushl $0 # no error code
CFI_ADJUST_CFA_OFFSET 4
pushl $do_divide_error
CFI_ADJUST_CFA_OFFSET 4
ALIGN
error_code:
pushl %ds
CFI_ADJUST_CFA_OFFSET 4
/*CFI_REL_OFFSET ds, 0*/
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET eax, 0
xorl %eax, %eax
pushl %ebp
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET ebp, 0
pushl %edi
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET edi, 0
pushl %esi
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET esi, 0
pushl %edx
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET edx, 0
decl %eax # eax = -1
pushl %ecx
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET ecx, 0
pushl %ebx
CFI_ADJUST_CFA_OFFSET 4
CFI_REL_OFFSET ebx, 0
cld
pushl %es
CFI_ADJUST_CFA_OFFSET 4
/*CFI_REL_OFFSET es, 0*/
UNWIND_ESPFIX_STACK
popl %ecx
CFI_ADJUST_CFA_OFFSET -4
/*CFI_REGISTER es, ecx*/
movl ES(%esp), %edi # get the function address
movl ORIG_EAX(%esp), %edx # get the error code
movl %eax, ORIG_EAX(%esp)
movl %ecx, ES(%esp)
/*CFI_REL_OFFSET es, ES*/
movl $(__USER_DS), %ecx
movl %ecx, %ds
movl %ecx, %es
movl %esp,%eax # pt_regs pointer
call *%edi
jmp ret_from_exception
CFI_ENDPROC
ENTRY(coprocessor_error)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_coprocessor_error
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(simd_coprocessor_error)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_simd_coprocessor_error
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(device_not_available)
RING0_INT_FRAME
pushl $-1 # mark this as an int
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
movl %cr0, %eax
testl $0x4, %eax # EM (math emulation bit)
@ -487,9 +644,12 @@ ENTRY(device_not_available)
jmp ret_from_exception
device_not_available_emulate:
pushl $0 # temporary storage for ORIG_EIP
CFI_ADJUST_CFA_OFFSET 4
call math_emulate
addl $4, %esp
CFI_ADJUST_CFA_OFFSET -4
jmp ret_from_exception
CFI_ENDPROC
/*
* Debug traps and NMI can happen at the one SYSENTER instruction
@ -514,16 +674,19 @@ label: \
pushl $sysenter_past_esp
KPROBE_ENTRY(debug)
RING0_INT_FRAME
cmpl $sysenter_entry,(%esp)
jne debug_stack_correct
FIX_STACK(12, debug_stack_correct, debug_esp_fix_insn)
debug_stack_correct:
pushl $-1 # mark this as an int
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
xorl %edx,%edx # error code 0
movl %esp,%eax # pt_regs pointer
call do_debug
jmp ret_from_exception
CFI_ENDPROC
.previous .text
/*
* NMI is doubly nasty. It can happen _while_ we're handling
@ -534,14 +697,18 @@ debug_stack_correct:
* fault happened on the sysenter path.
*/
ENTRY(nmi)
RING0_INT_FRAME
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
movl %ss, %eax
cmpw $__ESPFIX_SS, %ax
popl %eax
CFI_ADJUST_CFA_OFFSET -4
je nmi_16bit_stack
cmpl $sysenter_entry,(%esp)
je nmi_stack_fixup
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
movl %esp,%eax
/* Do not access memory above the end of our stack page,
* it might not exist.
@ -549,16 +716,19 @@ ENTRY(nmi)
andl $(THREAD_SIZE-1),%eax
cmpl $(THREAD_SIZE-20),%eax
popl %eax
CFI_ADJUST_CFA_OFFSET -4
jae nmi_stack_correct
cmpl $sysenter_entry,12(%esp)
je nmi_debug_stack_check
nmi_stack_correct:
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
xorl %edx,%edx # zero error code
movl %esp,%eax # pt_regs pointer
call do_nmi
jmp restore_all
CFI_ENDPROC
nmi_stack_fixup:
FIX_STACK(12,nmi_stack_correct, 1)
@ -574,94 +744,177 @@ nmi_debug_stack_check:
jmp nmi_stack_correct
nmi_16bit_stack:
RING0_INT_FRAME
/* create the pointer to lss back */
pushl %ss
CFI_ADJUST_CFA_OFFSET 4
pushl %esp
CFI_ADJUST_CFA_OFFSET 4
movzwl %sp, %esp
addw $4, (%esp)
/* copy the iret frame of 12 bytes */
.rept 3
pushl 16(%esp)
CFI_ADJUST_CFA_OFFSET 4
.endr
pushl %eax
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
FIXUP_ESPFIX_STACK # %eax == %esp
CFI_ADJUST_CFA_OFFSET -20 # the frame has now moved
xorl %edx,%edx # zero error code
call do_nmi
RESTORE_REGS
lss 12+4(%esp), %esp # back to 16bit stack
1: iret
CFI_ENDPROC
.section __ex_table,"a"
.align 4
.long 1b,iret_exc
.previous
KPROBE_ENTRY(int3)
RING0_INT_FRAME
pushl $-1 # mark this as an int
CFI_ADJUST_CFA_OFFSET 4
SAVE_ALL
xorl %edx,%edx # zero error code
movl %esp,%eax # pt_regs pointer
call do_int3
jmp ret_from_exception
CFI_ENDPROC
.previous .text
ENTRY(overflow)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_overflow
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(bounds)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_bounds
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(invalid_op)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_invalid_op
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(coprocessor_segment_overrun)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_coprocessor_segment_overrun
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(invalid_TSS)
RING0_EC_FRAME
pushl $do_invalid_TSS
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(segment_not_present)
RING0_EC_FRAME
pushl $do_segment_not_present
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
ENTRY(stack_segment)
RING0_EC_FRAME
pushl $do_stack_segment
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
KPROBE_ENTRY(general_protection)
RING0_EC_FRAME
pushl $do_general_protection
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
.previous .text
ENTRY(alignment_check)
RING0_EC_FRAME
pushl $do_alignment_check
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
KPROBE_ENTRY(page_fault)
RING0_EC_FRAME
pushl $do_page_fault
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
.previous .text
#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl machine_check_vector
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
#endif
ENTRY(spurious_interrupt_bug)
RING0_INT_FRAME
pushl $0
CFI_ADJUST_CFA_OFFSET 4
pushl $do_spurious_interrupt_bug
CFI_ADJUST_CFA_OFFSET 4
jmp error_code
CFI_ENDPROC
#ifdef CONFIG_STACK_UNWIND
ENTRY(arch_unwind_init_running)
CFI_STARTPROC
movl 4(%esp), %edx
movl (%esp), %ecx
leal 4(%esp), %eax
movl %ebx, EBX(%edx)
xorl %ebx, %ebx
movl %ebx, ECX(%edx)
movl %ebx, EDX(%edx)
movl %esi, ESI(%edx)
movl %edi, EDI(%edx)
movl %ebp, EBP(%edx)
movl %ebx, EAX(%edx)
movl $__USER_DS, DS(%edx)
movl $__USER_DS, ES(%edx)
movl %ebx, ORIG_EAX(%edx)
movl %ecx, EIP(%edx)
movl 12(%esp), %ecx
movl $__KERNEL_CS, CS(%edx)
movl %ebx, EFLAGS(%edx)
movl %eax, OLDESP(%edx)
movl 8(%esp), %eax
movl %ecx, 8(%esp)
movl EBX(%edx), %ebx
movl $__KERNEL_DS, OLDSS(%edx)
jmpl *%eax
CFI_ENDPROC
ENDPROC(arch_unwind_init_running)
#endif
.section .rodata,"a"
#include "syscall_table.S"

67
arch/i386/kernel/hpet.c Normal file
View File

@ -0,0 +1,67 @@
#include <linux/clocksource.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <asm/hpet.h>
#include <asm/io.h>
#define HPET_MASK CLOCKSOURCE_MASK(32)
#define HPET_SHIFT 22
/* FSEC = 10^-15 NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000
static void *hpet_ptr;
static cycle_t read_hpet(void)
{
return (cycle_t)readl(hpet_ptr);
}
static struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = HPET_MASK,
.mult = 0, /* set below */
.shift = HPET_SHIFT,
.is_continuous = 1,
};
static int __init init_hpet_clocksource(void)
{
unsigned long hpet_period;
void __iomem* hpet_base;
u64 tmp;
if (!hpet_address)
return -ENODEV;
/* calculate the hpet address: */
hpet_base =
(void __iomem*)ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
hpet_ptr = hpet_base + HPET_COUNTER;
/* calculate the frequency: */
hpet_period = readl(hpet_base + HPET_PERIOD);
/*
* hpet period is in femto seconds per cycle
* so we need to convert this to ns/cyc units
* aproximated by mult/2^shift
*
* fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
* fsec/cyc * 1ns/1000000fsec * 2^shift = mult
* fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
* (fsec/cyc << shift)/1000000 = mult
* (hpet_period << shift)/FSEC_PER_NSEC = mult
*/
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
return clocksource_register(&clocksource_hpet);
}
module_init(init_hpet_clocksource);

118
arch/i386/kernel/i8253.c Normal file
View File

@ -0,0 +1,118 @@
/*
* i8253.c 8253/PIT functions
*
*/
#include <linux/clocksource.h>
#include <linux/spinlock.h>
#include <linux/jiffies.h>
#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <asm/smp.h>
#include <asm/delay.h>
#include <asm/i8253.h>
#include <asm/io.h>
#include "io_ports.h"
DEFINE_SPINLOCK(i8253_lock);
EXPORT_SYMBOL(i8253_lock);
void setup_pit_timer(void)
{
unsigned long flags;
spin_lock_irqsave(&i8253_lock, flags);
outb_p(0x34,PIT_MODE); /* binary, mode 2, LSB/MSB, ch 0 */
udelay(10);
outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
udelay(10);
outb(LATCH >> 8 , PIT_CH0); /* MSB */
spin_unlock_irqrestore(&i8253_lock, flags);
}
/*
* Since the PIT overflows every tick, its not very useful
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static cycle_t pit_read(void)
{
unsigned long flags;
int count;
u32 jifs;
static int old_count;
static u32 old_jifs;
spin_lock_irqsave(&i8253_lock, flags);
/*
* Although our caller may have the read side of xtime_lock,
* this is now a seqlock, and we are cheating in this routine
* by having side effects on state that we cannot undo if
* there is a collision on the seqlock and our caller has to
* retry. (Namely, old_jifs and old_count.) So we must treat
* jiffies as volatile despite the lock. We read jiffies
* before latching the timer count to guarantee that although
* the jiffies value might be older than the count (that is,
* the counter may underflow between the last point where
* jiffies was incremented and the point where we latch the
* count), it cannot be newer.
*/
jifs = jiffies;
outb_p(0x00, PIT_MODE); /* latch the count ASAP */
count = inb_p(PIT_CH0); /* read the latched count */
count |= inb_p(PIT_CH0) << 8;
/* VIA686a test code... reset the latch if count > max + 1 */
if (count > LATCH) {
outb_p(0x34, PIT_MODE);
outb_p(LATCH & 0xff, PIT_CH0);
outb(LATCH >> 8, PIT_CH0);
count = LATCH - 1;
}
/*
* It's possible for count to appear to go the wrong way for a
* couple of reasons:
*
* 1. The timer counter underflows, but we haven't handled the
* resulting interrupt and incremented jiffies yet.
* 2. Hardware problem with the timer, not giving us continuous time,
* the counter does small "jumps" upwards on some Pentium systems,
* (see c't 95/10 page 335 for Neptun bug.)
*
* Previous attempts to handle these cases intelligently were
* buggy, so we just do the simple thing now.
*/
if (count > old_count && jifs == old_jifs) {
count = old_count;
}
old_count = count;
old_jifs = jifs;
spin_unlock_irqrestore(&i8253_lock, flags);
count = (LATCH - 1) - count;
return (cycle_t)(jifs * LATCH) + count;
}
static struct clocksource clocksource_pit = {
.name = "pit",
.rating = 110,
.read = pit_read,
.mask = CLOCKSOURCE_MASK(32),
.mult = 0,
.shift = 20,
};
static int __init init_pit_clocksource(void)
{
if (num_possible_cpus() > 4) /* PIT does not scale! */
return 0;
clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
return clocksource_register(&clocksource_pit);
}
module_init(init_pit_clocksource);

View File

@ -175,7 +175,7 @@ static void mask_and_ack_8259A(unsigned int irq)
* Lightweight spurious IRQ detection. We do not want
* to overdo spurious IRQ handling - it's usually a sign
* of hardware problems, so we only do the checks we can
* do without slowing down good hardware unnecesserily.
* do without slowing down good hardware unnecessarily.
*
* Note that IRQ7 and IRQ15 (the two spurious IRQs
* usually resulting from the 8259A-1|2 PICs) occur

View File

@ -38,6 +38,7 @@
#include <asm/desc.h>
#include <asm/timer.h>
#include <asm/i8259.h>
#include <asm/nmi.h>
#include <mach_apic.h>
@ -50,6 +51,7 @@ atomic_t irq_mis_count;
static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
static DEFINE_SPINLOCK(ioapic_lock);
static DEFINE_SPINLOCK(vector_lock);
int timer_over_8254 __initdata = 1;
@ -1161,10 +1163,17 @@ u8 irq_vector[NR_IRQ_VECTORS] __read_mostly = { FIRST_DEVICE_VECTOR , 0 };
int assign_irq_vector(int irq)
{
static int current_vector = FIRST_DEVICE_VECTOR, offset = 0;
unsigned long flags;
int vector;
BUG_ON(irq >= NR_IRQ_VECTORS);
if (irq != AUTO_ASSIGN && IO_APIC_VECTOR(irq) > 0)
BUG_ON(irq != AUTO_ASSIGN && (unsigned)irq >= NR_IRQ_VECTORS);
spin_lock_irqsave(&vector_lock, flags);
if (irq != AUTO_ASSIGN && IO_APIC_VECTOR(irq) > 0) {
spin_unlock_irqrestore(&vector_lock, flags);
return IO_APIC_VECTOR(irq);
}
next:
current_vector += 8;
if (current_vector == SYSCALL_VECTOR)
@ -1172,16 +1181,21 @@ int assign_irq_vector(int irq)
if (current_vector >= FIRST_SYSTEM_VECTOR) {
offset++;
if (!(offset%8))
if (!(offset%8)) {
spin_unlock_irqrestore(&vector_lock, flags);
return -ENOSPC;
}
current_vector = FIRST_DEVICE_VECTOR + offset;
}
vector_irq[current_vector] = irq;
vector = current_vector;
vector_irq[vector] = irq;
if (irq != AUTO_ASSIGN)
IO_APIC_VECTOR(irq) = current_vector;
IO_APIC_VECTOR(irq) = vector;
return current_vector;
spin_unlock_irqrestore(&vector_lock, flags);
return vector;
}
static struct hw_interrupt_type ioapic_level_type;
@ -1193,21 +1207,14 @@ static struct hw_interrupt_type ioapic_edge_type;
static inline void ioapic_register_intr(int irq, int vector, unsigned long trigger)
{
if (use_pci_vector() && !platform_legacy_irq(irq)) {
if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
trigger == IOAPIC_LEVEL)
irq_desc[vector].handler = &ioapic_level_type;
else
irq_desc[vector].handler = &ioapic_edge_type;
set_intr_gate(vector, interrupt[vector]);
} else {
if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
trigger == IOAPIC_LEVEL)
irq_desc[irq].handler = &ioapic_level_type;
else
irq_desc[irq].handler = &ioapic_edge_type;
set_intr_gate(vector, interrupt[irq]);
}
unsigned idx = use_pci_vector() && !platform_legacy_irq(irq) ? vector : irq;
if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
trigger == IOAPIC_LEVEL)
irq_desc[idx].handler = &ioapic_level_type;
else
irq_desc[idx].handler = &ioapic_edge_type;
set_intr_gate(vector, interrupt[idx]);
}
static void __init setup_IO_APIC_irqs(void)

View File

@ -53,8 +53,8 @@ static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
*/
fastcall unsigned int do_IRQ(struct pt_regs *regs)
{
/* high bits used in ret_from_ code */
int irq = regs->orig_eax & 0xff;
/* high bit used in ret_from_ code */
int irq = ~regs->orig_eax;
#ifdef CONFIG_4KSTACKS
union irq_ctx *curctx, *irqctx;
u32 *isp;
@ -100,8 +100,8 @@ fastcall unsigned int do_IRQ(struct pt_regs *regs)
* softirq checks work in the hardirq context.
*/
irqctx->tinfo.preempt_count =
irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK |
curctx->tinfo.preempt_count & SOFTIRQ_MASK;
(irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
(curctx->tinfo.preempt_count & SOFTIRQ_MASK);
asm volatile(
" xchgl %%ebx,%%esp \n"
@ -227,7 +227,7 @@ int show_interrupts(struct seq_file *p, void *v)
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_printf(p, "CPU%-8d",j);
seq_putc(p, '\n');
}

View File

@ -57,34 +57,85 @@ static __always_inline void set_jmp_op(void *from, void *to)
/*
* returns non-zero if opcodes can be boosted.
*/
static __always_inline int can_boost(kprobe_opcode_t opcode)
static __always_inline int can_boost(kprobe_opcode_t *opcodes)
{
switch (opcode & 0xf0 ) {
#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<< (row % 32))
/*
* Undefined/reserved opcodes, conditional jump, Opcode Extension
* Groups, and some special opcodes can not be boost.
*/
static const unsigned long twobyte_is_boostable[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ------------------------------- */
W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
/* ------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W
kprobe_opcode_t opcode;
kprobe_opcode_t *orig_opcodes = opcodes;
retry:
if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
return 0;
opcode = *(opcodes++);
/* 2nd-byte opcode */
if (opcode == 0x0f) {
if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
return 0;
return test_bit(*opcodes, twobyte_is_boostable);
}
switch (opcode & 0xf0) {
case 0x60:
if (0x63 < opcode && opcode < 0x67)
goto retry; /* prefixes */
/* can't boost Address-size override and bound */
return (opcode != 0x62 && opcode != 0x67);
case 0x70:
return 0; /* can't boost conditional jump */
case 0x90:
/* can't boost call and pushf */
return opcode != 0x9a && opcode != 0x9c;
case 0xc0:
/* can't boost undefined opcodes and soft-interruptions */
return (0xc1 < opcode && opcode < 0xc6) ||
(0xc7 < opcode && opcode < 0xcc) || opcode == 0xcf;
/* can't boost software-interruptions */
return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
case 0xd0:
/* can boost AA* and XLAT */
return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
case 0xe0:
/* can boost in/out and (may be) jmps */
return (0xe3 < opcode && opcode != 0xe8);
/* can boost in/out and absolute jmps */
return ((opcode & 0x04) || opcode == 0xea);
case 0xf0:
if ((opcode & 0x0c) == 0 && opcode != 0xf1)
goto retry; /* lock/rep(ne) prefix */
/* clear and set flags can be boost */
return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
default:
/* currently, can't boost 2 bytes opcodes */
return opcode != 0x0f;
if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
goto retry; /* prefixes */
/* can't boost CS override and call */
return (opcode != 0x2e && opcode != 0x9a);
}
}
/*
* returns non-zero if opcode modifies the interrupt flag.
*/
@ -109,7 +160,7 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
p->opcode = *p->addr;
if (can_boost(p->opcode)) {
if (can_boost(p->addr)) {
p->ainsn.boostable = 0;
} else {
p->ainsn.boostable = -1;
@ -208,7 +259,9 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
struct kprobe_ctlblk *kcb;
#ifdef CONFIG_PREEMPT
unsigned pre_preempt_count = preempt_count();
#endif /* CONFIG_PREEMPT */
#else
unsigned pre_preempt_count = 1;
#endif
addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
@ -285,22 +338,14 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
/* handler has already set things up, so skip ss setup */
return 1;
if (p->ainsn.boostable == 1 &&
#ifdef CONFIG_PREEMPT
!(pre_preempt_count) && /*
* This enables booster when the direct
* execution path aren't preempted.
*/
#endif /* CONFIG_PREEMPT */
!p->post_handler && !p->break_handler ) {
ss_probe:
if (pre_preempt_count && p->ainsn.boostable == 1 && !p->post_handler){
/* Boost up -- we can execute copied instructions directly */
reset_current_kprobe();
regs->eip = (unsigned long)p->ainsn.insn;
preempt_enable_no_resched();
return 1;
}
ss_probe:
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;

View File

@ -133,9 +133,9 @@ typedef asmlinkage NORET_TYPE void (*relocate_new_kernel_t)(
unsigned long start_address,
unsigned int has_pae) ATTRIB_NORET;
const extern unsigned char relocate_new_kernel[];
extern const unsigned char relocate_new_kernel[];
extern void relocate_new_kernel_end(void);
const extern unsigned int relocate_new_kernel_size;
extern const unsigned int relocate_new_kernel_size;
/*
* A architecture hook called to validate the

View File

@ -266,7 +266,7 @@ static int msr_class_cpu_callback(struct notifier_block *nfb, unsigned long acti
return NOTIFY_OK;
}
static struct notifier_block msr_class_cpu_notifier =
static struct notifier_block __cpuinitdata msr_class_cpu_notifier =
{
.notifier_call = msr_class_cpu_callback,
};

Some files were not shown because too many files have changed in this diff Show More