dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain

Some Qualcomm SoCs have support for Core Power Reduction (CPR).
On these platforms, we need to attach to the power domain provider
providing the performance states, so that the leaky device (the CPU)
can configure the performance states (which represent different
CPU clock frequencies).

Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
This commit is contained in:
Niklas Cassel 2019-08-30 12:29:15 +02:00 committed by Viresh Kumar
parent a409906003
commit f6081a7309
1 changed files with 112 additions and 1 deletions

View File

@ -14,7 +14,7 @@ operating-points-v2 table when it is parsed by the OPP framework.
Required properties:
--------------------
In 'cpus' nodes:
In 'cpu' nodes:
- operating-points-v2: Phandle to the operating-points-v2 table to use.
In 'operating-points-v2' table:
@ -23,6 +23,15 @@ In 'operating-points-v2' table:
Optional properties:
--------------------
In 'cpu' nodes:
- power-domains: A phandle pointing to the PM domain specifier which provides
the performance states available for active state management.
Please refer to the power-domains bindings
Documentation/devicetree/bindings/power/power_domain.txt
and also examples below.
- power-domain-names: Should be
- 'cpr' for qcs404.
In 'operating-points-v2' table:
- nvmem-cells: A phandle pointing to a nvmem-cells node representing the
efuse registers that has information about the
@ -682,3 +691,105 @@ soc {
};
};
};
Example 2:
---------
cpus {
#address-cells = <1>;
#size-cells = <0>;
CPU0: cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x100>;
....
clocks = <&apcs_glb>;
operating-points-v2 = <&cpu_opp_table>;
power-domains = <&cpr>;
power-domain-names = "cpr";
};
CPU1: cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x101>;
....
clocks = <&apcs_glb>;
operating-points-v2 = <&cpu_opp_table>;
power-domains = <&cpr>;
power-domain-names = "cpr";
};
CPU2: cpu@102 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x102>;
....
clocks = <&apcs_glb>;
operating-points-v2 = <&cpu_opp_table>;
power-domains = <&cpr>;
power-domain-names = "cpr";
};
CPU3: cpu@103 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x103>;
....
clocks = <&apcs_glb>;
operating-points-v2 = <&cpu_opp_table>;
power-domains = <&cpr>;
power-domain-names = "cpr";
};
};
cpu_opp_table: cpu-opp-table {
compatible = "operating-points-v2-kryo-cpu";
opp-shared;
opp-1094400000 {
opp-hz = /bits/ 64 <1094400000>;
required-opps = <&cpr_opp1>;
};
opp-1248000000 {
opp-hz = /bits/ 64 <1248000000>;
required-opps = <&cpr_opp2>;
};
opp-1401600000 {
opp-hz = /bits/ 64 <1401600000>;
required-opps = <&cpr_opp3>;
};
};
cpr_opp_table: cpr-opp-table {
compatible = "operating-points-v2-qcom-level";
cpr_opp1: opp1 {
opp-level = <1>;
qcom,opp-fuse-level = <1>;
};
cpr_opp2: opp2 {
opp-level = <2>;
qcom,opp-fuse-level = <2>;
};
cpr_opp3: opp3 {
opp-level = <3>;
qcom,opp-fuse-level = <3>;
};
};
....
soc {
....
cpr: power-controller@b018000 {
compatible = "qcom,qcs404-cpr", "qcom,cpr";
reg = <0x0b018000 0x1000>;
....
vdd-apc-supply = <&pms405_s3>;
#power-domain-cells = <0>;
operating-points-v2 = <&cpr_opp_table>;
....
};
};