mirror of https://gitee.com/openkylin/linux.git
drm/amd/powerplay: Delete unused functions in ppevvmath.h
Signed-off-by: Nils Wallménius <nils.wallmenius@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
parent
21039ac388
commit
f8a2fdbae7
|
@ -64,7 +64,6 @@ static fInt fGetSquare(fInt); /* Returns the square
|
|||
static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
|
||||
|
||||
static int uAbs(int); /* Returns the Absolute value of the Int */
|
||||
static fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
|
||||
static int uPow(int base, int exponent); /* Returns base^exponent an INT */
|
||||
|
||||
static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
|
||||
|
@ -85,21 +84,12 @@ static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt
|
|||
* -------------------------------------------------------------------------------------
|
||||
* Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
|
||||
*/
|
||||
static fInt Add (int, int); /* Add two INTs and return Sum as FINT */
|
||||
static fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
|
||||
static fInt Divide (int, int); /* You get the idea... */
|
||||
static fInt Divide (int, int); /* Divide two INTs and return result as FINT */
|
||||
static fInt fNegate(fInt);
|
||||
|
||||
static int uGetScaledDecimal (fInt); /* Internal function */
|
||||
static int GetReal (fInt A); /* Internal function */
|
||||
|
||||
/* Future Additions and Incomplete Functions
|
||||
* -------------------------------------------------------------------------------------
|
||||
*/
|
||||
static int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
|
||||
/* Let us say we have 2.126 but can only handle 2 decimal points. We could */
|
||||
/* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
|
||||
|
||||
/* -------------------------------------------------------------------------------------
|
||||
* TROUBLESHOOTING INFORMATION
|
||||
* -------------------------------------------------------------------------------------
|
||||
|
@ -498,51 +488,12 @@ static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
|||
* -----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
|
||||
static fInt Add (int X, int Y)
|
||||
{
|
||||
fInt A, B, Sum;
|
||||
|
||||
A.full = (X << SHIFT_AMOUNT);
|
||||
B.full = (Y << SHIFT_AMOUNT);
|
||||
|
||||
Sum.full = A.full + B.full;
|
||||
|
||||
return Sum;
|
||||
}
|
||||
|
||||
/* Conversion Functions */
|
||||
static int GetReal (fInt A)
|
||||
{
|
||||
return (A.full >> SHIFT_AMOUNT);
|
||||
}
|
||||
|
||||
/* Temporarily Disabled */
|
||||
static int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
||||
{
|
||||
/* ROUNDING TEMPORARLY DISABLED
|
||||
int temp = A.full;
|
||||
int decimal_cutoff, decimal_mask = 0x000001FF;
|
||||
decimal_cutoff = temp & decimal_mask;
|
||||
if (decimal_cutoff > 0x147) {
|
||||
temp += 673;
|
||||
}*/
|
||||
|
||||
return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
|
||||
}
|
||||
|
||||
static fInt Multiply (int X, int Y)
|
||||
{
|
||||
fInt A, B, Product;
|
||||
|
||||
A.full = X << SHIFT_AMOUNT;
|
||||
B.full = Y << SHIFT_AMOUNT;
|
||||
|
||||
Product = fMultiply(A, B);
|
||||
|
||||
return Product;
|
||||
}
|
||||
|
||||
static fInt Divide (int X, int Y)
|
||||
{
|
||||
fInt A, B, Quotient;
|
||||
|
@ -578,14 +529,6 @@ static int uPow(int base, int power)
|
|||
return (base)*uPow(base, power - 1);
|
||||
}
|
||||
|
||||
static fInt fAbs(fInt A)
|
||||
{
|
||||
if (A.partial.real < 0)
|
||||
return (fMultiply(A, ConvertToFraction(-1)));
|
||||
else
|
||||
return A;
|
||||
}
|
||||
|
||||
static int uAbs(int X)
|
||||
{
|
||||
if (X < 0)
|
||||
|
|
Loading…
Reference in New Issue