Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler
methods to take kernel pointers instead. It gets rid of the set_fs address
space overrides used by BPF. As per discussion, pull in the feature branch
into bpf-next as it relates to BPF sysctl progs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200427071508.GV23230@ZenIV.linux.org.uk/T/
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
uclamp_fork() resets the uclamp values to their default when the
reset-on-fork flag is set. It also checks whether the task has a RT
policy, and sets its uclamp.min to 1024 accordingly. However, during
reset-on-fork, the task's policy is lowered to SCHED_NORMAL right after,
hence leading to an erroneous uclamp.min setting for the new task if it
was forked from RT.
Fix this by removing the unnecessary check on rt_task() in
uclamp_fork() as this doesn't make sense if the reset-on-fork flag is
set.
Fixes: 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks")
Reported-by: Chitti Babu Theegala <ctheegal@codeaurora.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20200416085956.217587-1-qperret@google.com
Work around this warning:
kernel/sched/cputime.c: In function ‘kcpustat_field’:
kernel/sched/cputime.c:1007:6: warning: ‘val’ may be used uninitialized in this function [-Wmaybe-uninitialized]
because GCC can't see that val is used only when err is 0.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200327214334.GF8015@zn.tnic
The "isolcpus=" parameter allows sub-parameters before the cpulist is
specified, and if the parser detects an unknown sub-parameters the whole
parameter will be ignored.
This design is incompatible with itself when new sub-parameters are added.
An older kernel will not recognize the new sub-parameter and will
invalidate the whole parameter so the CPU isolation will not take
effect. It emits a warning:
isolcpus: Error, unknown flag
The better and compatible way is to allow "isolcpus=" to skip unknown
sub-parameters, so that even if new sub-parameters are added an older
kernel will still be able to behave as usual even if with the new
sub-parameter specified on the command line.
Ideally this should have been there when the first sub-parameter for
"isolcpus=" was introduced.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200403223517.406353-1-peterx@redhat.com
Requested and effective uclamp values can be a bit tricky to decipher when
playing with cgroup hierarchies. Add them to a task's procfs when
SCHED_DEBUG is enabled.
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200226124543.31986-4-valentin.schneider@arm.com
The printing macros in debug.c keep redefining the same output
format. Collect each output format in a single definition, and reuse that
definition in the other macros. While at it, add a layer of parentheses and
replace printf's with the newly introduced macros.
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200226124543.31986-3-valentin.schneider@arm.com
Most printing macros for procfs are defined globally in debug.c, and they
are re-defined (to the exact same thing) within proc_sched_show_task().
Get rid of the duplicate defines.
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200226124543.31986-2-valentin.schneider@arm.com
The following commit:
5e83eafbfd ("sched/fair: Remove the rq->cpu_load[] update code")
eliminated the last use case for rq->last_load_update_tick, so remove
the field as well.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1584710495-308969-1-git-send-email-vincent.donnefort@arm.com
The kernel test robot triggered a warning with the following race:
task-ctx A interrupt-ctx B
worker
-> process_one_work()
-> work_item()
-> schedule();
-> sched_submit_work()
-> wq_worker_sleeping()
-> ->sleeping = 1
atomic_dec_and_test(nr_running)
__schedule(); *interrupt*
async_page_fault()
-> local_irq_enable();
-> schedule();
-> sched_submit_work()
-> wq_worker_sleeping()
-> if (WARN_ON(->sleeping)) return
-> __schedule()
-> sched_update_worker()
-> wq_worker_running()
-> atomic_inc(nr_running);
-> ->sleeping = 0;
-> sched_update_worker()
-> wq_worker_running()
if (!->sleeping) return
In this context the warning is pointless everything is fine.
An interrupt before wq_worker_sleeping() will perform the ->sleeping
assignment (0 -> 1 > 0) twice.
An interrupt after wq_worker_sleeping() will trigger the warning and
nr_running will be decremented (by A) and incremented once (only by B, A
will skip it). This is the case until the ->sleeping is zeroed again in
wq_worker_running().
Remove the WARN statement because this condition may happen. Document
that preemption around wq_worker_sleeping() needs to be disabled to
protect ->sleeping and not just as an optimisation.
Fixes: 6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq lock")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20200327074308.GY11705@shao2-debian
A negative imbalance value was observed after imbalance calculation,
this happens when the local sched group type is group_fully_busy,
and the average load of local group is greater than the selected
busiest group. Fix this problem by comparing the average load of the
local and busiest group before imbalance calculation formula.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1585201349-70192-1-git-send-email-aubrey.li@intel.com
Currently, there is a potential race between distribute_cfs_runtime()
and assign_cfs_rq_runtime(). Race happens when cfs_b->runtime is read,
distributes without holding lock and finds out there is not enough
runtime to charge against after distribution. Because
assign_cfs_rq_runtime() might be called during distribution, and use
cfs_b->runtime at the same time.
Fibtest is the tool to test this race. Assume all gcfs_rq is throttled
and cfs period timer runs, slow threads might run and sleep, returning
unused cfs_rq runtime and keeping min_cfs_rq_runtime in their local
pool. If all this happens sufficiently quickly, cfs_b->runtime will drop
a lot. If runtime distributed is large too, over-use of runtime happens.
A runtime over-using by about 70 percent of quota is seen when we
test fibtest on a 96-core machine. We run fibtest with 1 fast thread and
95 slow threads in test group, configure 10ms quota for this group and
see the CPU usage of fibtest is 17.0%, which is far more than the
expected 10%.
On a smaller machine with 32 cores, we also run fibtest with 96
threads. CPU usage is more than 12%, which is also more than expected
10%. This shows that on similar workloads, this race do affect CPU
bandwidth control.
Solve this by holding lock inside distribute_cfs_runtime().
Fixes: c06f04c704 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop")
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/lkml/20200325092602.22471-1-changhuaixin@linux.alibaba.com/
sched/core.c uses update_avg() for rq->avg_idle and sched/fair.c uses an
open-coded version (with the exact same decay factor) for
rq->avg_scan_cost. On top of that, select_idle_cpu() expects to be able to
compare these two fields.
The only difference between the two is that rq->avg_scan_cost is computed
using a pure division rather than a shift. Turns out it actually matters,
first of all because the shifted value can be negative, and the standard
has this to say about it:
"""
The result of E1 >> E2 is E1 right-shifted E2 bit positions. [...] If E1
has a signed type and a negative value, the resulting value is
implementation-defined.
"""
Not only this, but (arithmetic) right shifting a negative value (using 2's
complement) is *not* equivalent to dividing it by the corresponding power
of 2. Let's look at a few examples:
-4 -> 0xF..FC
-4 >> 3 -> 0xF..FF == -1 != -4 / 8
-8 -> 0xF..F8
-8 >> 3 -> 0xF..FF == -1 == -8 / 8
-9 -> 0xF..F7
-9 >> 3 -> 0xF..FE == -2 != -9 / 8
Make update_avg() use a division, and export it to the private scheduler
header to reuse it where relevant. Note that this still lets compilers use
a shift here, but should prevent any unwanted surprise. The disassembly of
select_idle_cpu() remains unchanged on arm64, and ttwu_do_wakeup() gains 2
instructions; the diff sort of looks like this:
- sub x1, x1, x0
+ subs x1, x1, x0 // set condition codes
+ add x0, x1, #0x7
+ csel x0, x0, x1, mi // x0 = x1 < 0 ? x0 : x1
add x0, x3, x0, asr #3
which does the right thing (i.e. gives us the expected result while still
using an arithmetic shift)
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200330090127.16294-1-valentin.schneider@arm.com
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low level
functions cpu_up/down() are now confined to the core code and not
longer accessible from random code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B9VQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodCyD/0WFYAe7LkOfNjkbLa0IeuyLjF9rnCi
ilcSXMLpaVwwoQvm7MopwkXUDdmEIyeJ0B641j3mC3AKCRap4+O36H2IEg2byrj7
twOvQNCfxpVVmCCD11FTH9aQa74LEB6AikTgjevhrRWj6eHsal7c2Ak26AzCgrt+
0eEkOAOWJbLAlbIiPdHlCZ3TMldcs3gg+lRSYd5QCGQVkZFnwpXzyOvpyJEUGGbb
R/JuvwJoLhRMiYAJDILoQQQg/J07ODuivse/R8PWaH2djkn+2NyRGrD794PhyyOg
QoTU0ZrYD3Z48ACXv+N3jLM7wXMcFzjYtr1vW1E3O/YGA7GVIC6XHGbMQ7tEihY0
ajtwq8DcnpKtuouviYnf7NuKgqdmJXkaZjz3Gms6n8nLXqqSVwuQELWV2CXkxNe6
9kgnnKK+xXMOGI4TUhN8bejvkXqRCmKMeQJcWyf+7RA9UIhAJw5o7WGo8gXfQWUx
tazCqDy/inYjqGxckW615fhi2zHfemlYTbSzIGOuMB1TEPKFcrgYAii/VMsYHQVZ
5amkYUXGQ5brlCOzOn38lzp5OkALBnFzD7xgvOcQgWT3ynVpdqADfBytXiEEHh4J
KSkSgSSRcS58397nIxnDcJgJouHLvAWYyPZ4UC6mfynuQIic31qMHGVqwdbEKMY3
4M5dGgqIfOBgYw==
=jwCg
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
"CPU (hotplug) updates:
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low
level functions cpu_up/down() are now confined to the core code and
not longer accessible from random code"
* tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus()
cpu/hotplug: Hide cpu_up/down()
cpu/hotplug: Move bringup of secondary CPUs out of smp_init()
torture: Replace cpu_up/down() with add/remove_cpu()
firmware: psci: Replace cpu_up/down() with add/remove_cpu()
xen/cpuhotplug: Replace cpu_up/down() with device_online/offline()
parisc: Replace cpu_up/down() with add/remove_cpu()
sparc: Replace cpu_up/down() with add/remove_cpu()
powerpc: Replace cpu_up/down() with add/remove_cpu()
x86/smp: Replace cpu_up/down() with add/remove_cpu()
arm64: hibernate: Use bringup_hibernate_cpu()
cpu/hotplug: Provide bringup_hibernate_cpu()
arm64: Use reboot_cpu instead of hardconding it to 0
arm64: Don't use disable_nonboot_cpus()
ARM: Use reboot_cpu instead of hardcoding it to 0
ARM: Don't use disable_nonboot_cpus()
ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus()
cpu/hotplug: Create a new function to shutdown nonboot cpus
cpu/hotplug: Add new {add,remove}_cpu() functions
sched/core: Remove rq.hrtick_csd_pending
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Various NUMA scheduling updates: harmonize the load-balancer and
NUMA placement logic to not work against each other. The intended
result is better locality, better utilization and fewer migrations.
- Introduce Thermal Pressure tracking and optimizations, to improve
task placement on thermally overloaded systems.
- Implement frequency invariant scheduler accounting on (some) x86
CPUs. This is done by observing and sampling the 'recent' CPU
frequency average at ~tick boundaries. The CPU provides this data
via the APERF/MPERF MSRs. This hopefully makes our capacity
estimates more precise and keeps tasks on the same CPU better even
if it might seem overloaded at a lower momentary frequency. (As
usual, turbo mode is a complication that we resolve by observing
the maximum frequency and renormalizing to it.)
- Add asymmetric CPU capacity wakeup scan to improve capacity
utilization on asymmetric topologies. (big.LITTLE systems)
- PSI fixes and optimizations.
- RT scheduling capacity awareness fixes & improvements.
- Optimize the CONFIG_RT_GROUP_SCHED constraints code.
- Misc fixes, cleanups and optimizations - see the changelog for
details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
threads: Update PID limit comment according to futex UAPI change
sched/fair: Fix condition of avg_load calculation
sched/rt: cpupri_find: Trigger a full search as fallback
kthread: Do not preempt current task if it is going to call schedule()
sched/fair: Improve spreading of utilization
sched: Avoid scale real weight down to zero
psi: Move PF_MEMSTALL out of task->flags
MAINTAINERS: Add maintenance information for psi
psi: Optimize switching tasks inside shared cgroups
psi: Fix cpu.pressure for cpu.max and competing cgroups
sched/core: Distribute tasks within affinity masks
sched/fair: Fix enqueue_task_fair warning
thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code
sched/rt: Remove unnecessary push for unfit tasks
sched/rt: Allow pulling unfitting task
sched/rt: Optimize cpupri_find() on non-heterogenous systems
sched/rt: Re-instate old behavior in select_task_rq_rt()
sched/rt: cpupri_find: Implement fallback mechanism for !fit case
sched/fair: Fix reordering of enqueue/dequeue_task_fair()
sched/fair: Fix runnable_avg for throttled cfs
...
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued user-access cleanups in the futex code.
- percpu-rwsem rewrite that uses its own waitqueue and atomic_t
instead of an embedded rwsem. This addresses a couple of
weaknesses, but the primary motivation was complications on the -rt
kernel.
- Introduce raw lock nesting detection on lockdep
(CONFIG_PROVE_RAW_LOCK_NESTING=y), document the raw_lock vs. normal
lock differences. This too originates from -rt.
- Reuse lockdep zapped chain_hlocks entries, to conserve RAM
footprint on distro-ish kernels running into the "BUG:
MAX_LOCKDEP_CHAIN_HLOCKS too low!" depletion of the lockdep
chain-entries pool.
- Misc cleanups, smaller fixes and enhancements - see the changelog
for details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits)
fs/buffer: Make BH_Uptodate_Lock bit_spin_lock a regular spinlock_t
thermal/x86_pkg_temp: Make pkg_temp_lock a raw_spinlock_t
Documentation/locking/locktypes: Minor copy editor fixes
Documentation/locking/locktypes: Further clarifications and wordsmithing
m68knommu: Remove mm.h include from uaccess_no.h
x86: get rid of user_atomic_cmpxchg_inatomic()
generic arch_futex_atomic_op_inuser() doesn't need access_ok()
x86: don't reload after cmpxchg in unsafe_atomic_op2() loop
x86: convert arch_futex_atomic_op_inuser() to user_access_begin/user_access_end()
objtool: whitelist __sanitizer_cov_trace_switch()
[parisc, s390, sparc64] no need for access_ok() in futex handling
sh: no need of access_ok() in arch_futex_atomic_op_inuser()
futex: arch_futex_atomic_op_inuser() calling conventions change
completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all()
lockdep: Add posixtimer context tracing bits
lockdep: Annotate irq_work
lockdep: Add hrtimer context tracing bits
lockdep: Introduce wait-type checks
completion: Use simple wait queues
sched/swait: Prepare usage in completions
...
The warning was intended to spot complete_all() users from hardirq
context on PREEMPT_RT. The warning as-is will also trigger in interrupt
handlers, which are threaded on PREEMPT_RT, which was not intended.
Use lockdep_assert_RT_in_threaded_ctx() which triggers in non-preemptive
context on PREEMPT_RT.
Fixes: a5c6234e10 ("completion: Use simple wait queues")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200323152019.4qjwluldohuh3by5@linutronix.de
completion uses a wait_queue_head_t to enqueue waiters.
wait_queue_head_t contains a spinlock_t to protect the list of waiters
which excludes it from being used in truly atomic context on a PREEMPT_RT
enabled kernel.
The spinlock in the wait queue head cannot be replaced by a raw_spinlock
because:
- wait queues can have custom wakeup callbacks, which acquire other
spinlock_t locks and have potentially long execution times
- wake_up() walks an unbounded number of list entries during the wake up
and may wake an unbounded number of waiters.
For simplicity and performance reasons complete() should be usable on
PREEMPT_RT enabled kernels.
completions do not use custom wakeup callbacks and are usually single
waiter, except for a few corner cases.
Replace the wait queue in the completion with a simple wait queue (swait),
which uses a raw_spinlock_t for protecting the waiter list and therefore is
safe to use inside truly atomic regions on PREEMPT_RT.
There is no semantical or functional change:
- completions use the exclusive wait mode which is what swait provides
- complete() wakes one exclusive waiter
- complete_all() wakes all waiters while holding the lock which protects
the wait queue against newly incoming waiters. The conversion to swait
preserves this behaviour.
complete_all() might cause unbound latencies with a large number of waiters
being woken at once, but most complete_all() usage sites are either in
testing or initialization code or have only a really small number of
concurrent waiters which for now does not cause a latency problem. Keep it
simple for now.
The fixup of the warning check in the USB gadget driver is just a straight
forward conversion of the lockless waiter check from one waitqueue type to
the other.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200321113242.317954042@linutronix.de
As a preparation to use simple wait queues for completions:
- Provide swake_up_all_locked() to support complete_all()
- Make __prepare_to_swait() public available
This is done to enable the usage of complete() within truly atomic contexts
on a PREEMPT_RT enabled kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.228481202@linutronix.de
In update_sg_wakeup_stats(), the comment says:
Computing avg_load makes sense only when group is fully
busy or overloaded.
But, the code below this comment does not check like this.
From reading the code about avg_load in other functions, I
confirm that avg_load should be calculated in fully busy or
overloaded case. The comment is correct and the checking
condition is wrong. So, change that condition.
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Signed-off-by: Tao Zhou <ouwen210@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/Message-ID:
If we failed to find a fitting CPU, in cpupri_find(), we only fallback
to the level we found a hit at.
But Steve suggested to fallback to a second full scan instead as this
could be a better effort.
https://lore.kernel.org/lkml/20200304135404.146c56eb@gandalf.local.home/
We trigger the 2nd search unconditionally since the argument about
triggering a full search is that the recorded fall back level might have
become empty by then. Which means storing any data about what happened
would be meaningless and stale.
I had a humble try at timing it and it seemed okay for the small 6 CPUs
system I was running on
https://lore.kernel.org/lkml/20200305124324.42x6ehjxbnjkklnh@e107158-lin.cambridge.arm.com/
On large system this second full scan could be expensive. But there are
no users outside capacity awareness for this fitness function at the
moment. Heterogeneous systems tend to be small with 8cores in total.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20200310142219.syxzn5ljpdxqtbgx@e107158-lin.cambridge.arm.com
During load_balancing, a group with spare capacity will try to pull some
utilizations from an overloaded group. In such case, the load balance
looks for the runqueue with the highest utilization. Nevertheless, it
should also ensure that there are some pending tasks to pull otherwise
the load balance will fail to pull a task and the spread of the load will
be delayed.
This situation is quite transient but it's possible to highlight the
effect with a short run of sysbench test so the time to spread task impacts
the global result significantly.
Below are the average results for 15 iterations on an arm64 octo core:
sysbench --test=cpu --num-threads=8 --max-requests=1000 run
tip/sched/core +patchset
total time: 172ms 158ms
per-request statistics:
avg: 1.337ms 1.244ms
max: 21.191ms 10.753ms
The average max doesn't fully reflect the wide spread of the value which
ranges from 1.350ms to more than 41ms for the tip/sched/core and from
1.350ms to 21ms with the patch.
Other factors like waiting for an idle load balance or cache hotness
can delay the spreading of the tasks which explains why we can still
have up to 21ms with the patch.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200312165429.990-1-vincent.guittot@linaro.org
During our testing, we found a case that shares no longer
working correctly, the cgroup topology is like:
/sys/fs/cgroup/cpu/A (shares=102400)
/sys/fs/cgroup/cpu/A/B (shares=2)
/sys/fs/cgroup/cpu/A/B/C (shares=1024)
/sys/fs/cgroup/cpu/D (shares=1024)
/sys/fs/cgroup/cpu/D/E (shares=1024)
/sys/fs/cgroup/cpu/D/E/F (shares=1024)
The same benchmark is running in group C & F, no other tasks are
running, the benchmark is capable to consumed all the CPUs.
We suppose the group C will win more CPU resources since it could
enjoy all the shares of group A, but it's F who wins much more.
The reason is because we have group B with shares as 2, since
A->cfs_rq.load.weight == B->se.load.weight == B->shares/nr_cpus,
so A->cfs_rq.load.weight become very small.
And in calc_group_shares() we calculate shares as:
load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
shares = (tg_shares * load) / tg_weight;
Since the 'cfs_rq->load.weight' is too small, the load become 0
after scale down, although 'tg_shares' is 102400, shares of the se
which stand for group A on root cfs_rq become 2.
While the se of D on root cfs_rq is far more bigger than 2, so it
wins the battle.
Thus when scale_load_down() scale real weight down to 0, it's no
longer telling the real story, the caller will have the wrong
information and the calculation will be buggy.
This patch add check in scale_load_down(), so the real weight will
be >= MIN_SHARES after scale, after applied the group C wins as
expected.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/38e8e212-59a1-64b2-b247-b6d0b52d8dc1@linux.alibaba.com
The task->flags is a 32-bits flag, in which 31 bits have already been
consumed. So it is hardly to introduce other new per process flag.
Currently there're still enough spaces in the bit-field section of
task_struct, so we can define the memstall state as a single bit in
task_struct instead.
This patch also removes an out-of-date comment pointed by Matthew.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/1584408485-1921-1-git-send-email-laoar.shao@gmail.com
When switching tasks running on a CPU, the psi state of a cgroup
containing both of these tasks does not change. Right now, we don't
exploit that, and can perform many unnecessary state changes in nested
hierarchies, especially when most activity comes from one leaf cgroup.
This patch implements an optimization where we only update cgroups
whose state actually changes during a task switch. These are all
cgroups that contain one task but not the other, up to the first
shared ancestor. When both tasks are in the same group, we don't need
to update anything at all.
We can identify the first shared ancestor by walking the groups of the
incoming task until we see TSK_ONCPU set on the local CPU; that's the
first group that also contains the outgoing task.
The new psi_task_switch() is similar to psi_task_change(). To allow
code reuse, move the task flag maintenance code into a new function
and the poll/avg worker wakeups into the shared psi_group_change().
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200316191333.115523-3-hannes@cmpxchg.org
For simplicity, cpu pressure is defined as having more than one
runnable task on a given CPU. This works on the system-level, but it
has limitations in a cgrouped reality: When cpu.max is in use, it
doesn't capture the time in which a task is not executing on the CPU
due to throttling. Likewise, it doesn't capture the time in which a
competing cgroup is occupying the CPU - meaning it only reflects
cgroup-internal competitive pressure, not outside pressure.
Enable tracking of currently executing tasks, and then change the
definition of cpu pressure in a cgroup from
NR_RUNNING > 1
to
NR_RUNNING > ON_CPU
which will capture the effects of cpu.max as well as competition from
outside the cgroup.
After this patch, a cgroup running `stress -c 1` with a cpu.max
setting of 5000 10000 shows ~50% continuous CPU pressure.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200316191333.115523-2-hannes@cmpxchg.org
Currently, when updating the affinity of tasks via either cpusets.cpus,
or, sched_setaffinity(); tasks not currently running within the newly
specified mask will be arbitrarily assigned to the first CPU within the
mask.
This (particularly in the case that we are restricting masks) can
result in many tasks being assigned to the first CPUs of their new
masks.
This:
1) Can induce scheduling delays while the load-balancer has a chance to
spread them between their new CPUs.
2) Can antogonize a poor load-balancer behavior where it has a
difficult time recognizing that a cross-socket imbalance has been
forced by an affinity mask.
This change adds a new cpumask interface to allow iterated calls to
distribute within the intersection of the provided masks.
The cases that this mainly affects are:
- modifying cpuset.cpus
- when tasks join a cpuset
- when modifying a task's affinity via sched_setaffinity(2)
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Tested-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lkml.kernel.org/r/20200311010113.136465-1-joshdon@google.com
When a cfs rq is throttled, the latter and its child are removed from the
leaf list but their nr_running is not changed which includes staying higher
than 1. When a task is enqueued in this throttled branch, the cfs rqs must
be added back in order to ensure correct ordering in the list but this can
only happens if nr_running == 1.
When cfs bandwidth is used, we call unconditionnaly list_add_leaf_cfs_rq()
when enqueuing an entity to make sure that the complete branch will be
added.
Similarly unthrottle_cfs_rq() can stop adding cfs in the list when a parent
is throttled. Iterate the remaining entity to ensure that the complete
branch will be added in the list.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Cc: stable@vger.kernel.org #v5.1+
Link: https://lkml.kernel.org/r/20200306135257.25044-1-vincent.guittot@linaro.org
drivers/base/arch_topology.c is only built if CONFIG_GENERIC_ARCH_TOPOLOGY=y,
resulting in such build failures:
cpufreq_cooling.c:(.text+0x1e7): undefined reference to `arch_set_thermal_pressure'
Move it to sched/core.c instead, and keep it enabled on x86 despite
us not having a arch_scale_thermal_pressure() facility there, to
build-test this thing.
Cc: Thara Gopinath <thara.gopinath@linaro.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now smp_call_function_single_async() provides the protection that
we'll return with -EBUSY if the csd object is still pending, then we
don't need the rq.hrtick_csd_pending any more.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20191216213125.9536-4-peterx@redhat.com
In task_woken_rt() and switched_to_rto() we try trigger push-pull if the
task is unfit.
But the logic is found lacking because if the task was the only one
running on the CPU, then rt_rq is not in overloaded state and won't
trigger a push.
The necessity of this logic was under a debate as well, a summary of
the discussion can be found in the following thread:
https://lore.kernel.org/lkml/20200226160247.iqvdakiqbakk2llz@e107158-lin.cambridge.arm.com/
Remove the logic for now until a better approach is agreed upon.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 804d402fb6 ("sched/rt: Make RT capacity-aware")
Link: https://lkml.kernel.org/r/20200302132721.8353-6-qais.yousef@arm.com
When implemented RT Capacity Awareness; the logic was done such that if
a task was running on a fitting CPU, then it was sticky and we would try
our best to keep it there.
But as Steve suggested, to adhere to the strict priority rules of RT
class; allow pulling an RT task to unfitting CPU to ensure it gets a
chance to run ASAP.
LINK: https://lore.kernel.org/lkml/20200203111451.0d1da58f@oasis.local.home/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 804d402fb6 ("sched/rt: Make RT capacity-aware")
Link: https://lkml.kernel.org/r/20200302132721.8353-5-qais.yousef@arm.com
By introducing a new cpupri_find_fitness() function that takes the
fitness_fn as an argument and only called when asym_system static key is
enabled.
cpupri_find() is now a wrapper function that calls cpupri_find_fitness()
passing NULL as a fitness_fn, hence disabling the logic that handles
fitness by default.
LINK: https://lore.kernel.org/lkml/c0772fca-0a4b-c88d-fdf2-5715fcf8447b@arm.com/
Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 804d402fb6 ("sched/rt: Make RT capacity-aware")
Link: https://lkml.kernel.org/r/20200302132721.8353-4-qais.yousef@arm.com
When RT Capacity Aware support was added, the logic in select_task_rq_rt
was modified to force a search for a fitting CPU if the task currently
doesn't run on one.
But if the search failed, and the search was only triggered to fulfill
the fitness request; we could end up selecting a new CPU unnecessarily.
Fix this and re-instate the original behavior by ensuring we bail out
in that case.
This behavior change only affected asymmetric systems that are using
util_clamp to implement capacity aware. None asymmetric systems weren't
affected.
LINK: https://lore.kernel.org/lkml/20200218041620.GD28029@codeaurora.org/
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 804d402fb6 ("sched/rt: Make RT capacity-aware")
Link: https://lkml.kernel.org/r/20200302132721.8353-3-qais.yousef@arm.com
When searching for the best lowest_mask with a fitness_fn passed, make
sure we record the lowest_level that returns a valid lowest_mask so that
we can use that as a fallback in case we fail to find a fitting CPU at
all levels.
The intention in the original patch was not to allow a down migration to
unfitting CPU. But this missed the case where we are already running on
unfitting one.
With this change now RT tasks can still move between unfitting CPUs when
they're already running on such CPU.
And as Steve suggested; to adhere to the strict priority rules of RT, if
a task is already running on a fitting CPU but due to priority it can't
run on it, allow it to downmigrate to unfitting CPU so it can run.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 804d402fb6 ("sched/rt: Make RT capacity-aware")
Link: https://lkml.kernel.org/r/20200302132721.8353-2-qais.yousef@arm.com
Link: https://lore.kernel.org/lkml/20200203142712.a7yvlyo2y3le5cpn@e107158-lin/
Even when a cgroup is throttled, the group se of a child cgroup can still
be enqueued and its gse->on_rq stays true. When a task is enqueued on such
child, we still have to update the load_avg and increase
h_nr_running of the throttled cfs. Nevertheless, the 1st
for_each_sched_entity() loop is skipped because of gse->on_rq == true and the
2nd loop because the cfs is throttled whereas we have to update both
load_avg with the old h_nr_running and increase h_nr_running in such case.
The same sequence can happen during dequeue when se moves to parent before
breaking in the 1st loop.
Note that the update of load_avg will effectively happen only once in order
to sync up to the throttled time. Next call for updating load_avg will stop
early because the clock stays unchanged.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 6d4d22468d ("sched/fair: Reorder enqueue/dequeue_task_fair path")
Link: https://lkml.kernel.org/r/20200306084208.12583-1-vincent.guittot@linaro.org
When a cfs_rq is throttled, its group entity is dequeued and its running
tasks are removed. We must update runnable_avg with the old h_nr_running
and update group_se->runnable_weight with the new h_nr_running at each
level of the hierarchy.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 9f68395333 ("sched/pelt: Add a new runnable average signal")
Link: https://lkml.kernel.org/r/20200227154115.8332-1-vincent.guittot@linaro.org
Since commit 06a76fe08d ("sched/deadline: Move DL related code
from sched/core.c to sched/deadline.c"), DL related code moved to
deadline.c.
Make the following two functions static since they're only used in
deadline.c:
dl_change_utilization()
init_dl_rq_bw_ratio()
Signed-off-by: Yu Chen <chen.yu@easystack.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200228100329.16927-1-chen.yu@easystack.cn
EAS already requires asymmetric CPU capacities to be enabled, and mixing
this with SMT is an aberration, but better be safe than sorry.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200227191433.31994-2-valentin.schneider@arm.com
Qian Cai reported the following bug:
The linux-next commit ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a
migration target instead of comparing tasks") introduced a boot warning,
[ 86.520534][ T1] WARNING: suspicious RCU usage
[ 86.520540][ T1] 5.6.0-rc3-next-20200227 #7 Not tainted
[ 86.520545][ T1] -----------------------------
[ 86.520551][ T1] kernel/sched/fair.c:5914 suspicious rcu_dereference_check() usage!
[ 86.520555][ T1]
[ 86.520555][ T1] other info that might help us debug this:
[ 86.520555][ T1]
[ 86.520561][ T1]
[ 86.520561][ T1] rcu_scheduler_active = 2, debug_locks = 1
[ 86.520567][ T1] 1 lock held by systemd/1:
[ 86.520571][ T1] #0: ffff8887f4b14848 (&mm->mmap_sem#2){++++}, at: do_page_fault+0x1d2/0x998
[ 86.520594][ T1]
[ 86.520594][ T1] stack backtrace:
[ 86.520602][ T1] CPU: 1 PID: 1 Comm: systemd Not tainted 5.6.0-rc3-next-20200227 #7
task_numa_migrate() checks for idle cores when updating NUMA-related statistics.
This relies on reading a RCU-protected structure in test_idle_cores() via this
call chain
task_numa_migrate
-> update_numa_stats
-> numa_idle_core
-> test_idle_cores
While the locking could be fine-grained, it is more appropriate to acquire
the RCU lock for the entire scan of the domain. This patch removes the
warning triggered at boot time.
Reported-by: Qian Cai <cai@lca.pw>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Link: https://lkml.kernel.org/r/20200227191804.GJ3818@techsingularity.net
Building against the tip/sched/core as ff7db0bf24 ("sched/numa: Prefer
using an idle CPU as a migration target instead of comparing tasks") with
the arm64 defconfig (which doesn't have CONFIG_SCHED_SMT set) leads to:
kernel/sched/fair.c:1525:20: warning: 'test_idle_cores' declared 'static' but never defined [-Wunused-function]
static inline bool test_idle_cores(int cpu, bool def);
^~~~~~~~~~~~~~~
Rather than define it in its own CONFIG_SCHED_SMT #define island, bunch it
up with test_idle_cores().
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
[mgorman@techsingularity.net: Edit changelog, minor style change]
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: ff7db0bf24 ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Link: https://lkml.kernel.org/r/20200303110258.1092-3-mgorman@techsingularity.net
Thermal pressure follows pelt signals which means the decay period for
thermal pressure is the default pelt decay period. Depending on SoC
characteristics and thermal activity, it might be beneficial to decay
thermal pressure slower, but still in-tune with the pelt signals. One way
to achieve this is to provide a command line parameter to set a decay
shift parameter to an integer between 0 and 10.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org
cpu_capacity initially reflects the maximum possible capacity of a CPU.
Thermal pressure on a CPU means this maximum possible capacity is
unavailable due to thermal events. This patch subtracts the average
thermal pressure for a CPU from its maximum possible capacity so that
cpu_capacity reflects the remaining maximum capacity.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-8-thara.gopinath@linaro.org
Introduce support in scheduler periodic tick and other CFS bookkeeping
APIs to trigger the process of computing average thermal pressure for a
CPU. Also consider avg_thermal.load_avg in others_have_blocked which
allows for decay of pelt signals.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-7-thara.gopinath@linaro.org
Extrapolating on the existing framework to track rt/dl utilization using
pelt signals, add a similar mechanism to track thermal pressure. The
difference here from rt/dl utilization tracking is that, instead of
tracking time spent by a CPU running a RT/DL task through util_avg, the
average thermal pressure is tracked through load_avg. This is because
thermal pressure signal is weighted time "delta" capacity unlike util_avg
which is binary. "delta capacity" here means delta between the actual
capacity of a CPU and the decreased capacity a CPU due to a thermal event.
In order to track average thermal pressure, a new sched_avg variable
avg_thermal is introduced. Function update_thermal_load_avg can be called
to do the periodic bookkeeping (accumulate, decay and average) of the
thermal pressure.
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-2-thara.gopinath@linaro.org
As the vtime is sampled under loose seqcount protection by kcpustat, the
vtime fields may change as the code flows. Where logic dictates a field
has a static value, use a READ_ONCE.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes: 74722bb223 ("sched/vtime: Bring up complete kcpustat accessor")
Link: https://lkml.kernel.org/r/20200123180849.28486-1-frederic@kernel.org
sgs->group_weight is not set while gathering statistics in
update_sg_wakeup_stats(). This means that a group can be classified as
fully busy with 0 running tasks if utilization is high enough.
This path is mainly used for fork and exec.
Fixes: 57abff067a ("sched/fair: Rework find_idlest_group()")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20200218144534.4564-1-vincent.guittot@linaro.org
When domains are imbalanced or overloaded a search of all CPUs on the
target domain is searched and compared with task_numa_compare. In some
circumstances, a candidate is found that is an obvious win.
o A task can move to an idle CPU and an idle CPU is found
o A swap candidate is found that would move to its preferred domain
This patch terminates the search when either condition is met.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-14-mgorman@techsingularity.net