Private SDE events are per-cpu, and need to be registered and enabled
on each CPU.
Hide this detail from the caller by adapting our {,un}register and
{en,dis}able calls to send an IPI to each CPU if the event is private.
CPU private events are unregistered when the CPU is powered-off, and
re-registered when the CPU is brought back online. This saves bringing
secondary cores back online to call private_reset() on shutdown, kexec
and resume from hibernate.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When a CPU enters an idle lower-power state or is powering off, we
need to mask SDE events so that no events can be delivered while we
are messing with the MMU as the registered entry points won't be valid.
If the system reboots, we want to unregister all events and mask the CPUs.
For kexec this allows us to hand a clean slate to the next kernel
instead of relying on it to call sdei_{private,system}_data_reset().
For hibernate we unregister all events and re-register them on restore,
in case we restored with the SDE code loaded at a different address.
(e.g. KASLR).
Add all the notifiers necessary to do this. We only support shared events
so all events are left registered and enabled over CPU hotplug.
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
[catalin.marinas@arm.com: added CPU_PM_ENTER_FAILED case]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.
Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),
Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.
This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.
Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.
Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.
When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Today the arm64 arch code allocates an extra IRQ stack per-cpu. If we
also have SDEI and VMAP stacks we need two extra per-cpu VMAP stacks.
Move the VMAP stack allocation out to a helper in a new header file.
This avoids missing THREADINFO_GFP, or getting the all-important alignment
wrong.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement firmware notifications (such as
firmware-first RAS) or promote an IRQ that has been promoted to a
firmware-assisted NMI.
Add the code for detecting the SDEI version and the framework for
registering and unregistering events. Subsequent patches will add the
arch-specific backend code and the necessary power management hooks.
Only shared events are supported, power management, private events and
discovery for ACPI systems will be added by later patches.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications, or from an
IRQ that has been promoted to a firmware-assisted NMI.
Add a new devicetree binding to describe the SDE firmware interface.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that a VHE host uses tpidr_el2 for the cpu offset we no longer
need KVM to save/restore tpidr_el1. Move this from the 'common' code
into the non-vhe code. While we're at it, on VHE we don't need to
save the ELR or SPSR as kernel_entry in entry.S will have pushed these
onto the kernel stack, and will restore them from there. Move these
to the non-vhe code as we need them to get back to the host.
Finally remove the always-copy-tpidr we hid in the stage2 setup
code, cpufeature's enable callback will do this for VHE, we only
need KVM to do it for non-vhe. Add the copy into kvm-init instead.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that KVM uses tpidr_el2 in the same way as Linux's cpu_offset in
tpidr_el1, merge the two. This saves KVM from save/restoring tpidr_el1
on VHE hosts, and allows future code to blindly access per-cpu variables
without triggering world-switch.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make tpidr_el2 a cpu-offset for per-cpu variables in the same way the
host uses tpidr_el1. This lets tpidr_el{1,2} have the same value, and
on VHE they can be the same register.
KVM calls hyp_panic() when anything unexpected happens. This may occur
while a guest owns the EL1 registers. KVM stashes the vcpu pointer in
tpidr_el2, which it uses to find the host context in order to restore
the host EL1 registers before parachuting into the host's panic().
The host context is a struct kvm_cpu_context allocated in the per-cpu
area, and mapped to hyp. Given the per-cpu offset for this CPU, this is
easy to find. Change hyp_panic() to take a pointer to the
struct kvm_cpu_context. Wrap these calls with an asm function that
retrieves the struct kvm_cpu_context from the host's per-cpu area.
Copy the per-cpu offset from the hosts tpidr_el1 into tpidr_el2 during
kvm init. (Later patches will make this unnecessary for VHE hosts)
We print out the vcpu pointer as part of the panic message. Add a back
reference to the 'running vcpu' in the host cpu context to preserve this.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
kvm_host_cpu_state is a per-cpu allocation made from kvm_arch_init()
used to store the host EL1 registers when KVM switches to a guest.
Make it easier for ASM to generate pointers into this per-cpu memory
by making it a static allocation.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM uses tpidr_el2 as its private vcpu register, which makes sense for
non-vhe world switch as only KVM can access this register. This means
vhe Linux has to use tpidr_el1, which KVM has to save/restore as part
of the host context.
If the SDEI handler code runs behind KVMs back, it mustn't access any
per-cpu variables. To allow this on systems with vhe we need to make
the host use tpidr_el2, saving KVM from save/restoring it.
__guest_enter() stores the host_ctxt on the stack, do the same with
the vcpu.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Support for the Cluster PMU part of the ARM DynamIQ Shared Unit (DSU).
* 'for-next/perf' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux:
perf: ARM DynamIQ Shared Unit PMU support
dt-bindings: Document devicetree binding for ARM DSU PMU
arm_pmu: Use of_cpu_node_to_id helper
arm64: Use of_cpu_node_to_id helper for CPU topology parsing
irqchip: gic-v3: Use of_cpu_node_to_id helper
coresight: of: Use of_cpu_node_to_id helper
of: Add helper for mapping device node to logical CPU number
perf: Export perf_event_update_userpage
Add the older Broadcom ID as well as the new Cavium ID for ThunderX2
CPUs.
Signed-off-by: Jayachandran C <jnair@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Falkor is susceptible to branch predictor aliasing and can
theoretically be attacked by malicious code. This patch
implements a mitigation for these attacks, preventing any
malicious entries from affecting other victim contexts.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cortex-A57, A72, A73 and A75 are susceptible to branch predictor aliasing
and can theoretically be attacked by malicious code.
This patch implements a PSCI-based mitigation for these CPUs when available.
The call into firmware will invalidate the branch predictor state, preventing
any malicious entries from affecting other victim contexts.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Hook up MIDR values for the Cortex-A72 and Cortex-A75 CPUs, since they
will soon need MIDR matches for hardening the branch predictor.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For those CPUs that require PSCI to perform a BP invalidation,
going all the way to the PSCI code for not much is a waste of
precious cycles. Let's terminate that call as early as possible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have per-CPU vectors, let's plug then in the KVM/arm64 code.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.
This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We will soon need to invoke a CPU-specific function pointer after changing
page tables, so move post_ttbr_update_workaround out into C code to make
this possible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Entry into recent versions of ARM Trusted Firmware will invalidate the CPU
branch predictor state in order to protect against aliasing attacks.
This patch exposes the PSCI "VERSION" function via psci_ops, so that it
can be invoked outside of the PSCI driver where necessary.
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to invoke the CPU capability ->matches callback from the ->enable
callback for applying local-CPU workarounds, we need a handle on the
capability structure.
This patch passes a pointer to the capability structure to the ->enable
callback.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For non-KASLR kernels where the KPTI behaviour has not been overridden
on the command line we can use ID_AA64PFR0_EL1.CSV3 to determine whether
or not we should unmap the kernel whilst running at EL0.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Although CONFIG_UNMAP_KERNEL_AT_EL0 does make KASLR more robust, it's
actually more useful as a mitigation against speculation attacks that
can leak arbitrary kernel data to userspace through speculation.
Reword the Kconfig help message to reflect this, and make the option
depend on EXPERT so that it is on by default for the majority of users.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Speculation attacks against the entry trampoline can potentially resteer
the speculative instruction stream through the indirect branch and into
arbitrary gadgets within the kernel.
This patch defends against these attacks by forcing a misprediction
through the return stack: a dummy BL instruction loads an entry into
the stack, so that the predicted program flow of the subsequent RET
instruction is to a branch-to-self instruction which is finally resolved
as a branch to the kernel vectors with speculation suppressed.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.4 extensions add new neon instructions for performing a
multiplication of each FP16 element of one vector with the corresponding
FP16 element of a second vector, and to add or subtract this without an
intermediate rounding to the corresponding FP32 element in a third vector.
This patch detects this feature and let the userspace know about it via a
HWCAP bit and MRS emulation.
Cc: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Under some uncommon timing conditions, a generation check and
xchg(active_asids, A1) in check_and_switch_context() on P1 can race with
an ASID roll-over on P2. If P2 has not seen the update to
active_asids[P1], it can re-allocate A1 to a new task T2 on P2. P1 ends
up waiting on the spinlock since the xchg() returned 0 while P2 can go
through a second ASID roll-over with (T2,A1,G2) active on P2. This
roll-over copies active_asids[P1] == A1,G1 into reserved_asids[P1] and
active_asids[P2] == A1,G2 into reserved_asids[P2]. A subsequent
scheduling of T1 on P1 and T2 on P2 would match reserved_asids and get
their generation bumped to G3:
P1 P2
-- --
TTBR0.BADDR = T0
TTBR0.ASID = A0
asid_generation = G1
check_and_switch_context(T1,A1,G1)
generation match
check_and_switch_context(T2,A0,G0)
new_context()
ASID roll-over
asid_generation = G2
flush_context()
active_asids[P1] = 0
asid_map[A1] = 0
reserved_asids[P1] = A0,G0
xchg(active_asids, A1)
active_asids[P1] = A1,G1
xchg returns 0
spin_lock_irqsave()
allocated ASID (T2,A1,G2)
asid_map[A1] = 1
active_asids[P2] = A1,G2
...
check_and_switch_context(T3,A0,G0)
new_context()
ASID roll-over
asid_generation = G3
flush_context()
active_asids[P1] = 0
asid_map[A1] = 1
reserved_asids[P1] = A1,G1
reserved_asids[P2] = A1,G2
allocated ASID (T3,A2,G3)
asid_map[A2] = 1
active_asids[P2] = A2,G3
new_context()
check_update_reserved_asid(A1,G1)
matches reserved_asid[P1]
reserved_asid[P1] = A1,G3
updated T1 ASID to (T1,A1,G3)
check_and_switch_context(T2,A1,G2)
new_context()
check_and_switch_context(A1,G2)
matches reserved_asids[P2]
reserved_asids[P2] = A1,G3
updated T2 ASID to (T2,A1,G3)
At this point, we have two tasks, T1 and T2 both using ASID A1 with the
latest generation G3. Any of them is allowed to be scheduled on the
other CPU leading to two different tasks with the same ASID on the same
CPU.
This patch changes the xchg to cmpxchg so that the active_asids is only
updated if non-zero to avoid a race with an ASID roll-over on a
different CPU.
The ASID allocation algorithm has been formally verified using the TLA+
model checker (see
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree/asidalloc.tla
for the spec).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for the Cluster PMU part of the ARM DynamIQ Shared Unit (DSU).
The DSU integrates one or more cores with an L3 memory system, control
logic, and external interfaces to form a multicore cluster. The PMU
allows counting the various events related to L3, SCU etc, along with
providing a cycle counter.
The PMU can be accessed via system registers, which are common
to the cores in the same cluster. The PMU registers follow the
semantics of the ARMv8 PMU, mostly, with the exception that
the counters record the cluster wide events.
This driver is mostly based on the ARMv8 and CCI PMU drivers.
The driver only supports ARM64 at the moment. It can be extended
to support ARM32 by providing register accessors like we do in
arch/arm64/include/arm_dsu_pmu.h.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch documents the devicetree bindings for ARM DSU PMU.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: devicetree@vger.kernel.org
Cc: frowand.list@gmail.com
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the new generic helper, of_cpu_node_to_id(), to map a
a phandle to the logical CPU number while parsing the
PMU irq affinity.
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Make use of the new generic helper to convert an of_node of a CPU
to the logical CPU id in parsing the topology.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the new generic helper of_cpu_node_to_id() instead
of using our own version to map a device node to logical CPU
number.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reuse the new generic helper, of_cpu_node_to_id() to map a
given CPU phandle to a logical CPU number.
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Tested-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a helper to map a device node to a logical CPU number to avoid
duplication. Currently this is open coded in different places (e.g
gic-v3, coresight). The helper tries to map device node to a "possible"
logical CPU id, which may not be online yet. It is the responsibility
of the user to make sure that the CPU is online. The helper uses
of_cpu_device_node_get() to retrieve the device node for a given CPU
(which uses per_cpu data if available else falls back to slower
of_get_cpu_node()).
Cc: devicetree@vger.kernel.org
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Export perf_event_update_userpage() so that PMU driver using them,
can be built as modules.
Acked-by: Peter Zilstra <peterz@infradead.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is entirely cosmetic, but somehow it was missed when sending
differing versions of this patch. This just makes the file a bit more
uniform.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CPU_PM_CPU_IDLE_ENTER_RETENTION skips calling cpu_pm_enter() and
cpu_pm_exit(). By not calling cpu_pm functions in idle entry/exit
paths we can reduce the latency involved in entering and exiting
the low power idle state.
On ARM64 based Qualcomm server platform we measured below overhead
for calling cpu_pm_enter and cpu_pm_exit for retention states.
workload: stress --hdd #CPUs --hdd-bytes 32M -t 30
Average overhead of cpu_pm_enter - 1.2us
Average overhead of cpu_pm_exit - 3.1us
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If a CPU is entering a low power idle state where it doesn't lose any
context, then there is no need to call cpu_pm_enter()/cpu_pm_exit().
Add a new macro(CPU_PM_CPU_IDLE_ENTER_RETENTION) to be used by cpuidle
drivers when they are entering retention state. By not calling
cpu_pm_enter and cpu_pm_exit we reduce the latency involved in
entering and exiting the retention idle states.
CPU_PM_CPU_IDLE_ENTER_RETENTION assumes that no state is lost and
hence CPU PM notifiers will not be called. We may need a broader
change if we need to support partial retention states effeciently.
On ARM64 based Qualcomm Server Platform we measured below overhead for
for calling cpu_pm_enter and cpu_pm_exit for retention states.
workload: stress --hdd #CPUs --hdd-bytes 32M -t 30
Average overhead of cpu_pm_enter - 1.2us
Average overhead of cpu_pm_exit - 3.1us
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/52-bit-pa:
arm64: enable 52-bit physical address support
arm64: allow ID map to be extended to 52 bits
arm64: handle 52-bit physical addresses in page table entries
arm64: don't open code page table entry creation
arm64: head.S: handle 52-bit PAs in PTEs in early page table setup
arm64: handle 52-bit addresses in TTBR
arm64: limit PA size to supported range
arm64: add kconfig symbol to configure physical address size
Now that 52-bit physical address support is in place, add the kconfig
symbol to enable it. As described in ARMv8.2, the larger addresses are
only supported with the 64k granule. Also ensure that PAN is configured
(or TTBR0 PAN is not), as explained in an earlier patch in this series.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.
This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.
One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits
12..15 of a page table entry. Introduce macros to convert between a
physical address and its placement in a table entry, and change all
macros/functions that access PTEs to use them.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: some long lines wrapped]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instead of open coding the generation of page table entries, use the
macros/functions that exist for this - pfn_p*d and p*d_populate. Most
code in the kernel already uses these macros, this patch tries to fix
up the few places that don't. This is useful for the next patch in this
series, which needs to change the page table entry logic, and it's
better to have that logic in one place.
The KVM extended ID map is special, since we're creating a level above
CONFIG_PGTABLE_LEVELS and the required function isn't available. Leave
it as is and add a comment to explain it. (The normal kernel ID map code
doesn't need this change because its page tables are created in assembly
(__create_page_tables)).
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits
12..15 in page table entries. Introduce a macro to move the bits there,
and change the early ID map and swapper table setup code to use it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: additional comments for clarification]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.
Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.
In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently copy the physical address size from
ID_AA64MMFR0_EL1.PARange directly into TCR.(I)PS. This will not work for
4k and 16k granule kernels on systems that support 52-bit physical
addresses, since 52-bit addresses are only permitted with the 64k
granule.
To fix this, fall back to 48 bits when configuring the PA size when the
kernel does not support 52-bit PAs. When it does, fall back to 52, to
avoid similar problems in the future if the PA size is ever increased
above 52.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: tcr_set_pa_size macro renamed to tcr_compute_pa_size]
[catalin.marinas@arm.com: comments added to tcr_compute_pa_size]
[catalin.marinas@arm.com: definitions added for TCR_*PS_SHIFT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 introduces support for 52-bit physical addresses. To prepare for
supporting this, add a new kconfig symbol to configure the physical
address space size. The symbols will be used in subsequent patches.
Currently the only choice is 48, a later patch will add the option of 52
once the required code is in place.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: folded minor patches into this one]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Support for unmapping the kernel when running in userspace (aka
"KAISER").
* 'kpti' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: kaslr: Put kernel vectors address in separate data page
arm64: mm: Introduce TTBR_ASID_MASK for getting at the ASID in the TTBR
perf: arm_spe: Fail device probe when arm64_kernel_unmapped_at_el0()
arm64: Kconfig: Add CONFIG_UNMAP_KERNEL_AT_EL0
arm64: entry: Add fake CPU feature for unmapping the kernel at EL0
arm64: tls: Avoid unconditional zeroing of tpidrro_el0 for native tasks
arm64: erratum: Work around Falkor erratum #E1003 in trampoline code
arm64: entry: Hook up entry trampoline to exception vectors
arm64: entry: Explicitly pass exception level to kernel_ventry macro
arm64: mm: Map entry trampoline into trampoline and kernel page tables
arm64: entry: Add exception trampoline page for exceptions from EL0
arm64: mm: Invalidate both kernel and user ASIDs when performing TLBI
arm64: mm: Add arm64_kernel_unmapped_at_el0 helper
arm64: mm: Allocate ASIDs in pairs
arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN
arm64: mm: Rename post_ttbr0_update_workaround
arm64: mm: Remove pre_ttbr0_update_workaround for Falkor erratum #E1003
arm64: mm: Move ASID from TTBR0 to TTBR1
arm64: mm: Temporarily disable ARM64_SW_TTBR0_PAN
arm64: mm: Use non-global mappings for kernel space
The literal pool entry for identifying the vectors base is the only piece
of information in the trampoline page that identifies the true location
of the kernel.
This patch moves it into a page-aligned region of the .rodata section
and maps this adjacent to the trampoline text via an additional fixmap
entry, which protects against any accidental leakage of the trampoline
contents.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>