The apic functions which are used in probe_32.c are implemented as inlines
or in apic.c. There is no reason to have them at random places.
Move them to the actual usage site and make them static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.596768194@linutronix.de
The check is boolean, but the function returns unsigned long for no value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.516730518@linutronix.de
The set_apic_id() callback returns an unsigned long value which is handed
in to apic_write() as the value argument u32.
Adjust the return value so it returns u32 right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.437208268@linutronix.de
These inline functions are used in both the cluster and the physical x2apic
code to fill in the function pointers of the apic structure. That means the
code is generated twice for no reason.
Move it to a C code and reuse it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.358954066@linutronix.de
Propagate the early activation mode to the irqdomain activate()
callbacks. This is required for the upcoming reservation, late vector
assignment scheme, so that the early activation call can act accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.028353660@linutronix.de
The irq_domain_ops.activate() callback has no return value and no way to
tell the function that the activation is early.
The upcoming changes to support a reservation scheme which allows to assign
interrupt vectors on x86 only when the interrupt is actually requested
requires:
- A return value, so activation can fail at request_irq() time
- Information that the activate invocation is early, i.e. before
request_irq().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213152.848490816@linutronix.de
lapic_is_integrated() is a wrapper around APIC_INTEGRATED(), but not used
consistently.
Replace the direct usage of APIC_INTEGRATED() and fixup a hard to read tail
comment. No functional change.
[ tglx: Made it compile and work .... ]
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1504774161-7137-2-git-send-email-douly.fnst@cn.fujitsu.com
init_bsp_APIC() which works for the virtual wire mode is used in ISA irq
initialization at boot time.
With the new APIC interrupt delivery mode scheme, which initializes the
APIC before the first interrupt is expected, init_bsp_APIC() is not longer
required and can be removed.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-13-git-send-email-douly.fnst@cn.fujitsu.com
A cold or warm boot through BIOS sets the APIC in default interrupt
delivery mode. A dump-capture kernel will not go through a BIOS reset and
leave the interrupt delivery mode in the state which was active on the
crashed kernel, but the dump kernel startup code assumes default delivery
mode which can result in interrupt delivery/handling to fail.
To solve this problem, it's required to set up the final interrupt delivery
mode as soon as possible. As IOAPIC setup needs the timer initialized for
verifying the timer interrupt delivery mode, the earliest point is right
after timer setup in late_time_init().
That results in the following init order:
1) Set up the legacy timer, if applicable on the platform
2) Set up APIC/IOAPIC which includes the verification of the legacy timer
interrupt delivery.
3) TSC calibration
4) Local APIC timer setup
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-12-git-send-email-douly.fnst@cn.fujitsu.com
X86 and XEN initialize interrupt delivery mode in different way.
To avoid conditionals, add a new x86_init_ops function which defaults to
the standard function and can be overridden by the early XEN platform code.
[ tglx: Folded the XEN part which was a separate patch to preserve
bisectability ]
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-10-git-send-email-douly.fnst@cn.fujitsu.com
timer_irq_works() is used to detects the timer IRQs. It calls mdelay(10) to
delay ten ticks and check whether the timer IRQ work or not.
mdelay() depends on the loops_per_jiffy which is set up in
calibrate_delay(), but the delay calibration depends on a working timer
interrupt, which causes a chicken and egg problem.
The correct solution is to set up the interrupt mode and making sure that
the timer interrupt is delivered correctly before invoking calibrate_delay().
That means that mdelay() cannot be used in timer_irq_works().
Provide helper functions to make a rough delay estimate which is good enough
to prove that the timer interrupt is working. Either use TSC or a simple
delay loop and assume that 4GHz is the maximum CPU frequency to base the
delay calculation on.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-9-git-send-email-douly.fnst@cn.fujitsu.com
Calling native_smp_prepare_cpus() to prepare for SMP bootup, does some
sanity checking, enables APIC mode and disables SMP feature.
Now, APIC mode setup has been unified to apic_intr_mode_init(), some sanity
checks are redundant and need to be cleanup.
Mark the apic_intr_mode extern to refine the switch and remove the
redundant sanity check.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-7-git-send-email-douly.fnst@cn.fujitsu.com
On a SMP-capable system, the kernel enables and sets up the APIC interrupt
delivery mode in native_smp_prepare_cpus(). The decision how to setup the
APIC is intermingled with the decision of setting up SMP or not.
Split the initialization of the APIC interrupt mode independent from other
decisions and have a separate apic_intr_mode_init() function for it.
The invocation time stays the same for now.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-6-git-send-email-douly.fnst@cn.fujitsu.com
apic_bsp_setup() sets and returns logical APIC ID for initializing
cpu0_logical_apicid in a SMP-capable system.
The id has nothing to do with the initialization of local APIC and I/O
APIC. And apic_bsp_setup() should be called for interrupt mode setup only.
Move the id setup into a separate helper function for cleanup and mark
apic_bsp_setup() void.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-5-git-send-email-douly.fnst@cn.fujitsu.com
apic_bsp_setup() sets up the local APIC, I/O APIC and APIC timer.
The local APIC and I/O APIC setup belongs to interrupt delivery mode
setup. Setting up the local APIC timer for booting CPU is another job
and has nothing to do with interrupt delivery mode setup.
Split local APIC timer setup from the APIC setup, keep it in the original
position for SMP and UP kernel for now.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-4-git-send-email-douly.fnst@cn.fujitsu.com
There are three places which initialize the interrupt delivery modes:
1) init_bsp_APIC() which is called early might setup the through-local-APIC
virtual wire mode on non SMP systems.
2) In an SMP-capable system, native_smp_prepare_cpus() tries to switch to
symmetric I/O model.
3) In UP system with UP_LATE_INIT=y, the local APIC and I/O APIC are set up
in smp_init().
There is no technical reason to make these initializations at random places
and run the kernel with the potentially wrong mode through the early boot
stage, but it has a problematic side effect: The late switch to symmetric
I/O mode causes dump-capture kernel to hang when the kernel command line
option 'notsc' is active.
Provide a new function to unify that three positions. Preparatory patch to
initialize an interrupt mode directly.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-3-git-send-email-douly.fnst@cn.fujitsu.com
There are quite some switches which are used to determine the final
interrupt delivery mode, as shown below:
1) Kconfig: CONFIG_X86_64; CONFIG_X86_LOCAL_APIC; CONFIG_x86_IO_APIC
2) Command line options: disable_apic; skip_ioapic_setup
3) CPU Capability: boot_cpu_has(X86_FEATURE_APIC)
4) MP table: smp_found_config
5) ACPI: acpi_lapic; acpi_ioapic; nr_ioapic
These switches are disordered and scattered and there are also some
dependencies between them. These make the code difficult to maintain and
read.
Construct a selector to unify them into a single function, then, Use this
selector to get an interrupt delivery mode directly.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Cc: bhe@redhat.com
Link: https://lkml.kernel.org/r/1505293975-26005-2-git-send-email-douly.fnst@cn.fujitsu.com
Pull x86 fixes from Ingo Molnar:
"Another round of CR3/PCID related fixes (I think this addresses all
but one of the known problems with PCID support), an objtool fix plus
a Clang fix that (finally) solves all Clang quirks to build a bootable
x86 kernel as-is"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Fix inline asm call constraints for Clang
objtool: Handle another GCC stack pointer adjustment bug
x86/mm/32: Load a sane CR3 before cpu_init() on secondary CPUs
x86/mm/32: Move setup_clear_cpu_cap(X86_FEATURE_PCID) earlier
x86/mm/64: Stop using CR3.PCID == 0 in ASID-aware code
x86/mm: Factor out CR3-building code
For inline asm statements which have a CALL instruction, we list the
stack pointer as a constraint to convince GCC to ensure the frame
pointer is set up first:
static inline void foo()
{
register void *__sp asm(_ASM_SP);
asm("call bar" : "+r" (__sp))
}
Unfortunately, that pattern causes Clang to corrupt the stack pointer.
The fix is easy: convert the stack pointer register variable to a global
variable.
It should be noted that the end result is different based on the GCC
version. With GCC 6.4, this patch has exactly the same result as
before:
defconfig defconfig-nofp distro distro-nofp
before 9820389 9491555 8816046 8516940
after 9820389 9491555 8816046 8516940
With GCC 7.2, however, GCC's behavior has changed. It now changes its
behavior based on the conversion of the register variable to a global.
That somehow convinces it to *always* set up the frame pointer before
inserting *any* inline asm. (Therefore, listing the variable as an
output constraint is a no-op and is no longer necessary.) It's a bit
overkill, but the performance impact should be negligible. And in fact,
there's a nice improvement with frame pointers disabled:
defconfig defconfig-nofp distro distro-nofp
before 9796316 9468236 9076191 8790305
after 9796957 9464267 9076381 8785949
So in summary, while listing the stack pointer as an output constraint
is no longer necessary for newer versions of GCC, it's still needed for
older versions.
Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJZxSV8AAoJELDendYovxMvf5YH/jUEgeFVgP0KRjNsvgp4gu88
4BW7nWYtFt4gGE1KnrKEPbg5Je0OwkpW7vUXxvLwDGWymtHMzVuuB2xxwzkePyzS
17Kzmb/JiuaNpVF4+5v3JvAw3b9iHrZ7T6cXOQgm28agd3m/y+9FSyzoMoNNRdGG
xURwUyK1idRqtkQV5VsQAK0Z1lVF7YhhaxWXBtClsqnKWoeLBLc8fpRJmUNruA33
E2Sdi06mNNN3xudu1s2edC5hAO4EgVKmonnmyHRYonIYwuqSND8fhEXj+PRdHj7s
lLVRQixd3raBiSscLASaQ7I/66frBm+TXzmoHAVtYkdlXBJlisTIvQlMPtAwu60=
=c3HX
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.14b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"A fix for a missing __init annotation and two cleanup patches"
* tag 'for-linus-4.14b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen, arm64: drop dummy lookup_address()
xen: don't compile pv-specific parts if XEN_PV isn't configured
xen: x86: mark xen_find_pt_base as __init
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R13 instead of RBP. Both are callee-saved registers, so the
substitution is straightforward.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Mix things up a little bit to get rid of the RBP usage, without hurting
performance too much. Use RDI instead of RBP for the TBL pointer. That
will clobber CTX, so spill CTX onto the stack and use R12 to read it in
the outer loop. R12 is used as a non-persistent temporary variable
elsewhere, so it's safe to use.
Also remove the unused y4 variable.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Swap the usages of R12 and RBP. Use R12 for the TBL register, and use
RBP to store the pre-aligned stack pointer.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
There's no need to use RBP as a temporary register for the TBL value,
because it always stores the same value: the address of the K256 table.
Instead just reference the address of K256 directly.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Swap the usages of R12 and RBP. Use R12 for the TBL register, and use
RBP to store the pre-aligned stack pointer.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Swap the usages of R12 and RBP. Use R12 for the REG_D register, and use
RBP to store the pre-aligned stack pointer.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R11 instead of RBP. Since R11 isn't a callee-saved register, it
doesn't need to be saved and restored on the stack.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use RSI instead of RBP for RT1. Since RSI is also used as a the 'dst'
function argument, it needs to be saved on the stack until the argument
is needed.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R15 instead of RBP. R15 can't be used as the RID1 register because
of x86 instruction encoding limitations. So use R15 for CTX and RDI for
CTX. This means that CTX is no longer an implicit function argument.
Instead it needs to be explicitly copied from RDI.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R15 instead of RBP. R15 can't be used as the RID1 register because
of x86 instruction encoding limitations. So use R15 for CTX and RDI for
CTX. This means that CTX is no longer an implicit function argument.
Instead it needs to be explicitly copied from RDI.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R12 instead of RBP. Both are callee-saved registers, so the
substitution is straightforward.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Using RBP as a temporary register breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Use R12 instead of RBP. R12 can't be used as the RT0 register because
of x86 instruction encoding limitations. So use R12 for CTX and RDI for
CTX. This means that CTX is no longer an implicit function argument.
Instead it needs to be explicitly copied from RDI.
Reported-by: Eric Biggers <ebiggers@google.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
- fix build without CONFIG_HAVE_KVM_IRQ_ROUTING
- fix NULL access in x86 CR access
- fix race with VMX posted interrups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZwS3PAAoJEED/6hsPKofoT+EH/0EGL2BdSAMmtLm5HUrGJHpO
412Q0bxV2KREcic1xJ+eJiuUcM2UihvflOyJQVBFEkToClw9jbB8Ms0kQUufYkLa
R1y7HmrDVVSbuEtd68fqbApuUaOKbjQEjmjKL5j3A2vxs9dgID5qMffRj5yGBC+a
V0ZpVsdLwQvqix77ibPXpoZnerbvOqkFadskGjYBpoiXEhNPbsEdc4Ca6sHAiqSs
hfUGTAnMSLBl34GfMBwvh++b8H/YlAoWM2vDnV4LnQb48hbGwqSwcVQ3CFEQbFgN
MrZoRFYpdx4FzXYYsh7dTSvPO4JyZXex7QKZSrZpg59Azfcx8pKv3am7H9W811g=
=ksrm
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
- fix build without CONFIG_HAVE_KVM_IRQ_ROUTING
- fix NULL access in x86 CR access
- fix race with VMX posted interrups
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: VMX: remove WARN_ON_ONCE in kvm_vcpu_trigger_posted_interrupt
KVM: VMX: do not change SN bit in vmx_update_pi_irte()
KVM: x86: Fix the NULL pointer parameter in check_cr_write()
Revert "KVM: Don't accept obviously wrong gsi values via KVM_IRQFD"
WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc)) in kvm_vcpu_trigger_posted_interrupt()
intends to detect the violation of invariant that VT-d PI notification
event is not suppressed when vcpu is in the guest mode. Because the
two checks for the target vcpu mode and the target suppress field
cannot be performed atomically, the target vcpu mode may change in
between. If that does happen, WARN_ON_ONCE() here may raise false
alarms.
As the previous patch fixed the real invariant breaker, remove this
WARN_ON_ONCE() to avoid false alarms, and document the allowed cases
instead.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60f ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In kvm_vcpu_trigger_posted_interrupt() and pi_pre_block(), KVM
assumes that PI notification events should not be suppressed when the
target vCPU is not blocked.
vmx_update_pi_irte() sets the SN field before changing an interrupt
from posting to remapping, but it does not check the vCPU mode.
Therefore, the change of SN field may break above the assumption.
Besides, I don't see reasons to suppress notification events here, so
remove the changes of SN field to avoid race condition.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60f ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Routine check_cr_write() will trigger emulator_get_cpuid()->
kvm_cpuid() to get maxphyaddr, and NULL is passed as values
for ebx/ecx/edx. This is problematic because kvm_cpuid() will
dereference these pointers.
Fixes: d1cd3ce900 ("KVM: MMU: check guest CR3 reserved bits based on its physical address width.")
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
For unknown historical reasons (i.e. Borislav doesn't recall),
32-bit kernels invoke cpu_init() on secondary CPUs with
initial_page_table loaded into CR3. Then they set
current->active_mm to &init_mm and call enter_lazy_tlb() before
fixing CR3. This means that the x86 TLB code gets invoked while CR3
is inconsistent, and, with the improved PCID sanity checks I added,
we warn.
Fix it by loading swapper_pg_dir (i.e. init_mm.pgd) earlier.
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 72c0098d92 ("x86/mm: Reinitialize TLB state on hotplug and resume")
Link: http://lkml.kernel.org/r/30cdfea504682ba3b9012e77717800a91c22097f.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Otherwise we might have the PCID feature bit set during cpu_init().
This is just for robustness. I haven't seen any actual bugs here.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: cba4671af7 ("x86/mm: Disable PCID on 32-bit kernels")
Link: http://lkml.kernel.org/r/b16dae9d6b0db5d9801ddbebbfd83384097c61f3.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Putting the logical ASID into CR3's PCID bits directly means that we
have two cases to consider separately: ASID == 0 and ASID != 0.
This means that bugs that only hit in one of these cases trigger
nondeterministically.
There were some bugs like this in the past, and I think there's
still one in current kernels. In particular, we have a number of
ASID-unware code paths that save CR3, write some special value, and
then restore CR3. This includes suspend/resume, hibernate, kexec,
EFI, and maybe other things I've missed. This is currently
dangerous: if ASID != 0, then this code sequence will leave garbage
in the TLB tagged for ASID 0. We could potentially see corruption
when switching back to ASID 0. In principle, an
initialize_tlbstate_and_flush() call after these sequences would
solve the problem, but EFI, at least, does not call this. (And it
probably shouldn't -- initialize_tlbstate_and_flush() is rather
expensive.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cdc14bbe5d3c3ef2a562be09a6368ffe9bd947a6.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current, the code that assembles a value to load into CR3 is
open-coded everywhere. Factor it out into helpers build_cr3() and
build_cr3_noflush().
This makes one semantic change: __get_current_cr3_fast() was wrong
on SME systems. No one noticed because the only caller is in the
VMX code, and there are no CPUs with both SME and VMX.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <Thomas.Lendacky@amd.com>
Link: http://lkml.kernel.org/r/ce350cf11e93e2842d14d0b95b0199c7d881f527.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fix from Thomas Gleixner:
"A single fix addressing the missing CP8 feature bit in CPUID for a
range of AMD ZEN models/mask revisions"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/AMD: Fix erratum 1076 (CPB bit)
Pull UML updates from Richard Weinberger:
- minor improvements
- fixes for Debian's new gcc defaults (pie enabled by default)
- fixes for XSTATE/XSAVE to make UML work again on modern systems
* 'for-linus-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml:
um: return negative in tuntap_open_tramp()
um: remove a stray tab
um: Use relative modversions with LD_SCRIPT_DYN
um: link vmlinux with -no-pie
um: Fix CONFIG_GCOV for modules.
Fix minor typos and grammar in UML start_up help
um: defconfig: Cleanup from old Kconfig options
um: Fix FP register size for XSTATE/XSAVE
gcc-4.6 causes a harmless link-time warning:
WARNING: vmlinux.o(.text.unlikely+0x48e): Section mismatch in reference from the function xen_find_pt_base() to the function .init.text:m2p()
The function xen_find_pt_base() references
the function __init m2p().
This is often because xen_find_pt_base lacks a __init
annotation or the annotation of m2p is wrong.
Newer compilers inline this function, so it never shows up, but marking
it __init is the right way to avoid the warning.
Fixes: 70e6119955 ("xen: move p2m list if conflicting with e820 map")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
When emulating a nested VM-entry from L1 to L2, several control field
validation checks are deferred to the hardware. Should one of these
validation checks fail, vcpu_vmx_run will set the vmx->fail flag. When
this happens, the L2 guest state is not loaded (even in part), and
execution should continue in L1 with the next instruction after the
VMLAUNCH/VMRESUME.
The VMCS12 is not modified (except for the VM-instruction error
field), the VMCS12 MSR save/load lists are not processed, and the CPU
state is not loaded from the VMCS12 host area. Moreover, the vmcs02
exit reason is stale, so it should not be consulted for any reason.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On an early VMLAUNCH/VMRESUME failure (i.e. one which sets the
VM-instruction error field of the current VMCS), the launch state of
the current VMCS is not set to "launched," and the VM-exit information
fields of the current VMCS (including IDT-vectoring information and
exit reason) are stale.
On a late VMLAUNCH/VMRESUME failure (i.e. one which sets the high bit
of the exit reason field), the launch state of the current VMCS is not
set to "launched," and only two of the VM-exit information fields of
the current VMCS are modified (exit reason and exit
qualification). The remaining VM-exit information fields of the
current VMCS (including IDT-vectoring information, in particular) are
stale.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>