Commit Graph

97 Commits

Author SHA1 Message Date
Linus Torvalds eadf16a912 This mostly includes the PPC changes for 4.1, which this time cover
Book3S HV only (debugging aids, minor performance improvements and some
 cleanups).  But there are also bug fixes and small cleanups for ARM,
 x86 and s390.
 
 The task_migration_notifier revert and real fix is still pending review,
 but I'll send it as soon as possible after -rc1.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJVOONLAAoJEL/70l94x66DbsMIAIpZPsaqgXOC1sDEiZuYay+6
 rD4n4id7j8hIAzcf3AlZdyf5XgLlr6I1Zyt62s1WcoRq/CCnL7k9EljzSmw31WFX
 P2y7/J0iBdkn0et+PpoNThfL2GsgTqNRCLOOQlKgEQwMP9Dlw5fnUbtC1UchOzTg
 eAMeBIpYwufkWkXhdMw4PAD4lJ9WxUZ1eXHEBRzJb0o0ZxAATJ1tPZGrFJzoUOSM
 WsVNTuBsNd7upT02kQdvA1TUo/OPjseTOEoksHHwfcORt6bc5qvpctL3jYfcr7sk
 /L6sIhYGVNkjkuredjlKGLfT2DDJjSEdJb1k2pWrDRsY76dmottQubAE9J9cDTk=
 =OAi2
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull second batch of KVM changes from Paolo Bonzini:
 "This mostly includes the PPC changes for 4.1, which this time cover
  Book3S HV only (debugging aids, minor performance improvements and
  some cleanups).  But there are also bug fixes and small cleanups for
  ARM, x86 and s390.

  The task_migration_notifier revert and real fix is still pending
  review, but I'll send it as soon as possible after -rc1"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (29 commits)
  KVM: arm/arm64: check IRQ number on userland injection
  KVM: arm: irqfd: fix value returned by kvm_irq_map_gsi
  KVM: VMX: Preserve host CR4.MCE value while in guest mode.
  KVM: PPC: Book3S HV: Use msgsnd for signalling threads on POWER8
  KVM: PPC: Book3S HV: Translate kvmhv_commence_exit to C
  KVM: PPC: Book3S HV: Streamline guest entry and exit
  KVM: PPC: Book3S HV: Use bitmap of active threads rather than count
  KVM: PPC: Book3S HV: Use decrementer to wake napping threads
  KVM: PPC: Book3S HV: Don't wake thread with no vcpu on guest IPI
  KVM: PPC: Book3S HV: Get rid of vcore nap_count and n_woken
  KVM: PPC: Book3S HV: Move vcore preemption point up into kvmppc_run_vcpu
  KVM: PPC: Book3S HV: Minor cleanups
  KVM: PPC: Book3S HV: Simplify handling of VCPUs that need a VPA update
  KVM: PPC: Book3S HV: Accumulate timing information for real-mode code
  KVM: PPC: Book3S HV: Create debugfs file for each guest's HPT
  KVM: PPC: Book3S HV: Add ICP real mode counters
  KVM: PPC: Book3S HV: Move virtual mode ICP functions to real-mode
  KVM: PPC: Book3S HV: Convert ICS mutex lock to spin lock
  KVM: PPC: Book3S HV: Add guest->host real mode completion counters
  KVM: PPC: Book3S HV: Add helpers for lock/unlock hpte
  ...
2015-04-26 13:06:22 -07:00
David Gibson 99342cf804 kvmppc: Implement H_LOGICAL_CI_{LOAD,STORE} in KVM
On POWER, storage caching is usually configured via the MMU - attributes
such as cache-inhibited are stored in the TLB and the hashed page table.

This makes correctly performing cache inhibited IO accesses awkward when
the MMU is turned off (real mode).  Some CPU models provide special
registers to control the cache attributes of real mode load and stores but
this is not at all consistent.  This is a problem in particular for SLOF,
the firmware used on KVM guests, which runs entirely in real mode, but
which needs to do IO to load the kernel.

To simplify this qemu implements two special hypercalls, H_LOGICAL_CI_LOAD
and H_LOGICAL_CI_STORE which simulate a cache-inhibited load or store to
a logical address (aka guest physical address).  SLOF uses these for IO.

However, because these are implemented within qemu, not the host kernel,
these bypass any IO devices emulated within KVM itself.  The simplest way
to see this problem is to attempt to boot a KVM guest from a virtio-blk
device with iothread / dataplane enabled.  The iothread code relies on an
in kernel implementation of the virtio queue notification, which is not
triggered by the IO hcalls, and so the guest will stall in SLOF unable to
load the guest OS.

This patch addresses this by providing in-kernel implementations of the
2 hypercalls, which correctly scan the KVM IO bus.  Any access to an
address not handled by the KVM IO bus will cause a VM exit, hitting the
qemu implementation as before.

Note that a userspace change is also required, in order to enable these
new hcall implementations with KVM_CAP_PPC_ENABLE_HCALL.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[agraf: fix compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:28 +02:00
Frederic Weisbecker c5ae732a44 ppc: Remove unused cpp symbols in kvm headers
These don't seem to be used anywhere.

Acked-by: Rik van Riel <riel@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will deacon <will.deacon@arm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2015-03-09 16:40:48 +02:00
Paul Mackerras c17b98cf60 KVM: PPC: Book3S HV: Remove code for PPC970 processors
This removes the code that was added to enable HV KVM to work
on PPC970 processors.  The PPC970 is an old CPU that doesn't
support virtualizing guest memory.  Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.

Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:44:03 +01:00
Alexander Graf 8e6afa36e7 KVM: PPC: PR: Handle FSCR feature deselects
We handle FSCR feature bits (well, TAR only really today) lazily when the guest
starts using them. So when a guest activates the bit and later uses that feature
we enable it for real in hardware.

However, when the guest stops using that bit we don't stop setting it in
hardware. That means we can potentially lose a trap that the guest expects to
happen because it thinks a feature is not active.

This patch adds support to drop TAR when then guest turns it off in FSCR. While
at it it also restricts FSCR access to 64bit systems - 32bit ones don't have it.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-31 10:23:46 +02:00
Alexander Graf c12fb43c2f KVM: PPC: Handle magic page in kvmppc_ld/st
We use kvmppc_ld and kvmppc_st to emulate load/store instructions that may as
well access the magic page. Special case it out so that we can properly access
it.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:35:53 +02:00
Alexander Graf 35c4a7330d KVM: PPC: Move kvmppc_ld/st to common code
We have enough common infrastructure now to resolve GVA->GPA mappings at
runtime. With this we can move our book3s specific helpers to load / store
in guest virtual address space to common code as well.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:27:12 +02:00
Mihai Caraman 51f047261e KVM: PPC: Allow kvmppc_get_last_inst() to fail
On book3e, guest last instruction is read on the exit path using load
external pid (lwepx) dedicated instruction. This load operation may fail
due to TLB eviction and execute-but-not-read entries.

This patch lay down the path for an alternative solution to read the guest
last instruction, by allowing kvmppc_get_lat_inst() function to fail.
Architecture specific implmentations of kvmppc_load_last_inst() may read
last guest instruction and instruct the emulation layer to re-execute the
guest in case of failure.

Make kvmppc_get_last_inst() definition common between architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Alexander Graf 89b68c96a2 KVM: PPC: Book3S: Make magic page properly 4k mappable
The magic page is defined as a 4k page of per-vCPU data that is shared
between the guest and the host to accelerate accesses to privileged
registers.

However, when the host is using 64k page size granularity we weren't quite
as strict about that rule anymore. Instead, we partially treated all of the
upper 64k as magic page and mapped only the uppermost 4k with the actual
magic contents.

This works well enough for Linux which doesn't use any memory in kernel
space in the upper 64k, but Mac OS X got upset. So this patch makes magic
page actually stay in a 4k range even on 64k page size hosts.

This patch fixes magic page usage with Mac OS X (using MOL) on 64k PAGE_SIZE
hosts for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00
Alexander Graf c01e3f66cd KVM: PPC: Book3S: Add hack for split real mode
Today we handle split real mode by mapping both instruction and data faults
into a special virtual address space that only exists during the split mode
phase.

This is good enough to catch 32bit Linux guests that use split real mode for
copy_from/to_user. In this case we're always prefixed with 0xc0000000 for our
instruction pointer and can map the user space process freely below there.

However, that approach fails when we're running KVM inside of KVM. Here the 1st
level last_inst reader may well be in the same virtual page as a 2nd level
interrupt handler.

It also fails when running Mac OS X guests. Here we have a 4G/4G split, so a
kernel copy_from/to_user implementation can easily overlap with user space
addresses.

The architecturally correct way to fix this would be to implement an instruction
interpreter in KVM that kicks in whenever we go into split real mode. This
interpreter however would not receive a great amount of testing and be a lot of
bloat for a reasonably isolated corner case.

So I went back to the drawing board and tried to come up with a way to make
split real mode work with a single flat address space. And then I realized that
we could get away with the same trick that makes it work for Linux:

Whenever we see an instruction address during split real mode that may collide,
we just move it higher up the virtual address space to a place that hopefully
does not collide (keep your fingers crossed!).

That approach does work surprisingly well. I am able to successfully run
Mac OS X guests with KVM and QEMU (no split real mode hacks like MOL) when I
apply a tiny timing probe hack to QEMU. I'd say this is a win over even more
broken split real mode :).

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:10 +02:00
Alexander Graf 6f22bd3265 KVM: PPC: Book3S HV: Make HTAB code LE host aware
When running on an LE host all data structures are kept in little endian
byte order. However, the HTAB still needs to be maintained in big endian.

So every time we access any HTAB we need to make sure we do so in the right
byte order. Fix up all accesses to manually byte swap.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:22 +02:00
Paul Mackerras ae2113a4f1 KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
capability is used to enable or disable in-kernel handling of an
hcall, that the hcall is actually implemented by the kernel.
If not an EINVAL error is returned.

This also checks the default-enabled list of hcalls and prints a
warning if any hcall there is not actually implemented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:18 +02:00
Paul Mackerras 699a0ea082 KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
This provides a way for userspace controls which sPAPR hcalls get
handled in the kernel.  Each hcall can be individually enabled or
disabled for in-kernel handling, except for H_RTAS.  The exception
for H_RTAS is because userspace can already control whether
individual RTAS functions are handled in-kernel or not via the
KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
H_RTAS is out of the normal sequence of hcall numbers.

Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
The args field of the struct kvm_enable_cap specifies the hcall number
in args[0] and the enable/disable flag in args[1]; 0 means disable
in-kernel handling (so that the hcall will always cause an exit to
userspace) and 1 means enable.  Enabling or disabling in-kernel
handling of an hcall is effective across the whole VM.

The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
capability advertises that this ability exists.

When a VM is created, an initial set of hcalls are enabled for
in-kernel handling.  The set that is enabled is the set that have
an in-kernel implementation at this point.  Any new hcall
implementations from this point onwards should not be added to the
default set without a good reason.

No distinction is made between real-mode and virtual-mode hcall
implementations; the one setting controls them both.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:17 +02:00
Aneesh Kumar K.V 3cd60e3118 KVM: PPC: BOOK3S: PR: Fix PURR and SPURR emulation
We use time base for PURR and SPURR emulation with PR KVM since we
are emulating a single threaded core. When using time base
we need to make sure that we don't accumulate time spent in the host
in PURR and SPURR value.

Also we don't need to emulate mtspr because both the registers are
hypervisor resource.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-06 13:56:49 +02:00
Alexander Graf 5deb8e7ad8 KVM: PPC: Make shared struct aka magic page guest endian
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.

When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.

Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.

For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.

For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:21 +02:00
Greg Kurz e59d24e612 KVM: PPC: Book3S HV: Fix incorrect userspace exit on ioeventfd write
When the guest does an MMIO write which is handled successfully by an
ioeventfd, ioeventfd_write() returns 0 (success) and
kvmppc_handle_store() returns EMULATE_DONE.  Then
kvmppc_emulate_mmio() converts EMULATE_DONE to RESUME_GUEST_NV and
this causes an exit from the loop in kvmppc_vcpu_run_hv(), causing an
exit back to userspace with a bogus exit reason code, typically
causing userspace (e.g. qemu) to crash with a message about an unknown
exit code.

This adds handling of RESUME_GUEST_NV in kvmppc_vcpu_run_hv() in order
to fix that.  For generality, we define a helper to check for either
of the return-to-guest codes we use, RESUME_GUEST and RESUME_GUEST_NV,
to make it easy to check for either and provide one place to update if
any other return-to-guest code gets defined in future.

Since it only affects Book3S HV for now, the helper is added to
the kvm_book3s.h header file.

We use the helper in two places in kvmppc_run_core() as well for
future-proofing, though we don't see RESUME_GUEST_NV in either place
at present.

[paulus@samba.org - combined 4 patches into one, rewrote description]

Suggested-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2014-03-26 23:33:44 +11:00
Paolo Bonzini b73117c493 Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
Conflicts:
	arch/powerpc/kvm/book3s_hv_rmhandlers.S
	arch/powerpc/kvm/booke.c
2014-01-29 18:29:01 +01:00
Cédric Le Goater 736017752d KVM: PPC: Book3S: MMIO emulation support for little endian guests
MMIO emulation reads the last instruction executed by the guest
and then emulates. If the guest is running in Little Endian order,
or more generally in a different endian order of the host, the
instruction needs to be byte-swapped before being emulated.

This patch adds a helper routine which tests the endian order of
the host and the guest in order to decide whether a byteswap is
needed or not. It is then used to byteswap the last instruction
of the guest in the endian order of the host before MMIO emulation
is performed.

Finally, kvmppc_handle_load() of kvmppc_handle_store() are modified
to reverse the endianness of the MMIO if required.

Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
[agraf: add booke handling]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:39 +01:00
Alexander Graf 7a8ff56be6 KVM: PPC: Unify kvmppc_get_last_inst and sc
We had code duplication between the inline functions to get our last
instruction on normal interrupts and system call interrupts. Unify
both helper functions towards a single implementation.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 11:10:46 +01:00
Paul Mackerras 09548fdaf3 KVM: PPC: Use load_fp/vr_state rather than load_up_fpu/altivec
The load_up_fpu and load_up_altivec functions were never intended to
be called from C, and do things like modifying the MSR value in their
callers' stack frames, which are assumed to be interrupt frames.  In
addition, on 32-bit Book S they require the MMU to be off.

This makes KVM use the new load_fp_state() and load_vr_state() functions
instead of load_up_fpu/altivec.  This means we can remove the assembler
glue in book3s_rmhandlers.S, and potentially fixes a bug on Book E,
where load_up_fpu was called directly from C.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:59 +01:00
Alexander Graf c9dad7f9db KVM: PPC: Book3S: PR: Export kvmppc_copy_to|from_svcpu
The kvmppc_copy_{to,from}_svcpu functions are publically visible,
so we should also export them in a header for others C files to
consume.

So far we didn't need this because we only called it from asm code.
The next patch will introduce a C caller.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-09 09:41:38 +01:00
Aneesh Kumar K.V 699cc87641 kvm: powerpc: book3s: Add is_hv_enabled to kvmppc_ops
This help us to identify whether we are running with hypervisor mode KVM
enabled. The change is needed so that we can have both HV and PR kvm
enabled in the same kernel.

If both HV and PR KVM are included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest.

Allowing both PR and HV in the same kernel required some changes to
kvm_dev_ioctl_check_extension(), since the values returned now can't
be selected with #ifdefs as much as previously. We look at is_hv_enabled
to return the right value when checking for capabilities.For capabilities that
are only provided by HV KVM, we return the HV value only if
is_hv_enabled is true. For capabilities provided by PR KVM but not HV,
we return the PR value only if is_hv_enabled is false.

NOTE: in later patch we replace is_hv_enabled with a static inline
function comparing kvm_ppc_ops

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:29:09 +02:00
Aneesh Kumar K.V 3a167beac0 kvm: powerpc: Add kvmppc_ops callback
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:24:26 +02:00
Aneesh Kumar K.V 9975f5e369 kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLE
This help ups to select the relevant code in the kernel code
when we later move HV and PR bits as seperate modules. The patch
also makes the config options for PR KVM selectable

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:18:28 +02:00
Aneesh Kumar K.V 7aa79938f7 kvm: powerpc: book3s: pr: Rename KVM_BOOK3S_PR to KVM_BOOK3S_PR_POSSIBLE
With later patches supporting PR kvm as a kernel module, the changes
that has to be built into the main kernel binary to enable PR KVM module
is now selected via KVM_BOOK3S_PR_POSSIBLE

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:17:49 +02:00
Paul Mackerras d78bca7296 KVM: PPC: Book3S PR: Use mmu_notifier_retry() in kvmppc_mmu_map_page()
When the MM code is invalidating a range of pages, it calls the KVM
kvm_mmu_notifier_invalidate_range_start() notifier function, which calls
kvm_unmap_hva_range(), which arranges to flush all the existing host
HPTEs for guest pages.  However, the Linux PTEs for the range being
flushed are still valid at that point.  We are not supposed to establish
any new references to pages in the range until the ...range_end()
notifier gets called.  The PPC-specific KVM code doesn't get any
explicit notification of that; instead, we are supposed to use
mmu_notifier_retry() to test whether we are or have been inside a
range flush notifier pair while we have been getting a page and
instantiating a host HPTE for the page.

This therefore adds a call to mmu_notifier_retry inside
kvmppc_mmu_map_page().  This call is inside a region locked with
kvm->mmu_lock, which is the same lock that is called by the KVM
MMU notifier functions, thus ensuring that no new notification can
proceed while we are in the locked region.  Inside this region we
also create the host HPTE and link the corresponding hpte_cache
structure into the lists used to find it later.  We cannot allocate
the hpte_cache structure inside this locked region because that can
lead to deadlock, so we allocate it outside the region and free it
if we end up not using it.

This also moves the updates of vcpu3s->hpte_cache_count inside the
regions locked with vcpu3s->mmu_lock, and does the increment in
kvmppc_mmu_hpte_cache_map() when the pte is added to the cache
rather than when it is allocated, in order that the hpte_cache_count
is accurate.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:35 +02:00
Paul Mackerras 93b159b466 KVM: PPC: Book3S PR: Better handling of host-side read-only pages
Currently we request write access to all pages that get mapped into the
guest, even if the guest is only loading from the page.  This reduces
the effectiveness of KSM because it means that we unshare every page we
access.  Also, we always set the changed (C) bit in the guest HPTE if
it allows writing, even for a guest load.

This fixes both these problems.  We pass an 'iswrite' flag to the
mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
the access is a load or a store.  The mmu.xlate() functions now only
set C for stores.  kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
instead of gfn_to_pfn() so that it can indicate whether we need write
access to the page, and get back a 'writable' flag to indicate whether
the page is writable or not.  If that 'writable' flag is clear, we then
make the host HPTE read-only even if the guest HPTE allowed writing.

This means that we can get a protection fault when the guest writes to a
page that it has mapped read-write but which is read-only on the host
side (perhaps due to KSM having merged the page).  Thus we now call
kvmppc_handle_pagefault() for protection faults as well as HPTE not found
faults.  In kvmppc_handle_pagefault(), if the access was allowed by the
guest HPTE and we thus need to install a new host HPTE, we then need to
remove the old host HPTE if there is one.  This is done with a new
function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
find and remove the old host HPTE.

Since the memslot-related functions require the KVM SRCU read lock to
be held, this adds srcu_read_lock/unlock pairs around the calls to
kvmppc_handle_pagefault().

Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
guest HPTEs that don't permit access, and to return -EPERM for accesses
that are not permitted by the page protections.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:35 +02:00
Paul Mackerras 3ff955024d KVM: PPC: Book3S PR: Allocate kvm_vcpu structs from kvm_vcpu_cache
This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache
rather than having them embedded in the kvmppc_vcpu_book3s struct,
which is allocated with vzalloc.  The reason is to reduce the
differences between PR and HV KVM in order to make is easier to have
them coexist in one kernel binary.

With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s
struct.  The pointer to the kvmppc_book3s_shadow_vcpu struct has moved
from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only
present for 32-bit, since it is only used for 32-bit.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: squash in compile fix from Aneesh]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:05 +02:00
Paul Mackerras c9029c341d KVM: PPC: Book3S PR: Use 64k host pages where possible
Currently, PR KVM uses 4k pages for the host-side mappings of guest
memory, regardless of the host page size.  When the host page size is
64kB, we might as well use 64k host page mappings for guest mappings
of 64kB and larger pages and for guest real-mode mappings.  However,
the magic page has to remain a 4k page.

To implement this, we first add another flag bit to the guest VSID
values we use, to indicate that this segment is one where host pages
should be mapped using 64k pages.  For segments with this bit set
we set the bits in the shadow SLB entry to indicate a 64k base page
size.  When faulting in host HPTEs for this segment, we make them
64k HPTEs instead of 4k.  We record the pagesize in struct hpte_cache
for use when invalidating the HPTE.

For now we restrict the segment containing the magic page (if any) to
4k pages.  It should be possible to lift this restriction in future
by ensuring that the magic 4k page is appropriately positioned within
a host 64k page.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:03 +02:00
Paul Mackerras a4a0f2524a KVM: PPC: Book3S PR: Allow guest to use 64k pages
This adds the code to interpret 64k HPTEs in the guest hashed page
table (HPT), 64k SLB entries, and to tell the guest about 64k pages
in kvm_vm_ioctl_get_smmu_info().  Guest 64k pages are still shadowed
by 4k pages.

This also adds another hash table to the four we have already in
book3s_mmu_hpte.c to allow us to find all the PTEs that we have
instantiated that match a given 64k guest page.

The tlbie instruction changed starting with POWER6 to use a bit in
the RB operand to indicate large page invalidations, and to use other
RB bits to indicate the base and actual page sizes and the segment
size.  64k pages came in slightly earlier, with POWER5++.
We use one bit in vcpu->arch.hflags to indicate that the emulated
cpu supports 64k pages, and another to indicate that it has the new
tlbie definition.

The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because
the MMU capabilities depend on which CPU model we're emulating, but it
is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU
fd.  In addition, commonly-used userspace (QEMU) calls it before
setting the PVR for any VCPU.  Therefore, as a best effort we look at
the first vcpu in the VM and return 64k pages or not depending on its
capabilities.  We also make the PVR default to the host PVR on recent
CPUs that support 1TB segments (and therefore multiple page sizes as
well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB
segment support on those CPUs.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:03 +02:00
Paul Mackerras a2d56020d1 KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu
Currently PR-style KVM keeps the volatile guest register values
(R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than
the main kvm_vcpu struct.  For 64-bit, the shadow_vcpu exists in two
places, a kmalloc'd struct and in the PACA, and it gets copied back
and forth in kvmppc_core_vcpu_load/put(), because the real-mode code
can't rely on being able to access the kmalloc'd struct.

This changes the code to copy the volatile values into the shadow_vcpu
as one of the last things done before entering the guest.  Similarly
the values are copied back out of the shadow_vcpu to the kvm_vcpu
immediately after exiting the guest.  We arrange for interrupts to be
still disabled at this point so that we can't get preempted on 64-bit
and end up copying values from the wrong PACA.

This means that the accessor functions in kvm_book3s.h for these
registers are greatly simplified, and are same between PR and HV KVM.
In places where accesses to shadow_vcpu fields are now replaced by
accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs.
Finally, on 64-bit, we don't need the kmalloc'd struct at all any more.

With this, the time to read the PVR one million times in a loop went
from 567.7ms to 575.5ms (averages of 6 values), an increase of about
1.4% for this worse-case test for guest entries and exits.  The
standard deviation of the measurements is about 11ms, so the
difference is only marginally significant statistically.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:03 +02:00
Paul Mackerras a0144e2a6b KVM: PPC: Book3S HV: Store LPCR value for each virtual core
This adds the ability to have a separate LPCR (Logical Partitioning
Control Register) value relating to a guest for each virtual core,
rather than only having a single value for the whole VM.  This
corresponds to what real POWER hardware does, where there is a LPCR
per CPU thread but most of the fields are required to have the same
value on all active threads in a core.

The per-virtual-core LPCR can be read and written using the
GET/SET_ONE_REG interface.  Userspace can can only modify the
following fields of the LPCR value:

DPFD	Default prefetch depth
ILE	Interrupt little-endian
TC	Translation control (secondary HPT hash group search disable)

We still maintain a per-VM default LPCR value in kvm->arch.lpcr, which
contains bits relating to memory management, i.e. the Virtualized
Partition Memory (VPM) bits and the bits relating to guest real mode.
When this default value is updated, the update needs to be propagated
to the per-vcore values, so we add a kvmppc_update_lpcr() helper to do
that.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:01 +02:00
Paul Mackerras 8b23de2948 KVM: PPC: Book3S PR: Make instruction fetch fallback work for system calls
It turns out that if we exit the guest due to a hcall instruction (sc 1),
and the loading of the instruction in the guest exit path fails for any
reason, the call to kvmppc_ld() in kvmppc_get_last_inst() fetches the
instruction after the hcall instruction rather than the hcall itself.
This in turn means that the instruction doesn't get recognized as an
hcall in kvmppc_handle_exit_pr() but gets passed to the guest kernel
as a sc instruction.  That usually results in the guest kernel getting
a return code of 38 (ENOSYS) from an hcall, which often triggers a
BUG_ON() or other failure.

This fixes the problem by adding a new variant of kvmppc_get_last_inst()
called kvmppc_get_last_sc(), which fetches the instruction if necessary
from pc - 4 rather than pc.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-08-28 16:47:49 +02:00
Paul Mackerras 0f296829b5 KVM: PPC: Book3S PR: Allow guest to use 1TB segments
With this, the guest can use 1TB segments as well as 256MB segments.
Since we now have the situation where a single emulated guest segment
could correspond to multiple shadow segments (as the shadow segments
are still 256MB segments), this adds a new kvmppc_mmu_flush_segment()
to scan for all shadow segments that need to be removed.

This restructures the guest HPT (hashed page table) lookup code to
use the correct hashing and matching functions for HPTEs within a
1TB segment.  We use the standard hpt_hash() function instead of
open-coding the hash calculation, and we use HPTE_V_COMPARE() with
an AVPN value that has the B (segment size) field included.  The
calculation of avpn is done a little earlier since it doesn't change
in the loop starting at the do_second label.

The computation in kvmppc_mmu_book3s_64_esid_to_vsid() changes so that
it returns a 256MB VSID even if the guest SLB entry is a 1TB entry.
This is because the users of this function are creating 256MB SLB
entries.  We set a new VSID_1T flag so that entries created from 1T
segments don't collide with entries from 256MB segments.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-06-30 03:33:22 +02:00
Benjamin Herrenschmidt bc5ad3f370 KVM: PPC: Book3S: Add kernel emulation for the XICS interrupt controller
This adds in-kernel emulation of the XICS (eXternal Interrupt
Controller Specification) interrupt controller specified by PAPR, for
both HV and PR KVM guests.

The XICS emulation supports up to 1048560 interrupt sources.
Interrupt source numbers below 16 are reserved; 0 is used to mean no
interrupt and 2 is used for IPIs.  Internally these are represented in
blocks of 1024, called ICS (interrupt controller source) entities, but
that is not visible to userspace.

Each vcpu gets one ICP (interrupt controller presentation) entity,
used to store the per-vcpu state such as vcpu priority, pending
interrupt state, IPI request, etc.

This does not include any API or any way to connect vcpus to their
ICP state; that will be added in later patches.

This is based on an initial implementation by Michael Ellerman
<michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
Paul Mackerras.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix typo, add dependency on !KVM_MPIC]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:30 +02:00
Paul Mackerras c35635efdc KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest.  This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.

However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration.  In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host.  Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary.  Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.

So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain.  This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty.  To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page.  Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:13 +02:00
Bharat Bhushan 8c32a2ea65 Added ONE_REG interface for debug instruction
This patch adds the one_reg interface to get the special instruction
to be used for setting software breakpoint from userspace.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-17 15:21:14 +02:00
Paul Mackerras b0a94d4e23 KVM: PPC: Book3S PR: Emulate PURR, SPURR and DSCR registers
This adds basic emulation of the PURR and SPURR registers.  We assume
we are emulating a single-threaded core, so these advance at the same
rate as the timebase.  A Linux kernel running on a POWER7 expects to
be able to access these registers and is not prepared to handle a
program interrupt on accessing them.

This also adds a very minimal emulation of the DSCR (data stream
control register).  Writes are ignored and reads return zero.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:01 +01:00
Paul Mackerras 6b445ad4f8 KVM: PPC: Book3S HV: Make a HPTE removal function available
This makes a HPTE removal function, kvmppc_do_h_remove(), available
outside book3s_hv_rm_mmu.c.  This will be used by the HPT writing
code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:33:55 +01:00
Paul Mackerras 7ed661bf85 KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer.  It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.

Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter.  The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.

Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory.  Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl.  With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:33:52 +01:00
Marcelo Tosatti 19bf7f8ac3 Merge remote-tracking branch 'master' into queue
Merge reason: development work has dependency on kvm patches merged
upstream.

Conflicts:
	arch/powerpc/include/asm/Kbuild
	arch/powerpc/include/asm/kvm_para.h

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-10-29 19:15:32 -02:00
Paul Mackerras dfe49dbd1f KVM: PPC: Book3S HV: Handle memory slot deletion and modification correctly
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot.  With this,
we can handle deletion and modification of memory slots.

kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot.  This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.

We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does.  We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:51 +02:00
Aneesh Kumar K.V 5524a27d39 powerpc/mm: Convert virtual address to vpn
This patch convert different functions to take virtual page number
instead of virtual address. Virtual page number is virtual address
shifted right by VPN_SHIFT (12) bits. This enable us to have an
address range of upto 76 bits.

Reviewed-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-17 16:31:49 +10:00
Linus Torvalds 07acfc2a93 Merge branch 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM changes from Avi Kivity:
 "Changes include additional instruction emulation, page-crossing MMIO,
  faster dirty logging, preventing the watchdog from killing a stopped
  guest, module autoload, a new MSI ABI, and some minor optimizations
  and fixes.  Outside x86 we have a small s390 and a very large ppc
  update.

  Regarding the new (for kvm) rebaseless workflow, some of the patches
  that were merged before we switch trees had to be rebased, while
  others are true pulls.  In either case the signoffs should be correct
  now."

Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.

I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)

* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
  KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
  KVM: s390: onereg for timer related registers
  KVM: s390: epoch difference and TOD programmable field
  KVM: s390: KVM_GET/SET_ONEREG for s390
  KVM: s390: add capability indicating COW support
  KVM: Fix mmu_reload() clash with nested vmx event injection
  KVM: MMU: Don't use RCU for lockless shadow walking
  KVM: VMX: Optimize %ds, %es reload
  KVM: VMX: Fix %ds/%es clobber
  KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
  KVM: VMX: unlike vmcs on fail path
  KVM: PPC: Emulator: clean up SPR reads and writes
  KVM: PPC: Emulator: clean up instruction parsing
  kvm/powerpc: Add new ioctl to retreive server MMU infos
  kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
  KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
  KVM: PPC: Book3S: Enable IRQs during exit handling
  KVM: PPC: Fix PR KVM on POWER7 bare metal
  KVM: PPC: Fix stbux emulation
  KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
  ...
2012-05-24 16:17:30 -07:00
Benjamin Herrenschmidt ffe3649282 powerpc/kvm: Fix VSID usage in 64-bit "PR" KVM
The code forgot to scramble the VSIDs the way we normally do
and was basically using the "proto VSID" directly with the MMU.

This means that in practice, KVM used random VSIDs that could
collide with segments used by other user space programs.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: simplify ppc32 case]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-16 15:02:11 +02:00
Scott Wood 043cc4d724 KVM: PPC: factor out lpid allocator from book3s_64_mmu_hv
We'll use it on e500mc as well.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:51:02 +03:00
Alexander Graf 1022fc3d3b KVM: PPC: Add support for explicit HIOR setting
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.

We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:41 +02:00
Paul Mackerras 82ed36164c KVM: PPC: Book3s HV: Implement get_dirty_log using hardware changed bit
This changes the implementation of kvm_vm_ioctl_get_dirty_log() for
Book3s HV guests to use the hardware C (changed) bits in the guest
hashed page table.  Since this makes the implementation quite different
from the Book3s PR case, this moves the existing implementation from
book3s.c to book3s_pr.c and creates a new implementation in book3s_hv.c.
That implementation calls kvmppc_hv_get_dirty_log() to do the actual
work by calling kvm_test_clear_dirty on each page.  It iterates over
the HPTEs, clearing the C bit if set, and returns 1 if any C bit was
set (including the saved C bit in the rmap entry).

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:39 +02:00
Paul Mackerras 5551489373 KVM: PPC: Book3S HV: Use the hardware referenced bit for kvm_age_hva
This uses the host view of the hardware R (referenced) bit to speed
up kvm_age_hva() and kvm_test_age_hva().  Instead of removing all
the relevant HPTEs in kvm_age_hva(), we now just reset their R bits
if set.  Also, kvm_test_age_hva() now scans the relevant HPTEs to
see if any of them have R set.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:39 +02:00
Paul Mackerras 342d3db763 KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7.  Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page.  Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.

Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970.  We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out.  If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00