CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Mostly direct substitution with occasional adjustment or removing
outdated comments.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Page faults can race with fallocate hole punch. If a page fault happens
between the unmap and remove operations, the page is not removed and
remains within the hole. This is not the desired behavior. The race is
difficult to detect in user level code as even in the non-race case, a
page within the hole could be faulted back in before fallocate returns.
If userfaultfd is expanded to support hugetlbfs in the future, this race
will be easier to observe.
If this race is detected and a page is mapped, the remove operation
(remove_inode_hugepages) will unmap the page before removing. The unmap
within remove_inode_hugepages occurs with the hugetlb_fault_mutex held
so that no other faults will be processed until the page is removed.
The (unmodified) routine hugetlb_vmdelete_list was moved ahead of
remove_inode_hugepages to satisfy the new reference.
[akpm@linux-foundation.org: move hugetlb_vmdelete_list()]
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hillf Danton noticed bugs in the hugetlb_vmtruncate_list routine. The
argument end is of type pgoff_t. It was being converted to a vaddr
offset and passed to unmap_hugepage_range. However, end was also being
used as an argument to the vma_interval_tree_foreach controlling loop.
In addition, the conversion of end to vaddr offset was incorrect.
hugetlb_vmtruncate_list is called as part of a file truncate or
fallocate hole punch operation.
When truncating a hugetlbfs file, this bug could prevent some pages from
being unmapped. This is possible if there are multiple vmas mapping the
file, and there is a sufficiently sized hole between the mappings. The
size of the hole between two vmas (A,B) must be such that the starting
virtual address of B is greater than (ending virtual address of A <<
PAGE_SHIFT). In this case, the pages in B would not be unmapped. If
pages are not properly unmapped during truncate, the following BUG is
hit:
kernel BUG at fs/hugetlbfs/inode.c:428!
In the fallocate hole punch case, this bug could prevent pages from
being unmapped as in the truncate case. However, for hole punch the
result is that unmapped pages will not be removed during the operation.
For hole punch, it is also possible that more pages than desired will be
unmapped. This unnecessary unmapping will cause page faults to
reestablish the mappings on subsequent page access.
Fixes: 1bfad99ab (" hugetlbfs: hugetlb_vmtruncate_list() needs to take a range")Reported-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org> [4.3]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dmitry Vyukov has reported[1] possible deadlock (triggered by his
syzkaller fuzzer):
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&hugetlbfs_i_mmap_rwsem_key);
lock(&mapping->i_mmap_rwsem);
lock(&hugetlbfs_i_mmap_rwsem_key);
lock(&mapping->i_mmap_rwsem);
Both traces points to mm_take_all_locks() as a source of the problem.
It doesn't take care about ordering or hugetlbfs_i_mmap_rwsem_key (aka
mapping->i_mmap_rwsem for hugetlb mapping) vs. i_mmap_rwsem.
huge_pmd_share() does memory allocation under hugetlbfs_i_mmap_rwsem_key
and allocator can take i_mmap_rwsem if it hit reclaim. So we need to
take i_mmap_rwsem from all hugetlb VMAs before taking i_mmap_rwsem from
rest of VMAs.
The patch also documents locking order for hugetlbfs_i_mmap_rwsem_key.
[1] http://lkml.kernel.org/r/CACT4Y+Zu95tBs-0EvdiAKzUOsb4tczRRfCRTpLr4bg_OP9HuVg@mail.gmail.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Kconfig currently controlling compilation of this code is:
config HUGETLBFS
bool "HugeTLB file system support"
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that when
reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular case,
the init ordering gets moved to earlier levels when we use the more
appropriate initcalls here.
Originally I had the fs part and the mm part as separate commits, just
by happenstance of the nature of how I detected these non-modular use
cases. But that can possibly introduce regressions if the patch merge
ordering puts the fs part 1st -- as the 0-day testing reported a splat
at mount time.
Investigating with "initcall_debug" showed that the delta was
init_hugetlbfs_fs being called _before_ hugetlb_init instead of after. So
both the fs change and the mm change are here together.
In addition, it worked before due to luck of link order, since they were
both in the same initcall category. So we now have the fs part using
fs_initcall, and the mm part using subsys_initcall, which puts it one
bucket earlier. It now passes the basic sanity test that failed in
earlier 0-day testing.
We delete the MODULE_LICENSE tag and capture that information at the top
of the file alongside author comments, etc.
We don't replace module.h with init.h since the file already has that.
Also note that MODULE_ALIAS is a no-op for non-modular code.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reported-by: kernel test robot <ying.huang@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running the SPECint_rate gcc on some very large boxes it was
noticed that the system was spending lots of time in
mpol_shared_policy_lookup(). The gamess benchmark can also show it and
is what I mostly used to chase down the issue since the setup for that I
found to be easier.
To be clear the binaries were on tmpfs because of disk I/O requirements.
We then used text replication to avoid icache misses and having all the
copies banging on the memory where the instruction code resides. This
results in us hitting a bottleneck in mpol_shared_policy_lookup() since
lookup is serialised by the shared_policy lock.
I have only reproduced this on very large (3k+ cores) boxes. The
problem starts showing up at just a few hundred ranks getting worse
until it threatens to livelock once it gets large enough. For example
on the gamess benchmark at 128 ranks this area consumes only ~1% of
time, at 512 ranks it consumes nearly 13%, and at 2k ranks it is over
90%.
To alleviate the contention in this area I converted the spinlock to an
rwlock. This allows a large number of lookups to happen simultaneously.
The results were quite good reducing this consumtion at max ranks to
around 2%.
[akpm@linux-foundation.org: tidy up code comments]
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.
new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases. page_follow_link_light()
instrumented to yell about anything missed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Hugh Dickins pointed out problems with the new hugetlbfs fallocate hole
punch code. These problems are in the routine remove_inode_hugepages and
mostly occur in the case where there are holes in the range of pages to be
removed. These holes could be the result of a previous hole punch or
simply sparse allocation. The current code could access pages outside the
specified range.
remove_inode_hugepages handles both hole punch and truncate operations.
Page index handling was fixed/cleaned up so that the loop index always
matches the page being processed. The code now only makes a single pass
through the range of pages as it was determined page faults could not race
with truncate. A cond_resched() was added after removing up to
PAGEVEC_SIZE pages.
Some totally unnecessary code in hugetlbfs_fallocate() that remained from
early development was also removed.
Tested with fallocate tests submitted here:
http://librelist.com/browser//libhugetlbfs/2015/6/25/patch-tests-add-tests-for-fallocate-system-call/
And, some ftruncate tests under development
Fixes: b5cec28d36 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Hillf Danton" <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org> [4.3]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is based on the shmem version, but it has diverged quite a bit. We
have no swap to worry about, nor the new file sealing. Add
synchronication via the fault mutex table to coordinate page faults,
fallocate allocation and fallocate hole punch.
What this allows us to do is move physical memory in and out of a
hugetlbfs file without having it mapped. This also gives us the ability
to support MADV_REMOVE since it is currently implemented using
fallocate(). MADV_REMOVE lets madvise() remove pages from the middle of
a hugetlbfs file, which wasn't possible before.
hugetlbfs fallocate only operates on whole huge pages.
Based on code by Dave Hansen.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify truncate_hugepages() to take a range of pages (start, end)
instead of simply start. If an end value of LLONG_MAX is passed, the
current "truncate" functionality is maintained. Existing callers are
modified to pass LLONG_MAX as end of range. By keying off end ==
LLONG_MAX, the routine behaves differently for truncate and hole punch.
Page removal is now synchronized with page allocation via faults by
using the fault mutex table. The hole punch case can experience the
rare region_del error and must handle accordingly.
Add the routine hugetlb_fix_reserve_counts to fix up reserve counts in
the case where region_del returns an error.
Since the routine handles more than just the truncate case, it is
renamed to remove_inode_hugepages(). To be consistent, the routine
truncate_huge_page() is renamed remove_huge_page().
Downstream of remove_inode_hugepages(), the routine
hugetlb_unreserve_pages() is also modified to take a range of pages.
hugetlb_unreserve_pages is modified to detect an error from region_del and
pass it back to the caller.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fallocate hole punch will want to unmap a specific range of pages.
Modify the existing hugetlb_vmtruncate_list() routine to take a
start/end range. If end is 0, this indicates all pages after start
should be unmapped. This is the same as the existing truncate
functionality. Modify existing callers to add 0 as end of range.
Since the routine will be used in hole punch as well as truncate
operations, it is more appropriately renamed to hugetlb_vmdelete_list().
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shm implementation internally uses shmem or hugetlbfs inodes for shm
segments. As these inodes are never directly exposed to userspace and
only accessed through the shm operations which are already hooked by
security modules, mark the inodes with the S_PRIVATE flag so that inode
security initialization and permission checking is skipped.
This was motivated by the following lockdep warning:
======================================================
[ INFO: possible circular locking dependency detected ]
4.2.0-0.rc3.git0.1.fc24.x86_64+debug #1 Tainted: G W
-------------------------------------------------------
httpd/1597 is trying to acquire lock:
(&ids->rwsem){+++++.}, at: shm_close+0x34/0x130
but task is already holding lock:
(&mm->mmap_sem){++++++}, at: SyS_shmdt+0x4b/0x180
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&mm->mmap_sem){++++++}:
lock_acquire+0xc7/0x270
__might_fault+0x7a/0xa0
filldir+0x9e/0x130
xfs_dir2_block_getdents.isra.12+0x198/0x1c0 [xfs]
xfs_readdir+0x1b4/0x330 [xfs]
xfs_file_readdir+0x2b/0x30 [xfs]
iterate_dir+0x97/0x130
SyS_getdents+0x91/0x120
entry_SYSCALL_64_fastpath+0x12/0x76
-> #2 (&xfs_dir_ilock_class){++++.+}:
lock_acquire+0xc7/0x270
down_read_nested+0x57/0xa0
xfs_ilock+0x167/0x350 [xfs]
xfs_ilock_attr_map_shared+0x38/0x50 [xfs]
xfs_attr_get+0xbd/0x190 [xfs]
xfs_xattr_get+0x3d/0x70 [xfs]
generic_getxattr+0x4f/0x70
inode_doinit_with_dentry+0x162/0x670
sb_finish_set_opts+0xd9/0x230
selinux_set_mnt_opts+0x35c/0x660
superblock_doinit+0x77/0xf0
delayed_superblock_init+0x10/0x20
iterate_supers+0xb3/0x110
selinux_complete_init+0x2f/0x40
security_load_policy+0x103/0x600
sel_write_load+0xc1/0x750
__vfs_write+0x37/0x100
vfs_write+0xa9/0x1a0
SyS_write+0x58/0xd0
entry_SYSCALL_64_fastpath+0x12/0x76
...
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Reported-by: Morten Stevens <mstevens@fedoraproject.org>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have many duplicates in definitions of
hugetlb_prefault_arch_hook. In all architectures this function is empty.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
Merge second patchbomb from Andrew Morton:
- the rest of MM
- various misc bits
- add ability to run /sbin/reboot at reboot time
- printk/vsprintf changes
- fiddle with seq_printf() return value
* akpm: (114 commits)
parisc: remove use of seq_printf return value
lru_cache: remove use of seq_printf return value
tracing: remove use of seq_printf return value
cgroup: remove use of seq_printf return value
proc: remove use of seq_printf return value
s390: remove use of seq_printf return value
cris fasttimer: remove use of seq_printf return value
cris: remove use of seq_printf return value
openrisc: remove use of seq_printf return value
ARM: plat-pxa: remove use of seq_printf return value
nios2: cpuinfo: remove use of seq_printf return value
microblaze: mb: remove use of seq_printf return value
ipc: remove use of seq_printf return value
rtc: remove use of seq_printf return value
power: wakeup: remove use of seq_printf return value
x86: mtrr: if: remove use of seq_printf return value
linux/bitmap.h: improve BITMAP_{LAST,FIRST}_WORD_MASK
MAINTAINERS: CREDITS: remove Stefano Brivio from B43
.mailmap: add Ricardo Ribalda
CREDITS: add Ricardo Ribalda Delgado
...
Make 'min_size=<value>' be an option when mounting a hugetlbfs. This
option takes the same value as the 'size' option. min_size can be
specified without specifying size. If both are specified, min_size must
be less that or equal to size else the mount will fail. If min_size is
specified, then at mount time an attempt is made to reserve min_size
pages. If the reservation fails, the mount fails. At umount time, the
reserved pages are released.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull second vfs update from Al Viro:
"Now that net-next went in... Here's the next big chunk - killing
->aio_read() and ->aio_write().
There'll be one more pile today (direct_IO changes and
generic_write_checks() cleanups/fixes), but I'd prefer to keep that
one separate"
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
->aio_read and ->aio_write removed
pcm: another weird API abuse
infinibad: weird APIs switched to ->write_iter()
kill do_sync_read/do_sync_write
fuse: use iov_iter_get_pages() for non-splice path
fuse: switch to ->read_iter/->write_iter
switch drivers/char/mem.c to ->read_iter/->write_iter
make new_sync_{read,write}() static
coredump: accept any write method
switch /dev/loop to vfs_iter_write()
serial2002: switch to __vfs_read/__vfs_write
ashmem: use __vfs_read()
export __vfs_read()
autofs: switch to __vfs_write()
new helper: __vfs_write()
switch hugetlbfs to ->read_iter()
coda: switch to ->read_iter/->write_iter
ncpfs: switch to ->read_iter/->write_iter
net/9p: remove (now-)unused helpers
p9_client_attach(): set fid->uid correctly
...
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch replaces cancel_dirty_page() with a helper function
account_page_cleaned() which only updates counters. It's called from
truncate_complete_page() and from try_to_free_buffers() (hack for ext3).
Page is locked in both cases, page-lock protects against concurrent
dirtiers: see commit 2d6d7f9828 ("mm: protect set_page_dirty() from
ongoing truncation").
Delete_from_page_cache() shouldn't be called for dirty pages, they must
be handled by caller (either written or truncated). This patch treats
final dirty accounting fixup at the end of __delete_from_page_cache() as
a debug check and adds WARN_ON_ONCE() around it. If something removes
dirty pages without proper handling that might be a bug and unwritten
data might be lost.
Hugetlbfs has no dirty pages accounting, ClearPageDirty() is enough
here.
cancel_dirty_page() in nfs_wb_page_cancel() is redundant. This is
helper for nfs_invalidate_page() and it's called only in case complete
invalidation.
The mess was started in v2.6.20 after commits 46d2277c79 ("Clean up
and make try_to_free_buffers() not race with dirty pages") and
3e67c0987d ("truncate: clear page dirtiness before running
try_to_free_buffers()") first was reverted right in v2.6.20 in commit
ecdfc9787f ("Resurrect 'try_to_free_buffers()' VM hackery"), second in
v2.6.25 commit a2b345642f ("Fix dirty page accounting leak with ext3
data=journal").
Custom fixes were introduced between these points. NFS in v2.6.23, commit
1b3b4a1a2d ("NFS: Fix a write request leak in nfs_invalidate_page()").
Kludge in __delete_from_page_cache() in v2.6.24, commit 3a6927906f ("Do
dirty page accounting when removing a page from the page cache"). Since
v2.6.25 all of them are redundant.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
hugetlbfs, kernfs and dlmfs can simply use noop_backing_dev_info instead
of creating a local duplicate.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting
similar data, one for file backed pages and the other for anon memory. To
this end, this lock can also be a rwsem. In addition, there are some
important opportunities to share the lock when there are no tree
modifications.
This conversion is straightforward. For now, all users take the write
lock.
[sfr@canb.auug.org.au: update fremap.c]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix checkpatch warning:
WARNING: kfree(NULL) is safe this check is probably not required
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
...like other filesystems.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs_i_mmap_mutex_key is only used in inode.c
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, I am seeing the following when I `mount -t hugetlbfs /none
/dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's
related to the fact that hugetlbfs is properly not correctly setting
itself up in this state?:
Unable to handle kernel paging request for data at address 0x00000031
Faulting instruction address: 0xc000000000245710
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA pSeries
....
In KVM guests on Power, in a guest not backed by hugepages, we see the
following:
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 64 kB
HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages
are not supported at boot-time, but this is only checked in
hugetlb_init(). Extract the check to a helper function, and use it in a
few relevant places.
This does make hugetlbfs not supported (not registered at all) in this
environment. I believe this is fine, as there are no valid hugepages
and that won't change at runtime.
[akpm@linux-foundation.org: use pr_info(), per Mel]
[akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined]
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dynamic_dname() is both too much and too little for those - the
output may be well in excess of 64 bytes dynamic_dname() assumes
to be enough (thanks to ashmem feeding really long names to
shmem_file_setup()) and vsnprintf() is an overkill for those
guys.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Dave has reported the following lockdep splat:
=================================
[ INFO: inconsistent lock state ]
3.11.0-rc1+ #9 Not tainted
---------------------------------
inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
kswapd0/49 [HC0[0]:SC0[0]:HE1:SE1] takes:
(&mapping->i_mmap_mutex){+.+.?.}, at: [<c114971b>] page_referenced+0x87/0x5e3
{RECLAIM_FS-ON-W} state was registered at:
mark_held_locks+0x81/0xe7
lockdep_trace_alloc+0x5e/0xbc
__alloc_pages_nodemask+0x8b/0x9b6
__get_free_pages+0x20/0x31
get_zeroed_page+0x12/0x14
__pmd_alloc+0x1c/0x6b
huge_pmd_share+0x265/0x283
huge_pte_alloc+0x5d/0x71
hugetlb_fault+0x7c/0x64a
handle_mm_fault+0x255/0x299
__do_page_fault+0x142/0x55c
do_page_fault+0xd/0x16
error_code+0x6c/0x74
irq event stamp: 3136917
hardirqs last enabled at (3136917): _raw_spin_unlock_irq+0x27/0x50
hardirqs last disabled at (3136916): _raw_spin_lock_irq+0x15/0x78
softirqs last enabled at (3136180): __do_softirq+0x137/0x30f
softirqs last disabled at (3136175): irq_exit+0xa8/0xaa
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&mapping->i_mmap_mutex);
<Interrupt>
lock(&mapping->i_mmap_mutex);
*** DEADLOCK ***
no locks held by kswapd0/49.
stack backtrace:
CPU: 1 PID: 49 Comm: kswapd0 Not tainted 3.11.0-rc1+ #9
Hardware name: Dell Inc. Precision WorkStation 490 /0DT031, BIOS A08 04/25/2008
Call Trace:
dump_stack+0x4b/0x79
print_usage_bug+0x1d9/0x1e3
mark_lock+0x1e0/0x261
__lock_acquire+0x623/0x17f2
lock_acquire+0x7d/0x195
mutex_lock_nested+0x6c/0x3a7
page_referenced+0x87/0x5e3
shrink_page_list+0x3d9/0x947
shrink_inactive_list+0x155/0x4cb
shrink_lruvec+0x300/0x5ce
shrink_zone+0x53/0x14e
kswapd+0x517/0xa75
kthread+0xa8/0xaa
ret_from_kernel_thread+0x1b/0x28
which is a false positive caused by hugetlb pmd sharing code which
allocates a new pmd from withing mapping->i_mmap_mutex. If this
allocation causes reclaim then the lockdep detector complains that we
might self-deadlock.
This is not correct though, because hugetlb pages are not reclaimable so
their mapping will be never touched from the reclaim path.
The patch tells lockup detector that hugetlb i_mmap_mutex is special by
assigning it a separate lockdep class so it won't report possible
deadlocks on unrelated mappings.
[peterz@infradead.org: comment for annotation]
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current kernel returns -EINVAL unless a given mmap length is
"almost" hugepage aligned. This is because in sys_mmap_pgoff() the
given length is passed to vm_mmap_pgoff() as it is without being aligned
with hugepage boundary.
This is a regression introduced in commit 40716e2924 ("hugetlbfs: fix
alignment of huge page requests"), where alignment code is pushed into
hugetlb_file_setup() and the variable len in caller side is not changed.
To fix this, this patch partially reverts that commit, and adds
alignment code in caller side. And it also introduces hstate_sizelog()
in order to get proper hstate to specified hugepage size.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=56881
[akpm@linux-foundation.org: fix warning when CONFIG_HUGETLB_PAGE=n]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: <iceman_dvd@yahoo.com>
Cc: Steven Truelove <steven.truelove@utoronto.ca>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we fail to include any data on hugepages into coredump,
because VM_DONTDUMP is set on hugetlbfs's vma. This behavior was
recently introduced by commit 314e51b985 ("mm: kill vma flag
VM_RESERVED and mm->reserved_vm counter").
This looks to me a serious regression, so let's fix it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.
A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.
Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.
Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives. Allowing simple, safe,
well understood work-arounds to known problematic software.
This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work. While writing this patch I saw a handful of such
cases. The most significant being autofs that lives in the module
autofs4.
This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.
After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module. The common pattern in the kernel is to call request_module()
without regards to the users permissions. In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted. In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Allocating a file structure in function get_empty_filp() might fail because
of several reasons:
- not enough memory for file structures
- operation is not allowed
- user is over its limit
Currently the function returns NULL in all cases and we loose the exact
reason of the error. All callers of get_empty_filp() assume that the function
can fail with ENFILE only.
Return error through pointer. Change all callers to preserve this error code.
[AV: cleaned up a bit, carved the get_empty_filp() part out into a separate commit
(things remaining here deal with alloc_file()), removed pipe(2) behaviour change]
Signed-off-by: Anatol Pomozov <anatol.pomozov@gmail.com>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull trivial branch from Jiri Kosina:
"Usual stuff -- comment/printk typo fixes, documentation updates, dead
code elimination."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
HOWTO: fix double words typo
x86 mtrr: fix comment typo in mtrr_bp_init
propagate name change to comments in kernel source
doc: Update the name of profiling based on sysfs
treewide: Fix typos in various drivers
treewide: Fix typos in various Kconfig
wireless: mwifiex: Fix typo in wireless/mwifiex driver
messages: i2o: Fix typo in messages/i2o
scripts/kernel-doc: check that non-void fcts describe their return value
Kernel-doc: Convention: Use a "Return" section to describe return values
radeon: Fix typo and copy/paste error in comments
doc: Remove unnecessary declarations from Documentation/accounting/getdelays.c
various: Fix spelling of "asynchronous" in comments.
Fix misspellings of "whether" in comments.
eisa: Fix spelling of "asynchronous".
various: Fix spelling of "registered" in comments.
doc: fix quite a few typos within Documentation
target: iscsi: fix comment typos in target/iscsi drivers
treewide: fix typo of "suport" in various comments and Kconfig
treewide: fix typo of "suppport" in various comments
...
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a
guest, thus imposing performance penalties associated with the reduced
number of transparent huge pages that could be used by the guest workload.
This patch-set follows the main idea discussed at 2012 LSFMMS session:
"Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/
to introduce the required changes to the virtio_balloon driver, as well as
the changes to the core compaction & migration bits, in order to make
those subsystems aware of ballooned pages and allow memory balloon pages
become movable within a guest, thus avoiding the aforementioned
fragmentation issue
Following are numbers that prove this patch benefits on allowing
compaction to be more effective at memory ballooned guests.
Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite,
running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB
chunks, at every minute (inflating/deflating), while test was running:
===BEGIN stress-highalloc
STRESS-HIGHALLOC
highalloc-3.7 highalloc-3.7
rc4-clean rc4-patch
Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%)
Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%)
while Rested 75.00 ( 0.00%) 80.00 ( 5.00%)
MMTests Statistics: duration
3.7 3.7
rc4-clean rc4-patch
User 1207.59 1207.46
System 1300.55 1299.61
Elapsed 2273.72 2157.06
MMTests Statistics: vmstat
3.7 3.7
rc4-clean rc4-patch
Page Ins 3581516 2374368
Page Outs 11148692 10410332
Swap Ins 80 47
Swap Outs 3641 476
Direct pages scanned 37978 33826
Kswapd pages scanned 1828245 1342869
Kswapd pages reclaimed 1710236 1304099
Direct pages reclaimed 32207 31005
Kswapd efficiency 93% 97%
Kswapd velocity 804.077 622.546
Direct efficiency 84% 91%
Direct velocity 16.703 15.682
Percentage direct scans 2% 2%
Page writes by reclaim 79252 9704
Page writes file 75611 9228
Page writes anon 3641 476
Page reclaim immediate 16764 11014
Page rescued immediate 0 0
Slabs scanned 2171904 2152448
Direct inode steals 385 2261
Kswapd inode steals 659137 609670
Kswapd skipped wait 1 69
THP fault alloc 546 631
THP collapse alloc 361 339
THP splits 259 263
THP fault fallback 98 50
THP collapse fail 20 17
Compaction stalls 747 499
Compaction success 244 145
Compaction failures 503 354
Compaction pages moved 370888 474837
Compaction move failure 77378 65259
===END stress-highalloc
This patch:
Introduce MIGRATEPAGE_SUCCESS as the default return code for
address_space_operations.migratepage() method and documents the expected
return code for the same method in failure cases.
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the hugetlb_get_unmapped_area function to make use of
vm_unmapped_area() instead of implementing a brute force search.
Signed-off-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was some desire in large applications using MAP_HUGETLB or
SHM_HUGETLB to use 1GB huge pages on some mappings, and stay with 2MB on
others. This is useful together with NUMA policy: use 2MB interleaving
on some mappings, but 1GB on local mappings.
This patch extends the IPC/SHM syscall interfaces slightly to allow
specifying the page size.
It borrows some upper bits in the existing flag arguments and allows
encoding the log of the desired page size in addition to the *_HUGETLB
flag. When 0 is specified the default size is used, this makes the
change fully compatible.
Extending the internal hugetlb code to handle this is straight forward.
Instead of a single mount it just keeps an array of them and selects the
right mount based on the specified page size. When no page size is
specified it uses the mount of the default page size.
The change is not visible in /proc/mounts because internal mounts don't
appear there. It also has very little overhead: the additional mounts
just consume a super block, but not more memory when not used.
I also exported the new flags to the user headers (they were previously
under __KERNEL__). Right now only symbols for x86 and some other
architecture for 1GB and 2MB are defined. The interface should already
work for all other architectures though. Only architectures that define
multiple hugetlb sizes actually need it (that is currently x86, tile,
powerpc). However tile and powerpc have user configurable hugetlb
sizes, so it's not easy to add defines. A program on those
architectures would need to query sysfs and use the appropiate log2.
[akpm@linux-foundation.org: cleanups]
[rientjes@google.com: fix build]
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've legally changed my name with New York State, the US Social Security
Administration, et al. This patch propagates the name change and change
in initials and login to comments in the kernel source as well.
Signed-off-by: Nadia Yvette Chambers <nyc@holomorphy.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Implement an interval tree as a replacement for the VMA prio_tree. The
algorithms are similar to lib/interval_tree.c; however that code can't be
directly reused as the interval endpoints are not explicitly stored in the
VMA. So instead, the common algorithm is moved into a template and the
details (node type, how to get interval endpoints from the node, etc) are
filled in using the C preprocessor.
Once the interval tree functions are available, using them as a
replacement to the VMA prio tree is a relatively simple, mechanical job.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA,
currently it lost original meaning but still has some effects:
| effect | alternative flags
-+------------------------+---------------------------------------------
1| account as reserved_vm | VM_IO
2| skip in core dump | VM_IO, VM_DONTDUMP
3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
This patch removes reserved_vm counter from mm_struct. Seems like nobody
cares about it, it does not exported into userspace directly, it only
reduces total_vm showed in proc.
Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP.
remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP.
remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP.
[akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs update from Al Viro:
- big one - consolidation of descriptor-related logics; almost all of
that is moved to fs/file.c
(BTW, I'm seriously tempted to rename the result to fd.c. As it is,
we have a situation when file_table.c is about handling of struct
file and file.c is about handling of descriptor tables; the reasons
are historical - file_table.c used to be about a static array of
struct file we used to have way back).
A lot of stray ends got cleaned up and converted to saner primitives,
disgusting mess in android/binder.c is still disgusting, but at least
doesn't poke so much in descriptor table guts anymore. A bunch of
relatively minor races got fixed in process, plus an ext4 struct file
leak.
- related thing - fget_light() partially unuglified; see fdget() in
there (and yes, it generates the code as good as we used to have).
- also related - bits of Cyrill's procfs stuff that got entangled into
that work; _not_ all of it, just the initial move to fs/proc/fd.c and
switch of fdinfo to seq_file.
- Alex's fs/coredump.c spiltoff - the same story, had been easier to
take that commit than mess with conflicts. The rest is a separate
pile, this was just a mechanical code movement.
- a few misc patches all over the place. Not all for this cycle,
there'll be more (and quite a few currently sit in akpm's tree)."
Fix up trivial conflicts in the android binder driver, and some fairly
simple conflicts due to two different changes to the sock_alloc_file()
interface ("take descriptor handling from sock_alloc_file() to callers"
vs "net: Providing protocol type via system.sockprotoname xattr of
/proc/PID/fd entries" adding a dentry name to the socket)
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (72 commits)
MAX_LFS_FILESIZE should be a loff_t
compat: fs: Generic compat_sys_sendfile implementation
fs: push rcu_barrier() from deactivate_locked_super() to filesystems
btrfs: reada_extent doesn't need kref for refcount
coredump: move core dump functionality into its own file
coredump: prevent double-free on an error path in core dumper
usb/gadget: fix misannotations
fcntl: fix misannotations
ceph: don't abuse d_delete() on failure exits
hypfs: ->d_parent is never NULL or negative
vfs: delete surplus inode NULL check
switch simple cases of fget_light to fdget
new helpers: fdget()/fdput()
switch o2hb_region_dev_write() to fget_light()
proc_map_files_readdir(): don't bother with grabbing files
make get_file() return its argument
vhost_set_vring(): turn pollstart/pollstop into bool
switch prctl_set_mm_exe_file() to fget_light()
switch xfs_find_handle() to fget_light()
switch xfs_swapext() to fget_light()
...
There's no reason to call rcu_barrier() on every
deactivate_locked_super(). We only need to make sure that all delayed rcu
free inodes are flushed before we destroy related cache.
Removing rcu_barrier() from deactivate_locked_super() affects some fast
paths. E.g. on my machine exit_group() of a last process in IPC
namespace takes 0.07538s. rcu_barrier() takes 0.05188s of that time.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note sysctl_hugetlb_shm_group can only be written in the root user
in the initial user namespace, so we can assume sysctl_hugetlb_shm_group
is in the initial user namespace.
Cc: William Irwin <wli@holomorphy.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Use a mmu_gather instead of a temporary linked list for accumulating pages
when we unmap a hugepage range
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
boolean "does it have to be exclusive?" flag is passed instead;
Local filesystem should just ignore it - the object is guaranteed
not to be there yet.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPw2J/AAoJECvKgwp+S8Ja5jkP/3uMxkhf8XQpXCI3O1QVfaQr
uZFfM8sINqIPDVm1dtFjFj7f8Bw9mhE2KAnnJ1rKT8tQwqq9yAse1QPlhCG1ZqoP
+AnMDDXHtx7WmQZXhBvS9b+unpZ7Jr6r6pO5XrmTL2kRL3YJPUhZ2+xbTT5belTB
KoAu4WqORZRxfXoC76S7U8K+D4NcAGhAOxCClsIjmY+oocCiCag4FZOyzYIFViqc
ghUN/+rLQ3fqGGv2yO7Ylx1gUM7sxIwkZQ/h962jFAtxz9czImr2NmRoMliOaOkS
tvcnIf+E3u0n/zIjzFvzhxKgHJPP8PkcPMk60d3jKmFngBkqFTzNUeVTP8md7HrV
4DlXisWr+z7YVyWUCFaNcJLmjiWSwQ8DV/clRLobeBf9EJKan5F1PjFgl6PLJM5F
Qr1+LHMNaetdulBwMRTyveZTzYqw9RmDnD9dWMo4mX/kTpvtC4jTPVV7hkRD+Qlv
5vTRR+VXL3Q50yClLf0AQMSKTnH2gBuepM/b+7cShLGfsMln8DtUjmbigv+niL63
BibcCIbIlP2uWGnl37VhsC34AT+RKt3lggrBOpn/7XJMq/wKR7IRP/7V9TfYgaUN
NBa+wtnLDa1pZEn/X7izdcQP62PzDtmB+ObvYT0Yb40A4+2ud3qF/lB53c1A1ewF
/9c4zxxekjHZnn2oooEa
=oLXf
-----END PGP SIGNATURE-----
Merge tag 'writeback' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux
Pull writeback tree from Wu Fengguang:
"Mainly from Jan Kara to avoid iput() in the flusher threads."
* tag 'writeback' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Avoid iput() from flusher thread
vfs: Rename end_writeback() to clear_inode()
vfs: Move waiting for inode writeback from end_writeback() to evict_inode()
writeback: Refactor writeback_single_inode()
writeback: Remove wb->list_lock from writeback_single_inode()
writeback: Separate inode requeueing after writeback
writeback: Move I_DIRTY_PAGES handling
writeback: Move requeueing when I_SYNC set to writeback_sb_inodes()
writeback: Move clearing of I_SYNC into inode_sync_complete()
writeback: initialize global_dirty_limit
fs: remove 8 bytes of padding from struct writeback_control on 64 bit builds
mm: page-writeback.c: local functions should not be exposed globally
After we moved inode_sync_wait() from end_writeback() it doesn't make sense
to call the function end_writeback() anymore. Rename it to clear_inode()
which well says what the function really does - set I_CLEAR flag.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
This fixes the below reported false lockdep warning. e096d0c7e2
("lockdep: Add helper function for dir vs file i_mutex annotation") added
a similar annotation for every other inode in hugetlbfs but missed the
root inode because it was allocated by a separate function.
For HugeTLB fs we allow taking i_mutex in mmap. HugeTLB fs doesn't
support file write and its file read callback is modified in a05b0855fd
("hugetlbfs: avoid taking i_mutex from hugetlbfs_read()") to not take
i_mutex. Hence for HugeTLB fs with regular files we really don't take
i_mutex with mmap_sem held.
======================================================
[ INFO: possible circular locking dependency detected ]
3.4.0-rc1+ #322 Not tainted
-------------------------------------------------------
bash/1572 is trying to acquire lock:
(&mm->mmap_sem){++++++}, at: [<ffffffff810f1618>] might_fault+0x40/0x90
but task is already holding lock:
(&sb->s_type->i_mutex_key#12){+.+.+.}, at: [<ffffffff81125f88>] vfs_readdir+0x56/0xa8
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&sb->s_type->i_mutex_key#12){+.+.+.}:
[<ffffffff810a09e5>] lock_acquire+0xd5/0xfa
[<ffffffff816a2f5e>] __mutex_lock_common+0x48/0x350
[<ffffffff816a3325>] mutex_lock_nested+0x2a/0x31
[<ffffffff811fb8e1>] hugetlbfs_file_mmap+0x7d/0x104
[<ffffffff810f859a>] mmap_region+0x272/0x47d
[<ffffffff810f8a39>] do_mmap_pgoff+0x294/0x2ee
[<ffffffff810f8b65>] sys_mmap_pgoff+0xd2/0x10e
[<ffffffff8103d19e>] sys_mmap+0x1d/0x1f
[<ffffffff816a5922>] system_call_fastpath+0x16/0x1b
-> #0 (&mm->mmap_sem){++++++}:
[<ffffffff810a0256>] __lock_acquire+0xa81/0xd75
[<ffffffff810a09e5>] lock_acquire+0xd5/0xfa
[<ffffffff810f1645>] might_fault+0x6d/0x90
[<ffffffff81125d62>] filldir+0x6a/0xc2
[<ffffffff81133a83>] dcache_readdir+0x5c/0x222
[<ffffffff81125fa8>] vfs_readdir+0x76/0xa8
[<ffffffff811260b6>] sys_getdents+0x79/0xc9
[<ffffffff816a5922>] system_call_fastpath+0x16/0x1b
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sb->s_type->i_mutex_key#12);
lock(&mm->mmap_sem);
lock(&sb->s_type->i_mutex_key#12);
lock(&mm->mmap_sem);
*** DEADLOCK ***
1 lock held by bash/1572:
#0: (&sb->s_type->i_mutex_key#12){+.+.+.}, at: [<ffffffff81125f88>] vfs_readdir+0x56/0xa8
stack backtrace:
Pid: 1572, comm: bash Not tainted 3.4.0-rc1+ #322
Call Trace:
[<ffffffff81699a3c>] print_circular_bug+0x1f8/0x209
[<ffffffff810a0256>] __lock_acquire+0xa81/0xd75
[<ffffffff810f38aa>] ? handle_pte_fault+0x5ff/0x614
[<ffffffff8109e622>] ? mark_lock+0x2d/0x258
[<ffffffff810f1618>] ? might_fault+0x40/0x90
[<ffffffff810a09e5>] lock_acquire+0xd5/0xfa
[<ffffffff810f1618>] ? might_fault+0x40/0x90
[<ffffffff816a3249>] ? __mutex_lock_common+0x333/0x350
[<ffffffff810f1645>] might_fault+0x6d/0x90
[<ffffffff810f1618>] ? might_fault+0x40/0x90
[<ffffffff81125d62>] filldir+0x6a/0xc2
[<ffffffff81133a83>] dcache_readdir+0x5c/0x222
[<ffffffff81125cf8>] ? sys_ioctl+0x74/0x74
[<ffffffff81125cf8>] ? sys_ioctl+0x74/0x74
[<ffffffff81125cf8>] ? sys_ioctl+0x74/0x74
[<ffffffff81125fa8>] vfs_readdir+0x76/0xa8
[<ffffffff811260b6>] sys_getdents+0x79/0xc9
[<ffffffff816a5922>] system_call_fastpath+0x16/0x1b
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was introduced by d1d5e05ffd ("hugetlbfs: return error code when
initializing module") but as Al pointed out, is a bad idea.
Quoted comments from Al:
"Note that unregister_filesystem() in module init is *always* wrong;
it's not an issue here (it's done too early to care about and
realistically the box is not going anywhere - it'll panic when attempt
to exec /sbin/init fails, if not earlier), but it's a damn bad
example.
Consider a normal fs module. Somebody loads it and in parallel with
that we get a mount attempt on that fs type. It comes between
register and failure exits that causes unregister; at that point we
are screwed since grabbing a reference to module as done by mount is
enough to prevent exit, but not to prevent the failure of init. As
the result, module will get freed when init fails, mounted fs of that
type be damned."
So remove it.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first batch of patches from Andrew Morton:
"A few misc things and all the MM queue"
* emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits)
memcg: avoid THP split in task migration
thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE
memcg: clean up existing move charge code
mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read()
mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event()
mm/memcontrol.c: s/stealed/stolen/
memcg: fix performance of mem_cgroup_begin_update_page_stat()
memcg: remove PCG_FILE_MAPPED
memcg: use new logic for page stat accounting
memcg: remove PCG_MOVE_LOCK flag from page_cgroup
memcg: simplify move_account() check
memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat)
memcg: kill dead prev_priority stubs
memcg: remove PCG_CACHE page_cgroup flag
memcg: let css_get_next() rely upon rcu_read_lock()
cgroup: revert ss_id_lock to spinlock
idr: make idr_get_next() good for rcu_read_lock()
memcg: remove unnecessary thp check in page stat accounting
memcg: remove redundant returns
memcg: enum lru_list lru
...
Return an errno upon failure to create inode kmem cache, and unregister
the FS upon failure to mount.
[akpm@linux-foundation.org: remove unneeded test of `error']
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling shmget() with SHM_HUGETLB, shmget aligns the request size to
PAGE_SIZE, but this is not sufficient.
Modify hugetlb_file_setup() to align requests to the huge page size, and
to accept an address argument so that all alignment checks can be
performed in hugetlb_file_setup(), rather than in its callers. Change
newseg() and mmap_pgoff() to match the new prototype and eliminate a now
redundant alignment check.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Steven Truelove <steven.truelove@utoronto.ca>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the thread name and pid of the application that is allocating shm
segments with MAP_HUGETLB without being a part of
/proc/sys/vm/hugetlb_shm_group or having CAP_IPC_LOCK.
This identifies the application so it may be fixed by avoiding using the
deprecated exception (see Documentation/feature-removal-schedule.txt).
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make a couple of small cleanups to linux/include/hugetlb.h. The
set_file_hugepages() function, which was not used anywhere is removed,
and the hugetlbfs_config and hugetlbfs_inode_info structures with its
HUGETLBFS_I helper function are moved into inode.c, the only place they
were used.
These structures are really linked to the hugetlbfs filesystem
specifically not to hugepage mm handling in general, so they belong in
the filesystem code not in a generally available header.
It would be nice to move the hugetlbfs_sb_info (superblock) structure in
there as well, but it's currently needed in a number of places via the
hstate_vma() and hstate_inode().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Andrew Barry <abarry@cray.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Taking i_mutex in hugetlbfs_read() can result in deadlock with mmap as
explained below
Thread A:
read() on hugetlbfs
hugetlbfs_read() called
i_mutex grabbed
hugetlbfs_read_actor() called
__copy_to_user() called
page fault is triggered
Thread B, sharing address space with A:
mmap() the same file
->mmap_sem is grabbed on task_B->mm->mmap_sem
hugetlbfs_file_mmap() is called
attempt to grab ->i_mutex and block waiting for A to give it up
Thread A:
pagefault handled blocked on attempt to grab task_A->mm->mmap_sem,
which happens to be the same thing as task_B->mm->mmap_sem. Block waiting
for B to give it up.
AFAIU the i_mutex locking was added to hugetlbfs_read() as per
http://lkml.indiana.edu/hypermail/linux/kernel/0707.2/3066.html to take
care of the race between truncate and read. This patch fixes this by
looking at page->mapping under lock_page() (find_lock_page()) to ensure
that the inode didn't get truncated in the range during a parallel read.
Ideally we can extend the patch to make sure we don't increase i_size in
mmap. But that will break userspace, because applications will now have
to use truncate(2) to increase i_size in hugetlbfs.
Based on the original patch from Hillf Danton.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@kernel.org> [everything after 2007 :)]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT
mode that avoids writing back pages to backing storage. Async compaction
maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT.
For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is
used.
This avoids sync compaction stalling for an excessive length of time,
particularly when copying files to a USB stick where there might be a
large number of dirty pages backed by a filesystem that does not support
->writepages.
[aarcange@redhat.com: This patch is heavily based on Andrea's work]
[akpm@linux-foundation.org: fix fs/nfs/write.c build]
[akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Asynchronous compaction is used when allocating transparent hugepages to
avoid blocking for long periods of time. Due to reports of stalling,
there was a debate on disabling synchronous compaction but this severely
impacted allocation success rates. Part of the reason was that many dirty
pages are skipped in asynchronous compaction by the following check;
if (PageDirty(page) && !sync &&
mapping->a_ops->migratepage != migrate_page)
rc = -EBUSY;
This skips over all mapping aops using buffer_migrate_page() even though
it is possible to migrate some of these pages without blocking. This
patch updates the ->migratepage callback with a "sync" parameter. It is
the responsibility of the callback to fail gracefully if migration would
block.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vfs_create() ignores everything outside of 16bit subset of its
mode argument; switching it to umode_t is obviously equivalent
and it's the only caller of the method
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_mkdir() gets int, but immediately drops everything that might not
fit into umode_t and that's the only caller of ->mkdir()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Seeing that just about every destructor got that INIT_LIST_HEAD() copied into
it, there is no point whatsoever keeping this INIT_LIST_HEAD in inode_init_once();
the cost of taking it into inode_init_always() will be negligible for pipes
and sockets and negative for everything else. Not to mention the removal of
boilerplate code from ->destroy_inode() instances...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace direct i_nlink updates with the respective updater function
(inc_nlink, drop_nlink, clear_nlink, inode_dec_link_count).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Purely in-memory filesystems do not use the inode hash as the dcache
tells us if an entry already exists. As a result, they do not call
unlock_new_inode, and thus directory inodes do not get put into a
different lockdep class for i_sem.
We need the different lockdep classes, because the locking order for
i_mutex is different for directory inodes and regular inodes. Directory
inodes can do "readdir()", which takes i_mutex *before* possibly taking
mm->mmap_sem (due to a page fault while copying the directory entry to
user space).
In contrast, regular inodes can be mmap'ed, which takes mm->mmap_sem
before accessing i_mutex.
The two cases can never happen for the same inode, so no real deadlock
can occur, but without the different lockdep classes, lockdep cannot
understand that. As a result, if CONFIG_DEBUG_LOCK_ALLOC is set, this
can lead to false positives from lockdep like below:
find/645 is trying to acquire lock:
(&mm->mmap_sem){++++++}, at: [<ffffffff81109514>] might_fault+0x5c/0xac
but task is already holding lock:
(&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffff81149f34>]
vfs_readdir+0x5b/0xb4
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&sb->s_type->i_mutex_key#15){+.+.+.}:
[<ffffffff8108ac26>] lock_acquire+0xbf/0x103
[<ffffffff814db822>] __mutex_lock_common+0x4c/0x361
[<ffffffff814dbc46>] mutex_lock_nested+0x40/0x45
[<ffffffff811daa87>] hugetlbfs_file_mmap+0x82/0x110
[<ffffffff81111557>] mmap_region+0x258/0x432
[<ffffffff811119dd>] do_mmap_pgoff+0x2ac/0x306
[<ffffffff81111b4f>] sys_mmap_pgoff+0x118/0x16a
[<ffffffff8100c858>] sys_mmap+0x22/0x24
[<ffffffff814e3ec2>] system_call_fastpath+0x16/0x1b
-> #0 (&mm->mmap_sem){++++++}:
[<ffffffff8108a4bc>] __lock_acquire+0xa1a/0xcf7
[<ffffffff8108ac26>] lock_acquire+0xbf/0x103
[<ffffffff81109541>] might_fault+0x89/0xac
[<ffffffff81149cff>] filldir+0x6f/0xc7
[<ffffffff811586ea>] dcache_readdir+0x67/0x205
[<ffffffff81149f54>] vfs_readdir+0x7b/0xb4
[<ffffffff8114a073>] sys_getdents+0x7e/0xd1
[<ffffffff814e3ec2>] system_call_fastpath+0x16/0x1b
This patch moves the directory vs file lockdep annotation into a helper
function that can be called by in-memory filesystems and has hugetlbfs
call it.
Signed-off-by: Josh Boyer <jwboyer@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge akpm patch series: (122 commits)
drivers/connector/cn_proc.c: remove unused local
Documentation/SubmitChecklist: add RCU debug config options
reiserfs: use hweight_long()
reiserfs: use proper little-endian bitops
pnpacpi: register disabled resources
drivers/rtc/rtc-tegra.c: properly initialize spinlock
drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
drivers/rtc: add support for Qualcomm PMIC8xxx RTC
drivers/rtc/rtc-s3c.c: support clock gating
drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
init: skip calibration delay if previously done
misc/eeprom: add eeprom access driver for digsy_mtc board
misc/eeprom: add driver for microwire 93xx46 EEPROMs
checkpatch.pl: update $logFunctions
checkpatch: make utf-8 test --strict
checkpatch.pl: add ability to ignore various messages
checkpatch: add a "prefer __aligned" check
checkpatch: validate signature styles and To: and Cc: lines
checkpatch: add __rcu as a sparse modifier
checkpatch: suggest using min_t or max_t
...
Did this as a merge because of (trivial) conflicts in
- Documentation/feature-removal-schedule.txt
- arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
This:
vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT)
is incorrect on 32-bit. It causes us to & the pgoff with something that
looks like this (for a 4m hugepage): 0xfff003ff. The mask should be
flipped and *then* shifted, to give you 0x0000_03fff.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a number of file systems that don't have a mount point (e.g. sockfs
and pipefs), they are not marked as long term. Therefore in
mntput_no_expire, all locks in vfs_mount lock are taken instead of just
local cpu's lock to aggregate reference counts when we release
reference to file objects. In fact, only local lock need to have been
taken to update ref counts as these file systems are in no danger of
going away until we are ready to unregister them.
The attached patch marks file systems using kern_mount without
mount point as long term. The contentions of vfs_mount lock
is now eliminated. Before un-registering such file system,
kern_unmount should be called to remove the long term flag and
make the mount point ready to be freed.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The type of vma->vm_flags is 'unsigned long'. Neither 'int' nor
'unsigned int'. This patch fixes such misuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
[ Changed to use a typedef - we'll extend it to cover more cases
later, since there has been discussion about making it a 64-bit
type.. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straightforward conversion of i_mmap_lock to a mutex.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch series changes remove_from_page_cache()'s page ref counting
rule. Page cache ref count is decreased in delete_from_page_cache(). So
we don't need to decrease the page reference in callers.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: William Irwin <wli@holomorphy.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
WARN_ONCE is a bit strong for a deprecation warning, given that it spews a
huge backtrace.
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
split invalidate_inodes()
fs: skip I_FREEING inodes in writeback_sb_inodes
fs: fold invalidate_list into invalidate_inodes
fs: do not drop inode_lock in dispose_list
fs: inode split IO and LRU lists
fs: switch bdev inode bdi's correctly
fs: fix buffer invalidation in invalidate_list
fsnotify: use dget_parent
smbfs: use dget_parent
exportfs: use dget_parent
fs: use RCU read side protection in d_validate
fs: clean up dentry lru modification
fs: split __shrink_dcache_sb
fs: improve DCACHE_REFERENCED usage
fs: use percpu counter for nr_dentry and nr_dentry_unused
fs: simplify __d_free
fs: take dcache_lock inside __d_path
fs: do not assign default i_ino in new_inode
fs: introduce a per-cpu last_ino allocator
new helper: ihold()
...
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
This patch extends page migration code to support hugepage migration.
One of the potential users of this feature is soft offlining which
is triggered by memory corrected errors (added by the next patch.)
Todo:
- there are other users of page migration such as memory policy,
memory hotplug and memocy compaction.
They are not ready for hugepage support for now.
ChangeLog since v4:
- define migrate_huge_pages()
- remove changes on isolation/putback_lru_page()
ChangeLog since v2:
- refactor isolate/putback_lru_page() to handle hugepage
- add comment about race on unmap_and_move_huge_page()
ChangeLog since v1:
- divide migration code path for hugepage
- define routine checking migration swap entry for hugetlb
- replace "goto" with "if/else" in remove_migration_pte()
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Essentially, the minimal variant of ->evict_inode(). It's
a trimmed-down clear_inode(), sans any fs callbacks. Once
it returns we know that no async writeback will be happening;
every ->evict_inode() instance should do that once and do that
before doing anything ->write_inode() could interfere with
(e.g. freeing the on-disk inode).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace inode_setattr with opencoded variants of it in all callers. This
moves the remaining call to vmtruncate into the filesystem methods where it
can be replaced with the proper truncate sequence.
In a few cases it was obvious that we would never end up calling vmtruncate
so it was left out in the opencoded variant:
spufs: explicitly checks for ATTR_SIZE earlier
btrfs,hugetlbfs,logfs,dlmfs: explicitly clears ATTR_SIZE earlier
ufs: contains an opencoded simple_seattr + truncate that sets the filesize just above
In addition to that ncpfs called inode_setattr with handcrafted iattrs,
which allowed to trim down the opencoded variant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We don't name our generic fsync implementations very well currently.
The no-op implementation for in-memory filesystems currently is called
simple_sync_file which doesn't make too much sense to start with,
the the generic one for simple filesystems is called simple_fsync
which can lead to some confusion.
This patch renames the generic file fsync method to generic_file_fsync
to match the other generic_file_* routines it is supposed to be used
with, and the no-op implementation to noop_fsync to make it obvious
what to expect. In addition add some documentation for both methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are 2 groups of alloc_file() callers:
* ones that are followed by ima_counts_get
* ones giving non-regular files
So let's pull that ima_counts_get() into alloc_file();
it's a no-op in case of non-regular files.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
truncate: use new helpers
truncate: new helpers
fs: fix overflow in sys_mount() for in-kernel calls
fs: Make unload_nls() NULL pointer safe
freeze_bdev: grab active reference to frozen superblocks
freeze_bdev: kill bd_mount_sem
exofs: remove BKL from super operations
fs/romfs: correct error-handling code
vfs: seq_file: add helpers for data filling
vfs: remove redundant position check in do_sendfile
vfs: change sb->s_maxbytes to a loff_t
vfs: explicitly cast s_maxbytes in fiemap_check_ranges
libfs: return error code on failed attr set
seq_file: return a negative error code when seq_path_root() fails.
vfs: optimize touch_time() too
vfs: optimization for touch_atime()
vfs: split generic_forget_inode() so that hugetlbfs does not have to copy it
fs/inode.c: add dev-id and inode number for debugging in init_special_inode()
libfs: make simple_read_from_buffer conventional