With all the old panels removed and all the old panel model APIs removed
from the DSS encoders, we can now remove the custom omapdss-bus which
was used in the old panel model.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
Now that the old panel drivers have been removed, we can remove the
old-model API and related code from the DSS encoder drivers.
This patch removes the code from the VENC driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
Now that the old panel drivers have been removed, we can remove the
old-model API and related code from the DSS encoder drivers.
This patch removes the code from the HDMI driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
Regulator handling for DPI and SDI is currently handled in the core.c,
using the 'virtual' omapdss platform device. Nowadays we have proper
devices for both DPI and SDI, and so we can handle the regulators inside
the respective drivers.
This patch moves the regulator handling for DPI into dpi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
Regulator handling for DPI and SDI is currently handled in the core.c,
using the 'virtual' omapdss platform device. Nowadays we have proper
devices for both DPI and SDI, and so we can handle the regulators inside
the respective drivers.
This patch moves the regulator handling for SDI into sdi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
In order to allow multiple display block in a video pipeline, we need to
give the drivers way to register themselves. For now we have
the omapdss_register_display() which is used to register panels, and
dss_register_output() which is used to register DSS encoders.
This patch makes dss_register_output() public (with the name of
omapdss_register_output), which can be used to register also external
encoders. The distinction between register_output and register_display
is that a "display" is an entity at the end of the videopipeline, and
"output" is something inside the pipeline.
The registration and naming will be made saner in the future, but the
current names and functions are kept to minimize changes during the dss
device model transition.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DISPC needs to know the clock rate for DIGIT (i.e. TV) channel, and this
clock is provided by either VENC or HDMI modules. Currently DISPC will
call a function in VENC/HDMI, asking what the clock rate is. This means
we have a fixed dependency from DISPC to both VENC and HDMI.
To have a more generic approach, and in particular to allow adding OMAP5
HDMI driver, we need to remove this dependency. This patch makes
VENC/HDMI inform DISPC when the their clock changes, thus reversing the
dependency and removing the issue.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have omap_dss_device, which represents an external display
device, sometimes an external encoder, sometimes a panel. Then we have
omap_dss_output, which represents DSS's output encoder.
In the future with new display device model, we construct a video
pipeline from the display blocks. To accomplish this, all the blocks
need to be presented by the same entity.
Thus, this patch combines omap_dss_output into omap_dss_device. Some of
the fields in omap_dss_output are already found in omap_dss_device, but
some are not. This means we'll have DSS output specific fields in
omap_dss_device, which is not very nice. However, it is easier to just
keep those output specific fields there for now, and after transition to
new display device model is made, they can be cleaned up easier than
could be done now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We aim to remove the custom omapdss bus totally, as it's quite a strange
construct and won't be compatible with common display framework. One
problem on the road is that we have sysfs files for each display, and
they depend on the omapdss bus.
This patch creates the display sysfs files independent of the omapdss
bus. This gives us backwards compatibility without using the omapdss bus
for the sysfs files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split the function that creates overlay manager structs into two: one
that creates just the structs, and one that creates the sysfs files for
the manager.
This will help us use the overlay manager structs with omapdrm in the
following patches, while still leaving the sysfs files out.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Commit 100c826235 (OMAPDSS: DPI: use new
clock calculation code) breaks dpi.c compilation if DSI is not enabled
in the kernel configuration.
Fix compilation by adding dummy inline functions for the ones that dpi.c
references. The functions will never be called, as dpi.c knows that
there is no DSI device available.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new way to iterate over DSI PLL and HSDIV clock divisors.
dsi_pll_calc() and dss_hsdiv_calc() provide a generic way to go over
all the divisors, within given clock range. The functions will call a
callback function for each divider set, making the function reusable for
all use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new way to iterate over DSS clock divisors. dss_div_calc() provides
a generic way to go over all the divisors, within given clock range.
dss_div_calc() will call a callback function for each divider set,
making the function reusable for all use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new way to iterate over DISPC clock divisors. dispc_div_calc()
provides a generic way to go over all the divisors, within given pixel
clock range. dispc_div_calc() will call a callback function for each
divider set, making the function reusable for all use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Dispc currently gets dispc's fck with clk_get() and uses clk_get_rate()
to get the rate for scaling calculations. This causes a problem with
common clock framework, as omapdss uses the dispc functions inside a
spinlock, and common clock framework uses a mutex in clk_get_rate().
Looking at the DSS clock tree, the above use of the dispc fck is not
quite correct. The DSS_FCLK from PRCM goes to DSS core block, which has
a mux to select the clock for DISPC from various options, so the current
use of dispc fck bypasses that. Fortunately we never change the dispc
clock mux for now.
To fix the issue with clk_get_rate(), this patch caches the dss clock
rate in dss.c when it is set. Dispc will then ask for the clock rate
from dss. While this is not very elegant, it does fix the issue, and
it's not totally wrong when considering that the dispc fck actually
comes via dss.
In the future we should probably look into common clock framework and
see if that could be used to represent the DSS clock tree properly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch adds a new function, dispc_ovl_check(), which can be used to
verify scaling configuration for an overlay. The function gets both the
overlay and overlay manager as parameters, so that the caller does not
need to configure the hardware before using this function.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The whole dispc irq handling system we currently have is only needed for
compat layer, and thus can be moved from dispc.c to the compat layer.
This is quite straigtforward, but we need to add new dispc functions to
request and free the actual hardware irq: dispc_request_irq() and
dispc_free_irq().
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dispc_mgr_enable_sync and dispc_mgr_disable_sync are only used with the
compat mode. Non-compat will use the simpler enable and disable
functions.
This patch moves the synchronous enable/disable code to the compat
layer. A new file is created, dispc-compat.c, which contains low level
dispc compat code (versus apply.c, which contains slightly higher level
compat code).
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Some of the output drivers need to handle FRAMEDONE interrupt from
DISPC. This creates a direct dependency to dispc code, and we need to
avoid this to make the compat code to work.
Instead of the output drivers registering for dispc interrupts, we
create new mgr-ops that are used to register a framedone handler. The
code implementing the mgr-ops is responsible for calling the handler
when DISPC FRAMEDONE interrupt happens. The compat layer is improved
accordingly to do the call to the framedone handler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The output drivers need some operations from the overlay managers, like
enable and set_timings. These will affect the dispc registers, and need
to be synchronized with the composition-side changes with overlays and
overlay managers.
We want to handle these calls in the apply.c in the compatibility mode,
but when in non-compat mode, the calls need to be handled by some other
component (e.g. omapdrm).
To make this possible, this patch creates a set of function pointers in
a dss_mgr_ops struct, that is used to redirect the calls into the
correct destination.
The non-compat users can install their mgr ops with
dss_install_mgr_ops() function.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Most of the functions that are assigned to the fields in ovl struct are
in apply.c. By moving the function pointer setup into apply.c we can
make these functions static.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Most of the functions that are assigned to the fields in ovl-mgr struct
are in apply.c. By moving the function pointer setup into apply.c we can
make these functions static.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add two new exported functions, omapdss_compat_init and
omapdss_compat_uninit, which are to be used by omapfb, omap_vout to
enable compatibility mode for omapdss. The functions are called by
omapdss internally for now, and moved to other drivers later.
The compatibility mode is implemented fully in the following patches.
For now, enabling compat mode only sets up the private data in apply.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently attach an output to a dssdev in the initialization code for
dssdevices in display.c. This works, but doesn't quite make sense: an
output entity represents (surprisingly) an output of DSS, which is
managed by an output driver. The output driver also handles adding new
dssdev's for that particular output.
It makes more sense to make the output-dssdev connection in the output
driver. This is also in line with common display framework.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When enabling a hwmod, omap_hwmod refers to the register mentioned in the
hwmod struct's member 'prcm.omap4.context_offs' to see whether context was
lost or not. It increments the context lost count for the hwmod and then clears
the register.
All the DSS hwmods have the same register(RM_DSS_DSS_CONTEXT) as context_offs.
When DSS is enabled, the first hwmod to be enabled is the "dss_core" hwmod since
it's corresponding platform device is the parent platform device("omapdss_dss").
The dss_core hwmod updates it's context lost count correctly and clears the
register. When the hwmods corresponding to the children platform devices are
enabled, they see that the register is clear, and don't increment their context
lost count. Therefore, all the children platform devices never report a loss in
context.
The DISPC driver currently gets the context lost count for DSS power domain from
it's corresponding platform device instance("omapdss_dispc"). The DISPC platform
device is one of the child devices, and it's corresponding hwmod("dss_dispc")
doesn't report the context lost count correctly.
Modify dss_get_ctx_loss_count() such that it always takes the "omapdss_dss"
platform device as it's input, move the function to dss.c so that it has access
to that platform device.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add dss_get_core_pdev() which returns the platform device for dss core
device. The following patches use the core pdev to register sysfs files
in the compat code.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Move display sysfs related code from display.c to display-sysfs.c, for
clarity. The sysfs code will only be used for compat mode.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_get_dsidev_from_id() gives a WARN if DSI support is not compiled in.
This warning is not right, as it's valid to call
dsi_get_dsidev_from_id() to see if there is DSI support or not.
Remove the WARN().
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove dispc_mgr_is_channel_enabled() and dss_mgr_get_timings()
declarations, as the function doesn't exist.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss.c currently exposes functions to configure the dispc source clock
and lcd source clock. There are configured separately from the output
drivers.
However, there is no safe way for the output drivers to handle dispc
clock, as it's shared between the outputs. Thus, if, say, the DSI driver
sets up DSI PLL and configures both the dispc and lcd clock sources to
that DSI PLL, the resulting dispc clock could be too low for, say, HDMI.
Thus the output drivers should really only be concerned about the lcd
clock, which is what the output drivers actually use. There's lot to do
to clean up the dss clock handling, but this patch takes one step
forward and removes the use of dss_select_dispc_clk_source() from the
output drivers.
After this patch, the output drivers only configure the lcd source
clock. On omap4+ the dispc src clock is never changed from the default
PRCM source. On omap3, where the dispc and lcd clocks are actually the
same, setting the lcd clock source sets the dispc clock source.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss_calc_clock_rates() was removed earlier as it was not used, but it is
needed for DSI PLL calculations, so this patch adds it back.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch makes use of the hdmi_power_[on|off]_core() functions added
in the previous patch. The functions are used when reading EDID or
detecting if a monitor is connected.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Ricardo Neri <ricardo.neri@ti.com>
DISPC irqs need to be handled from the compat layer and also in the
future by the omapdrm. To make this possible, this patchs adds a set of
helper functions, so that the irqs can be managed without direct
register reads/writes.
The following functions are added, and all the current direct reg
reads/writes are changed to use these.
u32 dispc_read_irqstatus(void);
void dispc_clear_irqstatus(u32 mask);
u32 dispc_read_irqenable(void);
void dispc_write_irqenable(u32 mask);
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new dispc function, dispc_ovl_enabled(). This returns if the overlay
enable bit is set in the registers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We need a low level manager-enable function for omapdrm. We have that
function as dispc internal func, _enable_mgr_out().
This patch exposes that function, and renames it to dispc_mgr_enable().
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The current dispc_mgr_enable/disable function are blocking, and do a bit
too much for omapdrm. We'll expose new enable & disable functions that
will just set the bits in the registers in the following patches.
This patch renames the current functions to *_sync, to make it clear
that they are blocking, and also to free up the dispc_mgr_enable/disable
names for these new functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Export dss_get_def_display_name() with the name of
omapdss_get_def_display_name() so that omapfb can use it after the next
patch which moves default display handling to omapfb.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss.h contains dispc_irq_handler declaration, even if the function is
dispc.c internal. Remove the declaration.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have a single function to enable and disable the manager
output for LCD and DIGIT. The functions are a bit complex, as handling
both enable and disable require some extra steps to ensure that the
output is enabled or disabled properly without errors before exiting the
function.
The code can be made simpler to understand by splitting the functions
into separate enable and disable functions. We'll also clean up the
comments and some parameter names at the same time.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss_mgr_set_device and dss_mgr_unset_device are declared in dss.h, but
the functions do not exist. Remove the declarations.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Dispc has a bunch of functions used to configure output related
parameters:
- dispc_mgr_set_io_pad_mode
- dispc_mgr_enable_stallmode
- dispc_mgr_enable_fifohandcheck
- dispc_mgr_set_clock_div
- dispc_mgr_set_tft_data_lines
- dispc_lcd_enable_signal_polarity
- dispc_mgr_set_lcd_type_tft
These are all called together, and the configuration values are taken
from struct dss_lcd_mgr_config.
Instead of exposing those individual dispc functions, create a new one,
dispc_mgr_set_lcd_config(), which is used to configure the above
parameters from values in struct dss_lcd_mgr_config.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
All the debug prints have been replaced with pr_debug(). Thus, the dependency on
dss_debug variable is replaced with dyndbg in dynamic debugging mode and DEBUG
flag otherwise. So, the dss_debug variable is removed along with checks for
DEBUG flag.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Reviewed-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The printk in DSSDBG function definition is replaced with dynamic debug enabled
pr_debug(). The use of dynamic debugging provides more flexibility as each debug
statement can be enabled or disabled dynamically on basis of source filename,
line number, module name etc., by writing to a control file in debugfs
filesystem. For better understanding please refer to
Documentation/dynamic-debug-howto.txt.
The DSSDBGF() differs from DSSDBG() by providing function name. However,
function name, line number, module name and thread ID can be printed through
dynamic debug by setting appropriate flags 'f','l','m' and 't' in the debugfs
control file. So, DSSDBGF instances are replaced with DSSDBG.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Reviewed-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The config option CONFIG_OMAP2_DSS_DEBUG_SUPPORT has been removed and replaced
with CONFIG_OMAP2_DSS_DEBUG and CONFIG_OMAP2_DSS_DEBUGFS. CONFIG_OMAP2_DSS_DEBUG
enables DEBUG flag and CONFIG_OMAP2_DSS_DEBUGFS enables creation of debugfs for
OMAPDSS. Both the config options are disabled by default and can be enabled
independently of one another as per convenience.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Reviewed-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>