The commit 9aaa3b8b4c ("thunderbolt: Add support for preboot ACL")
introduced boot_acl attribute but missed the fact that now userspace
needs to poll the attribute constantly to find out whether it has
changed or not. Fix this by sending notification to the userspace
whenever the boot_acl attribute is changed.
Fixes: 9aaa3b8b4c ("thunderbolt: Add support for preboot ACL")
Reported-and-tested-by: Christian Kellner <christian@kellner.me>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Christian Kellner <christian@kellner.me>
Acked-by: Yehezkel Bernat <yehezkelshb@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This new security level works so that it creates one PCIe tunnel to the
connected Thunderbolt dock, removing PCIe links downstream of the dock.
This leaves only the internal USB controller visible.
Display Port tunnels are created normally.
While there make sure security sysfs attribute returns "unknown" for any
future security level.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Preboot ACL is a mechanism that allows connecting Thunderbolt devices
boot time in more secure way than the legacy Thunderbolt boot support.
As with the legacy boot option, this also needs to be enabled from the
BIOS before booting is allowed. Difference to the legacy mode is that
the userspace software explicitly adds device UUIDs by sending a special
message to the ICM firmware. Only the devices listed in the boot ACL are
connected automatically during the boot. This works in both "user" and
"secure" security levels.
We implement this in Linux by exposing a new sysfs attribute (boot_acl)
below each Thunderbolt domain. The userspace software can then update
the full list as needed.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
When two hosts are connected over a Thunderbolt cable, there is a
protocol they can use to communicate capabilities supported by the host.
The discovery protocol uses automatically configured control channel
(ring 0) and is build on top of request/response transactions using
special XDomain primitives provided by the Thunderbolt base protocol.
The capabilities consists of a root directory block of basic properties
used for identification of the host, and then there can be zero or more
directories each describing a Thunderbolt service and its capabilities.
Once both sides have discovered what is supported the two hosts can
setup high-speed DMA paths and transfer data to the other side using
whatever protocol was agreed based on the properties. The software
protocol used to communicate which DMA paths to enable is service
specific.
This patch adds support for the XDomain discovery protocol to the
Thunderbolt bus. We model each remote host connection as a Linux XDomain
device. For each Thunderbolt service found supported on the XDomain
device, we create Linux Thunderbolt service device which Thunderbolt
service drivers can then bind to based on the protocol identification
information retrieved from the property directory describing the
service.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting from Intel Falcon Ridge the NVM firmware can be upgraded by
using DMA configuration based mailbox commands. If we detect that the
host or device (device support starts from Intel Alpine Ridge) has the
DMA configuration based mailbox we expose NVM information to the
userspace as two separate Linux NVMem devices: nvm_active and
nvm_non_active. The former is read-only portion of the active NVM which
firmware upgrade tools can be use to find out suitable NVM image if the
device identification strings are not enough.
The latter is write-only portion where the new NVM image is to be
written by the userspace. It is up to the userspace to find out right
NVM image (the kernel does very minimal validation). The ICM firmware
itself authenticates the new NVM firmware and fails the operation if it
is not what is expected.
We also expose two new sysfs files per each switch: nvm_version and
nvm_authenticate which can be used to read the active NVM version and
start the upgrade process.
We also introduce safe mode which is the mode a switch goes when it does
not have properly authenticated firmware. In this mode the switch only
accepts a couple of commands including flashing a new NVM firmware image
and triggering power cycle.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Starting from Intel Falcon Ridge the internal connection manager running
on the Thunderbolt host controller has been supporting 4 security
levels. One reason for this is to prevent DMA attacks and only allow
connecting devices the user trusts.
The internal connection manager (ICM) is the preferred way of connecting
Thunderbolt devices over software only implementation typically used on
Macs. The driver communicates with ICM using special Thunderbolt ring 0
(control channel) messages. In order to handle these messages we add
support for the ICM messages to the control channel.
The security levels are as follows:
none - No security, all tunnels are created automatically
user - User needs to approve the device before tunnels are created
secure - User need to approve the device before tunnels are created.
The device is sent a challenge on future connects to be able
to verify it is actually the approved device.
dponly - Only Display Port and USB tunnels can be created and those
are created automatically.
The security levels are typically configurable from the system BIOS and
by default it is set to "user" on many systems.
In this patch each Thunderbolt device will have either one or two new
sysfs attributes: authorized and key. The latter appears for devices
that support secure connect.
In order to identify the device the user can read identication
information, including UUID and name of the device from sysfs and based
on that make a decision to authorize the device. The device is
authorized by simply writing 1 to the "authorized" sysfs attribute. This
is following the USB bus device authorization mechanism. The secure
connect requires an additional challenge step (writing 2 to the
"authorized" attribute) in future connects when the key has already been
stored to the NVM of the device.
Non-ICM systems (before Alpine Ridge) continue to use the existing
functionality and the security level is set to none. For systems with
Alpine Ridge, even on Apple hardware, we will use ICM.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently the control channel (ctl.c) handles the one supported
notification (PLUG_EVENT) and sends back ACK accordingly. However, we
are going to add support for the internal connection manager (ICM) that
needs to handle a different notifications. So instead of dealing
everything in the control channel, we change the callback to take an
arbitrary thunderbolt packet and convert the native connection manager
to handle the event itself.
In addition we only push replies we know of to the response FIFO.
Everything else is treated as notification (or request) and is expected
to be dealt by the connection manager implementation.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Thunderbolt fabric consists of one or more switches. This fabric is
called domain and it is controlled by an entity called connection
manager. The connection manager can be either internal (driven by a
firmware running on the host controller) or external (software driver).
This driver currently implements support for the latter.
In order to manage switches and their properties more easily we model
this domain structure as a Linux bus. Each host controller adds a domain
device to this bus, and these devices are named as domainN where N
stands for index or id of the current domain.
We then abstract connection manager specific operations into a new
structure tb_cm_ops and convert the existing tb.c to fill those
accordingly. This makes it easier to add support for the internal
connection manager in subsequent patches.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>