Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack reduction for large NR_CPUS
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
stack space.
We simply return if the allocation fails: since we don't use it we
could just pass NULL to cpupri_find and have it handle that.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction, (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS.
The fact cpupro_init is called both before and after the slab is
available makes for an ugly parameter unfortunately.
We also use cpumask_any_and to get rid of a temporary in cpupri_find.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction, (future) size reduction, cleanup
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
We can also use cpulist_parse() instead of doing it manually in
isolated_cpu_setup.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
stack space. cpumask_var_t is just a struct cpumask for
!CONFIG_CPUMASK_OFFSTACK.
In this case, we always alloced, but we don't need to any more.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space on the stack. cpumask_var_t is just a struct cpumask for
!CONFIG_CPUMASK_OFFSTACK.
Note the removal of the initializer of new_mask: since the first thing
we did was "cpus_and(new_mask, new_mask, cpus_allowed)" I just changed
that to "cpumask_and(new_mask, in_mask, cpus_allowed);".
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
With some care, we can avoid needing a temporary cpumask (we can't
really allocate here, since we can't fail).
This version calls cpuset_cpus_allowed_locked() with the task_rq_lock
held. I'm fairly sure this works, but there might be a deadlock
hiding.
And of course, we can't get rid of the last cpumask on stack until we
can use cpumask_of_node instead of node_to_cpumask.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space in the stack. cpumask_var_t is just a struct cpumask for
!CONFIG_CPUMASK_OFFSTACK.
Some jiggling here to make sure we always exit at the bottom (so we hit
the free_cpumask_var there).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space in the stack. cpumask_var_t is just a struct cpumask for
!CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: stack usage reduction
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space in the stack. cpumask_var_t is just a struct cpumask for
!CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
def_root_domain is static, and so its masks are initialized with
alloc_bootmem_cpumask_var. After that, alloc_cpumask_var is used.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
We move the 'cpumask' member of sched_group to the end, so when we
kmalloc it we can do a minimal allocation: saves space for small
nr_cpu_ids but big CONFIG_NR_CPUS. Similar trick for 'span' in
sched_domain.
This isn't quite as good as converting to a cpumask_var_t, as some
sched_groups are actually static, but it's safer: we don't have to
figure out where to call alloc_cpumask_var/free_cpumask_var.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: trivial wrap of member accesses
This eases the transition in the next patch.
We also get rid of a temporary cpumask in find_idlest_cpu() thanks to
for_each_cpu_and, and sched_balance_self() due to getting weight before
setting sd to NULL.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use new API
any_online_cpu() is a good name, but it takes a cpumask_t, not a
pointer.
There are several places where any_online_cpu() doesn't really want a
mask arg at all. Replace all callers with cpumask_any() and
cpumask_any_and().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use new general API
Using lots of allocs rather than one big alloc is less efficient, but
who cares for this setup function?
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: trivial API conversion
This is a simple conversion, but note that for_each_cpu() terminates
with i >= nr_cpu_ids, not i == NR_CPUS like for_each_cpu_mask() did.
I don't convert all of them: sd->span changes in a later patch, so
change those iterators there rather than here.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
* use node_to_cpumask_ptr in place of node_to_cpumask to reduce stack
requirements in sched.c
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix build failure on llvm-gcc-4.2
According to the gcc manual, the 'used' attribute should be applied to
functions referenced only from inline assembly.
This fixes a build failure with llvm-gcc-4.2, which deleted
__mutex_lock_slowpath, __mutex_unlock_slowpath.
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: avoid losing some traces when a task is freed
do_exit() is not the last function called when a task finishes.
There are still some functions which are to be called such as
ree_task(). So we delay the freeing of the return stack to the
last moment.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix mmiotrace overrun tracing
When ftrace framework moved to use the ring buffer facility, the buffer
overrun detection was broken after 2.6.27 by commit
| commit 3928a8a2d9
| Author: Steven Rostedt <rostedt@goodmis.org>
| Date: Mon Sep 29 23:02:41 2008 -0400
|
| ftrace: make work with new ring buffer
|
| This patch ports ftrace over to the new ring buffer.
The detection is now fixed by using the ring buffer API.
When mmiotrace detects a buffer overrun, it will report the number of
lost events. People reading an mmiotrace log must know if something was
missed, otherwise the data may not make sense.
Signed-off-by: Pekka Paalanen <pq@iki.fi>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix race
vma->vm_file reference is only stable while holding the mmap_sem,
so move usage of it to within the critical section.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
User stack tracing is just implemented for x86, but it is not x86 specific.
Introduce a generic config flag, that is currently enabled only for x86.
When other arches implement it, they will have to
SELECT USER_STACKTRACE_SUPPORT.
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix refcounting/object-access bug
Hold mmap_sem while looking up/accessing vma.
Hold the RCU lock while using the task we looked up.
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix compiler warning
The ftrace_pointers used in the branch profiler are constant values.
They should never change. But the compiler complains when they are
passed into the debugfs_create_file as a data pointer, because the
function discards the qualifier.
This patch typecasts the parameter to debugfs_create_file back to
a void pointer. To remind the callbacks that they are pointing to
a constant value, I also modified the callback local pointers to
be const struct ftrace_pointer * as well.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add new API to disable all of ftrace on anomalies
It case of a serious anomaly being detected (like something caught by
lockdep) it is a good idea to disable all tracing immediately, without
grabing any locks.
This patch adds ftrace_off_permanent that disables the tracers, function
tracing and ring buffers without a way to enable them again. This should
only be used when something serious has been detected.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature to permanently disable ring buffer
This patch adds a API to the ring buffer code that will permanently
disable the ring buffer from ever recording. This should only be
called when some serious anomaly is detected, and the system
may be in an unstable state. When that happens, shutting down the
recording to the ring buffers may be appropriate.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature to profile if statements
This patch adds a branch profiler for all if () statements.
The results will be found in:
/debugfs/tracing/profile_branch
For example:
miss hit % Function File Line
------- --------- - -------- ---- ----
0 1 100 x86_64_start_reservations head64.c 127
0 1 100 copy_bootdata head64.c 69
1 0 0 x86_64_start_kernel head64.c 111
32 0 0 set_intr_gate desc.h 319
1 0 0 reserve_ebda_region head.c 51
1 0 0 reserve_ebda_region head.c 47
0 1 100 reserve_ebda_region head.c 42
0 0 X maxcpus main.c 165
Miss means the branch was not taken. Hit means the branch was taken.
The percent is the percentage the branch was taken.
This adds a significant amount of overhead and should only be used
by those analyzing their system.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup on output of branch profiler
When a branch has not been taken, it does not make sense to show
a percentage incorrect or hit. This patch changes the behaviour
to print out a 'X' when the branch has not been executed yet.
For example:
correct incorrect % Function File Line
------- --------- - -------- ---- ----
2096 0 0 do_arch_prctl process_64.c 832
0 0 X do_arch_prctl process_64.c 804
2604 0 0 IS_ERR err.h 34
130228 5765 4 __switch_to process_64.c 673
0 0 X enable_TSC process_64.c 448
0 0 X disable_TSC process_64.c 431
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up to make one profiler of like and unlikely tracer
The likely and unlikely profiler prints out the file and line numbers
of the annotated branches that it is profiling. It shows the number
of times it was correct or incorrect in its guess. Having two
different files or sections for that matter to tell us if it was a
likely or unlikely is pretty pointless. We really only care if
it was correct or not.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: widen function-tracing to suspend+resume (and hibernation) sequences
Now that the ftrace kernel thread is gone, we can allow tracing
during suspend/resume again.
So revert these two commits:
f42ac38c5 "ftrace: disable tracing for suspend to ram"
41108eb10 "ftrace: disable tracing for hibernation"
This should be tested very carefully, as it could interact with
altneratives instruction patching, etc.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: modify+improve the userstacktrace tracing visualization feature
Store thread group leader id, and use it to lookup the address in the
process's map. We could have looked up the address on thread's map,
but the thread might not exist by the time we are called. The process
might not exist either, but if you are reading trace_pipe, that is
unlikely.
Example usage:
mount -t debugfs nodev /sys/kernel/debug
cd /sys/kernel/debug/tracing
echo userstacktrace >iter_ctrl
echo sym-userobj >iter_ctrl
echo sched_switch >current_tracer
echo 1 >tracing_enabled
cat trace_pipe >/tmp/trace&
.... run application ...
echo 0 >tracing_enabled
cat /tmp/trace
You'll see stack entries like:
/lib/libpthread-2.7.so[+0xd370]
You can convert them to function/line using:
addr2line -fie /lib/libpthread-2.7.so 0xd370
Or:
addr2line -fie /usr/lib/debug/libpthread-2.7.so 0xd370
For non-PIC/PIE executables this won't work:
a.out[+0x73b]
You need to run the following: addr2line -fie a.out 0x40073b
(where 0x400000 is the default load address of a.out)
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add new (default-off) tracing visualization feature
Usage example:
mount -t debugfs nodev /sys/kernel/debug
cd /sys/kernel/debug/tracing
echo userstacktrace >iter_ctrl
echo sched_switch >current_tracer
echo 1 >tracing_enabled
.... run application ...
echo 0 >tracing_enabled
Then read one of 'trace','latency_trace','trace_pipe'.
To get the best output you can compile your userspace programs with
frame pointers (at least glibc + the app you are tracing).
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use deeper function tracing depth safely
Some tests showed that function return tracing needed a more deeper depth
of function calls. But it could be unsafe to store these return addresses
to the stack.
So these arrays will now be allocated dynamically into task_struct of current
only when the tracer is activated.
Typical scheme when tracer is activated:
- allocate a return stack for each task in global list.
- fork: allocate the return stack for the newly created task
- exit: free return stack of current
- idle init: same as fork
I chose a default depth of 50. I don't have overruns anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: prettify /proc/lockdep_info
Just feel odd that not all lines of lockdep info are aligned.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
This commit:
commit f7b4cddcc5
Author: Oleg Nesterov <oleg@tv-sign.ru>
Date: Tue Oct 16 23:30:56 2007 -0700
do CPU_DEAD migrating under read_lock(tasklist) instead of write_lock_irq(ta
Currently move_task_off_dead_cpu() is called under
write_lock_irq(tasklist). This means it can't use task_lock() which is
needed to improve migrating to take task's ->cpuset into account.
Change the code to call move_task_off_dead_cpu() with irqs enabled, and
change migrate_live_tasks() to use read_lock(tasklist).
...forgot to update the comment in front of move_task_off_dead_cpu.
Reference: http://lkml.org/lkml/2008/6/23/135
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: make output of stack_trace complete if buffer overruns
When read buffer overruns, the output of stack_trace isn't complete.
When printing records with seq_printf in t_show, if the read buffer
has overruned by the current record, then this record won't be
printed to user space through read buffer, it will just be dropped in
this printing.
When next printing, t_start should return the "*pos"th record, which
is the one dropped by previous printing, but it just returns
(m->private + *pos)th record.
Here we use a more sane method to implement seq_operations which can
be found in kernel code. Thus we needn't initialize m->private.
About testing, it's not easy to overrun read buffer, but we can use
seq_printf to print more padding bytes in t_show, then it's easy to
check whether or not records are lost.
This commit has been tested on both condition of overrun and non
overrun.
Signed-off-by: Liming Wang <liming.wang@windriver.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Try this, and you'll get oops immediately:
# cd Documentation/accounting/
# gcc -o getdelays getdelays.c
# mount -t cgroup -o debug xxx /mnt
# ./getdelays -C /mnt/tasks
Because a normal file's dentry->d_fsdata is a pointer to struct cftype,
not struct cgroup.
After the patch, it returns EINVAL if we try to get cgroupstats
from a normal file.
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x, 2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>