tracing_stat_init() was always returning '0', even on the error paths. It
now returns -ENODEV if tracing_init_dentry() fails or -ENOMEM if it fails
to created the 'trace_stat' debugfs directory.
Link: http://lkml.kernel.org/r/1410299381-20108-1-git-send-email-luis.henriques@canonical.com
Fixes: ed6f1c996b ("tracing: Check return value of tracing_init_dentry()")
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
[ Pulled from the archeological digging of my INBOX ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Looking through old emails in my INBOX, I came across a patch from Luis
Henriques that attempted to fix a race of two stat tracers registering the
same stat trace (extremely unlikely, as this is done in the kernel, and
probably doesn't even exist). The submitted patch wasn't quite right as it
needed to deal with clean up a bit better (if two stat tracers were the
same, it would have the same files).
But to make the code cleaner, all we needed to do is to keep the
all_stat_sessions_mutex held for most of the registering function.
Link: http://lkml.kernel.org/r/1410299375-20068-1-git-send-email-luis.henriques@canonical.com
Fixes: 002bb86d8d ("tracing/ftrace: separate events tracing and stats tracing engine")
Reported-by: Luis Henriques <luis.henriques@canonical.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Added various checks on open tracefs calls to see if tracefs is in lockdown
mode, and if so, to return -EPERM.
Note, the event format files (which are basically standard on all machines)
as well as the enabled_functions file (which shows what is currently being
traced) are not lockde down. Perhaps they should be, but it seems counter
intuitive to lockdown information to help you know if the system has been
modified.
Link: http://lkml.kernel.org/r/CAHk-=wj7fGPKUspr579Cii-w_y60PtRaiDgKuxVtBAMK0VNNkA@mail.gmail.com
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use the more common logging method with the eventual goal of removing
pr_warning altogether.
Miscellanea:
- Realign arguments
- Coalesce formats
- Add missing space between a few coalesced formats
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [kernel/power/suspend.c]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
debugfs was fine for the tracing facility as a quick way to get
an interface. Now that tracing has matured, it should separate itself
from debugfs such that it can be mounted separately without needing
to mount all of debugfs with it. That is, users resist using tracing
because it requires mounting debugfs. Having tracing have its own file
system lets users get the features of tracing without needing to bring
in the rest of the kernel's debug infrastructure.
Another reason for tracefs is that debubfs does not support mkdir.
Currently, to create instances, one does a mkdir in the tracing/instance
directory. This is implemented via a hack that forces debugfs to do
something it is not intended on doing. By converting over to tracefs, this
hack can be removed and mkdir can be properly implemented. This patch does
not address this yet, but it lays the ground work for that to be done.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
tracing_init_dentry() will soon return NULL as a valid pointer for the
top level tracing directroy. NULL can not be used as an error value.
Instead, switch to ERR_PTR() and check the return status with
IS_ERR().
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Use rbtree_postorder_for_each_entry_safe() to destroy the rbtree instead
of opencoding an alternate postorder iteration that modifies the tree
Link: http://lkml.kernel.org/r/1383345566-25087-2-git-send-email-cody@linux.vnet.ibm.com
Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
One entry is missing in the output of a stat file.
The cause is, when stat_seq_start() is called the 2nd time, we
should start from the (pos-1)th elem in the rbtree but not pos,
because pos == 0 is the header.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4A891A65.70009@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Every time we cat a trace_stat file, we leak memory allocated by
seq_open().
Also fix memory leak in a failure path in tracing_stat_open().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4A67D92B.4060704@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add stat_release() callback to struct tracer_stat, so a stat tracer
can release it's entries after the stat file has been read out.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4A51B16A.6020708@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's wrong to increment @pos in stat_seq_start(). It causes some
stat entries lost when reading stat file, if the output of the file
is larger than PAGE_SIZE.
Reviewed-by: Liming Wang <liming.wang@windriver.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4A418716.90209@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
register_stat_tracer() uses list_for_each_entry_safe
to check whether a tracer is already present in the list.
But we don't delete anything from the list here, so
we don't need the safe version
[ Impact: cleanup list use is stat tracing ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
- remove duplicate code in stat_seq_init()
- update comments to reflect the change from stat list to stat rbtree
[ Impact: clean up ]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When closing a trace_stat file, we destroy the rbtree constructed during
file open, but there is memory leak that the root node is not freed.
[ Impact: fix memory leak when closing a trace_stat file ]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Currently the output of trace_stat/workqueues is totally reversed:
# cat /debug/tracing/trace_stat/workqueues
...
1 17 17 210 37 `-blk_unplug_work+0x0/0x57
1 3779 3779 181 11 |-cfq_kick_queue+0x0/0x2f
1 3796 3796 kblockd/1:120
...
The correct output should be:
1 3796 3796 kblockd/1:120
1 3779 3779 181 11 |-cfq_kick_queue+0x0/0x2f
1 17 17 210 37 `-blk_unplug_work+0x0/0x57
It's caused by "tracing/stat: replace linked list by an rbtree for
sorting"
(53059c9b67a62a3dc8c80204d3da42b9267ea5a0).
dummpy_cmp() should return -1, so rb_node will always be inserted as
right-most node in the rbtree, thus we sort the output in ascending
order.
[ Impact: fix the output of trace_stat/workqueues ]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When the stat tracing framework prepares the entries from a tracer
to output them to the user, it starts by computing a linear sort
through a linked list to give the entries ordered by relevance
to the user.
This is quite ugly and causes a small latency when we begin to
read the file.
This patch changes that by turning the linked list into a red-black
tree. Athough the whole iteration using the start and next tracer
callbacks while opening the file remain the same, it is now much
more fast and scalable.
The rbtree guarantees O(log(n)) insertions whereas a linked
list with linear sorting brought us a O(n) despair. Now the
(visible) latency has disapeared.
[ Impact: kill the latency while starting to read a stat tracer file ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The "trace" prefix in struct trace_stat_session type is annoying while
reading the trace_stat.c file. It makes the lines longer, and
is not that much useful to explain the sense of this type.
Just keep "struct stat_session" for this type.
[ Impact: make the code a bit more readable ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Impact: make trace_stat files show items with the original order
trace_stat tracer reverse the items, it makes the output
looks a little ugly.
Example, when we read trace_stat/workqueues, we get cpu#7's stat.
at first, and then cpu#6... cpu#0.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <49C9F23F.5040307@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: Fix incorrect way using seq_file's API
Use SEQ_START_TOKEN instead of calling ->stat_headers()
int seq_operation->start().
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
LKML-Reference: <49C9EAE5.5070202@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, if a trace_stat user wants a handle to some private data,
the trace_stat infrastructure does not supply a way to do that.
This patch passes the trace_stat structure to the start function of
the trace_stat code.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
If the function profiler does not have any items recorded and one were
to cat the function stat file, the kernel would take a BUG with a NULL
pointer dereference.
Looking further into this, I found that returning NULL from stat_start
did not stop the stat logic, and would later call stat_next. This breaks
from the way seq_file works, so I looked into fixing the stat code.
This is where I noticed that the last next_entry is never freed.
It is allocated, and if the stat_next returns NULL, the code breaks out
of the loop, unlocks the mutex and exits. We never link the next_entry
nor do we free it. Thus it is a real memory leak.
This patch rearranges the code a bit to not only fix the memory leak,
but also to act more like seq_file where nothing is printed if there
is nothing to print. That is, stat_start returns NULL.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: cleanup
Fix incorrect hint message in code and typos in comments.
Signed-off-by: Wenji Huang <wenji.huang@oracle.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
We should unlock all_stat_sessions_mutex before returning failure.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: tracing's Api change
Currently, the stat tracing depends on the events tracing.
When you switch to a new tracer, the stats files of the previous tracer
will disappear. But it's more scalable to separate those two engines.
This way, we can keep the stat files of one or several tracers when we
want, without bothering of multiple tracer stat files or tracer switching.
To build/destroys its stats files, a tracer just have to call
register_stat_tracer/unregister_stat_tracer everytimes it wants to.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new API for tracers
Make the stat tracing API reentrant. And also provide the new directory
/debugfs/tracing/trace_stat which will contain all the stat files for the
current active tracer.
Now a tracer will, if desired, want to provide a zero terminated array of
tracer_stat structures.
Each one contains the callbacks necessary for one stat file.
It have to provide at least a name for its stat file, an iterator with
stat_start/start_next callback and an output callback for one stat entry.
Also adapt the branch tracer to this new API.
We create two files "all" and "annotated" inside the /debugfs/tracing/trace_stat
directory, making the both stats simultaneously available instead of needing
to change an option to switch from one stat file to another.
The output of these stats haven't changed.
Changes in v2:
_ Apply the previous memory leak fix (rebase against tip/master)
Changes in v3:
_ Merge the patch that adapted the branch tracer to this Api in this patch to
not break the kernel build.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up
Andrew Morton pointed out that the entry assignment in stat_seq_show
did not need to be done in the declaration, causing funny line breaks.
This patch makes it a bit more pleasing on the eyes.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix memory leak
This patch fixes a memory leak inside reset_stat_list(). The freeing
loop iterated only once.
Also turn the stat_list into a simple struct list_head, which
simplify the code and avoid an unused static pointer.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: extend the tracing API
The goal of this patch is to normalize and make more easy the
implementation of statistical (histogram) tracing.
It implements a trace_stat file into the /debugfs/tracing directory where
one can print a one-shot output of statistics/histogram entries.
A tracer has to provide two basic iterator callbacks:
stat_start() => the first entry
stat_next(prev, idx) => the next one.
Note that it is adapted for arrays or hash tables or lists.... since it
provides a pointer to the previous entry and the current index of the
iterator.
These two callbacks are called to get a snapshot of the statistics at each
opening of the trace_stat file because. The values are so updated between
two "cat trace_stat". And the tracer is free to lock its datas during the
iteration to keep consistent values.
Since it is almost always interesting to sort statisticals values to
address the problems by priority, this infrastructure provides a "sorting"
of the stat entries too if desired. A tracer has just to provide a
stat_cmp callback to compare two entries and the stat tracing
infrastructure will build a sorted list of the given entries.
A last callback, called stat_headers, can be implemented by a tracer to
output headers on its trace.
If one of these callbacks is changed on runtime, it just have to signal it
to the stat tracing API by calling the init_tracer_stat() helper.
Changes in V2:
- Fix a memory leak if the user opens multiple times the trace_stat file
without closing it. Now we always free our list before rebuilding it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>