This patch separates the PMU driver code from the low level
CCI driver code and enables the PMU driver for ARM64.
Introduces config options for both.
ARM_CCI400_PORT_CTRL - controls the low level driver code for
CCI400 ports.
ARM_CCI400_PMU - controls the PMU driver code
ARM_CCI400_COMMON - Common defintions for CCI400
This patch also changes:
ARM_CCI - common code for probing the CCI devices. This can be
used for adding support for newer CCI versions(e.g, CCI-500).
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: Abhilash Kesavan <a.kesavan@samsung.com>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a driver for transparent busses that don't need a real driver, but
where the bus controller is part of a PM domain, or under the control of
a functional clock. Typically, the bus controller's PM domain and/or
clock must be enabled for child devices connected to the bus (either
on-SoC or externally) to function.
Hence the sole purpose of this driver is to enable its clock and PM
domain (if exist(s)), which are specified in the DT and managed from
platform and PM domain code, and to probe for child devices.
Due to the child-parent relationship with devices connected to the bus,
PM domain and clock state transitions are handled in the correct order.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Reviewed-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
BCM7xxx ARM and MIPS platforms share a similar hardware block for
reporting GISB errors, so they both benefit from the use of this driver.
Conditionally compile the ARM-specific bus error handler so that the
GISB error IRQ handler works on other architectures.
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
The CCN driver makes no sense without PERF_EVENTS, and trying to
build it when that option is disabled results in compile errors,
so it's best to just add a strong Kconfig dependency.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Driver providing perf backend for ARM Cache Coherent Network
interconnect. Supports counting all hardware events and crosspoint
watchpoints.
Currently works with CCN-504 only, although there should be
no changes required for CCN-508 (just impossible to test it now).
Signed-off-by: Pawel Moll <pawel.moll@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The arm-cci code uses device tree helpers for initialization
that don't work on kernels built without CONFIG_OF. Further,
it contains an inline assembly in cci_enable_port_for_self()
that uses ARMv7 instructions and fails to build when targetting
other ARM instruction set versions.
This works around both issues by limiting the scope of the
Kconfig symbol to platforms that can actually build this driver
cleanly.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Shawn Guo <shawn.guo@linaro.org>
SoC-near driver changes that we're merging through our tree. Mostly
because they depend on other changes we have staged, but in some cases
because the driver maintainers preferred that we did it this way.
This contains a largeish cleanup series of the omap_l3_noc bus driver,
cpuidle rework for Exynos, some reset driver conversions and a long
branch of TI EDMA fixes and cleanups, with more to come next release.
The TI EDMA cleanups is a shared branch with the dmaengine tree, with
a handful of Davinci-specific fixes on top.
After discussion at last year's KS (and some more on the mailing lists),
we are here adding a drivers/soc directory. The purpose of this is
to keep per-vendor shared code that's needed by different drivers but
that doesn't fit into the MFD (nor drivers/platform) model. We expect
to keep merging contents for this hierarchy through arm-soc so we can
keep an eye on what the vendors keep adding here and not making it a
free-for-all to shove in crazy stuff.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABAgAGBQJTjOFiAAoJEIwa5zzehBx30RYP/0UE+R8ccdsodunmIDrmQ7QP
qFWe1YTWlyXtGBDaPCNfdcU09UYatPKuCv5dJ2ToQCyyFI26PIIhFtnCNXmMuYz+
XPCuqAlJ9hZWx7+j2hXRlyhoZMAaJ5EVVxaK5tnVYXDIfy1Y3xG7i069HD/qGrQp
xrV+XofFmpU2VAds6S+SpecFFfYD7n/pJ1bTSgzPfaUsEUyV882dJ3skgs1VpTzQ
PnL/0Z2t4ePoP3+6p+F7EnJxemLF5IXrlL0c7hODxQKuMqlzoUluywh6SwOHfCQL
u2cc5SFUbbKhExwlGOVibdQMiC0HUOXyRvyYFOIdbv+xNH+Zc/tcoQQ22PWm4Yy1
08qOm3Fr6yw5nH5IT+1wCIFCzJEC/ZHM5B2t+RISFybAMk6Bg1TDYJLmd570zkEL
aTLtS5hdmy4h8Ad5FBtwKNyL//6FJJxhbHUu/m0qaE0phq94+78B2M6vbx6757xC
kCFlpJsHoN0Tn5c9Q1hpTqI/BHxb4UR7Nf+b8Ox8Veuc9JrS35lzi/rWnGxB5WB0
+1KCA8eih9KXTtksxAte1TmSbMciqW559RUR7dNAPXAMPksY2mJV1I+rg0cRsY3i
F90Lnc6LWUM5PYpc4VwiC0sUCLKzTFnpZUELqMOiws3PUblbb0StXuoNo6owbtsK
mp1Juxi1n7VhoN9AFVpL
=SC+e
-----END PGP SIGNATURE-----
Merge tag 'drivers-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc into next
Pull ARM SoC driver changes from Olof Johansson:
"SoC-near driver changes that we're merging through our tree. Mostly
because they depend on other changes we have staged, but in some cases
because the driver maintainers preferred that we did it this way.
This contains a largeish cleanup series of the omap_l3_noc bus driver,
cpuidle rework for Exynos, some reset driver conversions and a long
branch of TI EDMA fixes and cleanups, with more to come next release.
The TI EDMA cleanups is a shared branch with the dmaengine tree, with
a handful of Davinci-specific fixes on top.
After discussion at last year's KS (and some more on the mailing
lists), we are here adding a drivers/soc directory. The purpose of
this is to keep per-vendor shared code that's needed by different
drivers but that doesn't fit into the MFD (nor drivers/platform)
model. We expect to keep merging contents for this hierarchy through
arm-soc so we can keep an eye on what the vendors keep adding here and
not making it a free-for-all to shove in crazy stuff"
* tag 'drivers-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (101 commits)
cpufreq: exynos: Fix driver compilation with ARCH_MULTIPLATFORM
tty: serial: msm: Remove direct access to GSBI
power: reset: keystone-reset: introduce keystone reset driver
Documentation: dt: add bindings for keystone pll control controller
Documentation: dt: add bindings for keystone reset driver
soc: qcom: fix of_device_id table
ARM: EXYNOS: Fix kernel panic when unplugging CPU1 on exynos
ARM: EXYNOS: Move the driver to drivers/cpuidle directory
ARM: EXYNOS: Cleanup all unneeded headers from cpuidle.c
ARM: EXYNOS: Pass the AFTR callback to the platform_data
ARM: EXYNOS: Move S5P_CHECK_SLEEP into pm.c
ARM: EXYNOS: Move the power sequence call in the cpu_pm notifier
ARM: EXYNOS: Move the AFTR state function into pm.c
ARM: EXYNOS: Encapsulate the AFTR code into a function
ARM: EXYNOS: Disable cpuidle for exynos5440
ARM: EXYNOS: Encapsulate boot vector code into a function for cpuidle
ARM: EXYNOS: Pass wakeup mask parameter to function for cpuidle
ARM: EXYNOS: Remove ifdef for scu_enable in pm
ARM: EXYNOS: Move scu_enable in the cpu_pm notifier
ARM: EXYNOS: Use the cpu_pm notifier for pm
...
The versatile express changes for 3.16 introduced a number of
build regressions for randconfig kernels by not tracking dependencies
between the components right.
This patch tries to rectify that:
* the mach-vexpress code cannot link without the syscfg driver,
which in turn needs MFD_VEXPRESS_SYSREG
* various drivers call devm_regmap_init_vexpress_config(), which
has to be exported so it can be used by loadable modules
* the configuration bus uses OF DT helper functions that are not
available to platforms disable CONFIG_OF
* The sysreg driver exports GPIOs through gpiolib, which can
be disabled on some platforms.
* The clocksource code cannot be built on platforms that don't
use modern timekeeping but rely on gettimeoffset.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This patch adds support for the Broadcom GISB arbiter bus timeout/error
handler. GISB is a proprietary bus used by Broadcom Set Top Box
System-on-a-chip devices (BCM7xxx) which allows multiple masters and
clients to be interfaced with each other.
The bus arbiter offers support for generating two interrupts towards the
host CPU, thus allowing us to "catch" clock gated masters, or masters
being volontarily blocked for powersaving purposes, or do general system
troubleshooting.
We also register a hook with the ARM fault exception handling to allow
printing a more informative message than "imprecise external abort at
0x00000000" for instance.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Components of the Versatile Express platform (configuration
microcontrollers on motherboard and daughterboards in particular)
talk to each other over a custom configuration bus. They
provide miscellaneous functions (from clock generator control
to energy sensors) which are represented as platform devices
(and Device Tree nodes). The transactions on the bus can
be generated by different "bridges" in the system, some
of which are universal for the whole platform (for the price
of high transfer latencies), others restricted to a subsystem
(but much faster).
Until now drivers for such functions were using custom "func"
API, which is being replaced in this patch by regmap calls.
This required:
* a rework (and move to drivers/bus directory, as suggested
by Samuel and Arnd) of the config bus core, which is much
simpler now and uses device model infrastructure (class)
to keep track of the bridges; non-DT case (soon to be
retired anyway) is simply covered by a special device
registration function
* the new config-bus driver also takes over device population,
so there is no need for special matching table for
of_platform_populate nor "simple-bus" hack in the arm64
model dtsi file (relevant bindings documentation has
been updated); this allows all the vexpress devices
fit into normal device model, making it possible
to remove plenty of early inits and other hacks in
the near future
* adaptation of the syscfg bridge implementation in the
sysreg driver, again making it much simpler; there is
a special case of the "energy" function spanning two
registers, where they should be both defined in the tree
now, but backward compatibility is maintained in the code
* modification of the relevant drivers:
* hwmon - just a straight-forward API change
* power/reset driver - API change
* regulator - API change plus error handling
simplification
* osc clock driver - this one required larger rework
in order to turn in into a standard platform driver
Signed-off-by: Pawel Moll <pawel.moll@arm.com>
Acked-by: Mark Brown <broonie@linaro.org>
Acked-by: Lee Jones <lee.jones@linaro.org>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Mike Turquette <mturquette@linaro.org>
This patch adds WEIM support for all i.MX CPUs supported by the kernel.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
These changes from 30 individual branches for the most part update device
tree files, but there are also a few source code changes that have crept
in this time, usually in order to atomically move over a driver from
using hardcoded data to DT probing.
A number of platforms change their DT files to use the C preprocessor,
which is causing a bit of churn, but that is hopefully only this once.
There are a few conflicts with the other branches unfortunately:
* in exynos5440.dtsi and kirkwood-6281.dtsi, device nodes are added
from multiple branches. Need to be careful to have the right
set of closing braces as git gets this one wrong.
* In kirkwood.dtsi, one 'ranges' line got split into two lines, while
another line got added. Order of the lines does not matter.
* in sama5d3.dtsi, some cleanup was merged the wrong way, causing
a bogus conflict. We want the 'dmas' and 'dma-names' properties
to get added here.
* Two lines got removed independently in arch/arm/mach-mxs/mach-mxs.c
* Contents get added independently in arch/arm/mach-omap2/cclock33xx_data.c
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAUdLnpGCrR//JCVInAQI50RAAsXbH1SGvjKJemXhRkFloPDYpCbgdDUFr
ChUbjNV1xsY/jaNCfMa5/Qo7lgz/Ot7BpJef9fZn7ret+dc7nchqe/4iIkAokAUh
E4ao9D1dP5aAA0ihdbSQHCZtR/0SUR81h6BoOVuo/1mvEiBaFbWAeYe8/6LJd9II
OU1w9bDmjfZWYFUXs+j2VF76ueZQ+kz69XDKZUGtkqN76m1AL8lGDurj5jxvyllF
VJns8d9q2nr2q9PferfajK6rkOIPaTpwKblxZHUgobCyOitZaiZM0NgF733TsNM6
HXmhDhkcn7T81+SiHVfigJ/nxo9UgU4zNJCODF3WZIwGIj3FbxvCOpdCYi2NhCO8
oLcgDk57tpoKpB3gvAmYVQHP9FIepFa/WAWyPIADA7PkpYrwgc4v+cLEHXpd8SRv
viLLIa5QuNdMeaK+Md9OKmKZFd7uFD9jiMtmdm6IpEVDDjMgoteb2XSoEtNebmtY
MfbW4okn118a2dFKKaPTKcXVW/a5FRp2JGfB0A58RQHaJWj3JsY1bFn/xWPEpTOA
IWB/HHMln0LYTL2AXN9HcaL1jnGI1Wq5eWBurX+cXQ/ij1A6jfoRKYglx7AQqOHj
iWcGYtKLLJCgiWFnLSwcljZhfoYr0/z7rhns6yo7/vhN0riy+M84OgN4HbAmUzc1
Bgy9PnJTNo8=
=8PtJ
-----END PGP SIGNATURE-----
Merge tag 'dt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC device tree changes from Arnd Bergmann:
"These changes from 30 individual branches for the most part update
device tree files, but there are also a few source code changes that
have crept in this time, usually in order to atomically move over a
driver from using hardcoded data to DT probing.
A number of platforms change their DT files to use the C preprocessor,
which is causing a bit of churn, but that is hopefully only this once"
* tag 'dt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (372 commits)
ARM: at91: dt: rm9200ek: add spi support
ARM: at91: dt: rm9200: add spi support
ARM: at91/DT: at91sam9n12: add SPI DMA client infos
ARM: at91/DT: sama5d3: add SPI DMA client infos
ARM: at91/DT: fix SPI compatibility string
ARM: Kirkwood: Fix the internal register ranges translation
ARM: dts: bcm281xx: change comment to C89 style
ARM: mmc: bcm281xx SDHCI driver (dt mods)
ARM: nomadik: add the new clocks to the device tree
clk: nomadik: implement the Nomadik clocks properly
ARM: dts: omap5-uevm: Provide USB Host PHY clock frequency
ARM: dts: omap4-panda: Fix DVI EDID reads
ARM: dts: omap4-panda: Add USB Host support
arm: mvebu: enable mini-PCIe connectors on Armada 370 RD
ARM: shmobile: irqpin: add a DT property to enable masking on parent
ARM: dts: AM43x EPOS EVM support
ARM: dts: OMAP5: Add bandgap DT entry
ARM: dts: AM33XX: Add pinmux configuration for CPSW to am335x EVM
ARM: dts: AM33XX: Add pinmux configuration for CPSW to EVMsk
ARM: dts: AM33XX: Add pinmux configuration for CPSW to beaglebone
...
The WEIM(Wireless External Interface Module) works like a bus.
You can attach many different devices on it, such as NOR, onenand.
In the case of i.MX6q-sabreauto, the NOR is connected to WEIM.
This patch also adds the devicetree binding document.
The driver only works when the devicetree is enabled.
Signed-off-by: Huang Shijie <b32955@freescale.com>
Acked-by: Sascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
On ARM multi-cluster systems coherency between cores running on
different clusters is managed by the cache-coherent interconnect (CCI).
It allows broadcasting of TLB invalidates and memory barriers and it
guarantees cache coherency at system level through snooping of slave
interfaces connected to it.
This patch enables the basic infrastructure required in Linux to handle and
programme the CCI component.
Non-local variables used by the CCI management functions called by power
down function calls after disabling the cache must be flushed out to main
memory in advance, otherwise incoherency of those values may occur if they
are sitting in the cache of some other CPU when power down functions
execute. Driver code ensures that relevant data structures are flushed
from inner and outer caches after the driver probe is completed.
CCI slave port resources are linked to set of CPUs through bus masters
phandle properties that link the interface resources to masters node in
the device tree.
Documentation describing the CCI DT bindings is provided with the patch.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
The Marvell EBU SoCs have a configurable physical address space
layout: the physical ranges of memory used to address PCI(e)
interfaces, NOR flashes, SRAM and various other types of memory are
configurable by software, through a mechanism of so-called 'address
decoding windows'.
This new driver mvebu-mbus consolidates the existing code to address
the configuration of these memory ranges, which is spread into
mach-mvebu, mach-orion5x, mach-mv78xx0, mach-dove and mach-kirkwood.
Following patches convert each Marvell EBU SoC family to use this
driver, therefore removing the old code that was configuring the
address decoding windows.
It is worth mentioning that the MVEBU_MBUS Kconfig option is
intentionally added as a blind option. The new driver implements and
exports the mv_mbus_dram_info() function, which is used by various
Marvell drivers throughout the tree to get access to window
configuration parameters that they require. This function is also
implemented in arch/arm/plat-orion/addr-map.c, which ultimately gets
removed at the end of this patch series. So, in order to preserve
bisectability, we want to ensure that *either* this new driver, *or*
the legacy code in plat-orion/addr-map.c gets compiled in.
By making MVEBU_MBUS a blind option, we are sure that only a platform
that does 'select MVEBU_MBUS' will get this new driver compiled
in. Therefore, throughout the next patches that convert the Marvell
sub-architectures one after the other to this new driver, we add the
'select MVEBU_MBUS' and also ensure to remove plat-orion/addr-map.c
from the build for this specific sub-architecture. This ensures that
bisectability is preserved.
Ealier versions of this driver had a DT binding, but since those were
not yet agreed upon, they were removed. The driver still uses
of_device_id to find the SoC specific details according to the string
passed to mvebu_mbus_init(). The plan is to re-introduce a proper DT
binding as a followup set of patches.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
These devices are not available on other architectures, so
let's limit them to omap.
If the driver subsystem maintainers want to build test
system wide changes without building for each target,
it's easy to carry a test patch that just strips out the
depends entries from Kconfig files.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OMAP interconnect drivers are used for the interconnect error handling.
Since they are bus driver, lets move it to newly created drivers/bus.
Tested-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Adds a new driver *omap-ocp2scp*. This driver takes the responsibility of
creating all the devices that is connected to OCP2SCP. In the case of OMAP4,
USB2PHY is connected to ocp2scp.
This also includes device tree support for ocp2scp driver and
the documentation with device tree binding information is updated.
Acked-by: Felipe Balbi <balbi@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>