mirror of https://gitee.com/openkylin/linux.git
11 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Mel Gorman | f3a310bc4e |
mm: vmscan: rename lumpy_mode to reclaim_mode
With compaction being used instead of lumpy reclaim, the name lumpy_mode and associated variables is a bit misleading. Rename lumpy_mode to reclaim_mode which is a better fit. There is no functional change. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | ee64fc9354 |
mm: vmscan: convert lumpy_mode into a bitmask
Currently lumpy_mode is an enum and determines if lumpy reclaim is off, syncronous or asyncronous. In preparation for using compaction instead of lumpy reclaim, this patch converts the flags into a bitmap. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
KOSAKI Motohiro | 7d3579e8e6 |
vmscan: narrow the scenarios in whcih lumpy reclaim uses synchrounous reclaim
shrink_page_list() can decide to give up reclaiming a page under a number of conditions such as 1. trylock_page() failure 2. page is unevictable 3. zone reclaim and page is mapped 4. PageWriteback() is true 5. page is swapbacked and swap is full 6. add_to_swap() failure 7. page is dirty and gfpmask don't have GFP_IO, GFP_FS 8. page is pinned 9. IO queue is congested 10. pageout() start IO, but not finished With lumpy reclaim, failures result in entering synchronous lumpy reclaim but this can be unnecessary. In cases (2), (3), (5), (6), (7) and (8), there is no point retrying. This patch causes lumpy reclaim to abort when it is known it will fail. Case (9) is more interesting. current behavior is, 1. start shrink_page_list(async) 2. found queue_congested() 3. skip pageout write 4. still start shrink_page_list(sync) 5. wait on a lot of pages 6. again, found queue_congested() 7. give up pageout write again So, it's useless time wasting. However, just skipping page reclaim is also notgood as x86 allocating a huge page needs 512 pages for example. It can have more dirty pages than queue congestion threshold (~=128). After this patch, pageout() behaves as follows; - If order > PAGE_ALLOC_COSTLY_ORDER Ignore queue congestion always. - If order <= PAGE_ALLOC_COSTLY_ORDER skip write page and disable lumpy reclaim. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e11da5b4fd |
tracing, vmscan: add trace events for LRU list shrinking
There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed |
|
KOSAKI Motohiro | cc8e970c3c |
memcg: add mm_vmscan_memcg_isolate tracepoint
Memcg also need to trace page isolation information as global reclaim. This patch does it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
KOSAKI Motohiro | e17613c39b |
vmscan: convert mm_vmscan_lru_isolate to DEFINE_EVENT
Mel Gorman recently added some vmscan tracepoints. Unfortunately they are covered only global reclaim. But we want to trace memcg reclaim too. Thus, this patch convert them to DEFINE_TRACE macro. it help to reuse tracepoint definition for other similar usage (i.e. memcg). This patch have no functionally change. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
KOSAKI Motohiro | bdce6d9ebf |
memcg, vmscan: add memcg reclaim tracepoint
Memcg also need to trace reclaim progress as direct reclaim. This patch add it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
KOSAKI Motohiro | cf4dcc3e9b |
vmscan: convert direct reclaim tracepoint to DEFINE_TRACE
Mel Gorman recently added some vmscan tracepoints. Unfortunately they are covered only global reclaim. But we want to trace memcg reclaim too. Thus, this patch convert them to DEFINE_TRACE macro. it help to reuse tracepoint definition for other similar usage (i.e. memcg). This patch have no functionally change. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 755f0225e8 |
vmscan: tracing: add trace event when a page is written
Add a trace event for when page reclaim queues a page for IO and records whether it is synchronous or asynchronous. Excessive synchronous IO for a process can result in noticeable stalls during direct reclaim. Excessive IO from page reclaim may indicate that the system is seriously under provisioned for the amount of dirty pages that exist. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | a8a94d1515 |
vmscan: tracing: add trace events for LRU page isolation
Add an event for when pages are isolated en-masse from the LRU lists. This event augments the information available on LRU traffic and can be used to evaluate lumpy reclaim. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 33906bc5c8 |
vmscan: tracing: add trace events for kswapd wakeup, sleeping and direct reclaim
Add two trace events for kswapd waking up and going asleep for the purposes of tracking kswapd activity and two trace events for direct reclaim beginning and ending. The information can be used to work out how much time a process or the system is spending on the reclamation of pages and in the case of direct reclaim, how many pages were reclaimed for that process. High frequency triggering of these events could point to memory pressure problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |