Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Get rid of common response code handling. Each command requires its
own response code handling anyway. Also the retry in case of -EBUSY
does not work and can be simply removed.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch
- unifies the old sclp early code and the sclp early printk code, so
they can use common functions
- makes sure all sclp early functions and variables have the same
"sclp_early" prefix
- converts the sclp early printk code into readable code by using
existing data structures instead of hard coded magic arrays
- splits the early sclp code into two files: sclp_early.c and
sclp_early_core.c. The core file contains everything that is
required by the kernel decompressor and may not call functions not
contained within the core file. Otherwise the result would be a
link error.
- changes interrupt handling to be completely synchronous. The old
early sclp code had a small window which allowed to receive several
interrupts instead of exactly the single expected interrupt. This
did hide a subtle potential bug, which is fixed with this large
rework.
- contains a couple of small cleanups.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make sure the early sclp code does not generate any sclp requests
anymore as soon as the base sclp driver is active. Otherwise both
drivers may see unexpected requests or may miss expected interrupts.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
In order to be able to setup the cpu to node mappings early it is a
prerequisite to know which cpus are present. Therefore cpus must be
detected much earlier than before.
For sclp based cpu detection this requires yet another early sclp
call, since the system is not ready to use the regular interrupt and
memory allocations.
Reviewed-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Sort the sclp event type defines and use a macro to create the
corresponding event type masks. In addition to that one unused
type/mask pair is removed and another previously unused define
is used now (it was probably unused/unknown because it didn't
follow the EVTYP_X EVTYP_X_MASK convention).
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add SCLP event 24 "Adapter-error notification".
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Let's also move the facilities into the sclp struct, so we can avoid
another separate external variable.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Let's unify basic access to sclp fields by storing the data in an external
struct in asm/sclp.h.
The values can now directly be accessed by other components, so there is
no need for most accessor functions and external variables anymore.
The mtid, mtid_max and facility part will be cleaned up separately.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This device driver allows accessing a HMC drive CD/DVD-ROM.
It can be used in a LPAR and z/VM environment.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Ralf Hoppe <rhoppe@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch adds a timeout option for queued requests and introduces
sclp_sync_request_timeout() to use this timer. With this, blocking the
system too long, e.g. during an SE reboot, can be avoided in critical
situations like CPU and memory hotplug.
Since there is no way to cancel a running request, this timeout only
applies to queued requests that have not yet been started.
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The early sclp detect functions gather the available SCLP facility
information. The sclp_early_read_info_sccb_valid indicates whether the
early sclp request was valid. However, one external reference to it
checks for particular sclp facility bits and this should be sufficient.
Another occurance is in the sclp_get_ipl_info() function that is called
later. Because all information are available at the early stage, save
the ipl information when detecting the sclp facilities. Hence, no more
checks for sclp_early_read_info_sccb_valid are required.
Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Reviewed-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The early SCLP driver code in sclp_cmd.c belongs to sclp_early.c
because it is independent from the 'normal' SCLP driver. So move
it to sclp_early.c
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Currently we have hardcoded the HSA size to 32 MiB. With this patch the
HSA size is determined dynamically via SCLP in early.c.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a character misc device "sclp_ctl" that allows to run SCCBs
from user space using the SCLP_CTL_SCCB ioctl.
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a kernel parameter to be able to specify the number of pages to be
used as output buffer by the line-mode sclp driver and the vt220 sclp
driver. The current number of output pages is 6, if the service element
is unavailable the boot messages alone can fill up the output buffer.
If this happens the system blocks until the service element is working
again. For a large LPAR with many devices it is sensible to have the
ability to increase the output buffer size. To help to debug this
situation add a counter for the page-pool-empty situation and make it
available as a sclp driver attribute.
To avoid the system to stall until the service element works again
add another kernel parameter to allow to drop output buffers.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add SCLP PCI configure/deconfigure and implement a PCI hotplug
controller (s390_pci_hpc). The hotplug controller creates a slot
for every PCI function in stand-by or configured state. The PCI
functions are named after the PCI function ID (fid). By writing to
the power attribute in /sys/bus/pci/slots/<fid>/power the PCI function
is moved to stand-by or configured state. If moved to the configured
state the device is automatically scanned by the s390 PCI layer.
Signed-off-by: Jan Glauber <jang@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
For processing under KVM it is required to detect
the actual SCLP console type in order to set it as
preferred console.
Signed-off-by: Heinz Graalfs <graalfs@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Provide sysfs attributes that contain the CPC name and the HMC network
name of the machine the operating system is running on. This information
is retrieved with the operation communication parameters (OCF) sclp
interface.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The SCLP base driver defines a new notifier call back for all upper level SCLP
drivers, like the SCLP console, etc. This guarantees that in suspend first the
upper level drivers are suspended and afterwards the SCLP base driver. For
resume it is the other way round. The SCLP base driver itself registers a
new platform device at the platform bus and gets PM notifications via
the dev_pm_ops.
In suspend, the SCLP base driver switches off the receiver and sender mask
This is done in sclp_deactivate(). After suspend all new requests will be
rejected with -EIO and no more interrupts will be received, because the masks
are switched off. For resume the sender and receiver masks are reset in
the sclp_reactivate() function.
When the SCLP console is suspended, all new messages are cached in the
sclp console buffers. In resume, all the cached messages are written to the
console. In addition to that we have an early resume function that removes
the cached messages from the suspend image.
Signed-off-by: Michael Holzheu <holzheu@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make state change events adjust the correct mask by cleaning up
naming inconsistencies. Also remove chance for lockup by removing
unnecessary mask related check before reading events.
Signed-off-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a new interface so that cpus can be put into standby state and
configured state.
Only offline cpus can be put into standby state or configured state.
For that the new percpu sysfs attribute "configure" must be used.
To put a cpu in standby state a "0" must be written to the attribute.
In order to switch it into configured state a "1" must be written to
the attribute.
Only cpus in configured state can be brought online.
In addition this patch introduces a static mapping of physical to
logical cpus. As a result only the sysfs directories of present cpus
will be created. To scan for new cpus the new sysfs attribute "rescan"
must be used.
Writing to /sys/devices/system/cpu/rescan will trigger a rescan of
cpus and will create directories for new cpus.
On IPL only configured cpus will be used. And on reboot/shutdown all
cpus will remain in their current state (configured/standby).
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Check if a command is available before executing. Saves some
superfluous service calls that won't succeed anyway.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce some new interfaces so that random subsystems don't have to
mess around with sclp internal structures.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Generate uevents for all cpus if cpu capability changes. This can
happen e.g. because the cpus are overheating. The cpu capability can
be read via /sys/devices/system/cpu/cpuN/capability.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Use only capital letters for defines.
Cc: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Stefan Haberland <stefan.haberland@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
s390 machines provide hardware support for creating Linux dumps on SCSI
disks. For creating a dump a special purpose dump Linux is used. The first
32 MB of memory are saved by the hardware before the dump Linux is
booted. Via an SCLP interface, the saved memory can be accessed from
Linux. This patch exports memory and registers of the crashed Linux to
userspace via a debugfs file. For more information refer to
Documentation/s390/zfcpdump.txt, which is included in this patch.
Signed-off-by: Michael Holzheu <holzheu@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Hopefully this will make it more maintainable and less error prone.
Code makes use of search_exception_tables(). Since it calls this
function before the kernel exeception table is sorted, there is an
early call to sort_main_extable().
This way it's easy to use the already present infrastructure of fixup
sections. Also this would allows to easily convert the rest of
head[31|64].S into C code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!