There are a few d_obtain_alias callers that are using it to get the
root of a filesystem which may already have an alias somewhere else.
This is not the same as the filehandle-lookup case, and none of them
actually need DCACHE_DISCONNECTED set.
It isn't really a serious problem, but it would really be clearer if we
reserved DCACHE_DISCONNECTED for those cases where it's actually needed.
In the btrfs case this was causing a spurious printk from
nfsd/nfsfh.c:fh_verify when it found an unexpected DCACHE_DISCONNECTED
dentry. Josef worked around this by unsetting DCACHE_DISCONNECTED
manually in 3a0dfa6a12 "Btrfs: unset DCACHE_DISCONNECTED when mounting
default subvol", and this replaces that workaround.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
RENAME_NOREPLACE is trivial to implement for most filesystems: switch over
to ->rename2() and check for the supported flags. The rest is done by the
VFS.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from Chris Mason:
"We have two more fixes in my for-linus branch.
I was hoping to also include a fix for a btrfs deadlock with
compression enabled, but we're still nailing that one down"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: test for valid bdev before kobj removal in btrfs_rm_device
Btrfs: fix abnormal long waiting in fsync
commit 99994cd btrfs: dev delete should remove sysfs entry
added a btrfs_kobj_rm_device, which dereferences device->bdev...
right after we check whether device->bdev might be NULL.
I don't honestly know if it's possible to have a NULL device->bdev
here, but assuming that it is (given the test), we need to move
the kobject removal to be under that test.
(Coverity spotted this)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
xfstests generic/127 detected this problem.
With commit 7fc34a62ca, now fsync will only flush
data within the passed range. This is the cause of the above problem,
-- btrfs's fsync has a stage called 'sync log' which will wait for all the
ordered extents it've recorded to finish.
In xfstests/generic/127, with mixed operations such as truncate, fallocate,
punch hole, and mapwrite, we get some pre-allocated extents, and mapwrite will
mmap, and then msync. And I find that msync will wait for quite a long time
(about 20s in my case), thanks to ftrace, it turns out that the previous
fallocate calls 'btrfs_wait_ordered_range()' to flush dirty pages, but as the
range of dirty pages may be larger than 'btrfs_wait_ordered_range()' wants,
there can be some ordered extents created but not getting corresponding pages
flushed, then they're left in memory until we fsync which runs into the
stage 'sync log', and fsync will just wait for the system writeback thread
to flush those pages and get ordered extents finished, so the latency is
inevitable.
This adds a flush similar to btrfs_start_ordered_extent() in
btrfs_wait_logged_extents() to fix that.
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().
So:
Rename wait_on_bit and wait_on_bit_lock to
wait_on_bit_action and wait_on_bit_lock_action
to make it explicit that they need an action function.
Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
which are *not* given an action function but implicitly use
a standard one.
The decision to error-out if a signal is pending is now made
based on the 'mode' argument rather than being encoded in the action
function.
All instances of the old wait_on_bit and wait_on_bit_lock which
can use the new version have been changed accordingly and their
action functions have been discarded.
wait_on_bit{_lock} does not return any specific error code in the
event of a signal so the caller must check for non-zero and
interpolate their own error code as appropriate.
The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"
The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.
A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack. So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).
Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS. CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull btrfs fixes from Chris Mason:
"We've queued up a few fixes in my for-linus branch"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix crash when starting transaction
Btrfs: fix btrfs_print_leaf for skinny metadata
Btrfs: fix race of using total_bytes_pinned
btrfs: use E2BIG instead of EIO if compression does not help
btrfs: remove stale comment from btrfs_flush_all_pending_stuffs
Btrfs: fix use-after-free when cloning a trailing file hole
btrfs: fix null pointer dereference in btrfs_show_devname when name is null
btrfs: fix null pointer dereference in clone_fs_devices when name is null
btrfs: fix nossd and ssd_spread mount option regression
Btrfs: fix race between balance recovery and root deletion
Btrfs: atomically set inode->i_flags in btrfs_update_iflags
btrfs: only unlock block in verify_parent_transid if we locked it
Btrfs: assert send doesn't attempt to start transactions
btrfs compression: reuse recently used workspace
Btrfs: fix crash when mounting raid5 btrfs with missing disks
btrfs: create sprout should rename fsid on the sysfs as well
btrfs: dev replace should replace the sysfs entry
btrfs: dev add should add its sysfs entry
btrfs: dev delete should remove sysfs entry
btrfs: rename add_device_membership to btrfs_kobj_add_device
We wouldn't actuall print the extent information if we had a skinny metadata
item, this fixes that. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This percpu counter @total_bytes_pinned is introduced to skip unnecessary
operations of 'commit transaction', it accounts for those space we may free
but are stuck in delayed refs.
And we zero out @space_info->total_bytes_pinned every transaction period so
we have a better idea of how much space we'll actually free up by committing
this transaction. However, we do the 'zero out' part a little earlier, before
we actually unpin space, so we end up returning ENOSPC when we actually have
free space that's just unpinned from committing transaction.
xfstests/generic/074 complained then.
This fixes it by actually accounting the percpu pinned number when 'unpin',
and since it's protected by space_info->lock, the race is gone now.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Return codes got updated in 60e1975acb
(btrfs: return errno instead of -1 from compression)
lzo wrapper returns E2BIG in this case, do the same for zlib.
Signed-off-by: David Sterba <dsterba@suse.cz>
The transaction handle was being used after being freed.
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
dev->name is null but missing flag is not set.
Strictly speaking the missing flag should have been set, but there
are more places where code just checks if name is null. For now this
patch does the same.
stack:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000064
IP: [<ffffffffa0228908>] btrfs_show_devname+0x58/0xf0 [btrfs]
[<ffffffff81198879>] show_vfsmnt+0x39/0x130
[<ffffffff81178056>] m_show+0x16/0x20
[<ffffffff8117d706>] seq_read+0x296/0x390
[<ffffffff8115aa7d>] vfs_read+0x9d/0x160
[<ffffffff8115b549>] SyS_read+0x49/0x90
[<ffffffff817abe52>] system_call_fastpath+0x16/0x1b
reproducer:
mkfs.btrfs -draid1 -mraid1 /dev/sdg1 /dev/sdg2
btrfstune -S 1 /dev/sdg1
modprobe -r btrfs && modprobe btrfs
mount -o degraded /dev/sdg1 /btrfs
btrfs dev add /dev/sdg3 /btrfs
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The commit
0780253 btrfs: Cleanup the btrfs_parse_options for remount.
broke ssd options quite badly; it stopped making ssd_spread
imply ssd, and it made "nossd" unsettable.
Put things back at least as well as they were before
(though ssd mount option handling is still pretty odd:
# mount -o "nossd,ssd_spread" works?)
Reported-by: Roman Mamedov <rm@romanrm.net>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
Balance recovery is called when RW mounting or remounting from
RO to RW, it is called to finish roots merging.
When doing balance recovery, relocation root's corresponding
fs root(whose root refs is 0) might be destroyed by cleaner
thread, this will make btrfs fail to mount.
Fix this problem by holding @cleaner_mutex when doing balance
recovery.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change is based on the corresponding recent change for ext4:
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
That has the following commit message that applies to btrfs as well:
"Use cmpxchg() to atomically set i_flags instead of clearing out the
S_IMMUTABLE, S_APPEND, etc. flags and then setting them from the
EXT4_IMMUTABLE_FL, EXT4_APPEND_FL flags, since this opens up a race
where an immutable file has the immutable flag cleared for a brief
window of time."
Replacing EXT4_IMMUTABLE_FL and EXT4_APPEND_FL with BTRFS_INODE_IMMUTABLE
and BTRFS_INODE_APPEND, respectively.
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is a regression from my patch a26e8c9f75, we
need to only unlock the block if we were the one who locked it. Otherwise this
will trip BUG_ON()'s in locking.c Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When starting a transaction just assert that current->journal_info
doesn't contain a send transaction stub, since send isn't supposed
to start transactions and when it finishes (either successfully or
not) it's supposed to set current->journal_info to NULL.
This is motivated by the change titled:
Btrfs: fix crash when starting transaction
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add compression `workspace' in free_workspace() to
`idle_workspace' list head, instead of tail. So we have
better chances to reuse most recently used `workspace'.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Creating sprout will change the fsid of the mounted root.
do the same on the sysfs as well.
reproducer:
mount /dev/sdb /btrfs (seed disk)
btrfs dev add /dev/sdc /btrfs
mount -o rw,remount /btrfs
btrfs dev del /dev/sdb /btrfs
mount /dev/sdb /btrfs
Error:
kobject_add_internal failed for fe350492-dc28-4051-a601-e017b17e6145 with -EEXIST, don't try to register things with the same name in the same directory.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
when we replace the device its corresponding sysfs
entry has to be replaced as well
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
we would need the device links to be created,
when device is added.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
when we delete the device from the mounted btrfs,
we would need its corresponding sysfs enty to
be removed as well.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"This fixes some lockups in btrfs reported with rc1. It probably has
some performance impact because it is backing off our spinning locks
more often and switching to a blocking lock. I'll be able to nail
that down next week, but for now I want to get the lockups taken care
of.
Otherwise some more stack reduction and assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong error handle when the device is missing or is not writeable
Btrfs: fix deadlock when mounting a degraded fs
Btrfs: use bio_endio_nodec instead of open code
Btrfs: fix NULL pointer crash when running balance and scrub concurrently
btrfs: Skip scrubbing removed chunks to avoid -ENOENT.
Btrfs: fix broken free space cache after the system crashed
Btrfs: make free space cache write out functions more readable
Btrfs: remove unused wait queue in struct extent_buffer
Btrfs: fix deadlocks with trylock on tree nodes
The original bio might be submitted, so we shoud increase bi_remaining to
account for it when we deal with the error that the device is missing or
is not writeable, or we would skip the endio handle.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The deadlock happened when we mount degraded filesystem, the reproduced
steps are following:
# mkfs.btrfs -f -m raid1 -d raid1 <dev0> <dev1>
# echo 1 > /sys/block/`basename <dev0>`/device/delete
# mount -o degraded <dev1> <mnt>
The reason was that the counter -- bi_remaining was wrong. If the missing
or unwriteable device was the last device in the mapping array, we would
not submit the original bio, so we shouldn't increase bi_remaining of it
in btrfs_end_bio(), or we would skip the final endio handle.
Fix this problem by adding a flag into btrfs bio structure. If we submit
the original bio, we will set the flag, and we increase bi_remaining counter,
or we don't.
Though there is another way to fix it -- decrease bi_remaining counter of the
original bio when we make sure the original bio is not submitted, this method
need add more check and is easy to make mistake.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running balance, scrub, fsstress concurrently we hit the
following kernel crash:
[56561.448845] BTRFS info (device sde): relocating block group 11005853696 flags 132
[56561.524077] BUG: unable to handle kernel NULL pointer dereference at 0000000000000078
[56561.524237] IP: [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs]
[56561.524297] PGD 9be28067 PUD 7f3dd067 PMD 0
[56561.524325] Oops: 0000 [#1] SMP
[....]
[56561.527237] Call Trace:
[56561.527309] [<ffffffffa038980e>] scrub_enumerate_chunks+0x24e/0x490 [btrfs]
[56561.527392] [<ffffffff810abe00>] ? abort_exclusive_wait+0x50/0xb0
[56561.527476] [<ffffffffa038add4>] btrfs_scrub_dev+0x1a4/0x530 [btrfs]
[56561.527561] [<ffffffffa0368107>] btrfs_ioctl+0x13f7/0x2a90 [btrfs]
[56561.527639] [<ffffffff811c82f0>] do_vfs_ioctl+0x2e0/0x4c0
[56561.527712] [<ffffffff8109c384>] ? vtime_account_user+0x54/0x60
[56561.527788] [<ffffffff810f768c>] ? __audit_syscall_entry+0x9c/0xf0
[56561.527870] [<ffffffff811c8551>] SyS_ioctl+0x81/0xa0
[56561.527941] [<ffffffff815707f7>] tracesys+0xdd/0xe2
[...]
[56561.528304] RIP [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs]
[56561.528395] RSP <ffff88004c0f5be8>
[56561.528454] CR2: 0000000000000078
This is because in btrfs_relocate_chunk(), we will free @bdev directly while
scrub may still hold extent mapping, and may access freed memory.
Fix this problem by wrapping freeing @bdev work into free_extent_map() which
is based on reference count.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When run scrub with balance, sometimes -ENOENT will be returned, since
in scrub_enumerate_chunks() will search dev_extent in *COMMIT_ROOT*, but
btrfs_lookup_block_group() will search block group in *MEMORY*, so if a
chunk is removed but not committed, -ENOENT will be returned.
However, there is no need to stop scrubbing since other chunks may be
scrubbed without problem.
So this patch changes the behavior to skip removed chunks and continue
to scrub the rest.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we mounted the filesystem after the crash, we got the following
message:
BTRFS error (device xxx): block group xxxx has wrong amount of free space
BTRFS error (device xxx): failed to load free space cache for block group xxx
It is because we didn't update the metadata of the allocated space (in extent
tree) until the file data was written into the disk. During this time, there was
no information about the allocated spaces in either the extent tree nor the
free space cache. when we wrote out the free space cache at this time (commit
transaction), those spaces were lost. In fact, only the free space that is
used to store the file data had this problem, the others didn't because
the metadata of them is updated in the same transaction context.
There are many methods which can fix the above problem
- track the allocated space, and write it out when we write out the free
space cache
- account the size of the allocated space that is used to store the file
data, if the size is not zero, don't write out the free space cache.
The first one is complex and may make the performance drop down.
This patch chose the second method, we use a per-block-group variant to
account the size of that allocated space. Besides that, we also introduce
a per-block-group read-write semaphore to avoid the race between
the allocation and the free space cache write out.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch makes the free space cache write out functions more readable,
and beisdes that, it also reduces the stack space that the function --
__btrfs_write_out_cache uses from 194bytes to 144bytes.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The lock_wq wait queue is not used anywhere, therefore just remove it.
On a x86_64 system, this reduced sizeof(struct extent_buffer) from 320
bytes down to 296 bytes, which means a 4Kb page can now be used for
13 extent buffers instead of 12.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
The Btrfs tree trylock function is poorly named. It always takes
the spinlock and backs off if the blocking lock is held. This
can lead to surprising lockups because people expect it to really be a
trylock.
This commit makes it a pure trylock, both for the spinlock and the
blocking lock. It also reworks the nested lock handling slightly to
avoid taking the read lock while a spinning write lock might be held.
Signed-off-by: Chris Mason <clm@fb.com>
Pull more btrfs updates from Chris Mason:
"This has a few fixes since our last pull and a new ioctl for doing
btree searches from userland. It's very similar to the existing
ioctl, but lets us return larger items back down to the app"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix error handling in create_pending_snapshot
btrfs: fix use of uninit "ret" in end_extent_writepage()
btrfs: free ulist in qgroup_shared_accounting() error path
Btrfs: fix qgroups sanity test crash or hang
btrfs: prevent RCU warning when dereferencing radix tree slot
Btrfs: fix unfinished readahead thread for raid5/6 degraded mounting
btrfs: new ioctl TREE_SEARCH_V2
btrfs: tree_search, search_ioctl: direct copy to userspace
btrfs: new function read_extent_buffer_to_user
btrfs: tree_search, copy_to_sk: return needed size on EOVERFLOW
btrfs: tree_search, copy_to_sk: return EOVERFLOW for too small buffer
btrfs: tree_search, search_ioctl: accept varying buffer
btrfs: tree_search: eliminate redundant nr_items check
fcebe456 cut and pasted some code to a later point
in create_pending_snapshot(), but didn't switch
to the appropriate error handling for this stage
of the function.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
If this condition in end_extent_writepage() is false:
if (tree->ops && tree->ops->writepage_end_io_hook)
we will then test an uninitialized "ret" at:
ret = ret < 0 ? ret : -EIO;
The test for ret is for the case where ->writepage_end_io_hook
failed, and we'd choose that ret as the error; but if
there is no ->writepage_end_io_hook, nothing sets ret.
Initializing ret to 0 should be sufficient; if
writepage_end_io_hook wasn't set, (!uptodate) means
non-zero err was passed in, so we choose -EIO in that case.
Signed-of-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
If tmp = ulist_alloc(GFP_NOFS) fails, we return without
freeing the previously allocated qgroups = ulist_alloc(GFP_NOFS)
and cause a memory leak.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
Mark the dereference as protected by lock. Not doing so triggers
an RCU warning since the radix tree assumed that RCU is in use.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sd[b-f] -m raid5 -d raid5
# mkfs.ext4 /dev/sdc --->corrupt one of btrfs device
# mount /dev/sdb /mnt -o degraded
# btrfs scrub start -BRd /mnt
This is because readahead would skip missing device, this is not true
for RAID5/6, because REQ_GET_READ_MIRRORS return 1 for RAID5/6 block
mapping. If expected data locates in missing device, readahead thread
would not call __readahead_hook() which makes event @rc->elems=0
wait forever.
Fix this problem by checking return value of btrfs_map_block(),we
can only skip missing device safely if there are several mirrors.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This new ioctl call allows the user to supply a buffer of varying size in which
a tree search can store its results. This is much more flexible if you want to
receive items which are larger than the current fixed buffer of 3992 bytes or
if you want to fetch more items at once. Items larger than this buffer are for
example some of the type EXTENT_CSUM.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
By copying each found item seperatly to userspace, we do not need extra
buffer in the kernel.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
This new function reads the content of an extent directly to user memory.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
If an item in tree_search is too large to be stored in the given buffer, return
the needed size (including the header).
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
In copy_to_sk, if an item is too large for the given buffer, it now returns
-EOVERFLOW instead of copying a search_header with len = 0. For backward
compatibility for the first item it still copies such a header to the buffer,
but not any other following items, which could have fitted.
tree_search changes -EOVERFLOW back to 0 to behave similiar to the way it
behaved before this patch.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
rewrite search_ioctl to accept a buffer with varying size
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
If the amount of items reached the given limit of nr_items, we can leave
copy_to_sk without updating the key. Also by returning 1 we leave the loop in
search_ioctl without rechecking if we reached the given limit.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
Pull btrfs updates from Chris Mason:
"The biggest change here is Josef's rework of the btrfs quota
accounting, which improves the in-memory tracking of delayed extent
operations.
I had been working on Btrfs stack usage for a while, mostly because it
had become impossible to do long stress runs with slab, lockdep and
pagealloc debugging turned on without blowing the stack. Even though
you upgraded us to a nice king sized stack, I kept most of the
patches.
We also have some very hard to find corruption fixes, an awesome sysfs
use after free, and the usual assortment of optimizations, cleanups
and other fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (80 commits)
Btrfs: convert smp_mb__{before,after}_clear_bit
Btrfs: fix scrub_print_warning to handle skinny metadata extents
Btrfs: make fsync work after cloning into a file
Btrfs: use right type to get real comparison
Btrfs: don't check nodes for extent items
Btrfs: don't release invalid page in btrfs_page_exists_in_range()
Btrfs: make sure we retry if page is a retriable exception
Btrfs: make sure we retry if we couldn't get the page
btrfs: replace EINVAL with EOPNOTSUPP for dev_replace raid56
trivial: fs/btrfs/ioctl.c: fix typo s/substract/subtract/
Btrfs: fix leaf corruption after __btrfs_drop_extents
Btrfs: ensure btrfs_prev_leaf doesn't miss 1 item
Btrfs: fix clone to deal with holes when NO_HOLES feature is enabled
btrfs: free delayed node outside of root->inode_lock
btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX
Btrfs: fix transaction leak during fsync call
btrfs: Avoid trucating page or punching hole in a already existed hole.
Btrfs: update commit root on snapshot creation after orphan cleanup
Btrfs: ioctl, don't re-lock extent range when not necessary
Btrfs: avoid visiting all extent items when cloning a range
...
The skinny extents are intepreted incorrectly in scrub_print_warning(),
and end up hitting the BUG() in btrfs_extent_inline_ref_size.
Reported-by: Konstantinos Skarlatos <k.skarlatos@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
When cloning into a file, we were correctly replacing the extent
items in the target range and removing the extent maps. However
we weren't replacing the extent maps with new ones that point to
the new extents - as a consequence, an incremental fsync (when the
inode doesn't have the full sync flag) was a NOOP, since it relies
on the existence of extent maps in the modified list of the inode's
extent map tree, which was empty. Therefore add new extent maps to
reflect the target clone range.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We want to make sure the point is still within the extent item, not to verify
the memory it's pointing to.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The backref code was looking at nodes as well as leaves when we tried to
populate extent item entries. This is not good, and although we go away with it
for the most part because we'd skip where disk_bytenr != random_memory,
sometimes random_memory would match and suddenly boom. This fixes that problem.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if the page we got from
the radix tree is an exception entry, which can't be retried, we
exit the loop with a non-NULL page and then call page_cache_release
against it, which is not ok since it's not a valid page. This could
also make us return true when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if the page we get from the
radix tree is an exception which should make us retry, set page to
NULL in order to really retry, because otherwise we don't get another
loop iteration executed (page != NULL makes the while loop exit).
This also was making us call page_cache_release after exiting the loop,
which isn't correct because page doesn't point to a valid page, and
possibly return true from the function when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if we can't get the page
we need to retry. However we weren't retrying because we weren't
setting page to NULL, which makes the while loop exit immediately
and will make us call page_cache_release after exiting the loop
which is incorrect because our page get didn't succeed. This could
also make us return true when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
To return EOPNOTSUPP is more user friendly than to return EINVAL,
and then user-space tool will show that the dev_replace operation
for raid56 is not currently supported rather than showing that
there is an invalid argument.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Antonio Ospite <ao2@ao2.it>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <clm@fb.com>
Several reports about leaf corruption has been floating on the list, one of them
points to __btrfs_drop_extents(), and we find that the leaf becomes corrupted
after __btrfs_drop_extents(), it's really a rare case but it does exist.
The problem turns out to be btrfs_next_leaf() called in __btrfs_drop_extents().
So in btrfs_next_leaf(), we release the current path to re-search the last key of
the leaf for locating next leaf, and we've taken it into account that there might
be balance operations between leafs during this 'unlock and re-lock' dance, so
we check the path again and advance it if there are now more items available.
But things are a bit different if that last key happens to be removed and balance
gets a bigger key as the last one, and btrfs_search_slot will return it with
ret > 0, IOW, nothing change in this leaf except the new last key, then we think
we're okay because there is no more item balanced in, fine, we thinks we can
go to the next leaf.
However, we should return that bigger key, otherwise we deserve leaf corruption,
for example, in endio, skipping that key means that __btrfs_drop_extents() thinks
it has dropped all extent matched the required range and finish_ordered_io can
safely insert a new extent, but it actually doesn't and ends up a leaf
corruption.
One may be asking that why our locking on extent io tree doesn't work as
expected, ie. it should avoid this kind of race situation. But in
__btrfs_drop_extents(), we don't always find extents which are included within
our locking range, IOW, extents can start before our searching start, in this
case locking on extent io tree doesn't protect us from the race.
This takes the special case into account.
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We might have had an item with the previous key in the tree right
before we released our path. And after we released our path, that
item might have been pushed to the first slot (0) of the leaf we
were holding due to a tree balance. Alternatively, an item with the
previous key can exist as the only element of a leaf (big fat item).
Therefore account for these 2 cases, so that our callers (like
btrfs_previous_item) don't miss an existing item with a key matching
the previous key we computed above.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the NO_HOLES feature is enabled holes don't have file extent items in
the btree that represent them anymore. This made the clone operation
ignore the gaps that exist between consecutive file extent items and
therefore not create the holes at the destination. When not using the
NO_HOLES feature, the holes were created at the destination.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
On heavy workloads, we're seeing soft lockup warnings on
root->inode_lock in __btrfs_release_delayed_node. The low hanging fruit
is to reduce the size of the critical section.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
To be accurate about the error case,
if the new size is beyond ULLONG_MAX, return ERANGE instead of EINVAL.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If btrfs_log_dentry_safe() returns an error, we set ret to 1 and
fall through with the goal of committing the transaction. However,
in the case where the inode doesn't need a full sync, we would call
btrfs_wait_ordered_range() against the target range for our inode,
and if it returned an error, we would return without commiting or
ending the transaction.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_punch_hole() will truncate unaligned pages or punch hole on a
already existed hole.
This will cause unneeded zero page or holes splitting the original huge
hole.
This patch will skip already existed holes before any page truncating or
hole punching.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
On snapshot creation (either writable or read-only), we do orphan cleanup
against the root of the snapshot. If the cleanup did remove any orphans,
then the current root node will be different from the commit root node
until the next transaction commit happens.
A send operation always uses the commit root of a snapshot - this means
it will see the orphans if it starts computing the send stream before the
next transaction commit happens (triggered by a timer or sync() for .e.g),
which is when the commit root gets assigned a reference to current root,
where the orphans are not visible anymore. The consequence of send seeing
the orphans is explained below.
For example:
mkfs.btrfs -f /dev/sdd
mount -o commit=999 /dev/sdd /mnt
# open a file with O_TMPFILE and leave it open
# write some data to the file
btrfs subvolume snapshot -r /mnt /mnt/snap1
btrfs send /mnt/snap1 -f /tmp/send.data
The send operation will fail with the following error:
ERROR: send ioctl failed with -116: Stale file handle
What happens here is that our snapshot has an orphan inode still visible
through the commit root, that corresponds to the tmpfile. However send
will attempt to call inode.c:btrfs_iget(), with the goal of reading the
file's data, which will return -ESTALE because it will use the current
root (and not the commit root) of the snapshot.
Of course, there are other cases where we can get orphans, but this
example using a tmpfile makes it much easier to reproduce the issue.
Therefore on snapshot creation, after calling btrfs_orphan_cleanup, if
the commit root is different from the current root, just commit the
transaction associated with the snapshot's root (if it exists), so that
a send will not see any orphans that don't exist anymore. This also
guarantees a send will always see the same content regardless of whether
a transaction commit happened already before the send was requested and
after the orphan cleanup (meaning the commit root and current roots are
the same) or it hasn't happened yet (commit and current roots are
different).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ioctl.c:lock_extent_range(), after locking our target range, the
ordered extent that btrfs_lookup_first_ordered_extent() returns us
may not overlap our target range at all. In this case we would just
unlock our target range, wait for any new ordered extents that overlap
the range to complete, lock again the range and repeat all these steps
until we don't get any ordered extent and the delalloc flag isn't set
in the io tree for our target range.
Therefore just stop if we get an ordered extent that doesn't overlap
our target range and the dealalloc flag isn't set for the range in
the inode's io tree.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
When cloning a range of a file, we were visiting all the extent items in
the btree that belong to our source inode. We don't need to visit those
extent items that don't overlap the range we are cloning, as doing so only
makes us waste time and do unnecessary btree navigations (btrfs_next_leaf)
for inodes that have a large number of file extent items in the btree.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were setting the BTRFS_ROOT_SUBVOL_DEAD flag on the root of the
parent of our target snapshot, instead of setting it in the target
snapshot's root.
This is easy to observe by running the following scenario:
mkfs.btrfs -f /dev/sdd
mount /dev/sdd /mnt
btrfs subvolume create /mnt/first_subvol
btrfs subvolume snapshot -r /mnt /mnt/mysnap1
btrfs subvolume delete /mnt/first_subvol
btrfs subvolume snapshot -r /mnt /mnt/mysnap2
btrfs send -p /mnt/mysnap1 /mnt/mysnap2 -f /tmp/send.data
The send command failed because the send ioctl returned -EPERM.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We were cleaning the clone target file range from the page cache before
we did replace the file extent items in the fs tree. This was racy,
as right after cleaning the relevant range from the page cache and before
replacing the file extent items, a read against that range could be
performed by another task and populate again the page cache with stale
data (stale after the cloning finishes). This would result in reads after
the clone operation successfully finishes to get old data (and potentially
for a very long time). Therefore evict the pages after replacing the file
extent items, so that subsequent reads will always get the new data.
Similarly, we were prone to races while cloning the file extent items
because we weren't locking the target range and wait for any existing
ordered extents against that range to complete. It was possible that
after cloning the extent items, a write operation that was performed
before the clone operation and overlaps the same range, would end up
undoing all or part of the work the clone operation did (a worker task
running inode.c:btrfs_finish_ordered_io). Therefore lock the target
range in the io tree, wait for all pending ordered extents against that
range to finish and then safely perform the cloning.
The issue of reading stale data after the clone operation is easy to
reproduce by running the following C program in a loop until it exits
with return value 1.
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <fcntl.h>
#include <assert.h>
#include <asm/types.h>
#include <linux/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define SRC_FILE "/mnt/sdd/foo"
#define DST_FILE "/mnt/sdd/bar"
#define FILE_SIZE (16 * 1024)
#define PATTERN_SRC 'X'
#define PATTERN_DST 'Y'
struct btrfs_ioctl_clone_range_args {
__s64 src_fd;
__u64 src_offset, src_length;
__u64 dest_offset;
};
#define BTRFS_IOCTL_MAGIC 0x94
#define BTRFS_IOC_CLONE_RANGE _IOW(BTRFS_IOCTL_MAGIC, 13, \
struct btrfs_ioctl_clone_range_args)
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static int clone_done = 0;
static int reader_ready = 0;
static int stale_data = 0;
static void *reader_loop(void *arg)
{
char buf[4096], want_buf[4096];
memset(want_buf, PATTERN_SRC, 4096);
pthread_mutex_lock(&mutex);
reader_ready = 1;
pthread_mutex_unlock(&mutex);
while (1) {
int done, fd, ret;
fd = open(DST_FILE, O_RDONLY);
assert(fd != -1);
pthread_mutex_lock(&mutex);
done = clone_done;
pthread_mutex_unlock(&mutex);
ret = read(fd, buf, 4096);
assert(ret == 4096);
close(fd);
if (done) {
ret = memcmp(buf, want_buf, 4096);
if (ret == 0) {
printf("Found new content\n");
} else {
printf("Found old content\n");
pthread_mutex_lock(&mutex);
stale_data = 1;
pthread_mutex_unlock(&mutex);
}
break;
}
}
return NULL;
}
int main(int argc, char *argv[])
{
pthread_t reader;
int ret, i, fd;
struct btrfs_ioctl_clone_range_args clone_args;
int fd1, fd2;
ret = remove(SRC_FILE);
if (ret == -1 && errno != ENOENT) {
fprintf(stderr, "Error deleting src file: %s\n", strerror(errno));
return 1;
}
ret = remove(DST_FILE);
if (ret == -1 && errno != ENOENT) {
fprintf(stderr, "Error deleting dst file: %s\n", strerror(errno));
return 1;
}
fd = open(SRC_FILE, O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU);
assert(fd != -1);
for (i = 0; i < FILE_SIZE; i++) {
char c = PATTERN_SRC;
ret = write(fd, &c, 1);
assert(ret == 1);
}
close(fd);
fd = open(DST_FILE, O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU);
assert(fd != -1);
for (i = 0; i < FILE_SIZE; i++) {
char c = PATTERN_DST;
ret = write(fd, &c, 1);
assert(ret == 1);
}
close(fd);
sync();
ret = pthread_create(&reader, NULL, reader_loop, NULL);
assert(ret == 0);
while (1) {
int r;
pthread_mutex_lock(&mutex);
r = reader_ready;
pthread_mutex_unlock(&mutex);
if (r) break;
}
fd1 = open(SRC_FILE, O_RDONLY);
if (fd1 < 0) {
fprintf(stderr, "Error open src file: %s\n", strerror(errno));
return 1;
}
fd2 = open(DST_FILE, O_RDWR);
if (fd2 < 0) {
fprintf(stderr, "Error open dst file: %s\n", strerror(errno));
return 1;
}
clone_args.src_fd = fd1;
clone_args.src_offset = 0;
clone_args.src_length = 4096;
clone_args.dest_offset = 0;
ret = ioctl(fd2, BTRFS_IOC_CLONE_RANGE, &clone_args);
assert(ret == 0);
close(fd1);
close(fd2);
pthread_mutex_lock(&mutex);
clone_done = 1;
pthread_mutex_unlock(&mutex);
ret = pthread_join(reader, NULL);
assert(ret == 0);
pthread_mutex_lock(&mutex);
ret = stale_data ? 1 : 0;
pthread_mutex_unlock(&mutex);
return ret;
}
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is otherwise a risk of a possible null pointer dereference.
Was largely found by using a static code analysis program called cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Chris Mason <clm@fb.com>
We are currently allocating space_info objects in an array when we
allocate space_info. When a user does something like:
# btrfs balance start -mconvert=raid1 -dconvert=raid1 /mnt
# btrfs balance start -mconvert=single -dconvert=single /mnt -f
# btrfs balance start -mconvert=raid1 -dconvert=raid1 /
We can end up with memory corruption since the kobject hasn't
been reinitialized properly and the name pointer was left set.
The rationale behind allocating them statically was to avoid
creating a separate kobject container that just contained the
raid type. It used the index in the array to determine the index.
Ultimately, though, this wastes more memory than it saves in all
but the most complex scenarios and introduces kobject lifetime
questions.
This patch allocates the kobjects dynamically instead. Note that
we also remove the kobject_get/put of the parent kobject since
kobject_add and kobject_del do that internally.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We were limiting the sum of the xattr name and value lengths to PATH_MAX,
which is not correct, specially on filesystems created with btrfs-progs
v3.12 or higher, where the default leaf size is max(16384, PAGE_SIZE), or
systems with page sizes larger than 4096 bytes.
Xattrs have their own specific maximum name and value lengths, which depend
on the leaf size, therefore use these limits to be able to send xattrs with
sizes larger than PATH_MAX.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we are doing an incremental send and the base snapshot has a
directory with name X that doesn't exist anymore in the second
snapshot and a new subvolume/snapshot exists in the second snapshot
that has the same name as the directory (name X), the incremental
send would fail with -ENOENT error. This is because it attempts
to lookup for an inode with a number matching the objectid of a
root, which doesn't exist.
Steps to reproduce:
mkfs.btrfs -f /dev/sdd
mount /dev/sdd /mnt
mkdir /mnt/testdir
btrfs subvolume snapshot -r /mnt /mnt/mysnap1
rmdir /mnt/testdir
btrfs subvolume create /mnt/testdir
btrfs subvolume snapshot -r /mnt /mnt/mysnap2
btrfs send -p /mnt/mysnap1 /mnt/mysnap2 -f /tmp/send.data
A test case for xfstests follows.
Reported-by: Robert White <rwhite@pobox.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Delayed extent operations are triggered during transaction commits.
The goal is to queue up a healthly batch of changes to the extent
allocation tree and run through them in bulk.
This farms them off to async helper threads. The goal is to have the
bulk of the delayed operations being done in the background, but this is
also important to limit our stack footprint.
Signed-off-by: Chris Mason <clm@fb.com>
__extent_writepage has two unrelated parts. First it does the delayed
allocation dance and second it does the mapping and IO for the page
we're actually writing.
This splits it up into those two parts so the stack from one doesn't
impact the stack from the other.
Signed-off-by: Chris Mason <clm@fb.com>
In these instances, we are trying to determine if a page has been accessed
since we began the operation for the sake of retry. This is easily
accomplished by doing a gang lookup in the page mapping radix tree, and it
saves us the dependency on the flag (so that we might eventually delete
it).
btrfs_page_exists_in_range borrows heavily from find_get_page, replacing
the radix tree look up with a gang lookup of 1, so that we can find the
next highest page >= index and see if it falls into our lock range.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Alex Gartrell <agartrell@fb.com>
This adds noinline_for_stack to two helpers used by
btree_write_cache_pages. It shaves us down from 424 bytes on the
stack to 280.
Signed-off-by: Chris Mason <clm@fb.com>
__btrfs_write_out_cache was one of our stack pigs. This breaks it
up into helper functions and slims it down to 194 bytes.
Signed-off-by: Chris Mason <clm@fb.com>
I have an opinion that system logs /var/log/messages are
valuable info to investigate the real system issues at
the data center. People handling data center issues
do spend a lot time and efforts analyzing messages
files. Having usage error logged into /var/log/messages
is something we should avoid.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
I've noticed an extra line after "use no compression", but search
revealed much more in messages of more critical levels and rare errors.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We need to NULL the cached_state after freeing it, otherwise
we might free it again if find_delalloc_range doesn't find anything.
Signed-off-by: Chris Mason <clm@fb.com>
cc: stable@vger.kernel.org
use the newer and more pleasant kstrtoull() to replace simple_strtoull(),
because simple_strtoull() is marked for obsoletion.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
Seeding device support allows us to create a new filesystem
based on existed filesystem.
However newly created filesystem's @total_devices should include seed
devices. This patch fix the following problem:
# mkfs.btrfs -f /dev/sdb
# btrfstune -S 1 /dev/sdb
# mount /dev/sdb /mnt
# btrfs device add -f /dev/sdc /mnt --->fs_devices->total_devices = 1
# umount /mnt
# mount /dev/sdc /mnt --->fs_devices->total_devices = 2
This is because we record right @total_devices in superblock, but
@fs_devices->total_devices is reset to be 0 in btrfs_prepare_sprout().
Fix this problem by not resetting @fs_devices->total_devices.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Even CONFIG_BTRFS_FS_POSIX_ACL is not defined, the acl still could
been enabled using a mount option, and now fs/btrfs/acl.o is not
built, so the mount options will appear to be supported but will
be silently ignored.
Signed-off-by: Guangliang Zhao <lucienchao@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This exercises the various parts of the new qgroup accounting code. We do some
basic stuff and do some things with the shared refs to make sure all that code
works. I had to add a bunch of infrastructure because I needed to be able to
insert items into a fake tree without having to do all the hard work myself,
hopefully this will be usefull in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently qgroups account for space by intercepting delayed ref updates to fs
trees. It does this by adding sequence numbers to delayed ref updates so that
it can figure out how the tree looked before the update so we can adjust the
counters properly. The problem with this is that it does not allow delayed refs
to be merged, so if you say are defragging an extent with 5k snapshots pointing
to it we will thrash the delayed ref lock because we need to go back and
manually merge these things together. Instead we want to process quota changes
when we know they are going to happen, like when we first allocate an extent, we
free a reference for an extent, we add new references etc. This patch
accomplishes this by only adding qgroup operations for real ref changes. We
only modify the sequence number when we need to lookup roots for bytenrs, this
reduces the amount of churn on the sequence number and allows us to merge
delayed refs as we add them most of the time. This patch encompasses a bunch of
architectural changes
1) qgroup ref operations: instead of tracking qgroup operations through the
delayed refs we simply add new ref operations whenever we notice that we need to
when we've modified the refs themselves.
2) tree mod seq: we no longer have this separation of major/minor counters.
this makes the sequence number stuff much more sane and we can remove some
locking that was needed to protect the counter.
3) delayed ref seq: we now read the tree mod seq number and use that as our
sequence. This means each new delayed ref doesn't have it's own unique sequence
number, rather whenever we go to lookup backrefs we inc the sequence number so
we can make sure to keep any new operations from screwing up our world view at
that given point. This allows us to merge delayed refs during runtime.
With all of these changes the delayed ref stuff is a little saner and the qgroup
accounting stuff no longer goes negative in some cases like it was before.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
According to commit 865ffef379
(fs: fix fsync() error reporting),
it's not stable to just check error pages because pages can be
truncated or invalidated, we should also mark mapping with error
flag so that a later fsync can catch the error.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Same as normal devices, seed devices should be initialized with
fs_info->dev_root as well, otherwise we'll get a NULL pointer crash.
Cc: Chris Murphy <lists@colorremedies.com>
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
To ease finding bugs during development related to modifying btree leaves
in such a way that it makes its items not sorted by key anymore. Since this
is an expensive check, it's only enabled if CONFIG_BTRFS_FS_CHECK_INTEGRITY
is set, which isn't meant to be enabled for regular users.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When the csum tree is empty, our leaf (path->nodes[0]) has a number
of items equal to 0 and since btrfs_header_nritems() returns an
unsigned integer (and so is our local nritems variable) the following
comparison always evaluates to false:
if (path->slots[0] >= nritems - 1) {
As the casting rules lead to:
if ((u32)0 >= (u32)4294967295) {
This makes us access key at slot paths->slots[0] + 1 (1) of the empty leaf
some lines below:
btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
found_key.type != BTRFS_EXTENT_CSUM_KEY) {
found_next = 1;
goto insert;
}
So just don't access such non-existent slot and don't set found_next to 1
when the tree is empty. It's very unlikely we'll get a random key with the
objectid and type values above, which is where we could go into trouble.
If nritems is 0, just set found_next to 1 anyway as it will make us insert
a csum item covering our whole extent (or the whole leaf) when the tree is
empty.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In close_ctree(), after we have stopped all workers,there maybe still
some read requests(for example readahead) to submit and this *maybe* trigger
an oops that user reported before:
kernel BUG at fs/btrfs/async-thread.c:619!
By hacking codes, i can reproduce this problem with one cpu available.
We fix this potential problem by invalidating all btree inode pages before
stopping all workers.
Thanks to Miao for pointing out this problem.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In btrfs_create_tree(), if btrfs_insert_root() fails, we should
free root->commit_root.
Reported-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
posix_acl_xattr_set() already does the check, and it's the only
way to feed in an ACL from userspace.
So the check here is useless, remove it.
Signed-off-by: zhang zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
This fix will ensure all SB copies on the disk is zeroed
when the disk is intentionally removed. This helps to
better manage disks in the user land.
This version of patch also merges the Zach patch as below.
btrfs: don't double brelse on device rm
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is a continuation of the previous changes titled:
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
There's a few more cases where a directory rename/move must be delayed which was
previously overlooked. If our immediate ancestor has a lower inode number than
ours and it doesn't have a delayed rename/move operation associated to it, it
doesn't mean there isn't any non-direct ancestor of our current inode that needs
to be renamed/moved before our current inode (i.e. with a higher inode number
than ours).
So we can't stop the search if our immediate ancestor has a lower inode number than
ours, we need to navigate the directory hierarchy upwards until we hit the root or:
1) find an ancestor with an higher inode number that was renamed/moved in the send
root too (or already has a pending rename/move registered);
2) find an ancestor that is a new directory (higher inode number than ours and
exists only in the send root).
Reproducer for case 1)
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b
$ mkdir -p /mnt/a/c/d
$ mkdir /mnt/a/b/e
$ mkdir /mnt/a/c/d/f
$ mv /mnt/a/b /mnt/a/c/d/2b
$ mkdir /mnt/a/x
$ mkdir /mnt/a/y
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/a/x /mnt/a/y
$ mv /mnt/a/c/d/2b/e /mnt/a/c/d/2b/2e
$ mv /mnt/a/c/d /mnt/a/h/2d
$ mv /mnt/a/c /mnt/a/h/2d/2b/2c
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
Simple reproducer for case 2)
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b
$ mkdir /mnt/a/c
$ mv /mnt/a/b /mnt/a/c/b2
$ mkdir /mnt/a/e
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/a/c/b2 /mnt/a/e/b3
$ mkdir /mnt/a/e/b3/f
$ mkdir /mnt/a/h
$ mv /mnt/a/c /mnt/a/e/b3/f/c2
$ mv /mnt/a/e /mnt/a/h/e2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
Another simple reproducer for case 2)
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b
$ mkdir /mnt/a/c
$ mkdir /mnt/a/b/d
$ mkdir /mnt/a/c/e
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mkdir /mnt/a/b/d/f
$ mkdir /mnt/a/b/g
$ mv /mnt/a/c/e /mnt/a/b/g/e2
$ mv /mnt/a/c /mnt/a/b/d/f/c2
$ mv /mnt/a/b/d/f /mnt/a/b/g/e2/f2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
More complex reproducer for case 2)
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b
$ mkdir -p /mnt/a/c/d
$ mkdir /mnt/a/b/e
$ mkdir /mnt/a/c/d/f
$ mv /mnt/a/b /mnt/a/c/d/2b
$ mkdir /mnt/a/x
$ mkdir /mnt/a/y
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/a/x /mnt/a/y
$ mv /mnt/a/c/d/2b/e /mnt/a/c/d/2b/2e
$ mv /mnt/a/c/d /mnt/a/h/2d
$ mv /mnt/a/c /mnt/a/h/2d/2b/2c
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
For both cases the incremental send would enter an infinite loop when building
path strings.
While solving these cases, this change also re-implements the code to detect
when directory moves/renames should be delayed. Instead of dealing with several
specific cases separately, it's now more generic handling all cases with a simple
detection algorithm and if when applying a delayed move/rename there's a path loop
detected, it further delays the move/rename registering a new ancestor inode as
the dependency inode (so our rename happens after that ancestor is renamed).
Tests for these cases is being added to xfstests too.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have directories with a pending move/rename operation, we must take into
account any orphan directories that got created before executing the pending
move/rename. Those orphan directories are directories with an inode number higher
then the current send progress and that don't exist in the parent snapshot, they
are created before current progress reaches their inode number, with a generated
name of the form oN-M-I and at the root of the filesystem tree, and later when
progress matches their inode number, moved/renamed to their final location.
Reproducer:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b/c/d
$ mkdir /mnt/a/b/e
$ mv /mnt/a/b/c /mnt/a/b/e/CC
$ mkdir /mnt/a/b/e/CC/d/f
$ mkdir /mnt/a/g
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mkdir /mnt/a/g/h
$ mv /mnt/a/b/e /mnt/a/g/h/EE
$ mv /mnt/a/g/h/EE/CC/d /mnt/a/g/h/EE/DD
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
The second receive command failed with the following error:
ERROR: rename a/b/e/CC/d -> o264-7-0/EE/DD failed. No such file or directory
A test case for xfstests follows soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Regardless of whether the caller is interested or not in knowing the inode's
generation (dir_gen != NULL), get_first_ref always does a btree lookup to get
the inode item. Avoid this useless lookup if dir_gen parameter is NULL (which
is in some cases).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
For RAID0,5,6,10,
For system chunk, there shouldn't be too many stripes to
make a btrfs_chunk that exceeds BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
For data/meta chunk, there shouldn't be too many stripes to
make a btrfs_chunk that exceeds a leaf.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For system chunk array,
We copy a "disk_key" and an chunk item each time,
so there should be enough space to hold both of them,
not only the chunk item.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Current btrfs_orphan_cleanup will also cleanup roots which is already in
fs_info->dead_roots without protection.
This will have conditional race with fs_info->cleaner_kthread.
This patch will use refs in root->root_item to detect roots in
dead_roots and avoid conflicts.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before applying this patch, the task had to reclaim the metadata space
by itself if the metadata space was not enough. And When the task started
the space reclamation, all the other tasks which wanted to reserve the
metadata space were blocked. At some cases, they would be blocked for
a long time, it made the performance fluctuate wildly.
So we introduce the background metadata space reclamation, when the space
is about to be exhausted, we insert a reclaim work into the workqueue, the
worker of the workqueue helps us to reclaim the reserved space at the
background. By this way, the tasks needn't reclaim the space by themselves at
most cases, and even if the tasks have to reclaim the space or are blocked
for the space reclamation, they will get enough space more quickly.
Here is my test result(Tested by compilebench):
Memory: 2GB
CPU: 2Cores * 1CPU
Partition: 40GB(SSD)
Test command:
# compilebench -D <mnt> -m
Without this patch:
intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s)
compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s)
read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s)
delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s)
With this patch:
intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s)
compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s)
read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s)
delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s)
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fail to load a free space cache, we can rebuild it from the extent tree,
so it is not a serious error, we should not output a error message that
would make the users uncomfortable. This patch uses warning message instead
of it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs will send uevent to udev inform the device change,
but ctime/mtime for the block device inode is not udpated, which cause
libblkid used by btrfs-progs unable to detect device change and use old
cache, causing 'btrfs dev scan; btrfs dev rmove; btrfs dev scan' give an
error message.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Cc: Karel Zak <kzak@redhat.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The patch "Btrfs: fix protection between send and root deletion"
(18f687d538) does not actually prevent to delete the snapshot
and just takes care during background cleaning, but this seems rather
user unfriendly, this patch implements the idea presented in
http://www.spinics.net/lists/linux-btrfs/msg30813.html
- add an internal root_item flag to denote a dead root
- check if the send_in_progress is set and refuse to delete, otherwise
set the flag and proceed
- check the flag in send similar to the btrfs_root_readonly checks, for
all involved roots
The root lookup in send via btrfs_read_fs_root_no_name will check if the
root is really dead or not. If it is, ENOENT, aborted send. If it's
alive, it's protected by send_in_progress, send can continue.
CC: Miao Xie <miaox@cn.fujitsu.com>
CC: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This implements the tmpfile callback of struct inode_operations, introduced
in the linux kernel 3.11, and implemented already by some filesystems. This
callback is invoked by the VFS when the flag O_TMPFILE is passed to the open
system call.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
This ioctl provides basic info about the filesystem that can be obtained
in other ways (eg. sysfs), there's no reason to restrict it to
CAP_SYSADMIN.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This ioctl provides basic info about the devices that can be obtained in
other ways (eg. sysfs), there's no reason to restrict it to
CAP_SYSADMIN.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Similar to the FS_INFO updates, export the basic filesystem info through
sysfs: node size, sector size and clone alignment.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Provide the basic information about filesystem through the ioctl:
* b-tree node size (same as leaf size)
* sector size
* expected alignment of CLONE_RANGE and EXTENT_SAME ioctl arguments
Backward compatibility: if the values are 0, kernel does not provide
this information, the applications should ignore them.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This started as debugging helper, to watch the effects of converting
between raid levels on multiple devices, but could be useful standalone.
In my case the usage filter was not finegrained enough and led to
converting too many chunks at once. Another example use is in connection
with drange+devid or vrange filters that allow to work with a specific
chunk or even with a chunk on a given device.
The limit filter applies last, the value of 0 means no limiting.
CC: Ilya Dryomov <idryomov@gmail.com>
CC: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While running a stress test with multiple threads writing to the same btrfs
file system, I ended up with a situation where a leaf was corrupted in that
it had 2 file extent item keys that had the same exact key. I was able to
detect this quickly thanks to the following patch which triggers an assertion
as soon as a leaf is marked dirty if there are duplicated keys or out of order
keys:
Btrfs: check if items are ordered when a leaf is marked dirty
(https://patchwork.kernel.org/patch/3955431/)
Basically while running the test, I got the following in dmesg:
[28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]()
(...)
[28877.415917] Call Trace:
[28877.415922] [<ffffffff816f1189>] dump_stack+0x4e/0x68
[28877.415926] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0
[28877.415929] [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20
[28877.415944] [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs]
[28877.415949] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
[28877.415962] [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs]
[28877.415972] [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs]
[28877.415984] [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs]
(...)
[29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24
[29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778
(...)
[29854.132637] item 23 key (3486 108 667648) itemoff 2694 itemsize 53
[29854.132638] extent data disk bytenr 14574411776 nr 286720
[29854.132639] extent data offset 0 nr 286720 ram 286720
[29854.132640] item 24 key (3486 108 954368) itemoff 2641 itemsize 53
[29854.132641] extent data disk bytenr 0 nr 0
[29854.132643] extent data offset 0 nr 0 ram 0
[29854.132644] item 25 key (3486 108 954368) itemoff 2588 itemsize 53
[29854.132645] extent data disk bytenr 8699670528 nr 77824
[29854.132646] extent data offset 0 nr 77824 ram 77824
[29854.132647] item 26 key (3486 108 1146880) itemoff 2535 itemsize 53
[29854.132648] extent data disk bytenr 8699670528 nr 77824
[29854.132649] extent data offset 0 nr 77824 ram 77824
(...)
[29854.132707] kernel BUG at fs/btrfs/ctree.h:3901!
(...)
[29854.132771] Call Trace:
[29854.132779] [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs]
[29854.132791] [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs]
[29854.132794] [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0
[29854.132797] [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10
[29854.132800] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
[29854.132810] [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs]
[29854.132820] [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs]
[29854.132830] [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs]
(...)
So this is caused by getting an -ENOSPC error while punching a file hole, more
specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop
of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one
or more file extent items due to lack of enough free space. When this happens,
in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction
block reservation object to root->fs_info->trans_block_rsv, end our transaction and
start a new transaction basically - and, we keep increasing our current offset
(cur_offset) as long as it's smaller than the end of the target range (lockend) -
this makes use leave the loop with cur_offset == drop_end which in turn makes us
call fill_holes() for inserting a file extent item that represents a 0 bytes range
hole (and this insertion succeeds, as in the meanwhile more space became available).
This 0 bytes file hole extent item is a problem because any subsequent caller of
__btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a
start file offset that is equal to the offset of the hole, will not remove this
extent item due to the following conditional in the while loop of
__btrfs_drop_extents:
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
This later makes the call to setup_items_for_insert() (at the very end of
__btrfs_drop_extents), insert a new file extent item with the same offset as
the 0 bytes file hole extent item that follows it. Needless is to say that this
causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook),
where we perform leaf sanity checks or in subsequent operations that manipulate
file extent items, as in the fallocate call as shown by the dmesg trace above.
Without my other patch to perform the leaf sanity checks once a leaf is marked
as dirty (if the integrity checker is enabled), it would have been much harder
to debug this issue.
This change might fix a few similar issues reported by users in the mailing
list regarding assertion failures in btrfs_set_item_key_safe calls performed
by __btrfs_drop_extents, such as the following report:
http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938
Asking fill_holes() to create a 0 bytes wide file hole item also produced the
first warning in the trace above, as we passed a range to btrfs_drop_extent_cache
that has an end smaller (by -1) than its start.
On 3.14 kernels this issue manifests itself through leaf corruption, as we get
duplicated file extent item keys in a leaf when calling setup_items_for_insert(),
but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(),
instead we have callers of __btrfs_drop_extents(), namely the functions
inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling
btrfs_insert_empty_item() to insert the new file extent item, which would fail with
error -EEXIST, instead of inserting a duplicated key - which is still a serious
issue as it would make all similar file extent item replace operations keep
failing if they target the same file range.
Cc: stable@vger.kernel.org
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
'bio_index' is just a index, it's really not necessary to do increment
one by one.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In a previous change, commit 12870f1c9b,
I accidentally moved the roundup of inode->i_size to outside of the
critical section delimited by the inode mutex, which is not atomic and
not correct since the size can be changed by other task before we acquire
the mutex. Therefore fix it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
iput() already checks for the inode being NULL, thus it's unnecessary to
check before calling.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Chris Mason <clm@fb.com>
uncompress_inline() is dropping the error from btrfs_decompress() after
testing it and zeroing the page that was supposed to hold decompressed
data. This can silently turn compressed inline data in to zeros if
decompression fails due to corrupt compressed data or memory allocation
failure.
I verified this by manually forcing the error from btrfs_decompress()
for a silly named copy of od:
if (!strcmp(current->comm, "failod"))
ret = -ENOMEM;
# od -x /mnt/btrfs/dir/80 | head -1
0000000 3031 3038 310a 2d30 6f70 6e69 0a74 3031
# echo 3 > /proc/sys/vm/drop_caches
# cp $(which od) /tmp/failod
# /tmp/failod -x /mnt/btrfs/dir/80 | head -1
0000000 0000 0000 0000 0000 0000 0000 0000 0000
The fix is to pass the error to its caller. Which still has a BUG_ON().
So we fix that too.
There seems to be no reason for the zeroing of the page on the error
from btrfs_decompress() but not from the allocation error a few lines
above. So the page zeroing is removed.
Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The btrfs compression wrappers translated errors from workspace
allocation to either -ENOMEM or -1. The compression type workspace
allocators are already returning a ERR_PTR(-ENOMEM). Just return that
and get rid of the magical -1.
This helps a future patch return errors from the compression wrappers.
Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The compression layer seems to have been built to return -1 and have
callers make up errors that make sense. This isn't great because there
are different errors that originate down in the compression layer.
Let's return real negative errnos from the compression layer so that
callers can pass on the error without having to guess what happened.
ENOMEM for allocation failure, E2BIG when compression exceeds the
uncompressed input, and EIO for everything else.
This helps a future path return errors from btrfs_decompress().
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
This issue was not causing any harm but IMO (and in the opinion of the
static code checker) it is better to propagate this error status upwards.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
When running low on available disk space and having several processes
doing buffered file IO, I got the following trace in dmesg:
[ 4202.720152] INFO: task kworker/u8:1:5450 blocked for more than 120 seconds.
[ 4202.720401] Not tainted 3.13.0-fdm-btrfs-next-26+ #1
[ 4202.720596] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 4202.720874] kworker/u8:1 D 0000000000000001 0 5450 2 0x00000000
[ 4202.720904] Workqueue: btrfs-flush_delalloc normal_work_helper [btrfs]
[ 4202.720908] ffff8801f62ddc38 0000000000000082 ffff880203ac2490 00000000001d3f40
[ 4202.720913] ffff8801f62ddfd8 00000000001d3f40 ffff8800c4f0c920 ffff880203ac2490
[ 4202.720918] 00000000001d4a40 ffff88020fe85a40 ffff88020fe85ab8 0000000000000001
[ 4202.720922] Call Trace:
[ 4202.720931] [<ffffffff816a3cb9>] schedule+0x29/0x70
[ 4202.720950] [<ffffffffa01ec48d>] btrfs_start_ordered_extent+0x6d/0x110 [btrfs]
[ 4202.720956] [<ffffffff8108e620>] ? bit_waitqueue+0xc0/0xc0
[ 4202.720972] [<ffffffffa01ec559>] btrfs_run_ordered_extent_work+0x29/0x40 [btrfs]
[ 4202.720988] [<ffffffffa0201987>] normal_work_helper+0x137/0x2c0 [btrfs]
[ 4202.720994] [<ffffffff810680e5>] process_one_work+0x1f5/0x530
(...)
[ 4202.721027] 2 locks held by kworker/u8:1/5450:
[ 4202.721028] #0: (%s-%s){++++..}, at: [<ffffffff81068083>] process_one_work+0x193/0x530
[ 4202.721037] #1: ((&work->normal_work)){+.+...}, at: [<ffffffff81068083>] process_one_work+0x193/0x530
[ 4202.721054] INFO: task btrfs:7891 blocked for more than 120 seconds.
[ 4202.721258] Not tainted 3.13.0-fdm-btrfs-next-26+ #1
[ 4202.721444] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 4202.721699] btrfs D 0000000000000001 0 7891 7890 0x00000001
[ 4202.721704] ffff88018c2119e8 0000000000000086 ffff8800a33d2490 00000000001d3f40
[ 4202.721710] ffff88018c211fd8 00000000001d3f40 ffff8802144b0000 ffff8800a33d2490
[ 4202.721714] ffff8800d8576640 ffff88020fe85bc0 ffff88020fe85bc8 7fffffffffffffff
[ 4202.721718] Call Trace:
[ 4202.721723] [<ffffffff816a3cb9>] schedule+0x29/0x70
[ 4202.721727] [<ffffffff816a2ebc>] schedule_timeout+0x1dc/0x270
[ 4202.721732] [<ffffffff8109bd79>] ? mark_held_locks+0xb9/0x140
[ 4202.721736] [<ffffffff816a90c0>] ? _raw_spin_unlock_irq+0x30/0x40
[ 4202.721740] [<ffffffff8109bf0d>] ? trace_hardirqs_on_caller+0x10d/0x1d0
[ 4202.721744] [<ffffffff816a488f>] wait_for_completion+0xdf/0x120
[ 4202.721749] [<ffffffff8107fa90>] ? try_to_wake_up+0x310/0x310
[ 4202.721765] [<ffffffffa01ebee4>] btrfs_wait_ordered_extents+0x1f4/0x280 [btrfs]
[ 4202.721781] [<ffffffffa020526e>] btrfs_mksubvol.isra.62+0x30e/0x5a0 [btrfs]
[ 4202.721786] [<ffffffff8108e620>] ? bit_waitqueue+0xc0/0xc0
[ 4202.721799] [<ffffffffa02056a9>] btrfs_ioctl_snap_create_transid+0x1a9/0x1b0 [btrfs]
[ 4202.721813] [<ffffffffa020583a>] btrfs_ioctl_snap_create_v2+0x10a/0x170 [btrfs]
(...)
It turns out that extent_io.c:__extent_writepage(), which ends up being called
through filemap_fdatawrite_range() in btrfs_start_ordered_extent(), was getting
-ENOSPC when calling the fill_delalloc callback. In this situation, it returned
without the writepage_end_io_hook callback (inode.c:btrfs_writepage_end_io_hook)
ever being called for the respective page, which prevents the ordered extent's
bytes_left count from ever reaching 0, and therefore a finish_ordered_fn work
is never queued into the endio_write_workers queue. This makes the task that
called btrfs_start_ordered_extent() hang forever on the wait queue of the ordered
extent.
This is fairly easy to reproduce using a small filesystem and fsstress on
a quad core vm:
mkfs.btrfs -f -b `expr 2100 \* 1024 \* 1024` /dev/sdd
mount /dev/sdd /mnt
fsstress -p 6 -d /mnt -n 100000 -x \
"btrfs subvolume snapshot -r /mnt /mnt/mysnap" \
-f allocsp=0 \
-f bulkstat=0 \
-f bulkstat1=0 \
-f chown=0 \
-f creat=1 \
-f dread=0 \
-f dwrite=0 \
-f fallocate=1 \
-f fdatasync=0 \
-f fiemap=0 \
-f freesp=0 \
-f fsync=0 \
-f getattr=0 \
-f getdents=0 \
-f link=0 \
-f mkdir=0 \
-f mknod=0 \
-f punch=1 \
-f read=0 \
-f readlink=0 \
-f rename=0 \
-f resvsp=0 \
-f rmdir=0 \
-f setxattr=0 \
-f stat=0 \
-f symlink=0 \
-f sync=0 \
-f truncate=1 \
-f unlink=0 \
-f unresvsp=0 \
-f write=4
So just ensure that if an error happens while writing the extent page
we call the writepage_end_io_hook callback. Also make it return the
error code and ensure the caller (extent_write_cache_pages) processes
all pages in the page vector even if an error happens only for some
of them, so that ordered extents end up released.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
If a path has more than 230 characters, we allocate a new buffer to
use for the path, but we were forgotting to copy the contents of the
previous buffer into the new one, which has random content from the
kmalloc call.
Test:
mkfs.btrfs -f /dev/sdd
mount /dev/sdd /mnt
TEST_PATH="/mnt/fdmanana/.config/google-chrome-mysetup/Default/Pepper_Data/Shockwave_Flash/WritableRoot/#SharedObjects/JSHJ4ZKN/s.wsj.net/[[IMPORT]]/players.edgesuite.net/flash/plugins/osmf/advanced-streaming-plugin/v2.7/osmf1.6/Ak#"
mkdir -p $TEST_PATH
echo "hello world" > $TEST_PATH/amaiAdvancedStreamingPlugin.txt
btrfs subvolume snapshot -r /mnt /mnt/mysnap1
btrfs send /mnt/mysnap1 -f /tmp/1.snap
A test for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Cc: Marc Merlin <marc@merlins.org>
Tested-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Chris Mason <clm@fb.com>
aops->write_begin may allocate a new page and make it visible only to have
mark_page_accessed called almost immediately after. Once the page is
visible the atomic operations are necessary which is noticable overhead
when writing to an in-memory filesystem like tmpfs but should also be
noticable with fast storage. The objective of the patch is to initialse
the accessed information with non-atomic operations before the page is
visible.
The bulk of filesystems directly or indirectly use
grab_cache_page_write_begin or find_or_create_page for the initial
allocation of a page cache page. This patch adds an init_page_accessed()
helper which behaves like the first call to mark_page_accessed() but may
called before the page is visible and can be done non-atomically.
The primary APIs of concern in this care are the following and are used
by most filesystems.
find_get_page
find_lock_page
find_or_create_page
grab_cache_page_nowait
grab_cache_page_write_begin
All of them are very similar in detail to the patch creates a core helper
pagecache_get_page() which takes a flags parameter that affects its
behavior such as whether the page should be marked accessed or not. Then
old API is preserved but is basically a thin wrapper around this core
function.
Each of the filesystems are then updated to avoid calling
mark_page_accessed when it is known that the VM interfaces have already
done the job. There is a slight snag in that the timing of the
mark_page_accessed() has now changed so in rare cases it's possible a page
gets to the end of the LRU as PageReferenced where as previously it might
have been repromoted. This is expected to be rare but it's worth the
filesystem people thinking about it in case they see a problem with the
timing change. It is also the case that some filesystems may be marking
pages accessed that previously did not but it makes sense that filesystems
have consistent behaviour in this regard.
The test case used to evaulate this is a simple dd of a large file done
multiple times with the file deleted on each iterations. The size of the
file is 1/10th physical memory to avoid dirty page balancing. In the
async case it will be possible that the workload completes without even
hitting the disk and will have variable results but highlight the impact
of mark_page_accessed for async IO. The sync results are expected to be
more stable. The exception is tmpfs where the normal case is for the "IO"
to not hit the disk.
The test machine was single socket and UMA to avoid any scheduling or NUMA
artifacts. Throughput and wall times are presented for sync IO, only wall
times are shown for async as the granularity reported by dd and the
variability is unsuitable for comparison. As async results were variable
do to writback timings, I'm only reporting the maximum figures. The sync
results were stable enough to make the mean and stddev uninteresting.
The performance results are reported based on a run with no profiling.
Profile data is based on a separate run with oprofile running.
async dd
3.15.0-rc3 3.15.0-rc3
vanilla accessed-v2
ext3 Max elapsed 13.9900 ( 0.00%) 11.5900 ( 17.16%)
tmpfs Max elapsed 0.5100 ( 0.00%) 0.4900 ( 3.92%)
btrfs Max elapsed 12.8100 ( 0.00%) 12.7800 ( 0.23%)
ext4 Max elapsed 18.6000 ( 0.00%) 13.3400 ( 28.28%)
xfs Max elapsed 12.5600 ( 0.00%) 2.0900 ( 83.36%)
The XFS figure is a bit strange as it managed to avoid a worst case by
sheer luck but the average figures looked reasonable.
samples percentage
ext3 86107 0.9783 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
ext3 23833 0.2710 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext3 5036 0.0573 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
ext4 64566 0.8961 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
ext4 5322 0.0713 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
ext4 2869 0.0384 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs 62126 1.7675 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
xfs 1904 0.0554 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
xfs 103 0.0030 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
btrfs 10655 0.1338 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
btrfs 2020 0.0273 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
btrfs 587 0.0079 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
tmpfs 59562 3.2628 vmlinux-3.15.0-rc4-vanilla mark_page_accessed
tmpfs 1210 0.0696 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
tmpfs 94 0.0054 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
[akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull two btrfs fixes from Chris Mason:
"This has two fixes that we've been testing for 3.16, but since both
are safe and fix real bugs, it makes sense to send for 3.15 instead"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: send, fix incorrect ref access when using extrefs
Btrfs: fix EIO on reading file after ioctl clone works on it
For inline data extent, we need to make its length aligned, otherwise,
we can get a phantom extent map which confuses readpages() to return -EIO.
This can be detected by xfstests/btrfs/035.
Reported-by: David Disseldorp <ddiss@suse.de>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now It Can Be Done(tm) - we don't need to do iov_shorten() in
generic_file_direct_write() anymore, now that all ->direct_IO()
instances are converted to proper iov_iter methods and honour
iter->count and iter->iov_offset properly.
Get rid of count/ocount arguments of generic_file_direct_write(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all callers of ->aio_read() and ->aio_write() have iov/nr_segs already
checked - generic_segment_checks() done after that is just an odd way
to spell iov_length().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from Chris Mason.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: limit the path size in send to PATH_MAX
Btrfs: correctly set profile flags on seqlock retry
Btrfs: use correct key when repeating search for extent item
Btrfs: fix inode caching vs tree log
Btrfs: fix possible memory leaks in open_ctree()
Btrfs: avoid triggering bug_on() when we fail to start inode caching task
Btrfs: move btrfs_{set,clear}_and_info() to ctree.h
btrfs: replace error code from btrfs_drop_extents
btrfs: Change the hole range to a more accurate value.
btrfs: fix use-after-free in mount_subvol()
fs_path_ensure_buf is used to make sure our path buffers for
send are big enough for the path names as we construct them.
The buffer size is limited to 32K by the length field in
the struct.
But bugs in the path construction can end up trying to build
a huge buffer, and we'll do invalid memmmoves when the
buffer length field wraps.
This patch is step one, preventing the overflows.
Signed-off-by: Chris Mason <clm@fb.com>
If we had to retry on the profiles seqlock (due to a concurrent write), we
would set bits on the input flags that corresponded both to the current
profile and to previous values of the profile.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
If skinny metadata is enabled and our first tree search fails to find a
skinny extent item, we may repeat a tree search for a "fat" extent item
(if the previous item in the leaf is not the "fat" extent we're looking
for). However we were not setting the new key's objectid to the right
value, as we previously used the same key variable to peek at the previous
item in the leaf, which has a different objectid. So just set the right
objectid to avoid modifying/deleting a wrong item if we repeat the tree
search.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, with inode cache enabled, we will reuse its inode id immediately
after unlinking file, we may hit something like following:
|->iput inode
|->return inode id into inode cache
|->create dir,fsync
|->power off
An easy way to reproduce this problem is:
mkfs.btrfs -f /dev/sdb
mount /dev/sdb /mnt -o inode_cache,commit=100
dd if=/dev/zero of=/mnt/data bs=1M count=10 oflag=sync
inode_id=`ls -i /mnt/data | awk '{print $1}'`
rm -f /mnt/data
i=1
while [ 1 ]
do
mkdir /mnt/dir_$i
test1=`stat /mnt/dir_$i | grep Inode: | awk '{print $4}'`
if [ $test1 -eq $inode_id ]
then
dd if=/dev/zero of=/mnt/dir_$i/data bs=1M count=1 oflag=sync
echo b > /proc/sysrq-trigger
fi
sleep 1
i=$(($i+1))
done
mount /dev/sdb /mnt
umount /dev/sdb
btrfs check /dev/sdb
We fix this problem by adding unlinked inode's id into pinned tree,
and we can not reuse them until committing transaction.
Cc: stable@vger.kernel.org
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Fix possible memory leaks in the following error handling paths:
read_tree_block()
btrfs_recover_log_trees
btrfs_commit_super()
btrfs_find_orphan_roots()
btrfs_cleanup_fs_roots()
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There's a case which clone does not handle and used to BUG_ON instead,
(testcase xfstests/btrfs/035), now returns EINVAL. This error code is
confusing to the ioctl caller, as it normally signifies errorneous
arguments.
Change it to ENOPNOTSUPP which allows a fall back to copy instead of
clone. This does not affect the common reflink operation.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 3ac0d7b96a fixed the btrfs expanding
write problem but the hole punched is sometimes too large for some
iovec, which has unmapped data ranges.
This patch will change to hole range to a more accurate value using the
counts checked by the write check routines.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pointer 'newargs' is used after the memory that it points to has already
been freed.
Picked up by Coverity - CID 1201425.
Fixes: 0723a0473f ("btrfs: allow mounting btrfs subvolumes with
different ro/rw options")
Signed-off-by: Christoph Jaeger <christophjaeger@linux.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
Pull second set of btrfs updates from Chris Mason:
"The most important changes here are from Josef, fixing a btrfs
regression in 3.14 that can cause corruptions in the extent allocation
tree when snapshots are in use.
Josef also fixed some deadlocks in send/recv and other assorted races
when balance is running"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (23 commits)
Btrfs: fix compile warnings on on avr32 platform
btrfs: allow mounting btrfs subvolumes with different ro/rw options
btrfs: export global block reserve size as space_info
btrfs: fix crash in remount(thread_pool=) case
Btrfs: abort the transaction when we don't find our extent ref
Btrfs: fix EINVAL checks in btrfs_clone
Btrfs: fix unlock in __start_delalloc_inodes()
Btrfs: scrub raid56 stripes in the right way
Btrfs: don't compress for a small write
Btrfs: more efficient io tree navigation on wait_extent_bit
Btrfs: send, build path string only once in send_hole
btrfs: filter invalid arg for btrfs resize
Btrfs: send, fix data corruption due to incorrect hole detection
Btrfs: kmalloc() doesn't return an ERR_PTR
Btrfs: fix snapshot vs nocow writting
btrfs: Change the expanding write sequence to fix snapshot related bug.
btrfs: make device scan less noisy
btrfs: fix lockdep warning with reclaim lock inversion
Btrfs: hold the commit_root_sem when getting the commit root during send
Btrfs: remove transaction from send
...
fs/btrfs/scrub.c: In function 'get_raid56_logic_offset':
fs/btrfs/scrub.c:2269: warning: comparison of distinct pointer types lacks a cast
fs/btrfs/scrub.c:2269: warning: right shift count >= width of type
fs/btrfs/scrub.c:2269: warning: passing argument 1 of '__div64_32' from incompatible pointer type
Since @rot is an int type, we should not use do_div(), fix it.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Given the following /etc/fstab entries:
/dev/sda3 /mnt/foo btrfs subvol=foo,ro 0 0
/dev/sda3 /mnt/bar btrfs subvol=bar,rw 0 0
you can't issue:
$ mount /mnt/foo
$ mount /mnt/bar
You would have to do:
$ mount /mnt/foo
$ mount -o remount,rw /mnt/foo
$ mount --bind -o remount,ro /mnt/foo
$ mount /mnt/bar
or
$ mount /mnt/bar
$ mount --rw /mnt/foo
$ mount --bind -o remount,ro /mnt/foo
With this patch you can do
$ mount /mnt/foo
$ mount /mnt/bar
$ cat /proc/self/mountinfo
49 33 0:41 /foo /mnt/foo ro,relatime shared:36 - btrfs /dev/sda3 rw,ssd,space_cache
87 33 0:41 /bar /mnt/bar rw,relatime shared:74 - btrfs /dev/sda3 rw,ssd,space_cache
Signed-off-by: Chris Mason <clm@fb.com>
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a block group type bit for a global reserve and fill the space
info for SPACE_INFO ioctl. This should replace the newly added ioctl
(01e219e806) to get just the 'size' part
of the global reserve, while the actual usage can be now visible in the
'btrfs fi df' output during ENOSPC stress.
The unpatched userspace tools will show the blockgroup as 'unknown'.
CC: Jeff Mahoney <jeffm@suse.com>
CC: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Reproducer:
mount /dev/ubda /mnt
mount -oremount,thread_pool=42 /mnt
Gives a crash:
? btrfs_workqueue_set_max+0x0/0x70
btrfs_resize_thread_pool+0xe3/0xf0
? sync_filesystem+0x0/0xc0
? btrfs_resize_thread_pool+0x0/0xf0
btrfs_remount+0x1d2/0x570
? kern_path+0x0/0x80
do_remount_sb+0xd9/0x1c0
do_mount+0x26a/0xbf0
? kfree+0x0/0x1b0
SyS_mount+0xc4/0x110
It's a call
btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, new_pool_size);
with
fs_info->scrub_wr_completion_workers = NULL;
as scrub wqs get created only on user's demand.
Patch skips not-created-yet workqueues.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
CC: Qu Wenruo <quwenruo@cn.fujitsu.com>
CC: Chris Mason <clm@fb.com>
CC: Josef Bacik <jbacik@fb.com>
CC: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <clm@fb.com>
I'm not sure why we weren't aborting here in the first place, it is obviously a
bad time from the fact that we print the leaf and yell loudly about it. Fix
this up, otherwise we panic because our path could be pointing into oblivion.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_drop_extents can now return -EINVAL, but only one caller
in btrfs_clone was checking for it. This adds it to the
caller for inline extents, which is where we really need it.
Signed-off-by: Chris Mason <clm@fb.com>
This patch fix a regression caused by the following patch:
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
break while loop will make us call @spin_unlock() without
calling @spin_lock() before, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sda[8-11] -m raid5 -d raid5
# mount /dev/sda8 /mnt
# btrfs scrub start -BR /mnt
# echo $? <--unverified errors make return value be 3
This is because we don't setup right mapping between physical
and logical address for raid56, which makes checksum mismatch.
But we will find everthing is fine later when rechecking using
btrfs_map_block().
This patch fixed the problem by settuping right mappings and
we only verify data stripes' checksums.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
To compress a small file range(<=blocksize) that is not
an inline extent can not save disk space at all. skip it can
save us some cpu time.
This patch can also fix wrong setting nocompression flag for
inode, say a case when @total_in is 4096, and then we get
@total_compressed 52,because we do aligment to page cache size
firstly, and then we get into conclusion @total_in=@total_compressed
thus we will clear this inode's compression flag.
An exception comes from inserting inline extent failure but we
still have @total_compressed < @total_in,so we will still reset
inode's flag, this is ok, because we don't have good compression
effect.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we don't reschedule use rb_next to find the next extent state
instead of a full tree search, which is more efficient and safe
since we didn't release the io tree's lock.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
There's no point building the path string in each iteration of the
send_hole loop, as it produces always the same string.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Originally following cmds will work:
# btrfs fi resize -10A <mnt>
# btrfs fi resize -10Gaha <mnt>
Filter the arg by checking the return pointer of memparse.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The error handling was copy and pasted from memdup_user(). It should be
checking for NULL obviously.
Fixes: abccd00f8a ('btrfs: Fix 32/64-bit problem with BTRFS_SET_RECEIVED_SUBVOL ioctl')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running fsstress and snapshots concurrently, we will hit something
like followings:
Thread 1 Thread 2
|->fallocate
|->write pages
|->join transaction
|->add ordered extent
|->end transaction
|->flushing data
|->creating pending snapshots
|->write data into src root's
fallocated space
After above work flows finished, we will get a state that source and
snapshot root share same space, but source root have written data into
fallocated space, this will make fsck fail to verify checksums for
snapshot root's preallocating file extent data.Nocow writting also
has this same problem.
Fix this problem by syncing snapshots with nocow writting:
1.for nocow writting,if there are pending snapshots, we will
fall into COW way.
2.if there are pending nocow writes, snapshots for this root
will be blocked until nocow writting finish.
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When testing fsstress with snapshot making background, some snapshot
following problem.
Snapshot 270:
inode 323: size 0
Snapshot 271:
inode 323: size 349145
|-------Hole---|---------Empty gap-------|-------Hole-----|
0 122880 172032 349145
Snapshot 272:
inode 323: size 349145
|-------Hole---|------------Data---------|-------Hole-----|
0 122880 172032 349145
The fsstress operation on inode 323 is the following:
write: offset 126832 len 43124
truncate: size 349145
Since the write with offset is consist of 2 operations:
1. punch hole
2. write data
Hole punching is faster than data write, so hole punching in write
and truncate is done first and then buffered write, so the snapshot 271 got
empty gap, which will not pass btrfsck.
To fix the bug, this patch will change the write sequence which will
first punch a hole covering the write end if a hole is needed.
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Print the message only when the device is seen for the first time.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When encountering memory pressure, testers have run into the following
lockdep warning. It was caused by __link_block_group calling kobject_add
with the groups_sem held. kobject_add calls kvasprintf with GFP_KERNEL,
which gets us into reclaim context. The kobject doesn't actually need
to be added under the lock -- it just needs to ensure that it's only
added for the first block group to be linked.
=========================================================
[ INFO: possible irq lock inversion dependency detected ]
3.14.0-rc8-default #1 Not tainted
---------------------------------------------------------
kswapd0/169 just changed the state of lock:
(&delayed_node->mutex){+.+.-.}, at: [<ffffffffa018baea>] __btrfs_release_delayed_node+0x3a/0x200 [btrfs]
but this lock took another, RECLAIM_FS-unsafe lock in the past:
(&found->groups_sem){+++++.}
and interrupts could create inverse lock ordering between them.
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&found->groups_sem);
local_irq_disable();
lock(&delayed_node->mutex);
lock(&found->groups_sem);
<Interrupt>
lock(&delayed_node->mutex);
*** DEADLOCK ***
2 locks held by kswapd0/169:
#0: (shrinker_rwsem){++++..}, at: [<ffffffff81159e8a>] shrink_slab+0x3a/0x160
#1: (&type->s_umount_key#27){++++..}, at: [<ffffffff811bac6f>] grab_super_passive+0x3f/0x90
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We currently rely too heavily on roots being read-only to save us from just
accessing root->commit_root. We can easily balance blocks out from underneath a
read only root, so to save us from getting screwed make sure we only access
root->commit_root under the commit root sem. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Lets try this again. We can deadlock the box if we send on a box and try to
write onto the same fs with the app that is trying to listen to the send pipe.
This is because the writer could get stuck waiting for a transaction commit
which is being blocked by the send. So fix this by making sure looking at the
commit roots is always going to be consistent. We do this by keeping track of
which roots need to have their commit roots swapped during commit, and then
taking the commit_root_sem and swapping them all at once. Then make sure we
take a read lock on the commit_root_sem in cases where we search the commit root
to make sure we're always looking at a consistent view of the commit roots.
Previously we had problems with this because we would swap a fs tree commit root
and then swap the extent tree commit root independently which would cause the
backref walking code to screw up sometimes. With this patch we no longer
deadlock and pass all the weird send/receive corner cases. Thanks,
Reportedy-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
So I have an awful exercise script that will run snapshot, balance and
send/receive in parallel. This sometimes would crash spectacularly and when it
came back up the fs would be completely hosed. Turns out this is because of a
bad interaction of balance and send/receive. Send will hold onto its entire
path for the whole send, but its blocks could get relocated out from underneath
it, and because it doesn't old tree locks theres nothing to keep this from
happening. So it will go to read in a slot with an old transid, and we could
have re-allocated this block for something else and it could have a completely
different transid. But because we think it is invalid we clear uptodate and
re-read in the block. If we do this before we actually write out the new block
we could write back stale data to the fs, and boom we're screwed.
Now we definitely need to fix this disconnect between send and balance, but we
really really need to not allow ourselves to accidently read in stale data over
new data. So make sure we check if the extent buffer is not under io before
clearing uptodate, this will kick back EIO to the caller instead of reading in
stale data and keep us from corrupting the fs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We could have possibly added an extent_op to the locked_ref while we dropped
locked_ref->lock, so check for this case as well and loop around. Otherwise we
could lose flag updates which would lead to extent tree corruption. Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This was done to allow NO_COW to continue to be NO_COW after relocation but it
is not right. When relocating we will convert blocks to FULL_BACKREF that we
relocate. We can leave some of these full backref blocks behind if they are not
cow'ed out during the relocation, like if we fail the relocation with ENOSPC and
then just drop the reloc tree. Then when we go to cow the block again we won't
lookup the extent flags because we won't think there has been a snapshot
recently which means we will do our normal ref drop thing instead of adding back
a tree ref and dropping the shared ref. This will cause btrfs_free_extent to
blow up because it can't find the ref we are trying to free. This was found
with my ref verifying tool. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
and COLLAPSE_RANGE fallocate operations, and scalability improvements
in the jbd2 layer and in xattr handling when the extended attributes
spill over into an external block.
Other than that, the usual clean ups and minor bug fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTPbD2AAoJENNvdpvBGATwDmUQANSfGYIQazB8XKKgtNTMiG/Y
Ky7n1JzN9lTX/6nMsqQnbfCweLRmxqpWUBuyKDRHUi8IG0/voXSTFsAOOgz0R15A
ERRRWkVvHixLpohuL/iBdEMFHwNZYPGr3jkm0EIgzhtXNgk5DNmiuMwvHmCY27kI
kdNZIw9fip/WRNoFLDBGnLGC37aanoHhCIbVlySy5o9LN1pkC8BgXAYV0Rk19SVd
bWCudSJEirFEqWS5H8vsBAEm/ioxTjwnNL8tX8qms6orZ6h8yMLFkHoIGWPw3Q15
a0TSUoMyav50Yr59QaDeWx9uaPQVeK41wiYFI2rZOnyG2ts0u0YXs/nLwJqTovgs
rzvbdl6cd3Nj++rPi97MTA7iXK96WQPjsDJoeeEgnB0d/qPyTk6mLKgftzLTNgSa
ZmWjrB19kr6CMbebMC4L6eqJ8Fr66pCT8c/iue8wc4MUHi7FwHKH64fqWvzp2YT/
+165dqqo2JnUv7tIp6sUi1geun+bmDHLZFXgFa7fNYFtcU3I+uY1mRr3eMVAJndA
2d6ASe/KhQbpVnjKJdQ8/b833ZS3p+zkgVPrd68bBr3t7gUmX91wk+p1ct6rUPLr
700F+q/pQWL8ap0pU9Ht/h3gEJIfmRzTwxlOeYyOwDseqKuS87PSB3BzV3dDunSU
DrPKlXwIgva7zq5/S0Vr
=4s1Z
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Major changes for 3.14 include support for the newly added ZERO_RANGE
and COLLAPSE_RANGE fallocate operations, and scalability improvements
in the jbd2 layer and in xattr handling when the extended attributes
spill over into an external block.
Other than that, the usual clean ups and minor bug fixes"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (42 commits)
ext4: fix premature freeing of partial clusters split across leaf blocks
ext4: remove unneeded test of ret variable
ext4: fix comment typo
ext4: make ext4_block_zero_page_range static
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
ext4: optimize Hurd tests when reading/writing inodes
ext4: kill i_version support for Hurd-castrated file systems
ext4: each filesystem creates and uses its own mb_cache
fs/mbcache.c: doucple the locking of local from global data
fs/mbcache.c: change block and index hash chain to hlist_bl_node
ext4: Introduce FALLOC_FL_ZERO_RANGE flag for fallocate
ext4: refactor ext4_fallocate code
ext4: Update inode i_size after the preallocation
ext4: fix partial cluster handling for bigalloc file systems
ext4: delete path dealloc code in ext4_ext_handle_uninitialized_extents
ext4: only call sync_filesystm() when remounting read-only
fs: push sync_filesystem() down to the file system's remount_fs()
jbd2: improve error messages for inconsistent journal heads
jbd2: minimize region locked by j_list_lock in jbd2_journal_forget()
jbd2: minimize region locked by j_list_lock in journal_get_create_access()
...
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem mappings already contain exceptional entries where swap slot
information is remembered.
To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.
The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before. But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We know that "ret > 0" is true here. These tests were left over from
commit 02afc27fae ('direct-io: Handle O_(D)SYNC AIO') and aren't
needed any more.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfstests's btrfs/035 triggers a BUG_ON, which we use to detect the split
of inline extents in __btrfs_drop_extents().
For inline extents, we cannot duplicate another EXTENT_DATA item, because
it breaks the rule of inline extents, that is, 'start offset' needs to be 0.
We have set limitations for the source inode's compressed inline extents,
because it needs to decompress and recompress. Now the destination inode's
inline extents also need similar limitations.
With this, xfstests btrfs/035 doesn't run into panic.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
I added an optimization for large files where we would stop searching for
backrefs once we had looked at the number of references we currently had for
this extent. This works great most of the time, but for snapshots that point to
this extent and has changes in the original root this assumption falls on it
face. So keep track of any delayed ref mods made and add in the actual ref
count as reported by the extent item and use that to limit how far down an inode
we'll search for extents. Thanks,
Reportedy-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reported-by: Hugo Mills <hugo@carfax.org.uk>
Tested-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Chris Mason <clm@fb.com>
For an incremental send, fix the process of determining whether the directory
inode we're currently processing needs to have its move/rename operation delayed.
We were ignoring the fact that if the inode's new immediate ancestor has a higher
inode number than ours but wasn't renamed/moved, we might still need to delay our
move/rename, because some other ancestor directory higher in the hierarchy might
have an inode number higher than ours *and* was renamed/moved too - in this case
we have to wait for rename/move of that ancestor to happen before our current
directory's rename/move operation.
Simple steps to reproduce this issue:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/x1/x2
$ mkdir /mnt/a/Z
$ mkdir -p /mnt/a/x1/x2/x3/x4/x5
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/a/x1/x2/x3 /mnt/a/Z/X33
$ mv /mnt/a/x1/x2 /mnt/a/Z/X33/x4/x5/X22
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
The incremental send caused the kernel code to enter an infinite loop when
building the path string for directory Z after its references are processed.
A more complex scenario:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b/c/d
$ mkdir /mnt/a/b/c/d/e
$ mkdir /mnt/a/b/c/d/f
$ mv /mnt/a/b/c/d/e /mnt/a/b/c/d/f/E2
$ mkdir /mmt/a/b/c/g
$ mv /mnt/a/b/c/d /mnt/a/b/D2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mkdir /mnt/a/o
$ mv /mnt/a/b/c/g /mnt/a/b/D2/f/G2
$ mv /mnt/a/b/D2 /mnt/a/b/dd
$ mv /mnt/a/b/c /mnt/a/C2
$ mv /mnt/a/b/dd/f /mnt/a/o/FF
$ mv /mnt/a/b /mnt/a/o/FF/E2/BB
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's possible to change the parent/child relationship between directories
in such a way that if a child directory has a higher inode number than
its parent, it doesn't necessarily means the child rename/move operation
can be performed immediately. The parent migth have its own rename/move
operation delayed, therefore in this case the child needs to have its
rename/move operation delayed too, and be performed after its new parent's
rename/move.
Steps to reproduce the issue:
$ umount /mnt
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir /mnt/A
$ mkdir /mnt/B
$ mkdir /mnt/C
$ mv /mnt/C /mnt/A
$ mv /mnt/B /mnt/A/C
$ mkdir /mnt/A/C/D
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/A/C/D /mnt/A/D2
$ mv /mnt/A/C/B /mnt/A/D2/B2
$ mv /mnt/A/C /mnt/A/D2/B2/C2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
The incremental send caused the kernel code to enter an infinite loop when
building the path string for directory C after its references are processed.
The necessary conditions here are that C has an inode number higher than both
A and B, and B as an higher inode number higher than A, and D has the highest
inode number, that is:
inode_number(A) < inode_number(B) < inode_number(C) < inode_number(D)
The same issue could happen if after the first snapshot there's any number
of intermediary parent directories between A2 and B2, and between B2 and C2.
A test case for xfstests follows, covering this simple case and more advanced
ones, with files and hard links created inside the directories.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
No need to search in the send tree for the generation number of the inode,
we already have it in the recorded_ref structure passed to us.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
While we update an existing ref head's extent_op, we're not holding
its spinlock, so while we're updating its extent_op contents (key,
flags) we can have a task running __btrfs_run_delayed_refs() that
holds the ref head's lock and sets its extent_op to NULL right after
the task updating the ref head just checked its extent_op was not NULL.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since most of the btrfs_workqueue is printed as pointer address,
for easier analysis, add trace for btrfs_workqueue alloc/destroy.
So it is possible to determine the workqueue that a given work belongs
to(by comparing the wq pointer address with alloc trace event).
Signed-off-by: Qu Wenruo <quenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When finding new extents during an autodefrag, don't do so many fs tree
lookups to find an extent with a size smaller then the target treshold.
Instead, after each fs tree forward search immediately unlock upper
levels and process the entire leaf while holding a read lock on the leaf,
since our leaf processing is very fast.
This reduces lock contention, allowing for higher concurrency when other
tasks want to write/update items related to other inodes in the fs tree,
as we're not holding read locks on upper tree levels while processing the
leaf and we do less tree searches.
Test:
sysbench --test=fileio --file-num=512 --file-total-size=16G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--file-rw-ratio=3 --file-io-mode=sync --max-time=1800 \
--max-requests=10000000000 [prepare|run]
(fileystem mounted with -o autodefrag, averages of 5 runs)
Before this change: 58.852Mb/sec throughtput, read 77.589Gb, written 25.863Gb
After this change: 63.034Mb/sec throughtput, read 83.102Gb, written 27.701Gb
Test machine: quad core intel i5-3570K, 32Gb of RAM, SSD.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
The error message is confusing:
# btrfs sub delete /mnt/mysub/
Delete subvolume '/mnt/mysub'
ERROR: cannot delete '/mnt/mysub' - Directory not empty
The error message does not make sense to me: It's not about deleting a
directory but it's a subvolume, and it doesn't matter if the subvolume is
empty or not.
Maybe EPERM or is more appropriate in this case, combined with an explanatory
kernel log message. (e.g. "subvolume with ID 123 cannot be deleted because
it is configured as default subvolume.")
Reported-by: Koen De Wit <koen.de.wit@oracle.com>
Signed-off-by: Guangyu Sun <guangyu.sun@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When locking file ranges in the inode's io_tree, cache the first
extent state that belongs to the target range, so that when unlocking
the range we don't need to search in the io_tree again, reducing cpu
time and making and therefore holding the io_tree's lock for a shorter
period.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Zach found this deadlock that would happen like this
btrfs_end_transaction <- reduce trans->use_count to 0
btrfs_run_delayed_refs
btrfs_cow_block
find_free_extent
btrfs_start_transaction <- increase trans->use_count to 1
allocate chunk
btrfs_end_transaction <- decrease trans->use_count to 0
btrfs_run_delayed_refs
lock tree block we are cowing above ^^
We need to only decrease trans->use_count if it is above 1, otherwise leave it
alone. This will make nested trans be the only ones who decrease their added
ref, and will let us get rid of the trans->use_count++ hack if we have to commit
the transaction. Thanks,
cc: stable@vger.kernel.org
Reported-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Tested-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
We didn't have a lock to protect the access to the delalloc inodes list, that is
we might access a empty delalloc inodes list if someone start flushing delalloc
inodes because the delalloc inodes were moved into a other list temporarily.
Fix it by wrapping the access with a lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we create a snapshot, we just need wait the ordered extents in
the source fs/file root, but because we use the global mutex to protect
this ordered extents list of the source fs/file root to avoid accessing
a empty list, if someone got the mutex to access the ordered extents list
of the other fs/file root, we had to wait.
This patch splits the above global mutex, now every fs/file root has
its own mutex to protect its own list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We needn't flush all delalloc inodes when we doesn't get s_umount lock,
or we would make the tasks wait for a long time.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
generic/074 in xfstests failed sometimes because of the enospc error,
the reason of this problem is that we just reclaimed the space we need
from the reserved space for delalloc, and then tried to reserve the space,
but if some task did no-flush reservation between the above reclamation
and reservation,
Task1 Task2
shrink_delalloc()
reclaim 1 block
(The space that can
be reserved now is 1
block)
do no-flush reservation
reserve 1 block
(The space that can
be reserved now is 0
block)
reserving 1 block failed
the reservation of Task1 failed, but in fact, there was enough space to
reserve if we could reclaim more space before.
Fix this problem by the aggressive reclamation of the reserved delalloc
metadata space.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The reason is:
- The per-cpu counter has its own lock to protect itself.
- Here we needn't get a exact value.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
As the comment in the btrfs_direct_IO says, only the compressed pages need be
flush again to make sure they are on the disk, but the common pages needn't,
so we add a if statement to check if the inode has compressed pages or not,
if no, skip the flush.
And in order to prevent the write ranges from intersecting, we need wait for
the running ordered extents. But the current code waits for them twice, one
is done before the direct IO starts (in btrfs_wait_ordered_range()), the other
is before we get the blocks, it is unnecessary. because we can do the direct
IO without holding i_mutex, it means that the intersected ordered extents may
happen during the direct IO, the first wait can not avoid this problem. So we
use filemap_fdatawrite_range() instead of btrfs_wait_ordered_range() to remove
the first wait.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The tasks that wait for the IO_DONE flag just care about the io of the dirty
pages, so it is better to wake up them immediately after all the pages are
written, not the whole process of the io completes.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
btrfs_wait_ordered_roots() moves all the list entries to a new list,
and then deals with them one by one. But if the other task invokes this
function at that time, it would get a empty list. It makes the enospc
error happens more early. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Add ftrace for btrfs_workqueue for further workqueue tunning.
This patch needs to applied after the workqueue replace patchset.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The new btrfs_workqueue still use open-coded function defition,
this patch will change them into btrfs_func_t type which is much the
same as kernel workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Btrfs send reads data from disk and then writes to a stream via pipe or
a file via flush.
Currently we're going to read each page a time, so every page results
in a disk read, which is not friendly to disks, esp. HDD. Given that,
the performance can be gained by adding readahead for those pages.
Here is a quick test:
$ btrfs subvolume create send
$ xfs_io -f -c "pwrite 0 1G" send/foobar
$ btrfs subvolume snap -r send ro
$ time "btrfs send ro -f /dev/null"
w/o w
real 1m37.527s 0m9.097s
user 0m0.122s 0m0.086s
sys 0m53.191s 0m12.857s
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This has no functional change, only picks out the same part of two functions,
and makes it shared.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we're finishing processing of an inode, if we're dealing with a
directory inode that has a pending move/rename operation, we don't
need to send a utimes update instruction to the send stream, as we'll
do it later after doing the move/rename operation. Therefore we save
some time here building paths and doing btree lookups.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When using prealloc extents, a file defragment operation may actually
fragment the file and increase the amount of data space used by the file.
This change fixes that behaviour.
Example:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt
$ cd /mnt
$ xfs_io -f -c 'falloc 0 1048576' foobar && sync
$ xfs_io -c 'pwrite -S 0xff -b 100000 5000 100000' foobar
$ xfs_io -c 'pwrite -S 0xac -b 100000 200000 100000' foobar
$ xfs_io -c 'pwrite -S 0xe1 -b 100000 900000 100000' foobar && sync
Before defragmenting the file:
$ btrfs filesystem df /mnt
Data, single: total=8.00MiB, used=1.25MiB
System, DUP: total=8.00MiB, used=16.00KiB
System, single: total=4.00MiB, used=0.00
Metadata, DUP: total=1.00GiB, used=112.00KiB
Metadata, single: total=8.00MiB, used=0.00
$ btrfs-debug-tree /dev/sdb3
(...)
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 0 nr 4096
item 7 key (257 EXTENT_DATA 4096) itemoff 15757 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 4096 nr 102400 ram 1048576
extent compression 0
item 8 key (257 EXTENT_DATA 106496) itemoff 15704 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 106496 nr 90112
item 9 key (257 EXTENT_DATA 196608) itemoff 15651 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 196608 nr 106496 ram 1048576
extent compression 0
item 10 key (257 EXTENT_DATA 303104) itemoff 15598 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 303104 nr 593920
item 11 key (257 EXTENT_DATA 897024) itemoff 15545 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 897024 nr 106496 ram 1048576
extent compression 0
item 12 key (257 EXTENT_DATA 1003520) itemoff 15492 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 1003520 nr 45056
(...)
Now defragmenting the file results in more data space used than before:
$ btrfs filesystem defragment -f foobar && sync
$ btrfs filesystem df /mnt
Data, single: total=8.00MiB, used=1.55MiB
System, DUP: total=8.00MiB, used=16.00KiB
System, single: total=4.00MiB, used=0.00
Metadata, DUP: total=1.00GiB, used=112.00KiB
Metadata, single: total=8.00MiB, used=0.00
And the corresponding file extent items are now no longer perfectly sequential
as before, and we're now needlessly using more space from data block groups:
$ btrfs-debug-tree /dev/sdb3
(...)
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 0 nr 4096 ram 1048576
extent compression 0
item 7 key (257 EXTENT_DATA 4096) itemoff 15757 itemsize 53
extent data disk byte 13893632 nr 102400
extent data offset 0 nr 102400 ram 102400
extent compression 0
item 8 key (257 EXTENT_DATA 106496) itemoff 15704 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 106496 nr 90112 ram 1048576
extent compression 0
item 9 key (257 EXTENT_DATA 196608) itemoff 15651 itemsize 53
extent data disk byte 13996032 nr 106496
extent data offset 0 nr 106496 ram 106496
extent compression 0
item 10 key (257 EXTENT_DATA 303104) itemoff 15598 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 303104 nr 593920
item 11 key (257 EXTENT_DATA 897024) itemoff 15545 itemsize 53
extent data disk byte 14102528 nr 106496
extent data offset 0 nr 106496 ram 106496
extent compression 0
item 12 key (257 EXTENT_DATA 1003520) itemoff 15492 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 1003520 nr 45056 ram 1048576
extent compression 0
(...)
With this change, the above example will no longer cause allocation of new data
space nor change the sequentiality of the file extents, that is, defragment will
be effectless, leaving all extent items pointing to the extent starting at disk
byte 12845056.
In a 20Gb filesystem I had, mounted with the autodefrag option and 20 files of
400Mb each, initially consisting of a single prealloc extent of 400Mb, having
random writes happening at a low rate, lead to a total of over ~17Gb of data
space used, not far from eventually reaching an ENOSPC state.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When the defrag flag BTRFS_DEFRAG_RANGE_START_IO is set and compression
enabled, we weren't flushing completely, as writing compressed extents
is a 2 steps process, one to compress the data and another one to write
the compressed data to disk.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since all the btrfs_worker is replaced with the newly created
btrfs_workqueue, the old codes can be easily remove.
Signed-off-by: Quwenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->scrub_* with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->qgroup_rescan_worker with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->delayed_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->fixup_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->readahead_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->cache_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->rmw_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->endio_* workqueues with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->submit_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->submit_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->delalloc_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use the newly created btrfs_workqueue_struct to replace the original
fs_info->workers
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The original btrfs_workers has thresholding functions to dynamically
create or destroy kthreads.
Though there is no such function in kernel workqueue because the worker
is not created manually, we can still use the workqueue_set_max_active
to simulated the behavior, mainly to achieve a better HDD performance by
setting a high threshold on submit_workers.
(Sadly, no resource can be saved)
So in this patch, extra workqueue pending counters are introduced to
dynamically change the max active of each btrfs_workqueue_struct, hoping
to restore the behavior of the original thresholding function.
Also, workqueue_set_max_active use a mutex to protect workqueue_struct,
which is not meant to be called too frequently, so a new interval
mechanism is applied, that will only call workqueue_set_max_active after
a count of work is queued. Hoping to balance both the random and
sequence performance on HDD.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Add high priority function to btrfs_workqueue.
This is implemented by embedding a btrfs_workqueue into a
btrfs_workqueue and use some helper functions to differ the normal
priority wq and high priority wq.
So the high priority wq is completely independent from the normal
workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use kernel workqueue to implement a new btrfs_workqueue_struct, which
has the ordering execution feature like the btrfs_worker.
The func is executed in a concurrency way, and the
ordred_func/ordered_free is executed in the sequence them are queued
after the corresponding func is done.
The new btrfs_workqueue works much like the original one, one workqueue
for normal work and a list for ordered work.
When a work is queued, ordered work will be added to the list and helper
function will be queued into the workqueue.
The helper function will execute a normal work and then check and execute as many
ordered work as possible in the sequence they were queued.
At this patch, high priority work queue or thresholding is not added yet.
The high priority feature and thresholding will be added in the following patches.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The struct async_sched is not used by any codes and can be removed.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fusionio.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is really unnecessary to search tree again for @gen, @mode and @rdev
in the case of REG inodes' creation, as we've got btrfs_inode_item in sctx,
and @gen, @mode and @rdev can easily be fetched.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>