Currently, there's only check for fast crc32c implementation on X86,
based on the CPU flags. This is used to decide if checksumming should be
offloaded to worker threads or can be calculated by the caller.
As there are more architectures that implement a faster version of
crc32c (ARM, SPARC, s390, MIPS, PowerPC), also there are specialized hw
cards.
The detection is based on driver name, all generic C implementations
contain 'generic', while the specialized versions do not. Alternatively
the priority could be used, but this is not currently provided by the
crypto API.
The flag is set per-filesystem at mount time and used for the offloading
decisions.
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlzR0AAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo0MD/47D1kBK9rGzkAwIz1Jkh1Qy/ITVaDJzmHJ
UP5uncQsgKFLKMR1LbRcrWtmk2MwFDNULGbteHFeCYE1ypCrTgpWSp5+SJluKd1Q
hma9krLSAXO9QiSaZ4jafshXFIZxz6IjakOW8c9LrT80Ze47yh7AxiLwDafcp/Jj
x6NW790qB7ENDtfarDkZk14NCS8HGLRHO5B21LB+hT0Kfbh0XZaLzJdj7Mck1wPA
VT8hL9mPuA++AjF7Ra4kUjwSakgmajTa3nS2fpkwTYdztQfas7x5Jiv7FWxrrelb
qbabkNkWKepcHAPEiZR7o53TyfCucGeSK/jG+dsJ9KhNp26kl1ci3frl5T6PfVMP
SPPDjsKIHs+dqFrU9y5rSGhLJqewTs96hHthnLGxyF67+5sRb5+YIy+dcqgiyc/b
TUVyjCD6r0cO2q4v9VhwnhOyeBUA9Rwbu8nl7JV5Q45uG7qI4BC39l1jfubMNDPO
GLNGUUzb6ER7z6lYINjRSF2Jhejsx8SR9P7jhpb1Q7k/VvDDxO1T4FpwvqWFz9+s
Gn+s6//+cA6LL+42eZkQjvwF2CUNE7TaVT8zdb+s5HP1RQkZToqUnsQCGeRTrFni
RqWXfW9o9+awYRp431417oMdX/LvLGq9+ZtifRk9DqDcowXevTaf0W2RpplWSuiX
RcCuPeLAVg==
=Ot0g
-----END PGP SIGNATURE-----
Merge tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Nothing major in this series, just fixes and improvements all over the
map. This contains:
- Series of fixes for sed-opal (David, Jonas)
- Fixes and performance tweaks for BFQ (via Paolo)
- Set of fixes for bcache (via Coly)
- Set of fixes for md (via Song)
- Enabling multi-page for passthrough requests (Ming)
- Queue release fix series (Ming)
- Device notification improvements (Martin)
- Propagate underlying device rotational status in loop (Holger)
- Removal of mtip32xx trim support, which has been disabled for years
(Christoph)
- Improvement and cleanup of nvme command handling (Christoph)
- Add block SPDX tags (Christoph)
- Cleanup/hardening of bio/bvec iteration (Christoph)
- A few NVMe pull requests (Christoph)
- Removal of CONFIG_LBDAF (Christoph)
- Various little fixes here and there"
* tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block: (164 commits)
block: fix mismerge in bvec_advance
block: don't drain in-progress dispatch in blk_cleanup_queue()
blk-mq: move cancel of hctx->run_work into blk_mq_hw_sysfs_release
blk-mq: always free hctx after request queue is freed
blk-mq: split blk_mq_alloc_and_init_hctx into two parts
blk-mq: free hw queue's resource in hctx's release handler
blk-mq: move cancel of requeue_work into blk_mq_release
blk-mq: grab .q_usage_counter when queuing request from plug code path
block: fix function name in comment
nvmet: protect discovery change log event list iteration
nvme: mark nvme_core_init and nvme_core_exit static
nvme: move command size checks to the core
nvme-fabrics: check more command sizes
nvme-pci: check more command sizes
nvme-pci: remove an unneeded variable initialization
nvme-pci: unquiesce admin queue on shutdown
nvme-pci: shutdown on timeout during deletion
nvme-pci: fix psdt field for single segment sgls
nvme-multipath: don't print ANA group state by default
nvme-multipath: split bios with the ns_head bio_set before submitting
...
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When diagnosing a slowdown of generic/224 I noticed we were not doing
anything when calling into shrink_delalloc(). This is because all
writes in 224 are O_DIRECT, not delalloc, and thus our delalloc_bytes
counter is 0, which short circuits most of the work inside of
shrink_delalloc(). However O_DIRECT writes still consume metadata
resources and generate ordered extents, which we can still wait on.
Fix this by tracking outstanding DIO write bytes, and use this as well
as the delalloc bytes counter to decide if we need to lookup and wait on
any ordered extents. If we have more DIO writes than delalloc bytes
we'll go ahead and wait on any ordered extents regardless of our flush
state as flushing delalloc is likely to not gain us anything.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ use dio instead of odirect in identifiers ]
Signed-off-by: David Sterba <dsterba@suse.com>
None of the implementers of the submit_bio_hook use the bio_offset
parameter, simply remove it. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btree submit hook queues the async csum and forwards the bio_offset
parameter passed to btree_submit_bio_hook. This is redundant since
btree_submit_bio_start calls btree_csum_one_bio which doesn't use the
offset at all. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always uses the btree inode's io_tree. Stop taking the
tree as a function argument and instead access it internally from
read_extent_buffer_pages. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only possible 'private_data' that is passed to this function is
actually an inode. Make that explicit by changing the signature of the
call back. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are at least 2 reports about a memory bit flip sneaking into
on-disk data.
Currently we only have a relaxed check triggered at
btrfs_mark_buffer_dirty() time, as it's not mandatory and only for
CONFIG_BTRFS_FS_CHECK_INTEGRITY enabled build, it doesn't help users to
detect such problem.
This patch will address the hole by triggering comprehensive check on
tree blocks before writing it back to disk.
The design points are:
- Timing of the check: Tree block write hook
This timing is chosen to reduce the overhead.
The comprehensive check should be as expensive as a checksum
calculation.
Doing full check at btrfs_mark_buffer_dirty() is too expensive for end
user.
- Loose empty leaf check
Originally for an empty leaf, tree-checker will report error if it's
not a tree root.
The problem for such check at write time is:
* False alert for tree root created in current transaction
In that case, the commit root still needs to be written to disk.
And since current root can differ from commit root, then it will
cause false alert.
This happens for log tree.
* False alert for relocated tree block
Relocated tree block can be written to disk due to memory pressure,
in that case an empty csum tree root can be written to disk and
cause false alert, since csum root node hasn't been updated.
Previous patch of removing comprehensive empty leaf owner check has
paved the way for this patch.
The example error output will be something like:
BTRFS critical (device dm-3): corrupt leaf: root=2 block=1350630375424 slot=68, bad key order, prev (10510212874240 169 0) current (1714119868416 169 0)
BTRFS error (device dm-3): block=1350630375424 write time tree block corruption detected
BTRFS: error (device dm-3) in btrfs_commit_transaction:2220: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-3): forced readonly
BTRFS warning (device dm-3): Skipping commit of aborted transaction.
BTRFS: error (device dm-3) in cleanup_transaction:1839: errno=-5 IO failure
BTRFS info (device dm-3): delayed_refs has NO entry
Reported-by: Leonard Lausen <leonard@lausen.nl>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pending chunks list contains chunks that are allocated in the
current transaction but haven't been created yet. The pinned chunks
list contains chunks that are being released in the current transaction.
Both describe chunks that are not reflected on disk as in use but are
unavailable just the same.
The pending chunks list is anchored by the transaction handle, which
means that we need to hold a reference to a transaction when working
with the list.
The way we use them is by iterating over both lists to perform
comparisons on the stripes they describe for each device. This is
backwards and requires that we keep a transaction handle open while
we're trimming.
This patchset adds an extent_io_tree to btrfs_device that maintains
the allocation state of the device. Extents are set dirty when
chunks are first allocated -- when the extent maps are added to the
mapping tree. They're cleared when last removed -- when the extent
maps are removed from the mapping tree. This matches the lifespan
of the pending and pinned chunks list and allows us to do trims
on unallocated space safely without pinning the transaction for what
may be a lengthy operation. We can also use this io tree to mark
which chunks have already been trimmed so we don't repeat the operation.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the introduction of the alloc_state tree, some of the callees
of btrfs_mapping_tree_free will have to interact with the btrfs_device
of the constituent devices. Enable this by moving the code responsible
for freeing devices after the last user (btrfs_mapping_tree_free).
Otherwise the kernel could crash due to use-after-free.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently overload the pending_chunks list to handle updating
btrfs_device->commit_bytes used. We don't actually care about the
extent mapping or even the device mapping for the chunk - we just need
the device, and we can end up processing it multiple times. The
fs_devices->resized_list does more or less the same thing, but with the
disk size. They are called consecutively during commit and have more or
less the same purpose.
We can combine the two lists into a single list that attaches to the
transaction and contains a list of devices that need updating. Since we
always add the device to a list when we change bytes_used or
disk_total_size, there's no harm in copying both values at once.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit fcebe4562d ("Btrfs: rework qgroup accounting") reworked
qgroups and added some new structures. Another rework of qgroup
mechanics e69bcee376 ("btrfs: qgroup: Cleanup the old
ref_node-oriented mechanism.") stopped using them and left uncleaned.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can read fs_info from extent buffer and can drop it from the
parameters. As all callsites are updated, add the btrfs_ prefix as the
function is exported.
Signed-off-by: David Sterba <dsterba@suse.com>
The wrapper names better describe what's happening so they're not
deleted though they're trivial, but at least moved closer to their place
of use.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just add one extra line to show when the corruption is detected.
Currently only read time detection is possible.
The planned distinguish line would be:
read time:
<detailed report>
block=XXXXX read time tree block corruption detected
write time:
<detailed report>
block=XXXXX write time tree block corruption detected
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have internal report of strange transaction abort due to EUCLEAN
without any error message.
Since error message inside verify_level_key() is only enabled for
CONFIG_BTRFS_DEBUG, the error message won't be printed on most builds.
This patch will make the error message mandatory, so when problem
happens we know what's causing the problem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When reading a file from a fuzzed image, kernel can panic like:
BTRFS warning (device loop0): csum failed root 5 ino 270 off 0 csum 0x98f94189 expected csum 0x00000000 mirror 1
assertion failed: !memcmp_extent_buffer(b, &disk_key, offsetof(struct btrfs_leaf, items[0].key), sizeof(disk_key)), file: fs/btrfs/ctree.c, line: 2544
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3500!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:btrfs_search_slot.cold.24+0x61/0x63 [btrfs]
Call Trace:
btrfs_lookup_csum+0x52/0x150 [btrfs]
__btrfs_lookup_bio_sums+0x209/0x640 [btrfs]
btrfs_submit_bio_hook+0x103/0x170 [btrfs]
submit_one_bio+0x59/0x80 [btrfs]
extent_read_full_page+0x58/0x80 [btrfs]
generic_file_read_iter+0x2f6/0x9d0
__vfs_read+0x14d/0x1a0
vfs_read+0x8d/0x140
ksys_read+0x52/0xc0
do_syscall_64+0x60/0x210
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[CAUSE]
The fuzzed image has a corrupted leaf whose first key doesn't match its
parent:
checksum tree key (CSUM_TREE ROOT_ITEM 0)
node 29741056 level 1 items 14 free 107 generation 19 owner CSUM_TREE
fs uuid 3381d111-94a3-4ac7-8f39-611bbbdab7e6
chunk uuid 9af1c3c7-2af5-488b-8553-530bd515f14c
...
key (EXTENT_CSUM EXTENT_CSUM 79691776) block 29761536 gen 19
leaf 29761536 items 1 free space 1726 generation 19 owner CSUM_TREE
leaf 29761536 flags 0x1(WRITTEN) backref revision 1
fs uuid 3381d111-94a3-4ac7-8f39-611bbbdab7e6
chunk uuid 9af1c3c7-2af5-488b-8553-530bd515f14c
item 0 key (EXTENT_CSUM EXTENT_CSUM 8798638964736) itemoff 1751 itemsize 2244
range start 8798638964736 end 8798641262592 length 2297856
When reading the above tree block, we have extent_buffer->refs = 2 in
the context:
- initial one from __alloc_extent_buffer()
alloc_extent_buffer()
|- __alloc_extent_buffer()
|- atomic_set(&eb->refs, 1)
- one being added to fs_info->buffer_radix
alloc_extent_buffer()
|- check_buffer_tree_ref()
|- atomic_inc(&eb->refs)
So if even we call free_extent_buffer() in read_tree_block or other
similar situation, we only decrease the refs by 1, it doesn't reach 0
and won't be freed right now.
The staled eb and its corrupted content will still be kept cached.
Furthermore, we have several extra cases where we either don't do first
key check or the check is not proper for all callers:
- scrub
We just don't have first key in this context.
- shared tree block
One tree block can be shared by several snapshot/subvolume trees.
In that case, the first key check for one subvolume doesn't apply to
another.
So for the above reasons, a corrupted extent buffer can sneak into the
buffer cache.
[FIX]
Call verify_level_key in read_block_for_search to do another
verification. For that purpose the function is exported.
Due to above reasons, although we can free corrupted extent buffer from
cache, we still need the check in read_block_for_search(), for scrub and
shared tree blocks.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202755
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202757
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202759
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202761
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202767
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202769
Reported-by: Yoon Jungyeon <jungyeon@gatech.edu>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a an eb fails to be read for whatever reason - it's corrupted on disk
and parent transid/key validations fail or IO for eb pages fail then
this buffer must be removed from the buffer cache. Currently the code
calls free_extent_buffer if an error occurs. Unfortunately this doesn't
achieve the desired behavior since btrfs_find_create_tree_block returns
with eb->refs == 2.
On the other hand free_extent_buffer will only decrement the refs once
leaving it added to the buffer cache radix tree. This enables later
code to look up the buffer from the cache and utilize it potentially
leading to a crash.
The correct way to free the buffer is call free_extent_buffer_stale.
This function will correctly call atomic_dec explicitly for the buffer
and subsequently call release_extent_buffer which will decrement the
final reference thus correctly remove the invalid buffer from buffer
cache. This change affects only newly allocated buffers since they have
eb->refs == 2.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202755
Reported-by: Jungyeon <jungyeon@gatech.edu>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs has the following different extent_io_trees used:
- fs_info::free_extents[2]
- btrfs_inode::io_tree - for both normal inodes and the btree inode
- btrfs_inode::io_failure_tree
- btrfs_transaction::dirty_pages
- btrfs_root::dirty_log_pages
If we want to trace changes in those trees, it will be pretty hard to
distinguish them.
Instead of using hard-to-read pointer address, this patch will introduce
a new member extent_io_tree::owner to track the owner.
This modification needs all the callers of extent_io_tree_init() to
accept a new parameter @owner.
This patch provides the basis for later trace events.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch is split from the following one "btrfs: Introduce
extent_io_tree::owner to distinguish different io_trees" from Qu, so the
different changes are not mixed together.
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will add a new member fs_info to extent_io_tree.
This provides the basis for later trace events to distinguish the output
between different btrfs filesystems. While this increases the size of
the structure, we want to know the source of the trace events and
passing the fs_info as an argument to all contexts is not possible.
The selftests are now allowed to set it to NULL as they don't use the
tracepoints.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d2e174d5d3 ("btrfs: document extent mapping assumptions in
checksum") we have a comment in place why map_private_extent_buffer()
can't return 1 in the csum_tree_block() case.
Make this a bit more explicit and WARN_ON() in case this this assumption
breaks.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently csum_tree_block() does two things, first it as it's name
suggests it calculates the checksum for a tree-block. But it also writes
this checksum to disk or reads an extent_buffer from disk and compares the
checksum with the calculated checksum, depending on the verify argument.
Furthermore one of the two callers passes in '1' for the verify argument,
the other one passes in '0'.
For clarity and less layering violations, factor out the second stage in
csum_tree_block()'s callers.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All users of VM_MAX_READAHEAD actually convert it to kbytes and then to
pages. Define the macro explicitly as (SZ_128K / PAGE_SIZE). This
simplifies the expression in every filesystem. Also rename the macro to
VM_READAHEAD_PAGES to properly convey its meaning. Finally remove unused
VM_MIN_READAHEAD
[akpm@linux-foundation.org: fix fs/io_uring.c, per Stephen]
Link: http://lkml.kernel.org/r/20181221144053.24318-1-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlx63XIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpp2vEACfrrQsap7R+Av28mmXpmXi2FPa3g5Tev1t
yYjK2qHvhlMZjPTYw3hCmbYdDDczlF7PEgSE2x2DjdcsYapb8Fy1lZ2X16c7ztBR
HD/t9b5AVSQsczZzKgv3RqsNtTnjzS5V0A8XH8FAP2QRgiwDMwSN6G0FP0JBLbE/
ZgxQrH1Iy1F33Wz4hI3Z7dEghKPZrH1IlegkZCEu47q9SlWS76qUetSy2GEtchOl
3Lgu54mQZyVdI5/QZf9DyMDLF6dIz3tYU2qhuo01AHjGRCC72v86p8sIiXcUr94Q
8pbegJhJ/g8KBol9Qhv3+pWG/QUAZwi/ZwasTkK+MJ4klRXfOrznxPubW1z6t9Vn
QRo39Po5SqqP0QWAscDxCFjESIQlWlKa+LZurJL7DJDCUGrSgzTpnVwFqKwc5zTP
HJa5MT2tEeL2TfUYRYCfh0ZV0elINdHA1y1klDBh38drh4EWr2gW8xdseGYXqRjh
fLgEpoF7VQ8kTvxKN+E4jZXkcZmoLmefp0ZyAbblS6IawpPVC7kXM9Fdn2OU8f2c
fjVjvSiqxfeN6dnpfeLDRbbN9894HwgP/LPropJOQ7KmjCorQq5zMDkAvoh3tElq
qwluRqdBJpWT/F05KweY+XVW8OawIycmUWqt6JrVNoIDAK31auHQv47kR0VA4OvE
DRVVhYpocw==
=VBaU
-----END PGP SIGNATURE-----
Merge tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
"Not a huge amount of changes in this round, the biggest one is that we
finally have Mings multi-page bvec support merged. Apart from that,
this pull request contains:
- Small series that avoids quiescing the queue for sysfs changes that
match what we currently have (Aleksei)
- Series of bcache fixes (via Coly)
- Series of lightnvm fixes (via Mathias)
- NVMe pull request from Christoph. Nothing major, just SPDX/license
cleanups, RR mp policy (Hannes), and little fixes (Bart,
Chaitanya).
- BFQ series (Paolo)
- Save blk-mq cpu -> hw queue mapping, removing a pointer indirection
for the fast path (Jianchao)
- fops->iopoll() added for async IO polling, this is a feature that
the upcoming io_uring interface will use (Christoph, me)
- Partition scan loop fixes (Dongli)
- mtip32xx conversion from managed resource API (Christoph)
- cdrom registration race fix (Guenter)
- MD pull from Song, two minor fixes.
- Various documentation fixes (Marcos)
- Multi-page bvec feature. This brings a lot of nice improvements
with it, like more efficient splitting, larger IOs can be supported
without growing the bvec table size, and so on. (Ming)
- Various little fixes to core and drivers"
* tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block: (117 commits)
block: fix updating bio's front segment size
block: Replace function name in string with __func__
nbd: propagate genlmsg_reply return code
floppy: remove set but not used variable 'q'
null_blk: fix checking for REQ_FUA
block: fix NULL pointer dereference in register_disk
fs: fix guard_bio_eod to check for real EOD errors
blk-mq: use HCTX_TYPE_DEFAULT but not 0 to index blk_mq_tag_set->map
block: optimize bvec iteration in bvec_iter_advance
block: introduce mp_bvec_for_each_page() for iterating over page
block: optimize blk_bio_segment_split for single-page bvec
block: optimize __blk_segment_map_sg() for single-page bvec
block: introduce bvec_nth_page()
iomap: wire up the iopoll method
block: add bio_set_polled() helper
block: wire up block device iopoll method
fs: add an iopoll method to struct file_operations
loop: set GENHD_FL_NO_PART_SCAN after blkdev_reread_part()
loop: do not print warn message if partition scan is successful
block: bounce: make sure that bvec table is updated
...
Use the refcount_t for fs_info::scrub_workers_refcnt instead of int so
we get the extra checks. All reference changes are still done under
scrub_lock.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The throttle path doesn't take cleaner_delayed_iput_mutex, which means
we could think we're done flushing iputs in the data space reservation
path when we could have a throttler doing an iput. There's no real
reason to serialize the delayed iput flushing, so instead of taking the
cleaner_delayed_iput_mutex whenever we flush the delayed iputs just
replace it with an atomic counter and a waitqueue. This removes the
short (or long depending on how big the inode is) window where we think
there are no more pending iputs when there really are some.
The waiting is killable as it could be indirectly called from user
operations like fallocate or zero-range. Such call sites should handle
the error but otherwise it's not necessary. Eg. flush_space just needs
to attempt to make space by waiting on iputs.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add killable comment and changelog parts ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_set_lock_blocking is now only a simple wrapper around
btrfs_set_lock_blocking_write. The name does not bring any semantic
value that could not be inferred from the new function so there's no
point keeping it.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We can use the right helper where the lock type is a fixed parameter.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To allow delayed subtree swap rescan, btrfs needs to record per-root
information about which tree blocks get swapped. This patch introduces
the required infrastructure.
The designed workflow will be:
1) Record the subtree root block that gets swapped.
During subtree swap:
O = Old tree blocks
N = New tree blocks
reloc tree subvolume tree X
Root Root
/ \ / \
NA OB OA OB
/ | | \ / | | \
NC ND OE OF OC OD OE OF
In this case, NA and OA are going to be swapped, record (NA, OA) into
subvolume tree X.
2) After subtree swap.
reloc tree subvolume tree X
Root Root
/ \ / \
OA OB NA OB
/ | | \ / | | \
OC OD OE OF NC ND OE OF
3a) COW happens for OB
If we are going to COW tree block OB, we check OB's bytenr against
tree X's swapped_blocks structure.
If it doesn't fit any, nothing will happen.
3b) COW happens for NA
Check NA's bytenr against tree X's swapped_blocks, and get a hit.
Then we do subtree scan on both subtrees OA and NA.
Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND).
Then no matter what we do to subvolume tree X, qgroup numbers will
still be correct.
Then NA's record gets removed from X's swapped_blocks.
4) Transaction commit
Any record in X's swapped_blocks gets removed, since there is no
modification to swapped subtrees, no need to trigger heavy qgroup
subtree rescan for them.
This will introduce 128 bytes overhead for each btrfs_root even qgroup
is not enabled. This is to reduce memory allocations and potential
failures.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Relocation code will drop btrfs_root::reloc_root as soon as
merge_reloc_root() finishes.
However later qgroup code will need to access btrfs_root::reloc_root
after merge_reloc_root() for delayed subtree rescan.
So alter the timming of resetting btrfs_root:::reloc_root, make it
happens after transaction commit.
With this patch, we will introduce a new btrfs_root::state,
BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user
that although btrfs_root::reloc_tree is still non-NULL, but still it's
not used any more.
The lifespan of btrfs_root::reloc tree will become:
Old behavior | New
------------------------------------------------------------------------
btrfs_init_reloc_root() --- | btrfs_init_reloc_root() ---
set reloc_root | | set reloc_root |
| | |
| | |
merge_reloc_root() | | merge_reloc_root() |
|- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+-
clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE |
| record root into dirty |
| roots rbtree |
| |
| reloc_block_group() Or |
| btrfs_recover_relocation() |
| | After transaction commit |
| |- clean_dirty_subvols() ---
| clear btrfs_root::reloc_root
During ROOT_DEAD_RELOC_TREE set lifespan, the only user of
btrfs_root::reloc_tree should be qgroup.
Since reloc root needs a longer life-span, this patch will also delay
btrfs_drop_snapshot() call.
Now btrfs_drop_snapshot() is called in clean_dirty_subvols().
This patch will increase the size of btrfs_root by 16 bytes.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of open coding this stuff use the helper instead.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this open coded in btrfs_destroy_delayed_refs, use the helper
instead.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are holding a transaction handle when creating a tree, therefore we can
not allocate the root using GFP_KERNEL, as we could deadlock if reclaim is
triggered by the allocation, therefore setup a nofs context.
Fixes: 74e4d82757 ("btrfs: let callers of btrfs_alloc_root pass gfp flags")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch introduces one extra iterator variable to bio_for_each_segment_all(),
then we can allow bio_for_each_segment_all() to iterate over multi-page bvec.
Given it is just one mechannical & simple change on all bio_for_each_segment_all()
users, this patch does tree-wide change in one single patch, so that we can
avoid to use a temporary helper for this conversion.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The cleaner thread usually takes care of delayed iputs, with the
exception of the btrfs_end_transaction_throttle path. Delaying iputs
means we are potentially delaying the eviction of an inode and it's
respective space. The cleaner thread only gets woken up every 30
seconds, or when we require space. If there are a lot of inodes that
need to be deleted we could induce a serious amount of latency while we
wait for these inodes to be evicted. So instead wakeup the cleaner if
it's not already awake to process any new delayed iputs we add to the
list. If we suddenly need space we will less likely be backed up
behind a bunch of inodes that are waiting to be deleted, and we could
possibly free space before we need to get into the flushing logic which
will save us some latency.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The typos accumulate over time so once in a while time they get fixed in
a large patch.
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv. This works most
of the time, except when it doesn't. We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction. Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.
So instead give them their own block_rsv. This way we can always know
exactly how much outstanding space we need for delayed refs. This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system. Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.
For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums. We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.
Historical background:
The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit. A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.
Thus the delayed refs rsv. We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation. This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
After the rw semaphore has been added, the custom blocking using
::blocking_readers and ::read_lock_wq is redundant.
The blocking logic in __btrfs_map_block is replaced by extending the
time the semaphore is held, that has the same blocking effect on writes
as the previous custom scheme that waited until ::blocking_readers was
zero.
Signed-off-by: David Sterba <dsterba@suse.com>
This is the first part of removing the custom locking and waiting scheme
used for device replace. It was probably copied from extent buffer
locking, but there's nothing that would require more than is provided by
the common locking primitives.
The rw spinlock protects waiting tasks counter in case of incompatible
locks and the waitqueue. Same as rw semaphore.
This patch only switches the locking primitive, for better
bisectability. There should be no functional change other than the
overhead of the locking and potential sleeping instead of spinning when
the lock is contended.
Signed-off-by: David Sterba <dsterba@suse.com>
Document why map_private_extent_buffer() cannot return '1' (i.e. the map
spans two pages) for the csum_tree_block() case.
The current algorithm for detecting a page boundary crossing in
map_private_extent_buffer() will return a '1' *IFF* the extent buffer's
offset in the page + the offset passed in by csum_tree_block() and the
minimal length passed in by csum_tree_block() - 1 are bigger than
PAGE_SIZE.
We always pass BTRFS_CSUM_SIZE (32) as offset and a minimal length of 32
and the current extent buffer allocator always guarantees page aligned
extends, so the above condition can't be true.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
For data inodes this hook does nothing but to return -EAGAIN which is
used to signal to the endio routines that this bio belongs to a data
inode. If this is the case the actual retrying is handled by
bio_readpage_error. Alternatively, if this bio belongs to the btree
inode then btree_io_failed_hook just does some cleanup and doesn't retry
anything.
This patch simplifies the code flow by eliminating
readpage_io_failed_hook and instead open-coding btree_io_failed_hook in
end_bio_extent_readpage. Also eliminate some needless checks since IO is
always performed on either data inode or btree inode, both of which are
guaranteed to have their extent_io_tree::ops set.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's one caller and its code is simple, we can open code it in
run_one_async_done. The errors are passed through bio.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We can have a lot freed extents during the life span of transaction, so
the red black tree that keeps track of the ranges of each freed extent
(fs_info->freed_extents[]) can get quite big. When finishing a
transaction commit we find each range, process it (discard the extents,
unpin them) and then remove it from the red black tree.
We can use an extent state record as a cache when searching for a range,
so that when we clean the range we can use the cached extent state we
passed to the search function instead of iterating the red black tree
again. Doing things as fast as possible when finishing a transaction (in
state TRANS_STATE_UNBLOCKED) is convenient as it reduces the time we
block another task that wants to commit the next transaction.
So change clear_extent_dirty() to allow an optional extent state record to
be passed as an argument, which will be passed down to __clear_extent_bit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Even though fsid change without rewrite is a very quick operation it's
still possible to experience a split-brain scenario if power loss occurs
at the most inconvenient time. This patch handles the case where power
failure occurs while the first transaction (the one setting
CHANGING_FSID_V2) flag is being persisted on disk. This can cause the
btrfs_fs_devices of this filesystem to be created by a device which:
a) has the CHANGING_FSID_V2 flag set but its fsid value is intact
b) or a device which doesn't have CHANGING_FSID_V2 flag set and its
fsid value is intact
This situation is trivially handled by the current find_fsid code since
in both cases the devices are going to be treated like ordinary devices.
Since btrfs is always mounted using the superblock of the latest
device (the one with highest generation number), meaning it will have
the CHANGING_FSID_V2 flag set, ensure it's being cleared on mount. On
the first transaction commit following mount all disks will have it
cleared.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_fs_info structure contains a copy of the
fsid/metadata_uuid fields. Same values are also contained in the
btrfs_fs_devices structure which fs_info has a reference to. Let's
reduce duplication by removing the fields from fs_info and always refer
to the ones in fs_devices. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This field is going to be used when the user wants to change the UUID
of the filesystem without having to rewrite all metadata blocks. This
field adds another level of indirection such that when the FSID is
changed what really happens is the current UUID (the one with which the
fs was created) is copied to the 'metadata_uuid' field in the superblock
as well as a new incompat flag is set METADATA_UUID. When the kernel
detects this flag is set it knows that the superblock in fact has 2
UUIDs:
1. Is the UUID which is user-visible, currently known as FSID.
2. Metadata UUID - this is the UUID which is stamped into all on-disk
datastructures belonging to this file system.
When the new incompat flag is present device scanning checks whether
both fsid/metadata_uuid of the scanned device match any of the
registered filesystems. When the flag is not set then both UUIDs are
equal and only the FSID is retained on disk, metadata_uuid is set only
in-memory during mount.
Additionally a new metadata_uuid field is also added to the fs_info
struct. It's initialised either with the FSID in case METADATA_UUID
incompat flag is not set or with the metdata_uuid of the superblock
otherwise.
This commit introduces the new fields as well as the new incompat flag
and switches all users of the fsid to the new logic.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor updates in comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
A later patch will implement swap file support for Btrfs, but before we
do that, we need to make sure that the various Btrfs ioctls cannot
change a swap file.
When a swap file is active, we must make sure that the extents of the
file are not moved and that they don't become shared. That means that
the following are not safe:
- chattr +c (enable compression)
- reflink
- dedupe
- snapshot
- defrag
Don't allow those to happen on an active swap file.
Additionally, balance, resize, device remove, and device replace are
also unsafe if they affect an active swapfile. Add a red-black tree of
block groups and devices which contain an active swapfile. Relocation
checks each block group against this tree and skips it or errors out for
balance or resize, respectively. Device remove and device replace check
the tree for the device they will operate on.
Note that we don't have to worry about chattr -C (disable nocow), which
we ignore for non-empty files, because an active swapfile must be
non-empty and can't be truncated. We also don't have to worry about
autodefrag because it's only done on COW files. Truncate and fallocate
are already taken care of by the generic code. Device add doesn't do
relocation so it's not an issue, either.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a metadata read is served the endio routine btree_readpage_end_io_hook
is called which eventually runs the tree-checker. If tree-checker fails
to validate the read eb then it sets EXTENT_BUFFER_CORRUPT flag. This
leads to btree_read_extent_buffer_pages wrongly assuming that all
available copies of this extent buffer are wrong and failing prematurely.
Fix this modify btree_read_extent_buffer_pages to read all copies of
the data.
This failure was exhibitted in xfstests btrfs/124 which would
spuriously fail its balance operations. The reason was that when balance
was run following re-introduction of the missing raid1 disk
__btrfs_map_block would map the read request to stripe 0, which
corresponded to devid 2 (the disk which is being removed in the test):
item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 3553624064) itemoff 15975 itemsize 112
length 1073741824 owner 2 stripe_len 65536 type DATA|RAID1
io_align 65536 io_width 65536 sector_size 4096
num_stripes 2 sub_stripes 1
stripe 0 devid 2 offset 2156920832
dev_uuid 8466c350-ed0c-4c3b-b17d-6379b445d5c8
stripe 1 devid 1 offset 3553624064
dev_uuid 1265d8db-5596-477e-af03-df08eb38d2ca
This caused read requests for a checksum item that to be routed to the
stale disk which triggered the aforementioned logic involving
EXTENT_BUFFER_CORRUPT flag. This then triggered cascading failures of
the balance operation.
Fixes: a826d6dcb3 ("Btrfs: check items for correctness as we search")
CC: stable@vger.kernel.org # 4.4+
Suggested-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a race between close_ctree() and cleaner_kthread().
close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it
sees it set, but this is racy; the cleaner might have already checked
the bit and could be cleaning stuff. In particular, if it deletes unused
block groups, it will create delayed iputs for the free space cache
inodes. As of "btrfs: don't run delayed_iputs in commit", we're no
longer running delayed iputs after a commit. Therefore, if the cleaner
creates more delayed iputs after delayed iputs are run in
btrfs_commit_super(), we will leak inodes on unmount and get a busy
inode crash from the VFS.
Fix it by parking the cleaner before we actually close anything. Then,
any remaining delayed iputs will always be handled in
btrfs_commit_super(). This also ensures that the commit in close_ctree()
is really the last commit, so we can get rid of the commit in
cleaner_kthread().
The fstest/generic/475 followed by 476 can trigger a crash that
manifests as a slab corruption caused by accessing the freed kthread
structure by a wake up function. Sample trace:
[ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc
[ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0
[ 5657.080661] Oops: 0000 [#1] PREEMPT SMP
[ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323
[ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014
[ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90
[ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287
[ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000
[ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0
[ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000
[ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788
[ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200
[ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000
[ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0
[ 5657.103159] Call Trace:
[ 5657.103776] shrink_inactive_list+0x194/0x410
[ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0
[ 5657.105750] shrink_node+0x62/0x1c0
[ 5657.106529] try_to_free_pages+0x1a4/0x500
[ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20
[ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0
[ 5657.109348] kmalloc_large_node+0x37/0x90
[ 5657.110205] __kmalloc_node+0x236/0x310
[ 5657.111014] kvmalloc_node+0x3e/0x70
Fixes: 30928e9baa ("btrfs: don't run delayed_iputs in commit")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add trace ]
Signed-off-by: David Sterba <dsterba@suse.com>
I ran into an issue where there was some reference being held on an
inode that I couldn't track. This assert wasn't triggered, but it at
least rules out we're doing something stupid.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The replace_wait and bio_counter were mistakenly added to fs_info in
commit c404e0dc2c ("Btrfs: fix use-after-free in the finishing
procedure of the device replace"), but they logically belong to
fs_info::dev_replace. Besides, bio_counter is a very generic name and is
confusing in bare fs_info context.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This member seems to be copied from the extent_buffer locking scheme and
is at least used to assert that the read lock/unlock is properly nested.
In some way. While the _inc/_dec are called inside the read lock
section, the asserts are both inside and outside, so the ordering is not
guaranteed and we can see read/inc/dec ordered in any way
(theoretically).
A missing call of btrfs_dev_replace_clear_lock_blocking could cause
unexpected read_locks count, so this at least looks like a valid
assertion, but this will become unnecessary with later updates.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href->ref_tree need to get the first entry, this
converts href->ref_tree to use rb_first_cached().
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href_root need to get the first entry, this
converts href_root to use rb_first_cached().
This patch is first in the sequenct of similar updates to other rbtrees
and this is analysis of the expected behaviour and improvements.
There's a common pattern:
while (node = rb_first) {
entry = rb_entry(node)
next = rb_next(node)
rb_erase(node)
cleanup(entry)
}
rb_first needs to traverse the tree up to logN depth, rb_erase can
completely reshuffle the tree. With the caching we'll skip the traversal
in rb_first. That's a cached memory access vs looped pointer
dereference trade-off that IMHO has a clear winner.
Measurements show there's not much difference in a sample tree with
10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of
caching and pointer chasing are unpredictable though.
Further optimzations can be done to avoid the expensive rb_erase step.
In some cases it's ok to process the nodes in any order, so the tree can
be traversed in post-order, not rebalancing the children nodes and just
calling free. Care must be taken regarding the next node.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog from mail discussions ]
Signed-off-by: David Sterba <dsterba@suse.com>
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.
They are both set to the same value in __setup_root():
static void __setup_root(struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
...
root->objectid = objectid;
...
root->root_key.objectid = objecitd;
...
}
and not changed to other value after initialization.
grep in btrfs directory shows both are used in many places:
$ grep -rI "root->root_key.objectid" | wc -l
133
$ grep -rI "root->objectid" | wc -l
55
(4.17, inc. some noise)
It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.
Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit e9894fd3e3 ("Btrfs: fix snapshot vs nocow writting") forced
nocow writes to fallback to COW, during writeback, when a snapshot is
created. This resulted in writes made before creating the snapshot to
unexpectedly fail with ENOSPC during writeback when success (0) was
returned to user space through the write system call.
The steps leading to this problem are:
1. When it's not possible to allocate data space for a write, the
buffered write path checks if a NOCOW write is possible. If it is,
it will not reserve space and success (0) is returned to user space.
2. Then when a snapshot is created, the root's will_be_snapshotted
atomic is incremented and writeback is triggered for all inode's that
belong to the root being snapshotted. Incrementing that atomic forces
all previous writes to fallback to COW during writeback (running
delalloc).
3. This results in the writeback for the inodes to fail and therefore
setting the ENOSPC error in their mappings, so that a subsequent
fsync on them will report the error to user space. So it's not a
completely silent data loss (since fsync will report ENOSPC) but it's
a very unexpected and undesirable behaviour, because if a clean
shutdown/unmount of the filesystem happens without previous calls to
fsync, it is expected to have the data present in the files after
mounting the filesystem again.
So fix this by adding a new atomic named snapshot_force_cow to the
root structure which prevents this behaviour and works the following way:
1. It is incremented when we start to create a snapshot after triggering
writeback and before waiting for writeback to finish.
2. This new atomic is now what is used by writeback (running delalloc)
to decide whether we need to fallback to COW or not. Because we
incremented this new atomic after triggering writeback in the
snapshot creation ioctl, we ensure that all buffered writes that
happened before snapshot creation will succeed and not fallback to
COW (which would make them fail with ENOSPC).
3. The existing atomic, will_be_snapshotted, is kept because it is used
to force new buffered writes, that start after we started
snapshotting, to reserve data space even when NOCOW is possible.
This makes these writes fail early with ENOSPC when there's no
available space to allocate, preventing the unexpected behaviour of
writeback later failing with ENOSPC due to a fallback to COW mode.
Fixes: e9894fd3e3 ("Btrfs: fix snapshot vs nocow writting")
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will introduce chunk <-> dev extent mapping check, to protect
us against invalid dev extents or chunks.
Since chunk mapping is the fundamental infrastructure of btrfs, extra
check at mount time could prevent a lot of unexpected behavior (BUG_ON).
Reported-by: Xu Wen <wen.xu@gatech.edu>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200403
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200407
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The exported helper just calls the static one. There's no obvious reason
to have them separate eg. for performance reasons where the static one
could be better optimized in the same unit. There's a slight decrease in
code size and stack consumption.
Signed-off-by: David Sterba <dsterba@suse.com>
Lock owner and nesting level have been unused since day 1, probably
copy&pasted from the extent_buffer locking scheme without much thinking.
The locking of device replace is simpler and does not need any lock
nesting.
Signed-off-by: David Sterba <dsterba@suse.com>
Added in 58176a9604 ("Btrfs: Add per-root block accounting and sysfs
entries") in 2007, the roots had names exported in sysfs. The code
was commented out in 4df27c4d5c ("Btrfs: change how subvolumes
are organized") and cleaned by 182608c829 ("btrfs: remove old
unused commented out code").
Signed-off-by: David Sterba <dsterba@suse.com>
The data and metadata callback implementation both use the same
function. We can remove the call indirection and intermediate helper
completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The data and metadata callback implementation both use the same
function. We can remove the call indirection completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All implementations of the callback are trivial and do the same and
there's only one user. Merge everything together.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The end_io callbacks passed to btrfs_wq_submit_bio
(btrfs_submit_bio_done and btree_submit_bio_done) are effectively the
same code, there's no point to do the indirection. Export
btrfs_submit_bio_done and call it directly.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After splitting the start and end hooks in a758781d4b ("btrfs:
separate types for submit_bio_start and submit_bio_done"), some of
the function arguments were dropped but not removed from the structure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduced by c6100a4b4e ("Btrfs: replace tree->mapping with
tree->private_data") to be used in run_one_async_done where it got
unused after 736cd52e0c ("Btrfs: remove nr_async_submits and
async_submit_draining").
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_DUMMY is an awful name for this flag. Buffers which have
this flag set are not in any way dummy. Rather, they are private in the
sense that are not mapped and linked to the global buffer tree. This
flag has subtle implications to the way free_extent_buffer works for
example, as well as controls whether page->mapping->private_lock is held
during extent_buffer release. Pages for an unmapped buffer cannot be
under io, nor can they be written by a 3rd party so taking the lock is
unnecessary.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ EXTENT_BUFFER_UNMAPPED, update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We use customized, nodesize batch value to update dirty_metadata_bytes.
We should also use batch version of compare function or we will easily
goto fast path and get false result from percpu_counter_compare().
Fixes: e2d845211e ("Btrfs: use percpu counter for dirty metadata count")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Functions that get btrfs inode can simply reach the fs_info by
dereferencing the root and this looks a bit more straightforward
compared to the btrfs_sb(...) indirection.
If the transaction handle is available and not NULL it's used instead.
Signed-off-by: David Sterba <dsterba@suse.com>
For easier debugging, print eb->start if level is invalid. Also make
clear if bytenr found is not expected.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The transaction times were changed to ktime_get_real_seconds to avoid
the y2038 overflow, but they still have a minor problem when they go
backwards or jump due to settimeofday() or leap seconds.
This changes the transaction handling to instead use ktime_get_seconds(),
which returns a CLOCK_MONOTONIC timestamp that has neither of those
problems.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a new extent buffer is allocated there are a few mandatory fields
which need to be set in order for the buffer to be sane: level,
generation, bytenr, backref_rev, owner and FSID/UUID. Currently this
is open coded in the callers of btrfs_alloc_tree_block, meaning it's
fairly high in the abstraction hierarchy of operations. This patch
solves this by simply moving this init code in btrfs_init_new_buffer,
since this is the function which initializes a newly allocated
extent buffer. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The get_seconds() function is deprecated as it truncates the timestamp
to 32 bits. Change it to or ktime_get_real_seconds().
Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
As verify_level_key() is checked after verify_parent_transid(), i.e.
if (verify_parent_transid())
ret = -EIO;
else if (verify_level_key())
ret = -EUCLEAN;
if parent_transid is 0, verify_parent_transid() skips verifying
parent_transid and considers eb as valid, and if verify_level_key()
reports something wrong, we're not going to know if it's caused by
corrupted metadata or non-checkecd eb (e.g. stale eb).
The stale eb can be from an outdated raid1 mirror after a degraded
mount, see eg "btrfs: fix reading stale metadata blocks after degraded
raid1 mounts" (02a3307aa9) for more details.
@parent_transid is able to tell whether the eb's generation has been
verified by the caller.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we don't keep long-standing reservations for orphan items,
root->orphan_block_rsv isn't used. We can git rid of it, along with:
- root->orphan_lock, which was used to protect root->orphan_block_rsv
- root->orphan_inodes, which was used as a refcount for root->orphan_block_rsv
- BTRFS_INODE_ORPHAN_META_RESERVED, which was used to track reservations
in root->orphan_block_rsv
- btrfs_orphan_commit_root(), which was the last user of any of these
and does nothing else
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are already 2 reports about strangely corrupted super blocks,
where csum still matches but extra garbage gets slipped into super block.
The corruption would looks like:
------
superblock: bytenr=65536, device=/dev/sdc1
---------------------------------------------------------
csum_type 41700 (INVALID)
csum 0x3b252d3a [match]
bytenr 65536
flags 0x1
( WRITTEN )
magic _BHRfS_M [match]
...
incompat_flags 0x5b22400000000169
( MIXED_BACKREF |
COMPRESS_LZO |
BIG_METADATA |
EXTENDED_IREF |
SKINNY_METADATA |
unknown flag: 0x5b22400000000000 )
...
------
Or
------
superblock: bytenr=65536, device=/dev/mapper/x
---------------------------------------------------------
csum_type 35355 (INVALID)
csum_size 32
csum 0xf0dbeddd [match]
bytenr 65536
flags 0x1
( WRITTEN )
magic _BHRfS_M [match]
...
incompat_flags 0x176d200000000169
( MIXED_BACKREF |
COMPRESS_LZO |
BIG_METADATA |
EXTENDED_IREF |
SKINNY_METADATA |
unknown flag: 0x176d200000000000 )
------
Obviously, csum_type and incompat_flags get some garbage, but its csum
still matches, which means kernel calculates the csum based on corrupted
super block memory.
And after manually fixing these values, the filesystem is completely
healthy without any problem exposed by btrfs check.
Although the cause is still unknown, at least detect it and prevent further
corruption.
Both reports have same symptoms, there's an overwrite on offset 192 of
the superblock, by 4 bytes. The superblock structure is not allocated or
freed and stays in the memory for the whole filesystem lifetime, so it's
not a use-after-free kind of error on someone else's leaked page.
As a vague point for the problable cause is mentioning of other system
freezing related to graphic card drivers.
Reported-by: Ken Swenson <flat@imo.uto.moe>
Reported-by: Ben Parsons <9parsonsb@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add brief analysis of the reports ]
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor btrfs_check_super_valid:
1) Rename it to btrfs_validate_mount_super()
Now it's more obvious when the function should be called.
2) Extract core check routine into validate_super()
Later write time check can reuse it, and if needed, we could also
use validate_super() to check each super block.
3) Add more comments about btrfs_validate_mount_super()
Mostly about what it doesn't check and when it should be called.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to validate_super ]
Signed-off-by: David Sterba <dsterba@suse.com>
Move btrfs_check_super_valid() before its single caller to avoid forward
declaration.
Though such code motion is not recommended as it pollutes git history,
in this case the following patches would need to add new forward
declarations for static functions that we want to avoid.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new member struct btrfs_raid_attr::bg_flag so that
btrfs_raid_array can maintain the bit map flag of the raid type, and
so we can drop btrfs_raid_group.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently fs_info::balance_running is 0 or 1 and does not use the
semantics of atomics. The pause and cancel check for 0, that can happen
only after __btrfs_balance exits for whatever reason.
Parallel calls to balance ioctl may enter btrfs_ioctl_balance multiple
times but will block on the balance_mutex that protects the
fs_info::flags bit.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Mutual exclusion of device add/rm and balance was done by the volume
mutex up to version 3.7. The commit 5ac00addc7 ("Btrfs: disallow
mutually exclusive admin operations from user mode") added a bit that
essentially tracked the same information.
The status bit has an advantage over a mutex that it can be set without
restrictions of function context, so it started to be used in the
mount-time resuming of balance or device replace.
But we don't really need to track the same information in two ways.
1) After the previous cleanups, the main ioctl handlers for
add/del/resize copy the EXCL_OP bit next to the volume mutex, here
it's clearly safe.
2) Resuming balance during mount or after rw remount will set only the
EXCL_OP bit and the volume_mutex is held in the kernel thread that
calls btrfs_balance.
3) Resuming device replace during mount or after rw remount is done
after balance and is excluded by the EXCL_OP bit. It does not take
the volume_mutex at all and completely relies on the EXCL_OP bit.
4) The resuming of balance and dev-replace cannot hapen at the same time
as the ioctls cannot be started in parallel. Nevertheless, a crafted
image could trigger that and a warning is printed.
5) Balance is normally excluded by EXCL_OP and also uses own mutex to
protect against concurrent access to its status data. There's some
trickery to maintain the right lock nesting in case we need to
reexamine the status in btrfs_ioctl_balance. The volume_mutex is
removed and the unlock/lock sequence is left in place as we might
expect other waiters to proceed.
6) Similar to 5, the unlock/lock sequence is kept in
btrfs_cancel_balance to allow waiters to continue.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a transaction is aborted btrfs_cleanup_transaction is called to
cleanup all the various in-flight bits and pieces which migth be
active. One of those is delalloc inodes - inodes which have dirty
pages which haven't been persisted yet. Currently the process of
freeing such delalloc inodes in exceptional circumstances such as
transaction abort boiled down to calling btrfs_invalidate_inodes whose
sole job is to invalidate the dentries for all inodes related to a
root. This is in fact wrong and insufficient since such delalloc inodes
will likely have pending pages or ordered-extents and will be linked to
the sb->s_inode_list. This means that unmounting a btrfs instance with
an aborted transaction could potentially lead inodes/their pages
visible to the system long after their superblock has been freed. This
in turn leads to a "use-after-free" situation once page shrink is
triggered. This situation could be simulated by running generic/019
which would cause such inodes to be left hanging, followed by
generic/176 which causes memory pressure and page eviction which lead
to touching the freed super block instance. This situation is
additionally detected by the unmount code of VFS with the following
message:
"VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..."
Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
in free_fs_root for the same reason.
This patch aims to rectify the sitaution by doing the following:
1. Change btrfs_destroy_delalloc_inodes so that it calls
invalidate_inode_pages2 for every inode on the delalloc list, this
ensures that all the pages of the inode are released. This function
boils down to calling btrfs_releasepage. During test I observed cases
where inodes on the delalloc list were having an i_count of 0, so this
necessitates using igrab to be sure we are working on a non-freed inode.
2. Since calling btrfs_releasepage might queue delayed iputs move the
call out to btrfs_cleanup_transaction in btrfs_error_commit_super before
calling run_delayed_iputs for the last time. This is necessary to ensure
that delayed iputs are run.
Note: this patch is tagged for 4.14 stable but the fix applies to older
versions too but needs to be backported manually due to conflicts.
CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions
CC: stable@vger.kernel.org # 4.14.x
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment to igrab ]
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike previous method that tries to commit transaction inside
qgroup_reserve(), this time we will try to commit transaction using
fs_info->transaction_kthread to avoid nested transaction and no need to
worry about locking context.
Since it's an asynchronous function call and we won't wait for
transaction commit, unlike previous method, we must call it before we
hit the qgroup limit.
So this patch will use the ratio and size of qgroup meta_pertrans
reservation as indicator to check if we should trigger a transaction
commit. (meta_prealloc won't be cleaned in transaction committ, it's
useless anyway)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When looping btrfs/074 with many cpus (>= 8), it's possible to trigger
kernel warning due to first key verification:
[ 4239.523446] WARNING: CPU: 5 PID: 2381 at fs/btrfs/disk-io.c:460 btree_read_extent_buffer_pages+0x1ad/0x210
[ 4239.523830] Modules linked in:
[ 4239.524630] RIP: 0010:btree_read_extent_buffer_pages+0x1ad/0x210
[ 4239.527101] Call Trace:
[ 4239.527251] read_tree_block+0x42/0x70
[ 4239.527434] read_node_slot+0xd2/0x110
[ 4239.527632] push_leaf_right+0xad/0x1b0
[ 4239.527809] split_leaf+0x4ea/0x700
[ 4239.527988] ? leaf_space_used+0xbc/0xe0
[ 4239.528192] ? btrfs_set_lock_blocking_rw+0x99/0xb0
[ 4239.528416] btrfs_search_slot+0x8cc/0xa40
[ 4239.528605] btrfs_insert_empty_items+0x71/0xc0
[ 4239.528798] __btrfs_run_delayed_refs+0xa98/0x1680
[ 4239.529013] btrfs_run_delayed_refs+0x10b/0x1b0
[ 4239.529205] btrfs_commit_transaction+0x33/0xaf0
[ 4239.529445] ? start_transaction+0xa8/0x4f0
[ 4239.529630] btrfs_alloc_data_chunk_ondemand+0x1b0/0x4e0
[ 4239.529833] btrfs_check_data_free_space+0x54/0xa0
[ 4239.530045] btrfs_delalloc_reserve_space+0x25/0x70
[ 4239.531907] btrfs_direct_IO+0x233/0x3d0
[ 4239.532098] generic_file_direct_write+0xcb/0x170
[ 4239.532296] btrfs_file_write_iter+0x2bb/0x5f4
[ 4239.532491] aio_write+0xe2/0x180
[ 4239.532669] ? lock_acquire+0xac/0x1e0
[ 4239.532839] ? __might_fault+0x3e/0x90
[ 4239.533032] do_io_submit+0x594/0x860
[ 4239.533223] ? do_io_submit+0x594/0x860
[ 4239.533398] SyS_io_submit+0x10/0x20
[ 4239.533560] ? SyS_io_submit+0x10/0x20
[ 4239.533729] do_syscall_64+0x75/0x1d0
[ 4239.533979] entry_SYSCALL_64_after_hwframe+0x42/0xb7
[ 4239.534182] RIP: 0033:0x7f8519741697
The problem here is, at btree_read_extent_buffer_pages() we don't have
acquired read/write lock on that extent buffer, only basic info like
level/bytenr is reliable.
So race condition leads to such false alert.
However in current call site, it's impossible to acquire proper lock
without race window.
To fix the problem, we only verify first key for committed tree blocks
(whose generation is no larger than fs_info->last_trans_committed), so
the content of such tree blocks will not change and there is no need to
get read/write lock.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Fixes: 581c176041 ("btrfs: Validate child tree block's level and first key")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently if some fatal errors occur, like all IO get -EIO, resources
would be cleaned up when
a) transaction is being committed or
b) BTRFS_FS_STATE_ERROR is set
However, in some rare cases, resources may be left alone after transaction
gets aborted and umount may run into some ASSERT(), e.g.
ASSERT(list_empty(&block_group->dirty_list));
For case a), in btrfs_commit_transaciton(), there're several places at the
beginning where we just call btrfs_end_transaction() without cleaning up
resources. For case b), it is possible that the trans handle doesn't have
any dirty stuff, then only trans hanlde is marked as aborted while
BTRFS_FS_STATE_ERROR is not set, so resources remain in memory.
This makes btrfs also check BTRFS_FS_STATE_TRANS_ABORTED to make sure that
all resources won't stay in memory after umount.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When mount fails to read trees like fs tree, checksum tree, extent
tree, etc, there is not enough information about where went wrong.
With this, messages like
"BTRFS warning (device sdf): failed to read root (objectid=7): -5"
would help us a bit.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several reports about node pointer points to incorrect child
tree blocks, which could have even wrong owner and level but still with
valid generation and checksum.
Although btrfs check could handle it and print error message like:
leaf parent key incorrect 60670574592
Kernel doesn't have enough check on this type of corruption correctly.
At least add such check to read_tree_block() and btrfs_read_buffer(),
where we need two new parameters @level and @first_key to verify the
child tree block.
The new @level check is mandatory and all call sites are already
modified to extract expected level from its call chain.
While @first_key is optional, the following call sites are skipping such
check:
1) Root node/leaf
As ROOT_ITEM doesn't contain the first key, skip @first_key check.
2) Direct backref
Only parent bytenr and level is known and we need to resolve the key
all by ourselves, skip @first_key check.
Another note of this verification is, it needs extra info from nodeptr
or ROOT_ITEM, so it can't fit into current tree-checker framework, which
is limited to node/leaf boundary.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For quota disabled->enable case, it's possible that at reservation time
quota was not enabled so no bytes were really reserved, while at release
time, quota was enabled so we will try to release some bytes we didn't
really own.
Such situation can cause metadata reserveation underflow, for both types,
also less possible for per-trans type since quota enable will commit
transaction.
To address this, record qgroup meta reserved bytes into
root::qgroup_meta_rsv_pertrans and ::prealloc.
So at releasing time we won't free any bytes we didn't reserve.
For DATA, it's already handled by io_tree, so nothing needs to be done
there.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since qgroup has seperate metadata reservation types now, we can
completely get rid of the old root->qgroup_meta_rsv, which mostly acts
as current META_PERTRANS reservation type.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Any time the first block group of a new type is created, we add a new
kobject to sysfs to hold the attributes for that type. Kobject-internal
allocations always use GFP_KERNEL, making them prone to fs-reclaim races.
While it appears as if this can occur any time a block group is created,
the only times the first block group of a new type can be created in
memory is at mount and when we create the first new block group during
raid conversion.
This patch adds a new list to track pending kobject additions and then
handles them after we do chunk relocation. Between relocating the
target chunk (or forcing allocation of a new chunk in the case of data)
and removing the old chunk, we're in a safe place for fs-reclaim to
occur. We're holding the volume mutex, which is already held across
page faults, and the delete_unused_bgs_mutex, which will only stall
the cleaner thread.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduced by 5cdc7ad337 ("btrfs: Replace fs_info->workers with
btrfs_workqueue.") but obsoleted by 2a4581983f ("btrfs: factor
btrfs_init_workqueues() out of open_ctree()").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The kernel would like to have all stack VLA usage removed[1].
Unfortunately using an integer constant variable as the size of an
array is still considered a VLA. Instead let's use directly sizeof(var)
which removes the VLA usage. Use the occasion to remove csum_size
altogether and use sizeof() also for the size passed to memcmp
[1]: https://lkml.org/lkml/2018/3/7/621
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The callbacks make use of different parameters that are passed to the
other type unnecessarily. This patch adds separate types for each and
the unused parameters will be removed.
The type extent_submit_bio_hook_t keeps all parameters and can be used
where the start/done types are not appropriate.
Signed-off-by: David Sterba <dsterba@suse.com>
This function btrfs_close_extra_devices() is about freeing
extra devids which once it may have belonged to this filesystem.
So rename it and add the comment. The _devid suffix is
appropriate as this function won't handle devices which are
outside of the filesytem being mounted.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The __cold functions are placed to a special section, as they're
expected to be called rarely. This could help i-cache prefetches or help
compiler to decide which branches are more/less likely to be taken
without any other annotations needed.
Though we can't add more __exit annotations, it's still possible to add
__cold (that's also added with __exit). That way the following function
categories are tagged:
- printf wrappers, error messages
- exit helpers
Signed-off-by: David Sterba <dsterba@suse.com>
The custom crc32 init code was introduced in
14a958e678 ("Btrfs: fix btrfs boot when compiled as built-in") to
enable using btrfs as a built-in. However, later as pointed out by
60efa5eb2e ("Btrfs: use late_initcall instead of module_init") this
wasn't enough and finally btrfs was switched to late_initcall which
comes after the generic crc32c implementation is initiliased. The
latter commit superseeded the former. Now that we don't have to
maintain our own code let's just remove it and switch to using the
generic implementation.
Despite touching a lot of files the patch is really simple. Here is the gist of
the changes:
1. Select LIBCRC32C rather than the low-level modules.
2. s/btrfs_crc32c/crc32c/g
3. replace hash.h with linux/crc32c.h
4. Move the btrfs namehash funcs to ctree.h and change the tree accordingly.
I've tested this with btrfs being both a module and a built-in and xfstest
doesn't complain.
Does seem to fix the longstanding problem of not automatically selectiong
the crc32c module when btrfs is used. Possibly there is a workaround in
dracut.
The modinfo confirms that now all the module dependencies are there:
before:
depends: zstd_compress,zstd_decompress,raid6_pq,xor,zlib_deflate
after:
depends: libcrc32c,zstd_compress,zstd_decompress,raid6_pq,xor,zlib_deflate
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add more info to changelog from mails ]
Signed-off-by: David Sterba <dsterba@suse.com>
When inspecting the error message with real corruption, the "root=%llu"
always shows "1" (root tree), instead of the correct owner.
The problem is that we are getting @root from page->mapping->host, which
points the same btree inode, so we will always get the same root.
This makes the root owner output meaningless, and harder to port
tree-checker to btrfs-progs.
So get rid of the false and meaningless @root parameter and replace it
with @fs_info.
To get the owner, we can only rely on btrfs_header_owner() now.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of manually fiddling with the state of the task
(RUNNING->INTERRUPTIBLE->RUNNING) again just use schedule_timeout_interruptible
which adjusts the task state as needed. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit [1] removed the need to use btrfs_async_submit_limit(), so
delete it.
[1]
commit 736cd52e0c
Btrfs: remove nr_async_submits and async_submit_draining
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The reason why io_bgs can be modified without holding any lock is
non-obvious. Document it and reference that documentation from the
respective call sites.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
list_first_entry is essentially a wrapper over cotnainer_of. The latter
can never return null even if it's working on inconsistent list since it
will either crash or return some offset in the wrong struct.
Additionally, for the dirty_bgs list the iteration is done under
dirty_bgs_lock which ensures consistency of the list.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mount option thread_pool is always unsigned. Manage it that way all
around.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Presently, failing a primary super block write but succeeding in at
least one super block write in general will appear to users as if
nothing important went wrong. However, upon unmounting and re-mounting,
the file system will be in a rolled back state. This was discovered
with a BCC program that uses bpf_override_return() to fail super block
writes.
This patch outputs an error clarifying that the primary super block
write has failed, so users can expect potentially erroneous behaviour.
It also forces wait_dev_supers() to return an error to its caller if
the primary super block write fails.
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull networking updates from David Miller:
1) Significantly shrink the core networking routing structures. Result
of http://vger.kernel.org/~davem/seoul2017_netdev_keynote.pdf
2) Add netdevsim driver for testing various offloads, from Jakub
Kicinski.
3) Support cross-chip FDB operations in DSA, from Vivien Didelot.
4) Add a 2nd listener hash table for TCP, similar to what was done for
UDP. From Martin KaFai Lau.
5) Add eBPF based queue selection to tun, from Jason Wang.
6) Lockless qdisc support, from John Fastabend.
7) SCTP stream interleave support, from Xin Long.
8) Smoother TCP receive autotuning, from Eric Dumazet.
9) Lots of erspan tunneling enhancements, from William Tu.
10) Add true function call support to BPF, from Alexei Starovoitov.
11) Add explicit support for GRO HW offloading, from Michael Chan.
12) Support extack generation in more netlink subsystems. From Alexander
Aring, Quentin Monnet, and Jakub Kicinski.
13) Add 1000BaseX, flow control, and EEE support to mvneta driver. From
Russell King.
14) Add flow table abstraction to netfilter, from Pablo Neira Ayuso.
15) Many improvements and simplifications to the NFP driver bpf JIT,
from Jakub Kicinski.
16) Support for ipv6 non-equal cost multipath routing, from Ido
Schimmel.
17) Add resource abstration to devlink, from Arkadi Sharshevsky.
18) Packet scheduler classifier shared filter block support, from Jiri
Pirko.
19) Avoid locking in act_csum, from Davide Caratti.
20) devinet_ioctl() simplifications from Al viro.
21) More TCP bpf improvements from Lawrence Brakmo.
22) Add support for onlink ipv6 route flag, similar to ipv4, from David
Ahern.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1925 commits)
tls: Add support for encryption using async offload accelerator
ip6mr: fix stale iterator
net/sched: kconfig: Remove blank help texts
openvswitch: meter: Use 64-bit arithmetic instead of 32-bit
tcp_nv: fix potential integer overflow in tcpnv_acked
r8169: fix RTL8168EP take too long to complete driver initialization.
qmi_wwan: Add support for Quectel EP06
rtnetlink: enable IFLA_IF_NETNSID for RTM_NEWLINK
ipmr: Fix ptrdiff_t print formatting
ibmvnic: Wait for device response when changing MAC
qlcnic: fix deadlock bug
tcp: release sk_frag.page in tcp_disconnect
ipv4: Get the address of interface correctly.
net_sched: gen_estimator: fix lockdep splat
net: macb: Handle HRESP error
net/mlx5e: IPoIB, Fix copy-paste bug in flow steering refactoring
ipv6: addrconf: break critical section in addrconf_verify_rtnl()
ipv6: change route cache aging logic
i40e/i40evf: Update DESC_NEEDED value to reflect larger value
bnxt_en: cleanup DIM work on device shutdown
...
It appears from the original commit [1] that there isn't any design
specific reason not to fail the mount instead of just warning. This
patch will change it to fail.
[1]
commit 319e4d0661
btrfs: Enhance super validation check
Fixes: 319e4d0661 ("btrfs: Enhance super validation check")
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs-progs uses super flag bit BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34).
So just define that in kernel so that we know its been used.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update btrfs_check_rw_degradable() to check against the given device if
its lost.
We can use this function to know if the volume is going to be in
degraded mode OR failed state, when the given device fails. Which is
needed when we are handling the device failed state.
A preparatory patch does not affect the flow as such.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
[ enhance comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass either GFP_NOFS or GFP_KERNEL now, so we can sink the
parameter to the function, though we lose some of the slightly better
semantics of GFP_KERNEL in some places, it's worth cleaning up the
callchains.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::is_tgtdev_for_dev_replace.
Instead of that declare btrfs_device::dev_state
BTRFS_DEV_STATE_FLUSH_SENT and use the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::missing. Instead of that
declare btrfs_device::dev_state BTRFS_DEV_STATE_MISSING and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by : Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::in_fs_metadata. Instead of
that declare device state BTRFS_DEV_STATE_IN_FS_METADATA and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::writeable. Instead of that
declare device state BTRFS_DEV_STATE_WRITEABLE and use the
bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
The maximum size of a checksum buffer is known, BTRFS_CSUM_SIZE, and we
don't have to allocate it dynamically. This code path is not used at all
as we have only the crc32c and use an on-stack buffer already.
Signed-off-by: David Sterba <dsterba@suse.com>
We take the fs_devices::device_list_mutex mutex in write_all_supers
which will prevent any add/del changes to the device list. Therefore we
don't need to use the RCU variant list_for_each_entry_rcu in any of the
called functions.
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_create_tree() will unconditionally generate UUID for any root.
So for quota tree and data reloc tree created by kernel, they will have
unique UUIDs.
However UUID in root item is only referred by UUID tree, which only
records UUID for fs trees. This makes unique UUIDs for quota/data reloc
tree meaningless.
Leave the UUID as zero for non-fs tree, making btrfs-debug-tree output
less confusing.
Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add injectable error types for each error-injectable function.
One motivation of error injection test is to find software flaws,
mistakes or mis-handlings of expectable errors. If we find such
flaws by the test, that is a program bug, so we need to fix it.
But if the tester miss input the error (e.g. just return success
code without processing anything), it causes unexpected behavior
even if the caller is correctly programmed to handle any errors.
That is not what we want to test by error injection.
To clarify what type of errors the caller must expect for each
injectable function, this introduces injectable error types:
- EI_ETYPE_NULL : means the function will return NULL if it
fails. No ERR_PTR, just a NULL.
- EI_ETYPE_ERRNO : means the function will return -ERRNO
if it fails.
- EI_ETYPE_ERRNO_NULL : means the function will return -ERRNO
(ERR_PTR) or NULL.
ALLOW_ERROR_INJECTION() macro is expanded to get one of
NULL, ERRNO, ERRNO_NULL to record the error type for
each function. e.g.
ALLOW_ERROR_INJECTION(open_ctree, ERRNO)
This error types are shown in debugfs as below.
====
/ # cat /sys/kernel/debug/error_injection/list
open_ctree [btrfs] ERRNO
io_ctl_init [btrfs] ERRNO
====
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since error-injection framework is not limited to be used
by kprobes, nor bpf. Other kernel subsystems can use it
freely for checking safeness of error-injection, e.g.
livepatch, ftrace etc.
So this separate error-injection framework from kprobes.
Some differences has been made:
- "kprobe" word is removed from any APIs/structures.
- BPF_ALLOW_ERROR_INJECTION() is renamed to
ALLOW_ERROR_INJECTION() since it is not limited for BPF too.
- CONFIG_FUNCTION_ERROR_INJECTION is the config item of this
feature. It is automatically enabled if the arch supports
error injection feature for kprobe or ftrace etc.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-18
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Allow arbitrary function calls from one BPF function to another BPF function.
As of today when writing BPF programs, __always_inline had to be used in
the BPF C programs for all functions, unnecessarily causing LLVM to inflate
code size. Handle this more naturally with support for BPF to BPF calls
such that this __always_inline restriction can be overcome. As a result,
it allows for better optimized code and finally enables to introduce core
BPF libraries in the future that can be reused out of different projects.
x86 and arm64 JIT support was added as well, from Alexei.
2) Add infrastructure for tagging functions as error injectable and allow for
BPF to return arbitrary error values when BPF is attached via kprobes on
those. This way of injecting errors generically eases testing and debugging
without having to recompile or restart the kernel. Tags for opting-in for
this facility are added with BPF_ALLOW_ERROR_INJECTION(), from Josef.
3) For BPF offload via nfp JIT, add support for bpf_xdp_adjust_head() helper
call for XDP programs. First part of this work adds handling of BPF
capabilities included in the firmware, and the later patches add support
to the nfp verifier part and JIT as well as some small optimizations,
from Jakub.
4) The bpftool now also gets support for basic cgroup BPF operations such
as attaching, detaching and listing current BPF programs. As a requirement
for the attach part, bpftool can now also load object files through
'bpftool prog load'. This reuses libbpf which we have in the kernel tree
as well. bpftool-cgroup man page is added along with it, from Roman.
5) Back then commit e87c6bc385 ("bpf: permit multiple bpf attachments for
a single perf event") added support for attaching multiple BPF programs
to a single perf event. Given they are configured through perf's ioctl()
interface, the interface has been extended with a PERF_EVENT_IOC_QUERY_BPF
command in this work in order to return an array of one or multiple BPF
prog ids that are currently attached, from Yonghong.
6) Various minor fixes and cleanups to the bpftool's Makefile as well
as a new 'uninstall' and 'doc-uninstall' target for removing bpftool
itself or prior installed documentation related to it, from Quentin.
7) Add CONFIG_CGROUP_BPF=y to the BPF kernel selftest config file which is
required for the test_dev_cgroup test case to run, from Naresh.
8) Fix reporting of XDP prog_flags for nfp driver, from Jakub.
9) Fix libbpf's exit code from the Makefile when libelf was not found in
the system, also from Jakub.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows us to do error injection with BPF for open_ctree.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
I was seeing disk flushes still happening when I mounted a Btrfs
filesystem with nobarrier for testing. This is because we use FUA to
write out the first super block, and on devices without FUA support, the
block layer translates FUA to a flush. Even on devices supporting true
FUA, using FUA when we asked for no barriers is surprising.
Fixes: 387125fc72 ("Btrfs: fix barrier flushes")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If we run btrfs with CONFIG_BTRFS_FS_RUN_SANITY_TESTS=y, it will
instantly cause kernel panic like:
------
...
assertion failed: 0, file: fs/btrfs/disk-io.c, line: 3853
...
Call Trace:
btrfs_mark_buffer_dirty+0x187/0x1f0 [btrfs]
setup_items_for_insert+0x385/0x650 [btrfs]
__btrfs_drop_extents+0x129a/0x1870 [btrfs]
...
-----
[Cause]
Btrfs will call btrfs_check_leaf() in btrfs_mark_buffer_dirty() to check
if the leaf is valid with CONFIG_BTRFS_FS_RUN_SANITY_TESTS=y.
However quite some btrfs_mark_buffer_dirty() callers(*) don't really
initialize its item data but only initialize its item pointers, leaving
item data uninitialized.
This makes tree-checker catch uninitialized data as error, causing
such panic.
*: These callers include but not limited to
setup_items_for_insert()
btrfs_split_item()
btrfs_expand_item()
[Fix]
Add a new parameter @check_item_data to btrfs_check_leaf().
With @check_item_data set to false, item data check will be skipped and
fallback to old btrfs_check_leaf() behavior.
So we can still get early warning if we screw up item pointers, and
avoid false panic.
Cc: Filipe Manana <fdmanana@gmail.com>
Reported-by: Lakshmipathi.G <lakshmipathi.g@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we get a significant amount of delayed refs for a single block (think
modifying multiple snapshots) we can end up spending an ungodly amount
of time looping through all of the entries trying to see if they can be
merged. This is because we only add them to a list, so we have O(2n)
for every ref head. This doesn't make any sense as we likely have refs
for different roots, and so they cannot be merged. Tracking in a tree
will allow us to break as soon as we hit an entry that doesn't match,
making our worst case O(n).
With this we can also merge entries more easily. Before we had to hope
that matching refs were on the ends of our list, but with the tree we
can search down to exact matches and merge them at insert time.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The way we handle delalloc metadata reservations has gotten
progressively more complicated over the years. There is so much cruft
and weirdness around keeping the reserved count and outstanding counters
consistent and handling the error cases that it's impossible to
understand.
Fix this by making the delalloc block rsv per-inode. This way we can
calculate the actual size of the outstanding metadata reservations every
time we make a change, and then reserve the delta based on that amount.
This greatly simplifies the code everywhere, and makes the error
handling in btrfs_delalloc_reserve_metadata far less terrifying.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs' code uses a mix of opencoded sizes and defines from sizes.h.
Let's unifiy the code base to always use the symbolic constants. No functional
changes
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is just excessive information in the ref_head, and makes the code
complicated. It is a relic from when we had the heads and the refs in
the same tree, which is no longer the case. With this removal I've
cleaned up a bunch of the cruft around this old assumption as well.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were having corruption issues that were tied back to problems with
the extent tree. In order to track them down I built this tool to try
and find the culprit, which was pretty successful. If you compile with
this tool on it will live verify every ref update that the fs makes and
make sure it is consistent and valid. I've run this through with
xfstests and haven't gotten any false positives. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update error messages, add fixup from Dan Carpenter to handle errors
of read_tree_block ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have the combo of flushing twice, which can make sure IO
have started since the second flush will wait for page lock which
won't be unlocked unless setting page writeback and queuing ordered
extents, we don't need %async_submit_draining, %async_delalloc_pages
and %nr_async_submits to tell whether the IO has actually started.
Moreover, all the flushers in use are followed by functions that wait
for ordered extents to complete, so %nr_async_submits, which tracks
whether bio's async submit has made progress, doesn't really make
sense.
However, %async_delalloc_pages is still required by shrink_delalloc()
as that function doesn't flush twice in the normal case (just issues a
writeback with WB_REASON_FS_FREE_SPACE).
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was intended to congest higher layers to not send bios, but as
1) the congested bit has been taken by writeback
Async bios come from buffered writes and DIO writes.
For DIO writes, we want to submit them ASAP, while for buffered writes,
writeback uses balance_dirty_pages() to throttle how much dirty pages we
can have.
2) and no one is waiting for %nr_async_bios down to zero,
Historically, it was introduced along with changes which let
checksumming workload spread accross different cpus. And at that time,
pdflush was used instead of per-bdi flushing, perhaps pdflush did not
have the necessary information for writeback to do throttling.
We can safely remove them now.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
[ additional explanation from mails, removed unused variable 'limit' ]
Signed-off-by: David Sterba <dsterba@suse.com>
It's no doubt the comprehensive tree block checker will become larger,
so moving them into their own files is quite reasonable.
Signed-off-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
[ wording adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_CSUM checker is a relatively easy one, only needs to check:
1) Objectid
Fixed to BTRFS_EXTENT_CSUM_OBJECTID
2) Key offset alignment
Must be aligned to sectorsize
3) Item size alignedment
Must be aligned to csum size
Signed-off-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>