Upon file deletion, zero out all fields in ext4_dir_entry2 besides rec_len.
In case sensitive data is stored in filenames, this ensures no potentially
sensitive data is left in the directory entry upon deletion. Also, wipe
these fields upon moving a directory entry during the conversion to an
htree and when splitting htree nodes.
The data wiped may still exist in the journal, but there are future
commits planned to address this.
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Link: https://lore.kernel.org/r/20210422180834.2242353-1-leah.rumancik@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Eric has noticed that after pagecache read rework, generic/418 is
occasionally failing for ext4 when blocksize < pagesize. In fact, the
pagecache rework just made hard to hit race in ext4 more likely. The
problem is that since ext4 conversion of direct IO writes to iomap
framework (commit 378f32bab3), we update inode size after direct IO
write only after invalidating page cache. Thus if buffered read sneaks
at unfortunate moment like:
CPU1 - write at offset 1k CPU2 - read from offset 0
iomap_dio_rw(..., IOMAP_DIO_FORCE_WAIT);
ext4_readpage();
ext4_handle_inode_extension()
the read will zero out tail of the page as it still sees smaller inode
size and thus page cache becomes inconsistent with on-disk contents with
all the consequences.
Fix the problem by moving inode size update into end_io handler which
gets called before the page cache is invalidated.
Reported-and-tested-by: Eric Whitney <enwlinux@gmail.com>
Fixes: 378f32bab3 ("ext4: introduce direct I/O write using iomap infrastructure")
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20210415155417.4734-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The sb_delete security hook is called when shutting down a superblock,
which may be useful to release kernel objects tied to the superblock's
lifetime (e.g. inodes).
This new hook is needed by Landlock to release (ephemerally) tagged
struct inodes. This comes from the unprivileged nature of Landlock
described in the next commit.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210422154123.13086-7-mic@digikod.net
Signed-off-by: James Morris <jamorris@linux.microsoft.com>
CONFIG_CRYPTO_SHA256 denotes the generic C implementation of the SHA-256
shash algorithm, which is selected as the default crypto shash provider
for fsverity. However, fsverity has no strict link time dependency, and
the same shash could be exposed by an optimized implementation, and arm64
has a number of those (scalar, NEON-based and one based on special crypto
instructions). In such cases, it makes little sense to require that the
generic C implementation is incorporated as well, given that it will never
be called.
To address this, relax the 'select' clause to 'imply' so that the generic
driver can be omitted from the build if desired.
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Even if FS encryption has strict functional dependencies on various
crypto algorithms and chaining modes. those dependencies could potentially
be satisified by other implementations than the generic ones, and no link
time dependency exists on the 'depends on' claused defined by
CONFIG_FS_ENCRYPTION_ALGS.
So let's relax these clauses to 'imply', so that the default behavior
is still to pull in those generic algorithms, but in a way that permits
them to be disabled again in Kconfig.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As we did for other cases, in fix_curseg_write_pointer(), let's
use wrapped f2fs_allocate_new_section() instead of native
allocate_segment_by_default(), by this way, it fixes to cover
segment allocation with curseg_lock and sentry_lock.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
In preparation to enable -Wimplicit-fallthrough for Clang, fix multiple
warnings by explicitly adding a couple of break statements instead of
just letting the code fall through to the next case.
Link: https://github.com/KSPP/linux/issues/115
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
In preparation to enable -Wimplicit-fallthrough for Clang, fix multiple
warnings by explicitly adding multiple goto statements instead of just
letting the code fall through to the next case.
Link: https://github.com/KSPP/linux/issues/115
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
REQ_F_INFLIGHT deaccounting doesn't do any spinlocking or resource
freeing anymore, so it's safe to move it into the normal cleanup flow,
i.e. into io_clean_op(), so making it cleaner.
Also move io_req_needs_clean() to be first in io_dismantle_req() so it
doesn't reload req->flags.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/90653a3a5de4107e3a00536fa4c2ea5f2c38a4ac.1618916549.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a file gets deleted on a zoned file system, the space freed is not
returned back into the block group's free space, but is migrated to
zone_unusable.
As this zone_unusable space is behind the current write pointer it is not
possible to use it for new allocations. In the current implementation a
zone is reset once all of the block group's space is accounted as zone
unusable.
This behaviour can lead to premature ENOSPC errors on a busy file system.
Instead of only reclaiming the zone once it is completely unusable,
kick off a reclaim job once the amount of unusable bytes exceeds a user
configurable threshold between 51% and 100%. It can be set per mounted
filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75%
by default.
Similar to reclaiming unused block groups, these dirty block groups are
added to a to_reclaim list and then on a transaction commit, the reclaim
process is triggered but after we deleted unused block groups, which will
free space for the relocation process.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As a preparation for extending the block group deletion use case, rename
the unused_bgs_mutex to reclaim_bgs_lock.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When relocating a block group the freed up space is not discarded in one
big block, but each extent is discarded on its own with -odisard=sync.
For a zoned filesystem we need to discard the whole block group at once,
so btrfs_discard_extent() will translate the discard into a
REQ_OP_ZONE_RESET operation, which then resets the device's zone.
Failure to reset the zone is not fatal error.
Discussion about the approach and regarding transaction blocking:
https://lore.kernel.org/linux-btrfs/CAL3q7H4SjS_d5rBepfTMhU8Th3bJzdmyYd0g4Z60yUgC_rC_ZA@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs uses internally mapped u64 address space for all its metadata.
Due to the page cache limit on 32bit systems, btrfs can't access
metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See
how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K
page size while 256T for 64K page size.
Users can have a filesystem which doesn't have metadata beyond the
boundary at mount time, but later balance can cause it to create
metadata beyond the boundary.
And modification to MM layer is unrealistic just for such minor use
case. We can't do more than to prevent mounting such filesystem or warn
early when the numbers are still within the limits.
To address such problem, this patch will introduce the following checks:
- Mount time rejection
This will reject any fs which has metadata chunk at or beyond the
boundary.
- Mount time early warning
If there is any metadata chunk beyond 5/8th of the boundary, we do an
early warning and hope the end user will see it.
- Runtime extent buffer rejection
If we're going to allocate an extent buffer at or beyond the boundary,
reject such request with EOVERFLOW.
This is definitely going to cause problems like transaction abort, but
we have no better ways.
- Runtime extent buffer early warning
If an extent buffer beyond 5/8th of the max file size is allocated, do
an early warning.
Above error/warning message will only be printed once for each fs to
reduce dmesg flood.
If the mount is rejected, the filesystem will be mountable only on a
64bit host.
Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/
Reported-by: Erik Jensen <erikjensen@rkjnsn.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a device replace on a zoned filesystem, if we find a block
group with ->to_copy == 0, we jump to the label 'done', which will result
in later calling btrfs_unfreeze_block_group(), even though at this point
we never called btrfs_freeze_block_group().
Since at this point we have neither turned the block group to RO mode nor
made any progress, we don't need to jump to the label 'done'. So fix this
by jumping instead to the label 'skip' and dropping our reference on the
block group before the jump.
Fixes: 78ce9fc269 ("btrfs: zoned: mark block groups to copy for device-replace")
CC: stable@vger.kernel.org # 5.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit dbcc7d57bf ("btrfs: fix race when cloning extent buffer during
rewind of an old root"), fixed a race when we need to rewind the extent
buffer of an old root. It was caused by picking a new mod log operation
for the extent buffer while getting a cloned extent buffer with an outdated
number of items (off by -1), because we cloned the extent buffer without
locking it first.
However there is still another similar race, but in the opposite direction.
The cloned extent buffer has a number of items that does not match the
number of tree mod log operations that are going to be replayed. This is
because right after we got the last (most recent) tree mod log operation to
replay and before locking and cloning the extent buffer, another task adds
a new pointer to the extent buffer, which results in adding a new tree mod
log operation and incrementing the number of items in the extent buffer.
So after cloning we have mismatch between the number of items in the extent
buffer and the number of mod log operations we are going to apply to it.
This results in hitting a BUG_ON() that produces the following stack trace:
------------[ cut here ]------------
kernel BUG at fs/btrfs/tree-mod-log.c:675!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 3 PID: 4811 Comm: crawl_1215 Tainted: G W 5.12.0-7d1efdf501f8-misc-next+ #99
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001027090 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8880a8514600 RCX: ffffffffaa9e59b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8880a851462c
RBP: ffffc900010270e0 R08: 00000000000000c0 R09: ffffed1004333417
R10: ffff88802199a0b7 R11: ffffed1004333416 R12: 000000000000000e
R13: ffff888135af8748 R14: ffff88818766ff00 R15: ffff8880a851462c
FS: 00007f29acf62700(0000) GS:ffff8881f2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0e6013f718 CR3: 000000010d42e003 CR4: 0000000000170ee0
Call Trace:
btrfs_get_old_root+0x16a/0x5c0
? lock_downgrade+0x400/0x400
btrfs_search_old_slot+0x192/0x520
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x340/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? stack_trace_save+0x87/0xb0
? resolve_indirect_refs+0xfc0/0xfc0
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? lockdep_hardirqs_on_prepare+0x210/0x210
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? ___might_sleep+0x10f/0x1e0
? __kasan_kmalloc+0x9d/0xd0
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? trace_hardirqs_on+0x55/0x120
? ulist_free+0x1f/0x30
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? release_extent_buffer+0x225/0x280
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? _raw_spin_unlock+0x22/0x30
? release_extent_buffer+0x225/0x280
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x2038/0x4360
? __kasan_check_write+0x14/0x20
? mmput+0x3b/0x220
? btrfs_ioctl_get_supported_features+0x30/0x30
? __kasan_check_read+0x11/0x20
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __might_fault+0x64/0xd0
? __kasan_check_read+0x11/0x20
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x13/0x210
? _raw_spin_unlock_irqrestore+0x51/0x63
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __task_pid_nr_ns+0xd3/0x250
? __kasan_check_read+0x11/0x20
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f29ae85b427
Code: 00 00 90 48 8b (...)
RSP: 002b:00007f29acf5fcf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f29acf5ff40 RCX: 00007f29ae85b427
RDX: 00007f29acf5ff48 RSI: 00000000c038943b RDI: 0000000000000003
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007f29acf60120
R10: 00005640d5fc7b00 R11: 0000000000000246 R12: 0000000000000003
R13: 00007f29acf5ff48 R14: 00007f29acf5ff40 R15: 00007f29acf5fef8
Modules linked in:
---[ end trace 85e5fce078dfbe04 ]---
(gdb) l *(tree_mod_log_rewind+0x3b1)
0xffffffff819e5b21 is in tree_mod_log_rewind (fs/btrfs/tree-mod-log.c:675).
670 * the modification. As we're going backwards, we do the
671 * opposite of each operation here.
672 */
673 switch (tm->op) {
674 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
675 BUG_ON(tm->slot < n);
676 fallthrough;
677 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
678 case BTRFS_MOD_LOG_KEY_REMOVE:
679 btrfs_set_node_key(eb, &tm->key, tm->slot);
(gdb) quit
The following steps explain in more detail how it happens:
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1.
This is task A;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
3) At btrfs_tree_mod_log_insert_root() we create a tree mod log operation
of type BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, with a ->logical field
pointing to ebX->start. We only have one item in eb X, so we create
only one tree mod log operation, and store in the "tm_list" array;
4) Then, still at btrfs_tree_mod_log_insert_root(), we create a tree mod
log element of operation type BTRFS_MOD_LOG_ROOT_REPLACE, ->logical set
to ebY->start, ->old_root.logical set to ebX->start, ->old_root.level
set to the level of eb X and ->generation set to the generation of eb X;
5) Then btrfs_tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
"tm_list" as argument. After that, tree_mod_log_free_eb() calls
tree_mod_log_insert(). This inserts the mod log operation of type
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING from step 3 into the rbtree
with a sequence number of 2 (and fs_info->tree_mod_seq set to 2);
6) Then, after inserting the "tm_list" single element into the tree mod
log rbtree, the BTRFS_MOD_LOG_ROOT_REPLACE element is inserted, which
gets the sequence number 3 (and fs_info->tree_mod_seq set to 3);
7) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
8) Later some other task B allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
9) The tree mod log user task calls btrfs_search_old_slot(), which calls
btrfs_get_old_root(), and finally that calls tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
10) The first iteration of the while loop finds the tree mod log element
with sequence number 3, for the logical address of eb Y and of type
BTRFS_MOD_LOG_ROOT_REPLACE;
11) Because the operation type is BTRFS_MOD_LOG_ROOT_REPLACE, we don't
break out of the loop, and set root_logical to point to
tm->old_root.logical, which corresponds to the logical address of
eb X;
12) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and
corresponds to the old slot 0 of eb X (eb X had only 1 item in it
before being freed at step 7);
13) We then break out of the while loop and return the tree mod log
operation of type BTRFS_MOD_LOG_ROOT_REPLACE (eb Y), and not the one
for slot 0 of eb X, to btrfs_get_old_root();
14) At btrfs_get_old_root(), we process the BTRFS_MOD_LOG_ROOT_REPLACE
operation and set "logical" to the logical address of eb X, which was
the old root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
15) But before calling tree_mod_log_search(), task B locks eb X, adds a
key to eb X, which results in adding a tree mod log operation of type
BTRFS_MOD_LOG_KEY_ADD, with a sequence number of 4, to the tree mod
log, and increments the number of items in eb X from 0 to 1.
Now fs_info->tree_mod_seq has a value of 4;
16) Task A then calls tree_mod_log_search(), which returns the most recent
tree mod log operation for eb X, which is the one just added by task B
at the previous step, with a sequence number of 4, a type of
BTRFS_MOD_LOG_KEY_ADD and for slot 0;
17) Before task A locks and clones eb X, task A adds another key to eb X,
which results in adding a new BTRFS_MOD_LOG_KEY_ADD mod log operation,
with a sequence number of 5, for slot 1 of eb X, increments the
number of items in eb X from 1 to 2, and unlocks eb X.
Now fs_info->tree_mod_seq has a value of 5;
18) Task A then locks eb X and clones it. The clone has a value of 2 for
the number of items and the pointer "tm" points to the tree mod log
operation with sequence number 4, not the most recent one with a
sequence number of 5, so there is mismatch between the number of
mod log operations that are going to be applied to the cloned version
of eb X and the number of items in the clone;
19) Task A then calls tree_mod_log_rewind() with the clone of eb X, the
tree mod log operation with sequence number 4 and a type of
BTRFS_MOD_LOG_KEY_ADD, and time_seq == 1;
20) At tree_mod_log_rewind(), we set the local variable "n" with a value
of 2, which is the number of items in the clone of eb X.
Then in the first iteration of the while loop, we process the mod log
operation with sequence number 4, which is targeted at slot 0 and has
a type of BTRFS_MOD_LOG_KEY_ADD. This results in decrementing "n" from
2 to 1.
Then we pick the next tree mod log operation for eb X, which is the
tree mod log operation with a sequence number of 2, a type of
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and for slot 0, it is the one
added in step 5 to the tree mod log tree.
We go back to the top of the loop to process this mod log operation,
and because its slot is 0 and "n" has a value of 1, we hit the BUG_ON:
(...)
switch (tm->op) {
case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Fix this by checking for a more recent tree mod log operation after locking
and cloning the extent buffer of the old root node, and use it as the first
operation to apply to the cloned extent buffer when rewinding it.
Stable backport notes: due to moved code and renames, in =< 5.11 the
change should be applied to ctree.c:get_old_root.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210404040732.GZ32440@hungrycats.org/
Fixes: 834328a849 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A previous commit removed the need for this, but overlooked that we no
longer use it at all. Get rid of it.
Fixes: 685fe7feed ("io-wq: eliminate the need for a manager thread")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When creating a subvolume we allocate an extent buffer for its root node
after starting a transaction. We setup a root item for the subvolume that
points to that extent buffer and then attempt to insert the root item into
the root tree - however if that fails, due to ENOMEM for example, we do
not free the extent buffer previously allocated and we do not abort the
transaction (as at that point we did nothing that can not be undone).
This means that we effectively do not return the metadata extent back to
the free space cache/tree and we leave a delayed reference for it which
causes a metadata extent item to be added to the extent tree, in the next
transaction commit, without having backreferences. When this happens
'btrfs check' reports the following:
$ btrfs check /dev/sdi
Opening filesystem to check...
Checking filesystem on /dev/sdi
UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb
[1/7] checking root items
[2/7] checking extents
ref mismatch on [30425088 16384] extent item 1, found 0
backref 30425088 root 256 not referenced back 0x564a91c23d70
incorrect global backref count on 30425088 found 1 wanted 0
backpointer mismatch on [30425088 16384]
owner ref check failed [30425088 16384]
ERROR: errors found in extent allocation tree or chunk allocation
[3/7] checking free space cache
[4/7] checking fs roots
[5/7] checking only csums items (without verifying data)
[6/7] checking root refs
[7/7] checking quota groups skipped (not enabled on this FS)
found 212992 bytes used, error(s) found
total csum bytes: 0
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 124669
file data blocks allocated: 65536
referenced 65536
So fix this by freeing the metadata extent if btrfs_insert_root() returns
an error.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's OK to grant a read delegation to a client that holds a write,
as long as it's the only client holding the write.
We originally tried to do this in commit 94415b06eb ("nfsd4: a
client's own opens needn't prevent delegations"), which had to be
reverted in commit 6ee65a7730 ("Revert "nfsd4: a client's own
opens needn't prevent delegations"").
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
No change in behavior, I'm just moving some code around to avoid forward
references in a following patch.
(To do someday: figure out how to split up nfs4state.c. It's big and
disorganized.)
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
It's unusual but possible for multiple filehandles to point to the same
file. In that case, we may end up with multiple nfs4_files referencing
the same inode.
For delegation purposes it will turn out to be useful to flag those
cases.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The nfs4_file structure is per-filehandle, not per-inode, because the
spec requires open and other state to be per filehandle.
But it will turn out to be convenient for nfs4_files associated with the
same inode to be hashed to the same bucket, so let's hash on the inode
instead of the filehandle.
Filehandle aliasing is rare, so that shouldn't have much performance
impact.
(If you have a ton of exported filesystems, though, and all of them have
a root with inode number 2, could that get you an overlong hash chain?
Perhaps this (and the v4 open file cache) should be hashed on the inode
pointer instead.)
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[BUG]
When running btrfs/071 with inode_need_compress() removed from
compress_file_range(), we got the following crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:compress_file_range+0x476/0x7b0 [btrfs]
Call Trace:
? submit_compressed_extents+0x450/0x450 [btrfs]
async_cow_start+0x16/0x40 [btrfs]
btrfs_work_helper+0xf2/0x3e0 [btrfs]
process_one_work+0x278/0x5e0
worker_thread+0x55/0x400
? process_one_work+0x5e0/0x5e0
kthread+0x168/0x190
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x22/0x30
---[ end trace 65faf4eae941fa7d ]---
This is already after the patch "btrfs: inode: fix NULL pointer
dereference if inode doesn't need compression."
[CAUSE]
@pages is firstly created by kcalloc() in compress_file_extent():
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
Then passed to btrfs_compress_pages() to be utilized there:
ret = btrfs_compress_pages(...
pages,
&nr_pages,
...);
btrfs_compress_pages() will initialize each page as output, in
zlib_compress_pages() we have:
pages[nr_pages] = out_page;
nr_pages++;
Normally this is completely fine, but there is a special case which
is in btrfs_compress_pages() itself:
switch (type) {
default:
return -E2BIG;
}
In this case, we didn't modify @pages nor @out_pages, leaving them
untouched, then when we cleanup pages, the we can hit NULL pointer
dereference again:
if (pages) {
for (i = 0; i < nr_pages; i++) {
WARN_ON(pages[i]->mapping);
put_page(pages[i]);
}
...
}
Since pages[i] are all initialized to zero, and btrfs_compress_pages()
doesn't change them at all, accessing pages[i]->mapping would lead to
NULL pointer dereference.
This is not possible for current kernel, as we check
inode_need_compress() before doing pages allocation.
But if we're going to remove that inode_need_compress() in
compress_file_extent(), then it's going to be a problem.
[FIX]
When btrfs_compress_pages() hits its default case, modify @out_pages to
0 to prevent such problem from happening.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212331
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[ 736.982891] INFO: task iou-sqp-4294:4295 blocked for more than 122 seconds.
[ 736.982897] Call Trace:
[ 736.982901] schedule+0x68/0xe0
[ 736.982903] io_uring_cancel_sqpoll+0xdb/0x110
[ 736.982908] io_sqpoll_cancel_cb+0x24/0x30
[ 736.982911] io_run_task_work_head+0x28/0x50
[ 736.982913] io_sq_thread+0x4e3/0x720
We call io_uring_cancel_sqpoll() one by one for each ctx either in
sq_thread() itself or via task works, and it's intended to cancel all
requests of a specified context. However the function uses per-task
counters to track the number of inflight requests, so it counts more
requests than available via currect io_uring ctx and goes to sleep for
them to appear (e.g. from IRQ), that will never happen.
Cancel a bit more than before, i.e. all ctxs that share sqpoll
and continue to use shared counters. Don't forget that we should not
remove ctx from the list before running that task_work sqpoll-cancel,
otherwise the function wouldn't be able to find the context and will
hang.
Reported-by: Joakim Hassila <joj@mac.com>
Reported-by: Jens Axboe <axboe@kernel.dk>
Fixes: 37d1e2e364 ("io_uring: move SQPOLL thread io-wq forked worker")
Cc: stable@vger.kernel.org
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/1bded7e6c6b32e0bae25fce36be2868e46b116a0.1618752958.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
struct dnode_of_data is defined at 897th line.
The declaration here is unnecessary. Remove it.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
For zoned btrfs, zone append is mandatory to write to a sequential write
only zone, otherwise parallel writes to the same zone could result in
unaligned write errors.
If a zoned block device does not support zone append (e.g. a dm-crypt
zoned device using a non-NULL IV cypher), fail to mount.
CC: stable@vger.kernel.org # 5.12
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between a task aborting a transaction during a commit,
a task doing an fsync and the transaction kthread, which leads to an
use-after-free of the log root tree. When this happens, it results in a
stack trace like the following:
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS: error (device dm-0) in cleanup_transaction:1958: errno=-5 IO failure
BTRFS warning (device dm-0): lost page write due to IO error on /dev/mapper/error-test (-5)
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0xa4e8 len 4096 err no 10
BTRFS error (device dm-0): error writing primary super block to device 1
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e000 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e008 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e010 len 4096 err no 10
BTRFS: error (device dm-0) in write_all_supers:4110: errno=-5 IO failure (1 errors while writing supers)
BTRFS: error (device dm-0) in btrfs_sync_log:3308: errno=-5 IO failure
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b68: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 2458471 Comm: fsstress Not tainted 5.12.0-rc5-btrfs-next-84 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x139/0xa40
Code: c0 74 19 (...)
RSP: 0018:ffff9f18830d7b00 EFLAGS: 00010202
RAX: 6b6b6b6b6b6b6b68 RBX: 0000000000000001 RCX: 0000000000000002
RDX: ffffffffb9c54d13 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9f18830d7bc0 R08: 0000000000000000 R09: 0000000000000000
R10: ffff9f18830d7be0 R11: 0000000000000001 R12: ffff8c6cd199c040
R13: ffff8c6c95821358 R14: 00000000fffffffb R15: ffff8c6cbcf01358
FS: 00007fa9140c2b80(0000) GS:ffff8c6fac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa913d52000 CR3: 000000013d2b4003 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? __btrfs_handle_fs_error+0xde/0x146 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_file+0x40c/0x580 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fa9142a55c3
Code: 8b 15 09 (...)
RSP: 002b:00007fff26278d48 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000563c83cb4560 RCX: 00007fa9142a55c3
RDX: 00007fff26278cb0 RSI: 00007fff26278cb0 RDI: 0000000000000005
RBP: 0000000000000005 R08: 0000000000000001 R09: 00007fff26278d5c
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000340
R13: 00007fff26278de0 R14: 00007fff26278d96 R15: 0000563c83ca57c0
Modules linked in: btrfs dm_zero dm_snapshot dm_thin_pool (...)
---[ end trace ee2f1b19327d791d ]---
The steps that lead to this crash are the following:
1) We are at transaction N;
2) We have two tasks with a transaction handle attached to transaction N.
Task A and Task B. Task B is doing an fsync;
3) Task B is at btrfs_sync_log(), and has saved fs_info->log_root_tree
into a local variable named 'log_root_tree' at the top of
btrfs_sync_log(). Task B is about to call write_all_supers(), but
before that...
4) Task A calls btrfs_commit_transaction(), and after it sets the
transaction state to TRANS_STATE_COMMIT_START, an error happens before
it waits for the transaction's 'num_writers' counter to reach a value
of 1 (no one else attached to the transaction), so it jumps to the
label "cleanup_transaction";
5) Task A then calls cleanup_transaction(), where it aborts the
transaction, setting BTRFS_FS_STATE_TRANS_ABORTED on fs_info->fs_state,
setting the ->aborted field of the transaction and the handle to an
errno value and also setting BTRFS_FS_STATE_ERROR on fs_info->fs_state.
After that, at cleanup_transaction(), it deletes the transaction from
the list of transactions (fs_info->trans_list), sets the transaction
to the state TRANS_STATE_COMMIT_DOING and then waits for the number
of writers to go down to 1, as it's currently 2 (1 for task A and 1
for task B);
6) The transaction kthread is running and sees that BTRFS_FS_STATE_ERROR
is set in fs_info->fs_state, so it calls btrfs_cleanup_transaction().
There it sees the list fs_info->trans_list is empty, and then proceeds
into calling btrfs_drop_all_logs(), which frees the log root tree with
a call to btrfs_free_log_root_tree();
7) Task B calls write_all_supers() and, shortly after, under the label
'out_wake_log_root', it deferences the pointer stored in
'log_root_tree', which was already freed in the previous step by the
transaction kthread. This results in a use-after-free leading to a
crash.
Fix this by deleting the transaction from the list of transactions at
cleanup_transaction() only after setting the transaction state to
TRANS_STATE_COMMIT_DOING and waiting for all existing tasks that are
attached to the transaction to release their transaction handles.
This makes the transaction kthread wait for all the tasks attached to
the transaction to be done with the transaction before dropping the
log roots and doing other cleanups.
Fixes: ef67963dac ("btrfs: drop logs when we've aborted a transaction")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, submit_eb_subpage(), will submit all the dirty extent
buffers in the page.
The major difference between submit_eb_page() and submit_eb_subpage()
is:
- How to grab extent buffer
Now we use find_extent_buffer_nospinlock() other than using
page::private.
All other different handling is already done in functions like
lock_extent_buffer_for_io() and write_one_eb().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For subpage metadata, we don't use page locking at all. So just skip
the page locking part for subpage. The rest of the function can be
reused.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, write_one_subpage_eb(), as a subroutine for subpage
metadata write, will handle the extent buffer bio submission.
The major differences between the new write_one_subpage_eb() and
write_one_eb() is:
- No page locking
When entering write_one_subpage_eb() the page is no longer locked.
We only lock the page for its status update, and unlock immediately.
Now we completely rely on extent io tree locking.
- Extra bitmap update along with page status update
Now page dirty and writeback is controlled by
btrfs_subpage::dirty_bitmap and btrfs_subpage::writeback_bitmap.
They both follow the schema that any sector is dirty/writeback, then
the full page gets dirty/writeback.
- When to update the nr_written number
Now we take a shortcut, if we have cleared the last dirty bit of the
page, we update nr_written.
This is not completely perfect, but should emulate the old behavior
well enough.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, end_bio_subpage_eb_writepage(), will handle the
metadata writeback endio.
The major differences involved are:
- How to grab extent buffer
Now page::private is a pointer to btrfs_subpage, we can no longer grab
extent buffer directly.
Thus we need to use the bv_offset to locate the extent buffer manually
and iterate through the whole range.
- Use btrfs_subpage_end_writeback() caller
This helper will handle the subpage writeback for us.
Since this function is executed under endio context, when grabbing
extent buffers it can't grab eb->refs_lock as that lock is not designed
to be grabbed under hardirq context.
So here introduce a helper, find_extent_buffer_nolock(), for such
situation, and convert find_extent_buffer() to use that helper.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we don't check the return value of
btrfs_commit_transaction in relocation.c. Thankfully all these places
have straightforward error handling, so simply change all of the sites
at once.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a BUG_ON() if we get an error back from btrfs_get_fs_root().
This honestly should never fail, as at this point we have a solid
coordination of fs root to reloc root, and these roots will all be in
memory. But in the name of killing BUG_ON()'s remove these and handle
the error condition properly, ASSERT()'ing for developers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In corruption cases we could have paths from a block up to no root at
all, and thus we'll BUG_ON(!root) in select_one_root. Handle this by
adding an ASSERT() for developers, and returning an error for normal
users.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This probably can't happen even with a corrupt file system, because we
would have failed much earlier on than here. However there's no reason
we can't just check and bail out as appropriate, so do that and convert
the correctness BUG_ON() to an ASSERT().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a duplicate entry for a reloc root then we could have fs
corruption that resulted in a double allocation. Since this shouldn't
happen unless there is corruption, add an ASSERT(ret != -EEXIST) to all
of the callers of __add_reloc_root() to catch any logic mistakes for
developers, otherwise normal error handling will happen for normal
users.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can already handle errors appropriately from this function, deal with
an error coming from __add_reloc_root appropriately.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
We already handle some errors in this function, and the callers do the
correct error handling, so clean up the rest of the function to do the
appropriate error handling.
There's a little extra work that needs to be done here, as we create the
inode item before we create the orphan item. We could potentially add
the orphan item, but if we failed to create the inode item we would have
to abort the transaction.
Instead add a helper to delete the inode item we created in the case
that we're unable to look up the inode (this would likely be caused by
an ENOMEM), which if it succeeds means we can avoid a transaction abort
in this particular error case.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These checks are all taken care of for us by the tree checker code:
- the flags don't change or are updated consistently
- the v0 extent item format is invalid and caught in many other places
too
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We need to validate that a data extent item does not have the
FULL_BACKREF flag set on its flags.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can already deal with errors appropriately from do_relocation, simply
handle any errors that come from changing the refs at this point
cleanly. We have to abort the transaction if we fail here as we've
modified metadata at this point.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If any of the reference count manipulation stuff fails in replace_path
we need to abort the transaction, as we've modified the blocks already.
We can simply break at this point and everything will be cleaned up.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The search can fail for various reasons, in case of errors there's no
cleanup to be done so we can pass the error to the caller, adjusting for
the case where the key is not found and search slot returns 1.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we error out COWing the root node when doing a replace_path then we
simply unlock and free the buffer and return the error.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few BUG_ON()'s in replace_path are purely to keep us from making
logical mistakes, so replace them with ASSERT()'s.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We call btrfs_update_root in btrfs_update_reloc_root, which can fail for
all sorts of reasons, including IO errors. Instead of panicing the box
lets return the error, now that all callers properly handle those
errors.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
an error properly in prepare_to_merge.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in insert_dirty_subvol.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will be able to return errors in the future, so change it to return
an error and handle the errors appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in commit_fs_roots.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to setup a root->reloc_root in a different thread that path
will error out, however it still leaves root->reloc_root NULL but would
still appear set up in the transaction. Subsequent calls to
btrfs_record_root_in_transaction would succeed without attempting to
create the reloc root, as the transid has already been updated.
Handle this case by making sure we have a root->reloc_root set after a
btrfs_record_root_in_transaction call so we don't end up dereferencing a
NULL pointer.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do memory allocations here, read blocks from disk, all sorts of
operations that could easily fail at any given point. Instead of
panicing the box, simply return the error back up the chain, all callers
at this point have proper error handling.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
create_reloc_root will return errors in the future, and __add_reloc_root
can return ENOMEM or EEXIST, so handle these errors properly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can create a reloc root when we record the root in the trans, which
can fail for all sorts of different reasons. Propagate this error up
the chain of callers. Future patches will fix the callers of
btrfs_record_root_in_trans() to handle the error.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can currently fail, so handle this failure
properly.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can fail currently, handle this failure properly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can fail currently, so handle this failure
properly.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in start_transaction.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in relocate_tree_block.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in create_subvol.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_recover_log_trees.
This appears tricky, however we have a reference count on the
destination root, so if this fails we need to continue on in the loop to
make sure the proper cleanup is done.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_delete_subvolume.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename_exchange.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Generally speaking this shouldn't ever fail, the corresponding fs root
for the reloc root will already be in memory, so we won't get ENOMEM
here.
However if there is no corresponding root for the reloc root then we
could get ENOMEM when we try to allocate it or we could get ENOENT
when we look it up and see that it doesn't exist.
Convert these BUG_ON()'s into ASSERT()'s and add proper error handling
for the case of corruption.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will record the fs root or the reloc root in the trans in
select_reloc_root. These will actually return errors in the following
patches, so check their return value here and return it up the stack.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several BUG_ON()'s in select_reloc_root() that can be tripped if
there is an extent tree corruption. Convert these to ASSERT()'s, because
if we hit it during testing it really is bad, or could indicate a
problem with the backref walking code.
However if users hit these problems it generally indicates corruption,
I've hit a few machines in the fleet that trip over these with clearly
corrupted extent trees, so be nice and print out an error message and
return an error instead of bringing the whole box down.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently select_reloc_root() doesn't return an error, but followup
patches will make it possible for it to return an error. We do have
proper error recovery in do_relocation however, so handle the
possibility of select_reloc_root() having an error properly instead of
BUG_ON(!root).
I've also adjusted select_reloc_root() to return ERR_PTR(-ENOENT) if we
don't find a root, instead of NULL, to make the error case easier to
deal with. I've replaced the BUG_ON(!root) with an ASSERT(0) for this
case as it indicates we messed up the backref walking code, but it could
also indicate corruption.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a couple of BUG_ON()'s in relocate_tree_block() that can be
tripped if we have file system corruption. Convert these to ASSERT()'s
so developers still get yelled at when they break the backref code, but
error out nicely for users so the whole box doesn't go down.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few of these are checking for correctness, and won't be triggered by
corrupted file systems, so convert them to ASSERT() instead of BUG_ON()
and add a comment explaining their existence.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Implement readahead_batch_length() to determine the number of bytes in
the current batch of readahead pages and use it in btrfs. Also use the
readahead_pos to get the offset.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two forward declarations deep in extent_io.h, move them
to the beginning and remove the duplicate one.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds an overview how btrfs subpage support works:
- limitations
- behavior
- basic implementation points
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current set_btree_ioerr() only accepts @page parameter and grabs extent
buffer from page::private. This works fine for sector size == PAGE_SIZE
case, but not for subpage case.
Add an extra parameter, @eb, for callers to pass extent buffer to this
function, so that subpage code can reuse this function.
And also add subpage special handling to update
btrfs_subpage::error_bitmap.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For set_extent_buffer_dirty() to support subpage sized metadata, just
call btrfs_page_set_dirty() to handle both cases.
For clear_extent_buffer_dirty(), it needs to clear the page dirty if and
only if all extent buffers in the page range are no longer dirty.
Also do the same for page error.
This is pretty different from the existing clear_extent_buffer_dirty()
routine, so add a new helper function,
clear_subpage_extent_buffer_dirty() to do this for subpage metadata.
Also since the main part of clearing page dirty code is still the same,
extract that into btree_clear_page_dirty() so that it can be utilized
for both cases.
But there is a special race between set_extent_buffer_dirty() and
clear_extent_buffer_dirty(), where we can clear the page dirty.
[POSSIBLE RACE WINDOW]
For the race window between clear_subpage_extent_buffer_dirty() and
set_extent_buffer_dirty(), due to the fact that we can't call
clear_page_dirty_for_io() under subpage spin lock, we can race like
below:
T1 (eb1 in the same page) | T2 (eb2 in the same page)
-------------------------------+------------------------------
set_extent_buffer_dirty() | clear_extent_buffer_dirty()
|- was_dirty = false; | |- clear_subpagE_extent_buffer_dirty()
| | |- btrfs_clear_and_test_dirty()
| | | Since eb2 is the last dirty page
| | | we got:
| | | last == true;
| | |
|- btrfs_page_set_dirty() | |
| We set the page dirty and | |
| subpage dirty bitmap | |
| | |- if (last)
| | | Since we don't have subpage lock
| | | held, now @last is no longer
| | | correct
| | |- btree_clear_page_dirty()
| | Now PageDirty == false, even if
| | we have dirty_bitmap not zero.
|- ASSERT(PageDirty()); |
^^^^ CRASH
The solution here is to also lock the eb->pages[0] for subpage case of
set_extent_buffer_dirty(), to prevent racing with
clear_extent_buffer_dirty().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are quite some assert checks on page uptodate in extent buffer
write accessors. They ensure the destination page is already uptodate.
This is fine for regular sector size case, but not for subpage case, as
for subpage we only mark the page uptodate if the page contains no hole
and all its extent buffers are uptodate.
So instead of checking PageUptodate(), for subpage case we check the
uptodate bitmap of btrfs_subpage structure.
To make the check more elegant, introduce a helper,
assert_eb_page_uptodate() to do the check for both subpage and regular
sector size cases.
The following functions are involved:
- write_extent_buffer_chunk_tree_uuid()
- write_extent_buffer_fsid()
- write_extent_buffer()
- memzero_extent_buffer()
- copy_extent_buffer()
- extent_buffer_test_bit()
- extent_buffer_bitmap_set()
- extent_buffer_bitmap_clear()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In alloc_extent_buffer(), we make sure that the newly allocated page is
never dirty.
This is fine for sector size == PAGE_SIZE case, but for subpage it's
possible that one extent buffer in the page is dirty, thus the whole
page is marked dirty, and could cause false alert.
To support subpage, call btrfs_page_test_dirty() to handle both cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all
dirty extent buffers in one bvec.
Also extract the code of calculating csum for one extent buffer into
csum_one_extent_buffer(), so that both the existing csum_dirty_buffer()
and the new csum_dirty_subpage_buffers() can reuse the same routine.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For btree_set_page_dirty(), we should also check the extent buffer
sanity for subpage support.
Unlike the regular sector size case, since one page can contain multiple
extent buffers, we need to make sure there is at least one dirty extent
buffer in the page.
So this patch will iterate through the btrfs_subpage::dirty_bitmap
to get the extent buffers, and check if any dirty extent buffer in the page
range has EXTENT_BUFFER_DIRTY and proper refs.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduces the following functions to handle subpage writeback status:
- btrfs_subpage_set_writeback()
- btrfs_subpage_clear_writeback()
- btrfs_subpage_test_writeback()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_writeback()
- btrfs_page_clear_writeback()
- btrfs_page_test_writeback()
These helpers can handle both regular sector size and subpage without
problem.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce the following functions to handle subpage dirty status:
- btrfs_subpage_set_dirty()
- btrfs_subpage_clear_dirty()
- btrfs_subpage_test_dirty()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_dirty()
- btrfs_page_clear_dirty()
- btrfs_page_test_dirty()
These helpers can handle both regular sector size and subpage without
problem.
Thus they would be used to replace PageDirty() related calls in
later patches.
There is one special point to note here, just like set_page_dirty() and
clear_page_dirty_for_io(), btrfs_*page_set_dirty() and
btrfs_*page_clear_dirty() must be called with page locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we re-declare @tree variable as
btrfs_ordered_inode_tree.
Since it's only used to do the spinlock, we can grab it from inode
directly, and remove the unnecessary declaration completely.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to
update ordered->truncated_len. But we can use min() to replace it
completely and no need for the variable.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Export supported sector sizes in /sys/fs/btrfs/features/supported_sectorsizes.
Currently all architectures have PAGE_SIZE, There's some disparity
between read-only and read-write support but that will be unified in the
future so there's only one file exporting the size.
The read-only support for systems with 64K pages also works for 4K
sector size.
This new sysfs interface would help eg. mkfs.btrfs to print more
accurate warnings about potentially incompatible option combinations.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently a full send operation uses the standard btree readahead when
iterating over the subvolume/snapshot btree, which despite bringing good
performance benefits, it could be improved in a few aspects for use cases
such as full send operations, which are guaranteed to visit every node
and leaf of a btree, in ascending and sequential order. The limitations
of that standard btree readahead implementation are the following:
1) It only triggers readahead for leaves that are physically close
to the leaf being read, within a 64K range;
2) It only triggers readahead for the next or previous leaves if the
leaf being read is not currently in memory;
3) It never triggers readahead for nodes.
So add a new readahead mode that addresses all these points and use it
for full send operations.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
The durations of the full send operation in seconds were the following:
Before this change: 217 seconds
After this change: 205 seconds (-5.7%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we are running out of space for updating the chunk tree, that is,
when we are low on available space in the system space info, if we have
many task concurrently allocating block groups, via fallocate for example,
many of them can end up all allocating new system chunks when only one is
needed. In extreme cases this can lead to exhaustion of the system chunk
array, which has a size limit of 2048 bytes, and results in a transaction
abort with errno EFBIG, producing a trace in dmesg like the following,
which was triggered on a PowerPC machine with a node/leaf size of 64K:
[1359.518899] ------------[ cut here ]------------
[1359.518980] BTRFS: Transaction aborted (error -27)
[1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
[1359.519152] Modules linked in: (...)
[1359.519239] Supported: Yes, External
[1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G X 5.3.18-47-default #1 SLE15-SP3
[1359.519274] NIP: c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8
[1359.519293] REGS: c00000056890b700 TRAP: 0700 Tainted: G X (5.3.18-47-default)
[1359.519317] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48008222 XER: 00000007
[1359.519356] CFAR: c00000000013e170 IRQMASK: 0
[1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026
[1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007
[1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000
[1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0
[1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff
[1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000
[1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0
[1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08
[1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
[1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs]
[1359.519626] Call Trace:
[1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable)
[1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs]
[1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs]
[1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs]
[1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350
[1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0
[1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40
[1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170
[1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278
[1359.520037] Instruction dump:
[1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000
[1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378
[1359.520122] ---[ end trace d6c186e151022e20 ]---
The following steps explain how we can end up in this situation:
1) Task A is at check_system_chunk(), either because it is allocating a
new data or metadata block group, at btrfs_chunk_alloc(), or because
it is removing a block group or turning a block group RO. It does not
matter why;
2) Task A sees that there is not enough free space in the system
space_info object, that is 'left' is < 'thresh'. And at this point
the system space_info has a value of 0 for its 'bytes_may_use'
counter;
3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate
a new system block group (chunk) and then reserves 'thresh' bytes in
the chunk block reserve with the call to btrfs_block_rsv_add(). This
changes the chunk block reserve's 'reserved' and 'size' counters by an
amount of 'thresh', and changes the 'bytes_may_use' counter of the
system space_info object from 0 to 'thresh'.
Also during its call to btrfs_alloc_chunk(), we end up increasing the
value of the 'total_bytes' counter of the system space_info object by
8MiB (the size of a system chunk stripe). This happens through the
call chain:
btrfs_alloc_chunk()
create_chunk()
btrfs_make_block_group()
btrfs_update_space_info()
4) After it finishes the first phase of the block group allocation, at
btrfs_chunk_alloc(), task A unlocks the chunk mutex;
5) At this point the new system block group was added to the transaction
handle's list of new block groups, but its block group item, device
items and chunk item were not yet inserted in the extent, device and
chunk trees, respectively. That only happens later when we call
btrfs_finish_chunk_alloc() through a call to
btrfs_create_pending_block_groups();
Note that only when we update the chunk tree, through the call to
btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter
of the chunk block reserve as we COW/allocate extent buffers,
through:
btrfs_alloc_tree_block()
btrfs_use_block_rsv()
btrfs_block_rsv_use_bytes()
And the system space_info's 'bytes_may_use' is decremented everytime
we allocate an extent buffer for COW operations on the chunk tree,
through:
btrfs_alloc_tree_block()
btrfs_reserve_extent()
find_free_extent()
btrfs_add_reserved_bytes()
If we end up COWing less chunk btree nodes/leaves than expected, which
is the typical case since the amount of space we reserve is always
pessimistic to account for the worst possible case, we release the
unused space through:
btrfs_create_pending_block_groups()
btrfs_trans_release_chunk_metadata()
btrfs_block_rsv_release()
block_rsv_release_bytes()
btrfs_space_info_free_bytes_may_use()
But before task A gets into btrfs_create_pending_block_groups()...
6) Many other tasks start allocating new block groups through fallocate,
each one does the first phase of block group allocation in a
serialized way, since btrfs_chunk_alloc() takes the chunk mutex
before calling check_system_chunk() and btrfs_alloc_chunk().
However before everyone enters the final phase of the block group
allocation, that is, before calling btrfs_create_pending_block_groups(),
new tasks keep coming to allocate new block groups and while at
check_system_chunk(), the system space_info's 'bytes_may_use' keeps
increasing each time a task reserves space in the chunk block reserve.
This means that eventually some other task can end up not seeing enough
free space in the system space_info and decide to allocate yet another
system chunk.
This may repeat several times if yet more new tasks keep allocating
new block groups before task A, and all the other tasks, finish the
creation of the pending block groups, which is when reserved space
in excess is released. Eventually this can result in exhaustion of
system chunk array in the superblock, with btrfs_add_system_chunk()
returning EFBIG, resulting later in a transaction abort.
Even when we don't reach the extreme case of exhausting the system
array, most, if not all, unnecessarily created system block groups
end up being unused since when finishing creation of the first
pending system block group, the creation of the following ones end
up not needing to COW nodes/leaves of the chunk tree, so we never
allocate and deallocate from them, resulting in them never being
added to the list of unused block groups - as a consequence they
don't get deleted by the cleaner kthread - the only exceptions are
if we unmount and mount the filesystem again, which adds any unused
block groups to the list of unused block groups, if a scrub is
run, which also adds unused block groups to the unused list, and
under some circumstances when using a zoned filesystem or async
discard, which may also add unused block groups to the unused list.
So fix this by:
*) Tracking the number of reserved bytes for the chunk tree per
transaction, which is the sum of reserved chunk bytes by each
transaction handle currently being used;
*) When there is not enough free space in the system space_info,
if there are other transaction handles which reserved chunk space,
wait for some of them to complete in order to have enough excess
reserved space released, and then try again. Otherwise proceed with
the creation of a new system chunk.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we reflink to or from a file opened with O_SYNC/O_DSYNC or to/from a
file that has the S_SYNC attribute set, we totally ignore that and do not
durably persist the reflink changes. Since a reflink can change the data
readable from a file (and mtime/ctime, or a file size), it makes sense to
durably persist (fsync) the source and destination files/ranges.
This was previously discussed at:
https://lore.kernel.org/linux-btrfs/20200903035225.GJ6090@magnolia/
The recently introduced test case generic/628, from fstests, exercises
these scenarios and currently fails without this change.
So make sure we fsync the source and destination files/ranges when either
of them was opened with O_SYNC/O_DSYNC or has the S_SYNC attribute set,
just like XFS already does.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
gcc complains that the ctl->max_chunk_size member might be used
uninitialized when none of the three conditions for initializing it in
init_alloc_chunk_ctl_policy_zoned() are true:
In function ‘init_alloc_chunk_ctl_policy_zoned’,
inlined from ‘init_alloc_chunk_ctl’ at fs/btrfs/volumes.c:5023:3,
inlined from ‘btrfs_alloc_chunk’ at fs/btrfs/volumes.c:5340:2:
include/linux/compiler-gcc.h:48:45: error: ‘ctl.max_chunk_size’ may be used uninitialized [-Werror=maybe-uninitialized]
4998 | ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
| ^~~
fs/btrfs/volumes.c: In function ‘btrfs_alloc_chunk’:
fs/btrfs/volumes.c:5316:32: note: ‘ctl’ declared here
5316 | struct alloc_chunk_ctl ctl;
| ^~~
If we ever get into this condition, something is seriously
wrong, as validity is checked in the callers
btrfs_alloc_chunk
init_alloc_chunk_ctl
init_alloc_chunk_ctl_policy_zoned
so the same logic as in init_alloc_chunk_ctl_policy_regular()
and a few other places should be applied. This avoids both further
data corruption, and the compile-time warning.
Fixes: 1cd6121f2a ("btrfs: zoned: implement zoned chunk allocator")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit d77815461f ("btrfs: Avoid trucating page or punching hole
in a already existed hole."), existing holes can be skipped by calling
find_first_non_hole() to adjust start and len. However, if the given len
is invalid and large, when an EXTENT_MAP_HOLE extent is found, len will
not be set to zero because (em->start + em->len) is less than
(start + len). Then the ret will be 1 but len will not be set to 0.
The propagated non-zero ret will result in fallocate failure.
In the while-loop of btrfs_replace_file_extents(), len is not updated
every time before it calls find_first_non_hole(). That is, after
btrfs_drop_extents() successfully drops the last non-hole file extent,
it may fail with ENOSPC when attempting to drop a file extent item
representing a hole. The problem can happen. After it calls
find_first_non_hole(), the cur_offset will be adjusted to be larger
than or equal to end. However, since the len is not set to zero, the
break-loop condition (ret && !len) will not be met. After it leaves the
while-loop, fallocate will return 1, which is an unexpected return
value.
We're not able to construct a reproducible way to let
btrfs_drop_extents() fail with ENOSPC after it drops the last non-hole
file extent but with remaining holes left. However, it's quite easy to
fix. We just need to update and check the len every time before we call
find_first_non_hole(). To make the while loop more readable, we also
pull the variable updates to the bottom of loop like this:
while (cur_offset < end) {
...
// update cur_offset & len
// advance cur_offset & len in hole-punching case if needed
}
Reported-by: Robbie Ko <robbieko@synology.com>
Fixes: d77815461f ("btrfs: Avoid trucating page or punching hole in a already existed hole.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 6e37d24599 ("btrfs: zoned: fix deadlock on log sync") pointed out
a deadlock warning and removed mutex_{lock,unlock} of fs_info::tree_root->log_mutex.
While it looks like it always cause a deadlock, we didn't see actual
deadlock in fstests runs. The reason is log_root_tree->log_mutex !=
fs_info->tree_root->log_mutex, not taking the same lock. So, the warning
was actually a false-positive.
Since btrfs_alloc_log_tree_node() is protected only by
fs_info->tree_root->log_mutex, we can (and should) move the code out of
the lock scope of log_root_tree->log_mutex and silence the warning.
Fixes: 6e37d24599 ("btrfs: zoned: fix deadlock on log sync")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a comment at btrfs_replace_file_extents() that mentions that we
set the full sync flag on an inode when cloning into a file with a size
greater than or equals to 16MiB, through try_release_extent_mapping() when
we truncate the page cache after replacing file extents during a clone
operation.
That is not true anymore since commit 5e548b3201 ("btrfs: do not set
the full sync flag on the inode during page release"), so update the
comment to remove that part and rephrase it slightly to make it more
clear why the full sync flag is set at btrfs_replace_file_extents().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_orphan_cleanup() has a comment referring to find_dead_roots, but
function does not exists since commit cb517eabba ("Btrfs: cleanup the
similar code of the fs root read"). What we use now to find and load dead
roots is btrfs_find_orphan_roots(). So update the comment and make it a
bit more detailed about why we can not delete an orphan item for a root.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used to encode two different numbers in the tree mod log counter used
for sequence numbers, one in the upper 32 bits and the other one in the
lower 32 bits. However that is no longer the case, we stopped doing that
since commit fcebe4562d ("Btrfs: rework qgroup accounting").
So update the debug message at btrfs_check_delayed_seq to stop extracting
the two 32 bits counters and print instead the 64 bits sequence numbers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places outside the tree mod log module that extract the
lowest sequence number of the tree mod log. These places end up
duplicating code and open coding the logic and internal implementation
details of the tree mod log. So add a helper to the tree mod log module
and header that returns the lowest sequence number or 0 if there aren't
any tree mod log users at the moment.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_tree_mod_log_free_eb() we check if we are dealing with a leaf,
and if so, return immediately and do nothing. However this check can be
removed, because after it we call tree_mod_need_log(), which returns
false when given an extent buffer that corresponds to a leaf.
So just remove the leaf check and pass the extent buffer to
tree_mod_need_log().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of exposing implementation details of the tree mod log to check
if there are active tree mod log users at btrfs_free_tree_block(), use
the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This
way extent-tree.c does not need to known about any of the internals of
the tree mod log and avoids taking a lock unnecessarily as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree modification log functions are called very frequently, basically
they are called every time a btree is modified (a pointer added or removed
to a node, a new root for a btree is set, etc). Because of that, to avoid
heavy lock contention on the lock that protects the list of tree mod log
users, we have checks that test the emptiness of the list with a full
memory barrier before the checks, so that when there are no tree mod log
users we avoid taking the lock.
Replace the memory barrier and list emptiness check with a test for a new
bit set at fs_info->flags. This bit is used to indicate when there are
tree mod log users, set whenever a user is added to the list and cleared
when the last user is removed from the list. This makes the intention a
bit more obvious and possibly more efficient (assuming test_bit() may be
cheaper than a full memory barrier on some architectures).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions of the tree modification log use integers as booleans,
so change them to use booleans instead, making their use more clear.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree modification log, which records modifications done to btrees, is
quite large and currently spread all over ctree.c, which is a huge file
already.
To make things better organized, move all that code into its own separate
source and header files. Functions and definitions that are used outside
of the module (mostly by ctree.c) are renamed so that they start with a
"btrfs_" prefix. Everything else remains unchanged.
This makes it easier to go over the tree modification log code every
time I need to go read it to fix a bug.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfsic_read_block() (which calls kmap()) and
btrfsic_release_block_ctx() (which calls kunmap()) are always called
within a single thread of execution.
Therefore the mappings created within these calls can be a thread local
mapping.
Convert the kmap() of bloc_ctx->pagev to kmap_local_page(). Luckily the
unmap loops backwards through the array pointer so no adjustment needs
to be made to the unmapping order.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Again there is an array of pointers which must be unmapped in the correct
order.
Convert the kmap()'s to kmap_local_page() and adjust the unmapping
to work backwards through the unmapping loop.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These kmaps are thread local and don't need to be atomic. So they can use
the more efficient kmap_local_page(). However, the mapping of pages in
the stripes and the additional parity and qstripe pages are a bit
trickier because the unmapping must occur in the opposite order from the
mapping. Furthermore, the pointer array in __raid_recover_end_io() may
get reordered.
Convert these calls to kmap_local_page() taking care to reverse the
unmappings of any page arrays as well as being careful with the mappings
of any special pages such as the parity and qstripe pages.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use a simple coccinelle script to help convert the most common
kmap()/kunmap() patterns to kmap_local_page()/kunmap_local().
Note that some kmaps which were caught by this script needed to be
handled by hand because of the strict unmapping order of kunmap_local()
so they are not included in this patch. But this script got us started.
There's another temp variable added for the final length write to the
first page so it does not interfere with cpage_out that is used for
mapping other pages.
The development of this patch was aided by the follow script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap and replace with kmap_local_page then mark kunmap
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
@ catch_all @
expression e, e2;
@@
(
-kmap(e)
+kmap_local_page(e)
)
...
(
-kunmap(...)
+kunmap_local()
)
// </smpl>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The in_range() macro is defined twice in btrfs' source, once in ctree.h
and once in misc.h.
Remove the definition in ctree.h and include misc.h in the files depending
on it.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_inode_in_log() checks the list of modified extents of the
inode, and has a comment mentioning why, as it used to be necessary to
make sure if we did something like the following:
mmap write range A
mmap write range B
msync range A (ranged fsync)
msync range B (ranged fsync)
we ended up with both ranges being logged.
If we did not check it, then the second fsync would do nothing because
btrfs_inode_in_log() would return true. This was added in 125c4cf9f3
("Btrfs: set inode's logged_trans/last_log_commit after ranged fsync") and
test case generic/325 from fstests exercises that scenario.
However, as of commit 487781796d ("btrfs: make fast fsyncs wait only
for writeback"), every ranged fsync is now turned into a full ranged fsync
(operates on the range from 0 to LLONG_MAX), so it is now pointless to
test of emptiness of the list of modified extents, and the comment is
clearly outdated.
So just remove the comment and list emptiness check, while also changing
the function's return type to be a boolean instead of an integer.
In case one day we get support for ranged fsyncs again, it will be easy
to notice the check is necessary again, because it will make generic/325
always fail.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an fsync we flush all delalloc, lock the inode (VFS lock), flush
any new delalloc that might have been created before taking the lock and
then wait either for the ordered extents to complete or just for the
writeback to complete (depending on whether the full sync flag is set or
not). We then start logging the inode and assume that while we are doing it
no one else is touching the inode's file extent items (or adding new ones).
That is generally true because all operations that modify an inode acquire
the inode's lock first, including buffered and direct IO writes. However
there is one exception: memory mapped writes, which do not and can not
acquire the inode's lock.
This can cause two types of issues: ending up logging file extent items
with overlapping ranges, which is detected by the tree checker and will
result in aborting the transaction when starting writeback for a log
tree's extent buffers, or a silent corruption where we log a version of
the file that never existed.
Scenario 1 - logging overlapping extents
The following steps explain how we can end up with file extents items with
overlapping ranges in a log tree due to a race between a fsync and memory
mapped writes:
1) Task A starts an fsync on inode X, which has the full sync runtime flag
set. First it starts by flushing all delalloc for the inode;
2) Task A then locks the inode and flushes any other delalloc that might
have been created after the previous flush and waits for all ordered
extents to complete;
3) In the inode's root we have the following leaf:
Leaf N, generation == current transaction id:
---------------------------------------------------------
| (...) [ file extent item, offset 640K, length 128K ] |
---------------------------------------------------------
The last file extent item in leaf N covers the file range from 640K to
768K;
4) Task B does a memory mapped write for the page corresponding to the
file range from 764K to 768K;
5) Task A starts logging the inode. At copy_inode_items_to_log() it uses
btrfs_search_forward() to search for leafs modified in the current
transaction that contain items for the inode. It finds leaf N and copies
all the inode items from that leaf into the log tree.
Now the log tree has a copy of the last file extent item from leaf N.
At the end of the while loop at copy_inode_items_to_log(), we have the
minimum key set to:
min_key.objectid = <inode X number>
min_key.type = BTRFS_EXTENT_DATA_KEY
min_key.offset = 640K
Then we increment the key's offset by 1 so that the next call to
btrfs_search_forward() leaves us at the first key greater than the key
we just processed.
But before btrfs_search_forward() is called again...
6) Dellaloc for the page at offset 764K, dirtied by task B, is started.
It can be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) When the respective ordered extent completes, it trims the length of
the existing file extent item for file offset 640K from 128K to 124K,
and a new file extent item is added with a key offset of 764K and a
length of 4K;
8) Task A calls btrfs_search_forward(), which returns us a path pointing
to the leaf (can be leaf N or some other) containing the new file extent
item for file offset 764K.
We end up copying this item to the log tree, which overlaps with the
last copied file extent item, which covers the file range from 640K to
768K.
When writeback is triggered for log tree's extent buffers, the issue
will be detected by the tree checker which will dump a trace and an
error message on dmesg/syslog. If the writeback is triggered when
syncing the log, which typically is, then we also end up aborting the
current transaction.
This is the same type of problem fixed in 0c713cbab6 ("Btrfs: fix race
between ranged fsync and writeback of adjacent ranges").
Scenario 2 - logging a version of the file that never existed
This scenario only happens when using the NO_HOLES feature and results in
a silent corruption, in the sense that is not detectable by 'btrfs check'
or the tree checker:
1) We have an inode I with a size of 1M and two file extent items, one
covering an extent with disk_bytenr == X for the file range [0, 512K)
and another one covering another extent with disk_bytenr == Y for the
file range [512K, 1M);
2) A hole is punched for the file range [512K, 1M);
3) Task A starts an fsync of inode I, which has the full sync runtime flag
set. It starts by flushing all existing delalloc, locks the inode (VFS
lock), starts any new delalloc that might have been created before
taking the lock and waits for all ordered extents to complete;
4) Some other task does a memory mapped write for the page corresponding to
the file range [640K, 644K) for example;
5) Task A then logs all items of the inode with the call to
copy_inode_items_to_log();
6) In the meanwhile delalloc for the range [640K, 644K) is started. It can
be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) The ordered extent for the range [640K, 644K) completes and a file
extent item for that range is added to the subvolume tree, pointing
to a 4K extent with a disk_bytenr == Z;
8) Task A then calls btrfs_log_holes(), to scan for implicit holes in
the subvolume tree. It finds two implicit holes:
- one for the file range [512K, 640K)
- one for the file range [644K, 1M)
As a result we end up neither logging a hole for the range [640K, 644K)
nor logging the file extent item with a disk_bytenr == Z.
This means that if we have a power failure and replay the log tree we
end up getting the following file extent layout:
[ disk_bytenr X ] [ hole ] [ disk_bytenr Y ] [ hole ]
0 512K 512K 640K 640K 644K 644K 1M
Which does not corresponding to any layout the file ever had before
the power failure. The only two valid layouts would be:
[ disk_bytenr X ] [ hole ]
0 512K 512K 1M
and
[ disk_bytenr X ] [ hole ] [ disk_bytenr Z ] [ hole ]
0 512K 512K 640K 640K 644K 644K 1M
This can be fixed by serializing memory mapped writes with fsync, and there
are two ways to do it:
1) Make a fsync lock the entire file range, from 0 to (u64)-1 / LLONG_MAX
in the inode's io tree. This prevents the race but also blocks any reads
during the duration of the fsync, which has a negative impact for many
common workloads;
2) Make an fsync write lock the i_mmap_lock semaphore in the inode. This
semaphore was recently added by Josef's patch set:
btrfs: add a i_mmap_lock to our inode
btrfs: cleanup inode_lock/inode_unlock uses
btrfs: exclude mmaps while doing remap
btrfs: exclude mmap from happening during all fallocate operations
and is used to solve races between memory mapped writes and
clone/dedupe/fallocate. This also makes us have the same behaviour we
have regarding other writes (buffered and direct IO) and fsync - block
them while the inode logging is in progress.
This change uses the second approach due to the performance impact of the
first one.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a small window where a deadlock can happen between fallocate and
mmap. This is described in detail by Filipe:
"""
When doing a fallocate operation we lock the inode, flush delalloc within
the target range, wait for any ordered extents to complete and then lock
the file range. Before we lock the range and after we flush delalloc,
there is a time window where another task can come in and do a memory
mapped write for a page within the fallocate range.
This means that after fallocate locks the range, there can be a dirty page
in the range. More often than not, this does not cause any problem.
The exception is when we are low on available metadata space, because an
fallocate operation needs to start a transaction while holding the file
range locked, either through btrfs_prealloc_file_range() or through the
call to btrfs_fallocate_update_isize(). If that's the case, we can end up
in a deadlock. The following list of steps explains how that happens:
1) A fallocate operation starts, locks the inode, flushes delalloc in the
range and waits for ordered extents in the range to complete;
2) Before the fallocate task locks the file range, another task does a
memory mapped write for a page in the fallocate target range. This is
possible since memory mapped writes do not (and can not) lock the
inode;
3) The fallocate task locks the file range. At this point there is one
dirty page in the range (due to the memory mapped write);
4) When the fallocate task attempts to start a transaction, it blocks when
attempting to reserve metadata space, since we are low on available
metadata space. Before blocking (wait on its reservation ticket), it
starts the async reclaim task (if not running already);
5) The async reclaim task is not able to release space through any other
means, so it decides to flush delalloc for inodes with dirty pages.
It finds that the inode used in the fallocate operation has a dirty
page and therefore queues a job (fs_info->flush_workers workqueue) to
flush delalloc for that inode and waits on that job to complete;
6) The flush job blocks when attempting to lock the file range because
it is currently locked by the fallocate task;
7) The fallocate task keeps waiting for its metadata reservation, waiting
for a wakeup on its reservation ticket. The async reclaim task is
waiting on the flush job, which in turn is waiting for locking the file
range that is currently locked by the fallocate task. So unless some
other task is able to release enough metadata space, for example an
ordered extent for some other inode completes, we end up in a deadlock
between all these tasks.
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several tasks waiting for the inode lock held by the fallocate task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd5d90a0 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
R10: 0000560fbd5d7ad0 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000005e R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task:fdm-stress state:D stack: 0 pid:2508243 ppid:2508153 flags:0x00000000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? btrfs_fallocate+0xdcf/0x1260 [btrfs]
btrfs_fallocate+0xdfb/0x1260 [btrfs]
? filename_lookup+0xf1/0x180
vfs_fallocate+0x14f/0x440
ioctl_preallocate+0x92/0xc0
do_vfs_ioctl+0x66b/0x750
? __do_sys_newfstat+0x53/0x60
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix this by disallowing mmaps from happening while we're doing any of
the fallocate operations on this inode.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Darrick reported a potential issue to me where we could allow mmap
writes after validating a page range matched in the case of dedupe.
Generally we rely on lock page -> lock extent with the ordered flush to
protect us, but this is done after we check the pages because we use the
generic helpers, so we could modify the page in between doing the check
and locking the range.
There also exists a deadlock, as described by Filipe
"""
When cloning a file range, we lock the inodes, flush any delalloc within
the respective file ranges, wait for any ordered extents and then lock the
file ranges in both inodes. This means that right after we flush delalloc
and before we lock the file ranges, memory mapped writes can come in and
dirty pages in the file ranges of the clone operation.
Most of the time this is harmless and causes no problems. However, if we
are low on available metadata space, we can later end up in a deadlock
when starting a transaction to replace file extent items. This happens if
when allocating metadata space for the transaction, we need to wait for
the async reclaim thread to release space and the reclaim thread needs to
flush delalloc for the inode that got the memory mapped write and has its
range locked by the clone task.
Basically what happens is the following:
1) A clone operation locks inodes A and B, flushes delalloc for both
inodes in the respective file ranges and waits for any ordered extents
in those ranges to complete;
2) Before the clone task locks the file ranges, another task does a
memory mapped write (which does not lock the inode) for one of the
inodes of the clone operation. So now we have a dirty page in one of
the ranges used by the clone operation;
3) The clone operation locks the file ranges for inodes A and B;
4) Later, when iterating over the file extents of inode A, the clone
task attempts to start a transaction. There's not enough available
free metadata space, so the async reclaim task is started (if not
running already) and we wait for someone to wake us up on our
reservation ticket;
5) The async reclaim task is not able to release space by any other
means and decides to flush delalloc for the inode of the clone
operation;
6) The workqueue job used to flush the inode blocks when starting
delalloc for the inode, since the file range is currently locked by
the clone task;
7) But the clone task is waiting on its reservation ticket and the async
reclaim task is waiting on the flush job to complete, which can't
progress since the clone task has the file range locked. So unless
some other task is able to release space, for example an ordered
extent for some other inode completes, we have a deadlock between all
these tasks;
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several other tasks blocked on inode locks held by the clone task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd604690 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000002 R09: 0000560fbd5d75f0
R10: 0000560fbd5d81f0 R11: 0000000000000202 R12: 0000000000000002
R13: 000000000000000b R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task: fdm-stress state:D stack: 0 pid:2508234 ppid:2508153 flags:0x00004000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? lock_release+0x20e/0x4c0
btrfs_clone+0x3e4/0x7e0 [btrfs]
? btrfs_lookup_first_ordered_extent+0x8e/0x100 [btrfs]
btrfs_clone_files+0xf6/0x150 [btrfs]
btrfs_remap_file_range+0x324/0x3d0 [btrfs]
do_clone_file_range+0xd4/0x1f0
vfs_clone_file_range+0x4d/0x230
? lock_release+0x20e/0x4c0
ioctl_file_clone+0x8f/0xc0
do_vfs_ioctl+0x342/0x750
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix both of these issues by excluding mmaps from happening we are doing
any sort of remap, which prevents this race completely.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few places we intermix btrfs_inode_lock with a inode_unlock, and some
places we just use inode_lock/inode_unlock instead of btrfs_inode_lock.
None of these places are using this incorrectly, but as we adjust some
of these callers it would be nice to keep everything consistent, so
convert everybody to use btrfs_inode_lock/btrfs_inode_unlock.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to be able to exclude page_mkwrite from happening concurrently
with certain operations. To facilitate this, add a i_mmap_lock to our
inode, down_read() it in our mkwrite, and add a new ILOCK flag to
indicate that we want to take the i_mmap_lock as well. I used pahole to
check the size of the btrfs_inode, the sizes are as follows
no lockdep:
before: 1120 (3 per 4k page)
after: 1160 (3 per 4k page)
lockdep:
before: 2072 (1 per 4k page)
after: 2224 (1 per 4k page)
We're slightly larger but it doesn't change how many objects we can fit
per page.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter mirror is not used and does not make sense for checksum
verification of the given bio.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
force_cow can be calculated from inode and does not need to be passed as
an argument.
This simplifies run_delalloc_nocow() call from btrfs_run_delalloc_range()
A new function, should_nocow() checks if the range should be NOCOWed or
not. The function returns true iff either BTRFS_INODE_NODATA or
BTRFS_INODE_PREALLOC, but is not a defrag extent.
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix the following coccicheck warnings:
./fs/btrfs/volumes.c:1462:10-11: WARNING: return of 0/1 in function
'dev_extent_hole_check_zoned' with return type bool.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we do not do btree read ahead when doing an incremental send,
however we know that we will read and process any node or leaf in the
send root that has a generation greater than the generation of the parent
root. So triggering read ahead for such nodes and leafs is beneficial
for an incremental send.
This change does that, triggers read ahead of any node or leaf in the
send root that has a generation greater then the generation of the
parent root. As for the parent root, no readahead is triggered because
knowing in advance which nodes/leaves are going to be read is not so
linear and there's often a large time window between visiting nodes or
leaves of the parent root. So I opted to leave out the parent root,
and triggering read ahead for its nodes/leaves seemed to have not made
significant difference.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of ram:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, incremental send duration:
with $initial_file_count == 200000: 51 seconds
with $initial_file_count == 500000: 168 seconds
After this change, incremental send duration:
with $initial_file_count == 200000: 39 seconds (-26.7%)
with $initial_file_count == 500000: 125 seconds (-29.4%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, and 77759 nodes and leaves in the btree of
the second snapshot. The root nodes were at level 2.
While for $initial_file_count == 500000 there are 152476 nodes and leaves
in the btree of the first snapshot, and 190511 nodes and leaves in the
btree of the second snapshot. The root nodes were at level 2 as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a full send we know that we are going to be reading every node
and leaf of the send root, so we benefit from enabling read ahead for the
btree.
This change enables read ahead for full send operations only, incremental
sends will have read ahead enabled in a different way by a separate patch.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, full send duration:
with $initial_file_count == 200000: 165 seconds
with $initial_file_count == 500000: 407 seconds
After this change, full send duration:
with $initial_file_count == 200000: 149 seconds (-10.2%)
with $initial_file_count == 500000: 353 seconds (-14.2%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, while for $initial_file_count == 500000 there
are 152476 nodes and leaves. The roots were at level 2.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_block_rsv_add can return only ENOSPC since it's called with
NO_FLUSH modifier. This so simplify the logic in
btrfs_delayed_inode_reserve_metadata to exploit this invariant.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add assert and comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
It's only used for tracepoint to obtain the inode number, but we already
have the ino from btrfs_delayed_node::inode_id.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer expected to call this function with an open transaction
so all the workarounds concerning this can be removed. In fact it'll
constitute a bug to call this function with a transaction already held
so WARN in this case.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Drop function declarations at the beginning of the file scrub.c. These
functions are defined before they are used in the same file and don't
need forward declaration.
No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() checks if the block group is readonly, the bool
return type should be used.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So
move it from extent-tree.c to inode.c and declare it as static.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_inc_block_group_ro wants to ensure that the current transaction is
not running dirty block groups, if it is it waits and loops again.
That logic is currently implemented using a goto label. Actually using
a proper do {} while() construct doesn't hurt readability nor does it
introduce excessive nesting and makes the relevant code stand out by
being encompassed in the loop construct. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No point in duplicating the functionality just use the generic helper
that has the same semantics.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is small error in comment about BTRFS_ORDERED_* flags, added in
commit 3c198fe064 ("btrfs: rework the order of
btrfs_ordered_extent::flags") but the fixup did not get merged in time.
The 4 types are for ordered extent itself, not for direct io.
Only 3 types support direct io, REGULAR/NOCOW/PREALLOC.
Fix the comment to reflect that.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some filesystem's use a digest of their uuid for f_fsid.
Create a simple wrapper for this open coded folding.
Filesystems that have a non null uuid but use the block device
number for f_fsid may also consider using this helper.
[JK: Added missing asm/byteorder.h include]
Link: https://lore.kernel.org/r/20210322173944.449469-2-amir73il@gmail.com
Acked-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
When mounting eCryptfs, a null "dev_name" argument to ecryptfs_mount()
causes a kernel panic if the parsed options are valid. The easiest way to
reproduce this is to call mount() from userspace with an existing
eCryptfs mount's options and a "source" argument of 0.
Error out if "dev_name" is null in ecryptfs_mount()
Fixes: 237fead619 ("[PATCH] ecryptfs: fs/Makefile and fs/Kconfig")
Cc: stable@vger.kernel.org
Signed-off-by: Jeffrey Mitchell <jeffrey.mitchell@starlab.io>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
mutex lock can be initialized automatically with DEFINE_MUTEX()
rather than explicitly calling mutex_init().
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Ye Bin <yebin10@huawei.com>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/keystore.c:25: warning: Incorrect use of kernel-doc format: * request_key returned an error instead of a valid key address;
fs/ecryptfs/keystore.c:30: warning: Function parameter or member 'err_code' not described in 'process_request_key_err'
fs/ecryptfs/keystore.c:30: warning: expecting prototype for eCryptfs(). Prototype was for process_request_key_err() instead
fs/ecryptfs/keystore.c:558: warning: Function parameter or member 'auth_tok_key' not described in 'ecryptfs_find_auth_tok_for_sig'
fs/ecryptfs/keystore.c:558: warning: Function parameter or member 'mount_crypt_stat' not described in 'ecryptfs_find_auth_tok_for_sig'
fs/ecryptfs/keystore.c:558: warning: Excess function parameter 'crypt_stat' description in 'ecryptfs_find_auth_tok_for_sig'
fs/ecryptfs/keystore.c:584: warning: cannot understand function prototype: 'struct ecryptfs_write_tag_70_packet_silly_stack '
fs/ecryptfs/keystore.c:622: warning: Function parameter or member 'dest' not described in 'ecryptfs_write_tag_70_packet'
fs/ecryptfs/keystore.c:622: warning: Function parameter or member 'remaining_bytes' not described in 'ecryptfs_write_tag_70_packet'
fs/ecryptfs/keystore.c:622: warning: Function parameter or member 'packet_size' not described in 'ecryptfs_write_tag_70_packet'
fs/ecryptfs/keystore.c:622: warning: Function parameter or member 'mount_crypt_stat' not described in 'ecryptfs_write_tag_70_packet'
fs/ecryptfs/keystore.c:622: warning: Function parameter or member 'filename_size' not described in 'ecryptfs_write_tag_70_packet'
fs/ecryptfs/keystore.c:622: warning: expecting prototype for write_tag_70_packet(). Prototype was for ecryptfs_write_tag_70_packet() instead
fs/ecryptfs/keystore.c:895: warning: expecting prototype for parse_tag_70_packet(). Prototype was for ecryptfs_parse_tag_70_packet() instead
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mhalcrow@us.ibm.com>
Cc: "Michael C. Thompson" <mcthomps@us.ibm.com>
Cc: "Trevor S. Highland" <trevor.highland@gmail.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/inode.c:27: warning: Function parameter or member 'dentry' not described in 'lock_parent'
fs/ecryptfs/inode.c:27: warning: Function parameter or member 'lower_dentry' not described in 'lock_parent'
fs/ecryptfs/inode.c:27: warning: Function parameter or member 'lower_dir' not described in 'lock_parent'
fs/ecryptfs/inode.c:27: warning: expecting prototype for eCryptfs(). Prototype was for lock_parent() instead
fs/ecryptfs/inode.c:211: warning: Function parameter or member 'ecryptfs_dentry' not described in 'ecryptfs_initialize_file'
fs/ecryptfs/inode.c:211: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_initialize_file'
fs/ecryptfs/inode.c:258: warning: Function parameter or member 'mnt_userns' not described in 'ecryptfs_create'
fs/ecryptfs/inode.c:258: warning: Function parameter or member 'directory_inode' not described in 'ecryptfs_create'
fs/ecryptfs/inode.c:258: warning: Function parameter or member 'ecryptfs_dentry' not described in 'ecryptfs_create'
fs/ecryptfs/inode.c:258: warning: Function parameter or member 'excl' not described in 'ecryptfs_create'
fs/ecryptfs/inode.c:258: warning: Excess function parameter 'dir' description in 'ecryptfs_create'
fs/ecryptfs/inode.c:258: warning: Excess function parameter 'dentry' description in 'ecryptfs_create'
fs/ecryptfs/inode.c:320: warning: Function parameter or member 'dentry' not described in 'ecryptfs_lookup_interpose'
fs/ecryptfs/inode.c:320: warning: Function parameter or member 'lower_dentry' not described in 'ecryptfs_lookup_interpose'
fs/ecryptfs/inode.c:887: warning: Function parameter or member 'mnt_userns' not described in 'ecryptfs_setattr'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: "Michael C. Thompsion" <mcthomps@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/mmap.c:26: warning: Incorrect use of kernel-doc format: * ecryptfs_get_locked_page
fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'inode' not described in 'ecryptfs_get_locked_page'
fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'index' not described in 'ecryptfs_get_locked_page'
fs/ecryptfs/mmap.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_get_locked_page() instead
fs/ecryptfs/mmap.c:52: warning: Function parameter or member 'wbc' not described in 'ecryptfs_writepage'
fs/ecryptfs/mmap.c:98: warning: Incorrect use of kernel-doc format: * ecryptfs_copy_up_encrypted_with_header
fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'page' not described in 'ecryptfs_copy_up_encrypted_with_header'
fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_copy_up_encrypted_with_header'
fs/ecryptfs/mmap.c:110: warning: expecting prototype for Header Extent(). Prototype was for ecryptfs_copy_up_encrypted_with_header() instead
fs/ecryptfs/mmap.c:233: warning: wrong kernel-doc identifier on line:
fs/ecryptfs/mmap.c:379: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_inode_size_to_header'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Tycho Andersen <tycho@tycho.pizza>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/crypto.c:29: warning: expecting prototype for eCryptfs(). Prototype was for DECRYPT() instead
fs/ecryptfs/crypto.c:360: warning: Function parameter or member 'crypt_stat' not described in 'lower_offset_for_page'
fs/ecryptfs/crypto.c:360: warning: Function parameter or member 'page' not described in 'lower_offset_for_page'
fs/ecryptfs/crypto.c:637: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_compute_root_iv'
fs/ecryptfs/crypto.c:1386: warning: Function parameter or member 'ecryptfs_dentry' not described in 'ecryptfs_read_metadata'
fs/ecryptfs/crypto.c:1463: warning: Function parameter or member 'filename' not described in 'ecryptfs_encrypt_filename'
fs/ecryptfs/crypto.c:1463: warning: Function parameter or member 'mount_crypt_stat' not described in 'ecryptfs_encrypt_filename'
fs/ecryptfs/crypto.c:1897: warning: Function parameter or member 'encoded_name_size' not described in 'ecryptfs_encrypt_and_encode_filename'
fs/ecryptfs/crypto.c:1897: warning: Function parameter or member 'mount_crypt_stat' not described in 'ecryptfs_encrypt_and_encode_filename'
fs/ecryptfs/crypto.c:1897: warning: Function parameter or member 'name_size' not described in 'ecryptfs_encrypt_and_encode_filename'
fs/ecryptfs/crypto.c:1897: warning: Excess function parameter 'crypt_stat' description in 'ecryptfs_encrypt_and_encode_filename'
fs/ecryptfs/crypto.c:1897: warning: Excess function parameter 'length' description in 'ecryptfs_encrypt_and_encode_filename'
fs/ecryptfs/crypto.c:2006: warning: Function parameter or member 'sb' not described in 'ecryptfs_decode_and_decrypt_filename'
fs/ecryptfs/crypto.c:2006: warning: Excess function parameter 'ecryptfs_dir_dentry' description in 'ecryptfs_decode_and_decrypt_filename'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: "Michael C. Thompson" <mcthomps@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
[tyhicks: Fix typo in ecryptfs_encrypt_and_encode_filename() func docs]
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Supply description for the 'daemon' param too.
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/miscdev.c:19: warning: cannot understand function prototype: 'atomic_t ecryptfs_num_miscdev_opens; '
fs/ecryptfs/miscdev.c:323: warning: Function parameter or member 'daemon' not described in 'ecryptfs_miscdev_response'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mhalcrow@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/main.c:28: warning: Incorrect use of kernel-doc format: * Module parameter that defines the ecryptfs_verbosity level.
fs/ecryptfs/main.c:30: warning: cannot understand function prototype: 'int ecryptfs_verbosity = 0; '
fs/ecryptfs/main.c:40: warning: cannot understand function prototype: 'unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS; '
fs/ecryptfs/main.c:52: warning: cannot understand function prototype: 'signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ; '
fs/ecryptfs/main.c:65: warning: cannot understand function prototype: 'unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS; '
fs/ecryptfs/main.c:106: warning: Function parameter or member 'dentry' not described in 'ecryptfs_init_lower_file'
fs/ecryptfs/main.c:106: warning: Function parameter or member 'lower_file' not described in 'ecryptfs_init_lower_file'
fs/ecryptfs/main.c:106: warning: Excess function parameter 'ecryptfs_dentry' description in 'ecryptfs_init_lower_file'
fs/ecryptfs/main.c:244: warning: Function parameter or member 'sbi' not described in 'ecryptfs_parse_options'
fs/ecryptfs/main.c:244: warning: Excess function parameter 'sb' description in 'ecryptfs_parse_options'
fs/ecryptfs/main.c:478: warning: Function parameter or member 'fs_type' not described in 'ecryptfs_mount'
fs/ecryptfs/main.c:478: warning: Function parameter or member 'flags' not described in 'ecryptfs_mount'
fs/ecryptfs/main.c:478: warning: expecting prototype for ecryptfs_get_sb(). Prototype was for ecryptfs_mount() instead
fs/ecryptfs/main.c:645: warning: Function parameter or member 'vptr' not described in 'inode_info_init_once'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: "Michael C. Thompson" <mcthomps@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
[tyhicks: Correct the function documentation for ecryptfs_mount()]
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/messaging.c:15: warning: Function parameter or member 'ecryptfs_msg_ctx_free_list' not described in 'LIST_HEAD'
fs/ecryptfs/messaging.c:15: warning: expecting prototype for eCryptfs(). Prototype was for LIST_HEAD() instead
fs/ecryptfs/messaging.c:157: warning: Function parameter or member 'daemon' not described in 'ecryptfs_exorcise_daemon'
fs/ecryptfs/messaging.c:207: warning: Function parameter or member 'daemon' not described in 'ecryptfs_process_response'
fs/ecryptfs/messaging.c:207: warning: expecting prototype for ecryptfs_process_reponse(). Prototype was for ecryptfs_process_response() instead
fs/ecryptfs/messaging.c:262: warning: Function parameter or member 'msg_type' not described in 'ecryptfs_send_message_locked'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Michael A. Halcrow" <mhalcrow@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/super.c:22: warning: cannot understand function prototype: 'struct kmem_cache *ecryptfs_inode_info_cache; '
fs/ecryptfs/super.c:91: warning: Function parameter or member 'dentry' not described in 'ecryptfs_statfs'
fs/ecryptfs/super.c:91: warning: Excess function parameter 'sb' description in 'ecryptfs_statfs'
fs/ecryptfs/super.c:120: warning: Function parameter or member 'inode' not described in 'ecryptfs_evict_inode'
fs/ecryptfs/super.c:133: warning: Function parameter or member 'm' not described in 'ecryptfs_show_options'
fs/ecryptfs/super.c:133: warning: Function parameter or member 'root' not described in 'ecryptfs_show_options'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: "Michael C. Thompson" <mcthomps@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/file.c:23: warning: Incorrect use of kernel-doc format: * ecryptfs_read_update_atime
fs/ecryptfs/file.c:34: warning: Function parameter or member 'iocb' not described in 'ecryptfs_read_update_atime'
fs/ecryptfs/file.c:34: warning: Function parameter or member 'to' not described in 'ecryptfs_read_update_atime'
fs/ecryptfs/file.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_read_update_atime() instead
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mhalcrow@us.ibm.com>
Cc: "Michael C. Thompson" <mcthomps@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/kthread.c:16: warning: cannot understand function prototype: 'struct ecryptfs_open_req '
fs/ecryptfs/kthread.c:120: warning: Function parameter or member 'cred' not described in 'ecryptfs_privileged_open'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/dentry.c:19: warning: Incorrect use of kernel-doc format: * ecryptfs_d_revalidate - revalidate an ecryptfs dentry
fs/ecryptfs/dentry.c:32: warning: Function parameter or member 'dentry' not described in 'ecryptfs_d_revalidate'
fs/ecryptfs/dentry.c:32: warning: Function parameter or member 'flags' not described in 'ecryptfs_d_revalidate'
fs/ecryptfs/dentry.c:32: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_d_revalidate() instead
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/debug.c:13: warning: Incorrect use of kernel-doc format: * ecryptfs_dump_auth_tok - debug function to print auth toks
fs/ecryptfs/debug.c:19: warning: Function parameter or member 'auth_tok' not described in 'ecryptfs_dump_auth_tok'
fs/ecryptfs/debug.c:19: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_dump_auth_tok() instead
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
Provide missing param description for 'page_index' too.
Fixes the following W=1 kernel build warning(s):
fs/ecryptfs/read_write.c:16: warning: Incorrect use of kernel-doc format: * ecryptfs_write_lower
fs/ecryptfs/read_write.c:29: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_lower'
fs/ecryptfs/read_write.c:29: warning: Function parameter or member 'data' not described in 'ecryptfs_write_lower'
fs/ecryptfs/read_write.c:29: warning: Function parameter or member 'offset' not described in 'ecryptfs_write_lower'
fs/ecryptfs/read_write.c:29: warning: Function parameter or member 'size' not described in 'ecryptfs_write_lower'
fs/ecryptfs/read_write.c:29: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_write_lower() instead
fs/ecryptfs/read_write.c:248: warning: Function parameter or member 'page_index' not described in 'ecryptfs_read_lower_page_segment'
Cc: Tyler Hicks <code@tyhicks.com>
Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com>
Cc: ecryptfs@vger.kernel.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Tyler Hicks <code@tyhicks.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBzdS0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGDdAIAIpKH/tAHhH7s7QH
m5ewgE8foP7M5Ue9fp3+JmbtaYSzhCAMcKhqGtat/zk5PvA9AoYCDXrTetfYtBHh
LUOmhL9hcKItNobfkYBok6BiFjGUEL3HMqz5w+MUsMwnXIc4RXqfJmsQ932z9Kxf
yDwe6ehIzJVrQLI/C0mTamYRHu2aiZ1VWzhKuT493rLeg0R2odCCIClPN+/QvCwb
8/sk6l1c8eOUYYMUzKFZifaZGb12qDjRt4pZmk51aMTzg0WCpElJG+7Uqr4QQhZP
p6xeNuUQq6WwxtlDkmo79Uzkrurb5tN2/hZ1RcJhs3EdHfpR0MjIyH3Znnb31gnu
39VjHhg=
=4KP/
-----END PGP SIGNATURE-----
Merge tag 'v5.12-rc7' into ecryptfs/next
Required to pick up idmapped mount changes which changed some function
parameters.
Commit 2217b98262 ("binfmt_flat: revert "binfmt_flat: don't offset
the data start"") restored offsetting the start of the data section by
a number of words defined by MAX_SHARED_LIBS. As a result, since
MAX_SHARED_LIBS is never 0, a gap between the text and data sections
always exists. For architectures which cannot support a such gap
between the text and data sections (e.g. riscv nommu), flat binary
programs cannot be executed.
To allow an architecture to request no data start offset to allow for
contiguous text and data sections for binaries flagged with
FLAT_FLAG_RAM, introduce the new config option
CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET. Using this new option, the
macro DATA_START_OFFSET_WORDS is conditionally defined in binfmt_flat.c
to MAX_SHARED_LIBS for architectures tolerating or needing the data
start offset (CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET disabled case)
and to 0 when CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET is enabled.
DATA_START_OFFSET_WORDS is used in load_flat_file() to calculate the
data section length and start position.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
If the server hands us a layout that does not match the one we currently
hold, then have pnfs_mark_matching_lsegs_return() just ditch the old
layout if NFS_LSEG_LAYOUTRETURN is not set.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the pNFS layout segment is marked with the NFS_LSEG_LAYOUTRETURN
flag, then the assumption is that it has some reporting requirement
to perform through a layoutreturn (e.g. flexfiles layout stats or error
information).
Fixes: 6d597e1750 ("pnfs: only tear down lsegs that precede seqid in LAYOUTRETURN args")
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
statx(2) notes that any attribute that is not indicated as supported
by stx_attributes_mask has no usable value. Commits 801e523796
("fs: move generic stat response attr handling to vfs_getattr_nosec")
and 712b2698e4 ("fs/stat: Define DAX statx attribute") sets
STATX_ATTR_AUTOMOUNT and STATX_ATTR_DAX, respectively, without setting
stx_attributes_mask, which can cause xfstests generic/532 to fail.
Fix this in the same way as commit 1b9598c8fb ("xfs: fix reporting
supported extra file attributes for statx()")
Fixes: 801e523796 ("fs: move generic stat response attr handling to vfs_getattr_nosec")
Fixes: 712b2698e4 ("fs/stat: Define DAX statx attribute")
Cc: stable@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Colin reported before possible overflow and sign extension problems in
io_provide_buffers_prep(). As Linus pointed out previous attempt did nothing
useful, see d81269fecb ("io_uring: fix provide_buffers sign extension").
Do that with help of check_<op>_overflow helpers. And fix struct
io_provide_buf::len type, as it doesn't make much sense to keep it
signed.
Reported-by: Colin Ian King <colin.king@canonical.com>
Fixes: efe68c1ca8 ("io_uring: validate the full range of provided buffers for access")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/46538827e70fce5f6cdb50897cff4cacc490f380.1618488258.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Don't fail submission attempts if there are CQEs in the overflow
backlog, but give away the decision making to the userspace. It
might be very inconvenient to the userspace, especially if
submission and completion are done by different threads.
We can remove it because of recent changes, where requests
are now not locked by the backlog, backlog entries are allocated
separately, so they take less space and cgroup accounted.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This does the directory entry name verification for the legacy
"fillonedir" (and compat) interface that goes all the way back to the
dark ages before we had a proper dirent, and the readdir() system call
returned just a single entry at a time.
Nobody should use this interface unless you still have binaries from
1991, but let's do it right.
This came up during discussions about unsafe_copy_to_user() and proper
checking of all the inputs to it, as the networking layer is looking to
use it in a few new places. So let's make sure the _old_ users do it
all right and proper, before we add new ones.
See also commit 8a23eb804c ("Make filldir[64]() verify the directory
entry filename is valid") which did the proper modern interfaces that
people actually use. It had a note:
Note that I didn't bother adding the checks to any legacy interfaces
that nobody uses.
which this now corrects. Note that we really don't care about POSIX and
the presense of '/' in a directory entry, but verify_dirent_name() also
ends up doing the proper name length verification which is what the
input checking discussion was about.
[ Another option would be to remove the support for this particular very
old interface: any binaries that use it are likely a.out binaries, and
they will no longer run anyway since we removed a.out binftm support
in commit eac6165570 ("x86: Deprecate a.out support").
But I'm not sure which came first: getdents() or ELF support, so let's
pretend somebody might still have a working binary that uses the
legacy readdir() case.. ]
Link: https://lore.kernel.org/lkml/CAHk-=wjbvzCAhAtvG0d81W5o0-KT5PPTHhfJ5ieDFq+bGtgOYg@mail.gmail.com/
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
- keep the ZC code, drop the code related to reinit
net/bridge/netfilter/ebtables.c
- fix build after move to net_generic
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmB5/80QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpgJWD/0YyQ7YlMKw4x2nS6TiojeD5KN8aTvVVHlf
TetYVXIOaMNPatUDREVl7vgaQVFi2cgWLvshYPIarsQK9ESNJ/UqKi0c6pJsa29w
02K8EJsEdmQmJlyC6tUv/Drvdfzinx+jAm9doz8FrJ+2v5+pYqNFhFTh/JKRebI8
kBEKH/e3eHg305TDXcWOoNxX3jD77v1IJo8JavLt1vncQKb6P3dahGwmkFRpRcHZ
sY33baI2jdO/79ybH0F0fNgD+XGnBYShKB7iOlJfT9SeI8NfpR/OCuuPl3gxeeKZ
PwHcsPHA/b0AAUKpWY0sX/86xMUUab2DPJV5nQR5SrgniJLs0Xqm0dvz1r6QM2BK
7EfwbXK48xm6Wop5WFlo+wqzW11ES/nRHm9leRomeeKo6Goe/4kyEgK93QJOkckv
/kt8t4PIxALlWKmgJgKk5kEWiP/QT0LjaZE2lYy9VcfpSoC7E7ZnK1KlvwbYOfZK
QqjNNsRr2z7zQaUCFHDc3mPe/WkV8DygRrXZYl8qfopqndOduceFaGqNe5iZV2IX
NnC7FGY66dcmjqGmOqr+4RvhUYR2+GtazaYgV14LM1cGBO5OtqlS1m+DRDbiavp4
fpHeGGQx78O97LURNJG4Ti/AR5dfSQLQwZzb60UBk43a9ZwVsLtxFquSaV8dkm3U
0hfxANWYXg==
=KEBW
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.12-2021-04-16' of git://git.kernel.dk/linux-block
Pull io_uring fix from Jens Axboe:
"Fix for a potential hang at exit with SQPOLL from Pavel"
* tag 'io_uring-5.12-2021-04-16' of git://git.kernel.dk/linux-block:
io_uring: fix early sqd_list removal sqpoll hangs
If nfsd already has an open file that it plans to use for IO from
another, it may not need to do another vfs open, but it still may need
to break any delegations in case the existing opens are for another
client.
Symptoms are that we may incorrectly fail to break a delegation on a
write open from a different client, when the delegation-holding client
already has a write open.
Fixes: 28df3d1539 ("nfsd: clients don't need to break their own delegations")
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
A hand-edit while applying this patch on top of a new base resulted in
a reverted check for re-issue, resulting in spurious -EAGAIN errors.
Fixes: 8c130827f4 ("io_uring: don't alter iopoll reissue fail ret code")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We manage these separately right now, just tie it to the request lifetime
and make it be part of the usual REQ_F_NEED_CLEANUP logic.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We have this in two spots right now, which is a bit fragile. In
preparation for moving REQ_F_POLLED cleanup into the same spot, move
the check into a separate helper so we only have it once.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The function was renamed, so get rid of the declaration.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Implement debugfs_create_str() to easily display names and such in
debugfs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.415407080@infradead.org
Introduces the TRAP_PERF si_code, and associated siginfo_t field
si_perf. These will be used by the perf event subsystem to send signals
(if requested) to the task where an event occurred.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Arnd Bergmann <arnd@arndb.de> # asm-generic
Link: https://lkml.kernel.org/r/20210408103605.1676875-6-elver@google.com
If the pNFS layout segment is marked with the NFS_LSEG_LAYOUTRETURN
flag, then the assumption is that it has some reporting requirement
to perform through a layoutreturn (e.g. flexfiles layout stats or error
information).
Fixes: e0b7d420f7 ("pNFS: Don't discard layout segments that are marked for return")
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the NFS super block is being unmounted, then we currently may end up
telling the server that we've forgotten the layout while it is actually
still in use by the client.
In that case, just assume that the client will soon return the layout
anyway, and so return NFS4ERR_DELAY in response to the layout recall.
Fixes: 58ac3e5923 ("NFSv4/pnfs: Clean up nfs_layout_find_inode()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
receive_fd_replace shares almost no code with the general case, so split
it out. Also remove the "Bump the sock usage counts" comment from
both copies, as that is now what __receive_sock actually does.
[AV: ... and make the only user of receive_fd_replace() choose between
it and receive_fd() according to what userland had passed to it in
flags]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The re-add handling isn't correct for the multi wait case, so let's
just disable it for now explicitly until we can get that sorted out. This
just turns it into a one-shot request. Since we pass back whether or not
a poll request terminates in multishot mode on completion, this should
not break properly behaving applications that check for IORING_CQE_F_MORE
on completion.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
overlayfs using jffs2 as the upper filesystem would fail in some cases
since moving to v5.10. The test case used was to run 'touch' on a file
that exists in the lower fs, causing the modification time to be
updated. It returns EINVAL when the bug is triggered.
A bisection showed this was introduced in v5.9-rc1, with commit
36e2c7421f ("fs: don't allow splice read/write without explicit ops").
Reverting that commit restores the expected behaviour.
Some digging showed that this was due to jffs2 lacking an implementation
of splice_write. (For unknown reasons the warn_unsupported that should
trigger was not displaying any output).
Adding this patch resolved the issue and the test now passes.
Cc: stable@vger.kernel.org
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Lei YU <yulei.sh@bytedance.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Building with W=1 shows a few warnings for empty macros:
fs/jffs2/scan.c: In function 'jffs2_scan_xattr_node':
fs/jffs2/scan.c:378:66: error: suggest braces around empty body in an 'if' statement [-Werror=empty-body]
378 | jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset);
| ^
fs/jffs2/scan.c: In function 'jffs2_scan_xref_node':
fs/jffs2/scan.c:434:65: error: suggest braces around empty body in an 'if' statement [-Werror=empty-body]
434 | jffs2_sum_add_xref_mem(s, rr, ofs - jeb->offset);
| ^
fs/jffs2/scan.c: In function 'jffs2_scan_eraseblock':
fs/jffs2/scan.c:893:88: error: suggest braces around empty body in an 'if' statement [-Werror=empty-body]
893 | jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen));
| ^
Change all these macros to 'do { } while (0)' statements to avoid the
warnings and make the code a little more robust.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Weinberger <richard@nod.at>
KASAN report a slab-out-of-bounds problem. The logs are listed below.
It is because in function jffs2_scan_dirent_node, we alloc "checkedlen+1"
bytes for fd->name and we check crc with length rd->nsize. If checkedlen
is less than rd->nsize, it will cause the slab-out-of-bounds problem.
jffs2: Dirent at *** has zeroes in name. Truncating to %d char
==================================================================
BUG: KASAN: slab-out-of-bounds in crc32_le+0x1ce/0x260 at addr ffff8800842cf2d1
Read of size 1 by task test_JFFS2/915
=============================================================================
BUG kmalloc-64 (Tainted: G B O ): kasan: bad access detected
-----------------------------------------------------------------------------
INFO: Allocated in jffs2_alloc_full_dirent+0x2a/0x40 age=0 cpu=1 pid=915
___slab_alloc+0x580/0x5f0
__slab_alloc.isra.24+0x4e/0x64
__kmalloc+0x170/0x300
jffs2_alloc_full_dirent+0x2a/0x40
jffs2_scan_eraseblock+0x1ca4/0x3b64
jffs2_scan_medium+0x285/0xfe0
jffs2_do_mount_fs+0x5fb/0x1bbc
jffs2_do_fill_super+0x245/0x6f0
jffs2_fill_super+0x287/0x2e0
mount_mtd_aux.isra.0+0x9a/0x144
mount_mtd+0x222/0x2f0
jffs2_mount+0x41/0x60
mount_fs+0x63/0x230
vfs_kern_mount.part.6+0x6c/0x1f4
do_mount+0xae8/0x1940
SyS_mount+0x105/0x1d0
INFO: Freed in jffs2_free_full_dirent+0x22/0x40 age=27 cpu=1 pid=915
__slab_free+0x372/0x4e4
kfree+0x1d4/0x20c
jffs2_free_full_dirent+0x22/0x40
jffs2_build_remove_unlinked_inode+0x17a/0x1e4
jffs2_do_mount_fs+0x1646/0x1bbc
jffs2_do_fill_super+0x245/0x6f0
jffs2_fill_super+0x287/0x2e0
mount_mtd_aux.isra.0+0x9a/0x144
mount_mtd+0x222/0x2f0
jffs2_mount+0x41/0x60
mount_fs+0x63/0x230
vfs_kern_mount.part.6+0x6c/0x1f4
do_mount+0xae8/0x1940
SyS_mount+0x105/0x1d0
entry_SYSCALL_64_fastpath+0x1e/0x97
Call Trace:
[<ffffffff815befef>] dump_stack+0x59/0x7e
[<ffffffff812d1d65>] print_trailer+0x125/0x1b0
[<ffffffff812d82c8>] object_err+0x34/0x40
[<ffffffff812dadef>] kasan_report.part.1+0x21f/0x534
[<ffffffff81132401>] ? vprintk+0x2d/0x40
[<ffffffff815f1ee2>] ? crc32_le+0x1ce/0x260
[<ffffffff812db41a>] kasan_report+0x26/0x30
[<ffffffff812d9fc1>] __asan_load1+0x3d/0x50
[<ffffffff815f1ee2>] crc32_le+0x1ce/0x260
[<ffffffff814764ae>] ? jffs2_alloc_full_dirent+0x2a/0x40
[<ffffffff81485cec>] jffs2_scan_eraseblock+0x1d0c/0x3b64
[<ffffffff81488813>] ? jffs2_scan_medium+0xccf/0xfe0
[<ffffffff81483fe0>] ? jffs2_scan_make_ino_cache+0x14c/0x14c
[<ffffffff812da3e9>] ? kasan_unpoison_shadow+0x35/0x50
[<ffffffff812da3e9>] ? kasan_unpoison_shadow+0x35/0x50
[<ffffffff812da462>] ? kasan_kmalloc+0x5e/0x70
[<ffffffff812d5d90>] ? kmem_cache_alloc_trace+0x10c/0x2cc
[<ffffffff818169fb>] ? mtd_point+0xf7/0x130
[<ffffffff81487dc9>] jffs2_scan_medium+0x285/0xfe0
[<ffffffff81487b44>] ? jffs2_scan_eraseblock+0x3b64/0x3b64
[<ffffffff812da3e9>] ? kasan_unpoison_shadow+0x35/0x50
[<ffffffff812da3e9>] ? kasan_unpoison_shadow+0x35/0x50
[<ffffffff812da462>] ? kasan_kmalloc+0x5e/0x70
[<ffffffff812d57df>] ? __kmalloc+0x12b/0x300
[<ffffffff812da462>] ? kasan_kmalloc+0x5e/0x70
[<ffffffff814a2753>] ? jffs2_sum_init+0x9f/0x240
[<ffffffff8148b2ff>] jffs2_do_mount_fs+0x5fb/0x1bbc
[<ffffffff8148ad04>] ? jffs2_del_noinode_dirent+0x640/0x640
[<ffffffff812da462>] ? kasan_kmalloc+0x5e/0x70
[<ffffffff81127c5b>] ? __init_rwsem+0x97/0xac
[<ffffffff81492349>] jffs2_do_fill_super+0x245/0x6f0
[<ffffffff81493c5b>] jffs2_fill_super+0x287/0x2e0
[<ffffffff814939d4>] ? jffs2_parse_options+0x594/0x594
[<ffffffff81819bea>] mount_mtd_aux.isra.0+0x9a/0x144
[<ffffffff81819eb6>] mount_mtd+0x222/0x2f0
[<ffffffff814939d4>] ? jffs2_parse_options+0x594/0x594
[<ffffffff81819c94>] ? mount_mtd_aux.isra.0+0x144/0x144
[<ffffffff81258757>] ? free_pages+0x13/0x1c
[<ffffffff814fa0ac>] ? selinux_sb_copy_data+0x278/0x2e0
[<ffffffff81492b35>] jffs2_mount+0x41/0x60
[<ffffffff81302fb7>] mount_fs+0x63/0x230
[<ffffffff8133755f>] ? alloc_vfsmnt+0x32f/0x3b0
[<ffffffff81337f2c>] vfs_kern_mount.part.6+0x6c/0x1f4
[<ffffffff8133ceec>] do_mount+0xae8/0x1940
[<ffffffff811b94e0>] ? audit_filter_rules.constprop.6+0x1d10/0x1d10
[<ffffffff8133c404>] ? copy_mount_string+0x40/0x40
[<ffffffff812cbf78>] ? alloc_pages_current+0xa4/0x1bc
[<ffffffff81253a89>] ? __get_free_pages+0x25/0x50
[<ffffffff81338993>] ? copy_mount_options.part.17+0x183/0x264
[<ffffffff8133e3a9>] SyS_mount+0x105/0x1d0
[<ffffffff8133e2a4>] ? copy_mnt_ns+0x560/0x560
[<ffffffff810e8391>] ? msa_space_switch_handler+0x13d/0x190
[<ffffffff81be184a>] entry_SYSCALL_64_fastpath+0x1e/0x97
[<ffffffff810e9274>] ? msa_space_switch+0xb0/0xe0
Memory state around the buggy address:
ffff8800842cf180: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8800842cf200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8800842cf280: fc fc fc fc fc fc 00 00 00 00 01 fc fc fc fc fc
^
ffff8800842cf300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8800842cf380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Cc: stable@vger.kernel.org
Reported-by: Kunkun Xu <xukunkun1@huawei.com>
Signed-off-by: lizhe <lizhe67@huawei.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
There is no other way to directly report/query this
quantity. It is useful when planing how given filesystem
can be resized.
Signed-off-by: Martin Devera <devik@eaxlabs.cz>
Signed-off-by: Richard Weinberger <richard@nod.at>
This is required to provide uuid based integrity functionality for:
ima_policy (fsuuid option) and the 'evmctl' command ('--uuid' option).
Co-developed-by: Oleksij Rempel <o.rempel@pengutronix.de>
Co-developed-by: Juergen Borleis <jbe@pengutronix.de>
Signed-off-by: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Compared to lzo and zlib, zstd is the best all-around performer, both in terms
of speed and compression ratio. Set it as the default, if available.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Conside the following case, it just write a big file into flash,
when complete writing, delete the file, and then power off promptly.
Next time power on, we'll get a replay list like:
...
LEB 1105:211344 len 4144 deletion 0 sqnum 428783 key type 1 inode 80
LEB 15:233544 len 160 deletion 1 sqnum 428785 key type 0 inode 80
LEB 1105:215488 len 4144 deletion 0 sqnum 428787 key type 1 inode 80
...
In the replay list, data nodes' deletion are 0, and the inode node's
deletion is 1. In current logic, the file's dentry will be removed,
but inode and the flash space it occupied will be reserved.
User will see that much free space been disappeared.
We only need to check the deletion value of the following inode type
node of the replay entry.
Fixes: e58725d51f ("ubifs: Handle re-linking of inodes correctly while recovery")
Cc: stable@vger.kernel.org
Signed-off-by: Guochun Mao <guochun.mao@mediatek.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
The in-memory XFS_IFEXTENTS is now only used to check if an inode with
extents still needs the extents to be read into memory before doing
operations that need the extent map. Add a new xfs_need_iread_extents
helper that returns true for btree format forks that do not have any
entries in the in-memory extent btree, and use that instead of checking
the XFS_IFEXTENTS flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just check for an inline format fork instead of the using the equivalent
in-memory XFS_IFINLINE flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just check for a btree format fork instead of the using the equivalent
in-memory XFS_IFBROOT flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Stop using the XFS_IFEXTENTS flag, and instead switch on the fork format
in xfs_idestroy_fork to decide how to cleanup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Directly return from the subfunctions and avoid the error variable. Also
remove the not really needed dp local variable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_bmap_one_block is only called for the attribute fork. Move it to
xfs_attr.c, drop the unused whichfork argument and code only executed for
the data fork and rename the result to xfs_attr_is_leaf.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move the XFS_IFEXTENTS check from the callers into xfs_iread_extents to
simplify the code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Since commit 501cb1849f ("nfsd: rip out the raparms cache")
nrservs is not used in nfsd_startup_generic()
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[ 245.463317] INFO: task iou-sqp-1374:1377 blocked for more than 122 seconds.
[ 245.463334] task:iou-sqp-1374 state:D flags:0x00004000
[ 245.463345] Call Trace:
[ 245.463352] __schedule+0x36b/0x950
[ 245.463376] schedule+0x68/0xe0
[ 245.463385] __io_uring_cancel+0xfb/0x1a0
[ 245.463407] do_exit+0xc0/0xb40
[ 245.463423] io_sq_thread+0x49b/0x710
[ 245.463445] ret_from_fork+0x22/0x30
It happens when sqpoll forgot to run park_task_work and goes to exit,
then exiting user may remove ctx from sqd_list, and so corresponding
io_sq_thread() -> io_uring_cancel_sqpoll() won't be executed. Hopefully
it just stucks in do_exit() in this case.
Fixes: dbe1bdbb39 ("io_uring: handle signals for IO threads like a normal thread")
Reported-by: Joakim Hassila <joj@mac.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBzdS0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGDdAIAIpKH/tAHhH7s7QH
m5ewgE8foP7M5Ue9fp3+JmbtaYSzhCAMcKhqGtat/zk5PvA9AoYCDXrTetfYtBHh
LUOmhL9hcKItNobfkYBok6BiFjGUEL3HMqz5w+MUsMwnXIc4RXqfJmsQ932z9Kxf
yDwe6ehIzJVrQLI/C0mTamYRHu2aiZ1VWzhKuT493rLeg0R2odCCIClPN+/QvCwb
8/sk6l1c8eOUYYMUzKFZifaZGb12qDjRt4pZmk51aMTzg0WCpElJG+7Uqr4QQhZP
p6xeNuUQq6WwxtlDkmo79Uzkrurb5tN2/hZ1RcJhs3EdHfpR0MjIyH3Znnb31gnu
39VjHhg=
=4KP/
-----END PGP SIGNATURE-----
Merge tag 'v5.12-rc7' into driver-core-next
We need the driver core fix in here as well.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Having poll update function as a part of IORING_OP_POLL_ADD is not
great, we have to do hack around struct layouts and add some overhead in
the way of more popular POLL_ADD. Even more serious drawback is that
POLL_ADD requires file and always grabs it, and so poll update, which
doesn't need it.
Incorporate poll update into IORING_OP_POLL_REMOVE instead of
IORING_OP_POLL_ADD. It also more consistent with timeout remove/update.
Fixes: b69de288e9 ("io_uring: allow events and user_data update of running poll requests")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Isolate poll mask SQE parsing and preparations into a new function,
which will be reused shortly.
Fixes: b69de288e9 ("io_uring: allow events and user_data update of running poll requests")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Don't allow REQ_OP_POLL_REMOVE to kill apoll requests, users should not
know about it. Also, remove weird -EACCESS in io_poll_update(), it
shouldn't know anything about apoll, and have to work even if happened
to have a poll and an async poll'ed request with same user_data.
Fixes: b69de288e9 ("io_uring: allow events and user_data update of running poll requests")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Don't reinit io_ring_exit_work()'s exit work/completions on each
iteration, that's wasteful. Also add list_rotate_left(), so if we failed
to complete the task job, we don't try it again and again but defer it
until others are processed.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a copy offload is performed, we do not expect the source file to
change other than perhaps to see the atime be updated.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the result of a copy offload or clone operation is to grow the
destination file size, then we should update it. The reason is that when
a client holds a delegation, it is authoritative for the file size.
Fixes: 16abd2a0c1 ("NFSv4.2: fix client's attribute cache management for copy_file_range")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Currently the client ignores the value of the sr_eof of the SEEK
operation. According to the spec, if the server didn't find the
requested extent and reached the end of the file, the server
would return sr_eof=true. In case the request for DATA and no
data was found (ie in the middle of the hole), then the lseek
expects that ENXIO would be returned.
Fixes: 1c6dcbe5ce ("NFS: Implement SEEK")
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We (adam zabrocki, alexander matrosov, alexander tereshkin, maksym
bazalii) observed the check:
if (fh->size > sizeof(struct nfs_fh))
should not use the size of the nfs_fh struct which includes an extra two
bytes from the size field.
struct nfs_fh {
unsigned short size;
unsigned char data[NFS_MAXFHSIZE];
}
but should determine the size from data[NFS_MAXFHSIZE] so the memcpy
will not write 2 bytes beyond destination. The proposed fix is to
compare against the NFS_MAXFHSIZE directly, as is done elsewhere in fs
code base.
Fixes: d67ae825a5 ("pnfs/flexfiles: Add the FlexFile Layout Driver")
Signed-off-by: Nikola Livic <nlivic@gmail.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the server returns a filehandle with an invalid length, then trace
that, and return an EREMOTEIO error.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We would like the ability to record other XDR errors, particularly
those that are due to server bugs.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
NFS_INO_REVAL_FORCED is intended to tell us that the cache needs
revalidation despite the fact that we hold a delegation. We shouldn't
need to store it anymore, though.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
For cloned connections cuse_channel_release() will be called more than
once, resulting in use after free.
Prevent device cloning for CUSE, which does not make sense at this point,
and highly unlikely to be used in real life.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
get_user_ns() is done twice (once in virtio_fs_get_tree() and once in
fuse_conn_init()), resulting in a reference leak.
Also looks better to use fsc->user_ns (which *should* be the
current_user_ns() at this point).
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
If an incoming FUSE request can't fit on the virtqueue, the request is
placed onto a workqueue so a worker can try to resubmit it later where
there will (hopefully) be space for it next time.
This is fine for requests that aren't larger than a virtqueue's maximum
capacity. However, if a request's size exceeds the maximum capacity of the
virtqueue (even if the virtqueue is empty), it will be doomed to a life of
being placed on the workqueue, removed, discovered it won't fit, and placed
on the workqueue yet again.
Furthermore, from section 2.6.5.3.1 (Driver Requirements: Indirect
Descriptors) of the virtio spec:
"A driver MUST NOT create a descriptor chain longer than the Queue
Size of the device."
To fix this, limit the number of pages FUSE will use for an overall
request. This way, each request can realistically fit on the virtqueue
when it is decomposed into a scattergather list and avoid violating section
2.6.5.3.1 of the virtio spec.
Signed-off-by: Connor Kuehl <ckuehl@redhat.com>
Reviewed-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In fuse when a direct/write-through write happens we invalidate attrs
because that might have updated mtime/ctime on server and cached
mtime/ctime will be stale.
What about page writeback path. Looks like we don't invalidate attrs
there. To be consistent, invalidate attrs in writeback path as well. Only
exception is when writeback_cache is enabled. In that case we strust local
mtime/ctime and there is no need to invalidate attrs.
Recently users started experiencing failure of xfstests generic/080,
geneirc/215 and generic/614 on virtiofs. This happened only newer "stat"
utility and not older one. This patch fixes the issue.
So what's the root cause of the issue. Here is detailed explanation.
generic/080 test does mmap write to a file, closes the file and then checks
if mtime has been updated or not. When file is closed, it leads to
flushing of dirty pages (and that should update mtime/ctime on server).
But we did not explicitly invalidate attrs after writeback finished. Still
generic/080 passed so far and reason being that we invalidated atime in
fuse_readpages_end(). This is called in fuse_readahead() path and always
seems to trigger before mmaped write.
So after mmaped write when lstat() is called, it sees that atleast one of
the fields being asked for is invalid (atime) and that results in
generating GETATTR to server and mtime/ctime also get updated and test
passes.
But newer /usr/bin/stat seems to have moved to using statx() syscall now
(instead of using lstat()). And statx() allows it to query only ctime or
mtime (and not rest of the basic stat fields). That means when querying
for mtime, fuse_update_get_attr() sees that mtime is not invalid (only
atime is invalid). So it does not generate a new GETATTR and fill stat
with cached mtime/ctime. And that means updated mtime is not seen by
xfstest and tests start failing.
Invalidating attrs after writeback completion should solve this problem in
a generic manner.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When posix access ACL is set, it can have an effect on file mode and it can
also need to clear SGID if.
- None of caller's group/supplementary groups match file owner group.
AND
- Caller is not priviliged (No CAP_FSETID).
As of now fuser server is responsible for changing the file mode as
well. But it does not know whether to clear SGID or not.
So add a flag FUSE_SETXATTR_ACL_KILL_SGID and send this info with SETXATTR
to let file server know that sgid needs to be cleared as well.
Reported-by: Luis Henriques <lhenriques@suse.de>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Fuse client needs to send additional information to file server when it
calls SETXATTR(system.posix_acl_access), so add extra flags field to the
structure.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
With commit f8425c9396 ("fuse: 32-bit user space ioctl compat for fuse
device") the matching constraints for the FUSE_DEV_IOC_CLONE ioctl command
are relaxed, limited to the testing of command type and number. As Arnd
noticed, this is wrong as it wouldn't ensure the correctness of the data
size or direction for the received FUSE device ioctl.
Fix by bringing back the comparison of the ioctl received by the FUSE
device to the originally generated FUSE_DEV_IOC_CLONE.
Fixes: f8425c9396 ("fuse: 32-bit user space ioctl compat for fuse device")
Reported-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Alessio Balsini <balsini@android.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
All callers of fuse_short_read already set the .page_zeroing flag, so no
need to do the tail zeroing again.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There are two modes for write(2) and friends in fuse:
a) write through (update page cache, send sync WRITE request to userspace)
b) buffered write (update page cache, async writeout later)
The write through method kept all the page cache pages locked that were
used for the request. Keeping more than one page locked is deadlock prone
and Qian Cai demonstrated this with trinity fuzzing.
The reason for keeping the pages locked is that concurrent mapped reads
shouldn't try to pull possibly stale data into the page cache.
For full page writes, the easy way to fix this is to make the cached page
be the authoritative source by marking the page PG_uptodate immediately.
After this the page can be safely unlocked, since mapped/cached reads will
take the written data from the cache.
Concurrent mapped writes will now cause data in the original WRITE request
to be updated; this however doesn't cause any data inconsistency and this
scenario should be exceedingly rare anyway.
If the WRITE request returns with an error in the above case, currently the
page is not marked uptodate; this means that a concurrent read will always
read consistent data. After this patch the page is uptodate between
writing to the cache and receiving the error: there's window where a cached
read will read the wrong data. While theoretically this could be a
regression, it is unlikely to be one in practice, since this is normal for
buffered writes.
In case of a partial page write to an already uptodate page the locking is
also unnecessary, with the above caveats.
Partial write of a not uptodate page still needs to be handled. One way
would be to read the complete page before doing the write. This is not
possible, since it might break filesystems that don't expect any READ
requests when the file was opened O_WRONLY.
The other solution is to serialize the synchronous write with reads from
the partial pages. The easiest way to do this is to keep the partial pages
locked. The problem is that a write() may involve two such pages (one head
and one tail). This patch fixes it by only locking the partial tail page.
If there's a partial head page as well, then split that off as a separate
WRITE request.
Reported-by: Qian Cai <cai@lca.pw>
Link: https://lore.kernel.org/linux-fsdevel/4794a3fa3742a5e84fb0f934944204b55730829b.camel@lca.pw/
Fixes: ea9b9907b8 ("fuse: implement perform_write")
Cc: <stable@vger.kernel.org> # v2.6.26
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : f2fs_put_page+0x1c/0x26c
lr : __revoke_inmem_pages+0x544/0x75c
f2fs_put_page+0x1c/0x26c
__revoke_inmem_pages+0x544/0x75c
__f2fs_commit_inmem_pages+0x364/0x3c0
f2fs_commit_inmem_pages+0xc8/0x1a0
f2fs_ioc_commit_atomic_write+0xa4/0x15c
f2fs_ioctl+0x5b0/0x1574
file_ioctl+0x154/0x320
do_vfs_ioctl+0x164/0x740
__arm64_sys_ioctl+0x78/0xa4
el0_svc_common+0xbc/0x1d0
el0_svc_handler+0x74/0x98
el0_svc+0x8/0xc
In f2fs_put_page, we access page->mapping is NULL.
The root cause is:
In some cases, the page refcount and ATOMIC_WRITTEN_PAGE
flag miss set for page-priavte flag has been set.
We add f2fs_bug_on like this:
f2fs_register_inmem_page()
{
...
f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
f2fs_bug_on(F2FS_I_SB(inode), !IS_ATOMIC_WRITTEN_PAGE(page));
...
}
The bug on stack follow link this:
PC is at f2fs_register_inmem_page+0x238/0x2b4
LR is at f2fs_register_inmem_page+0x2a8/0x2b4
f2fs_register_inmem_page+0x238/0x2b4
f2fs_set_data_page_dirty+0x104/0x164
set_page_dirty+0x78/0xc8
f2fs_write_end+0x1b4/0x444
generic_perform_write+0x144/0x1cc
__generic_file_write_iter+0xc4/0x174
f2fs_file_write_iter+0x2c0/0x350
__vfs_write+0x104/0x134
vfs_write+0xe8/0x19c
SyS_pwrite64+0x78/0xb8
To fix this issue, let's add page refcount add page-priavte flag.
The page-private flag is not cleared and needs further analysis.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Ge Qiu <qiuge@huawei.com>
Signed-off-by: Dehe Gu <gudehe@huawei.com>
Signed-off-by: Yi Chen <chenyi77@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
f2fs_segment_has_free_slot() was copied and modified from
__next_free_blkoff(), they are almost the same, clean up to
reuse common code as much as possible.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
The only way to get out of io_iopoll_getevents() and continue iterating
is to have empty iopoll_list, otherwise the main loop would just exit.
So, instead of the unlock on 8th time heuristic, do that based on
iopoll_list.
Also, as no one can add new requests to iopoll_list while
io_iopoll_check() hold uring_lock, it's useless to spin with the list
empty, return in that case.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/5b8ebe84f5fff7ffa1f708952dfef7fc78b668e2.1618278933.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As CQE overflows are now untied from requests and so don't hold any
ref, we don't need to handle exiting/exec'ing cases there anymore.
Moreover, it's much nicer in regards to userspace to save overflowed
CQEs whenever possible, so remove failing on in_idle.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/d873b7dab75c7f3039ead9628a745bea01f2cfd2.1618278933.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Don't save return values of hrtimer_try_to_cancel() in a variable, but
use right away. It's in general safer to not have an intermediate
variable, which may be reused and passed out wrongly, but it be
contracted out. Also clean io_timeout_extract().
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/d2566ef7ce632e6882dc13e022a26249b3fd30b5.1618278933.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If io_sqe_files_unregister() faults on io_rsrc_ref_quiesce(), it will
fail to do unregister leaving files referenced. And that may well happen
because of a strayed signal or just because it does allocations inside.
In io_ring_ctx_free() do an unsafe version of unregister, as it's
guaranteed to not have requests by that point and so quiesce is useless.
Cc: stable@vger.kernel.org
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/e696e9eade571b51997d0dc1d01f144c6d685c05.1618278933.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If we're trying to update the inode because a previous update left the
cache in a partially unrevalidated state, then allow the update if the
change attrs match.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the NFSv4.2 server supports the 'change_attr_type' attribute, then
allow the client to optimise its attribute cache update strategy.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
The change_attr_type allows the server to provide a description of how
the change attribute will behave. This again will allow the client to
optimise its behaviour w.r.t. attribute revalidation.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When the client is caching data and a write delegation is held, then the
server may send a CB_GETATTR to query the attributes. When this happens,
the client is supposed to bump the change attribute value that it
returns if it holds cached data.
However that process uses a value that is stored in the delegation. We
do not want to bump the change attribute held in the inode.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We should not be invalidating the access or acl caches in
nfs_check_inode_attributes(), since the point is we're unsure about
whether the contents of the struct nfs_fattr are fully up to date.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Commit 0b467264d0 ("NFS: Fix attribute revalidation") changed the way
we populate the 'invalid' attribute, and made the line that strips away
the NFS_INO_INVALID_ATTR bits redundant.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If there is an outstanding layoutcommit, then the list of attributes
whose values are expected to change is not the full set. So let's
be explicit about the full list.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
chown()/chgrp() and chmod() are separate operations, and in addition,
there are mode operations that are performed automatically by the
server. So let's track mode validity separately from the file ownership
validity.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Rename can cause us to revalidate the access cache, so lets track the
nlinks separately from the mode/uid/gid.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Don't remove flags from the set retrieved from the cache_validity.
We do want to retrieve all attributes that are listed as being
invalid, whether or not there is a delegation set.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Function parameter 'cmd' is rewritten with unused value at locks.c
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
This is needed to allow generic/607 to pass for file systems with the
inline data_feature enabled, and it allows the use of file systems
where the directories use inline_data, while the files are accessed
via DAX.
Cc: stable@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When checking cache validity, be more specific than just 'we want to
check the page cache validity'. In almost all cases, we want to check
that change attribute, and possibly also the size.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add an argument to nfs_revalidate_inode() to allow callers to specify
which attributes they need to check for validity.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When we do a 'chown' or 'chgrp', the server will clear the suid/sgid
bits. Ensure that we mirror that in nfs_setattr_update_inode().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If statx has valid attributes available that weren't asked for, then
return them and set the result mask appropriately.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
If the user doesn't set STATX_UID/GID/MODE, then don't care if they are
known to be stale. Ditto if we're not being asked for the file size.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Ensure that when the change attribute or the size change, we also
remember to revalidate the space used.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When we're looking to revalidate the page cache, we should just ensure
that we mark the change attribute invalid.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We don't currently support STATX_BTIME, so don't advertise it in the
return values for nfs_getattr().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We need to use unsigned long subtraction and then convert to signed in
order to deal correcly with C overflow rules.
Fixes: f506200346 ("NFS: Set an attribute barrier on all updates")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Whether we're allocating or delallocating space, we should flush out the
pending writes in order to avoid races with attribute updates.
Fixes: 1e564d3dbd ("NFSv4.2: Fix a race in nfs42_proc_deallocate()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
We can't use nfs4_fattr_bitmap as a bitmask, because it hasn't been
filtered to represent the attributes supported by the server. Instead,
let's revert to using server->cache_consistency_bitmask after adding in
the missing SPACE_USED attribute.
Fixes: 913eca1aea ("NFS: Fallocate should use the nfs4_fattr_bitmap")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
As currently set, the calls to nfs4_bitmask_adjust() will end up
overwriting the contents of the nfs_server cache_consistency_bitmask
field.
The intention here should be to modify a private copy of that mask in
the close/delegreturn/write arguments.
Fixes: 76bd5c016e ("NFSv4: make cache consistency bitmask dynamic")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Revert of revert of "io_uring: wait potential ->release() on resurrect",
which adds a helper for resurrect not racing completion reinit, as was
removed because of a strange bug with no clear root or link to the
patch.
Was improved, instead of rcu_synchronize(), just wait_for_completion()
because we're at 0 refs and it will happen very shortly. Specifically
use non-interruptible version to ignore all pending signals that may
have ended prior interruptible wait.
This reverts commit cb5e1b8130.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/7a080c20f686d026efade810b116b72f88abaff9.1618101759.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
req_set_fail_links() condition checking is bulky. Even though it's
always in a slow path, it's inlined and generates lots of extra code,
simplify it be moving HARDLINK checking into helpers killing linked
requests.
text data bss dec hex filename
before: 79318 12330 8 91656 16608 ./fs/io_uring.o
after: 79126 12330 8 91464 16548 ./fs/io_uring.o
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/96a9387db658a9d5a44ecbfd57c2a62cb888c9b6.1618101759.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We don't need to store file tables in rsrc nodes, for now it's easier to
handle tables not generically, so move file tables into the context. A
nice side effect is having one less pointer dereference for request with
fixed file initialisation.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/de9fc4cd3545f24c26c03be4556f58ba3d18b9c3.1618101759.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In preparation for more changes do a little cleanup of
io_sqe_buffers_register(). Move all args/invariant checking into it from
io_buffers_map_alloc(), because it's confusing. And add a bit more
cleaning for the loop.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/93292cb9708c8455e5070cc855861d94e11ca042.1618101759.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The FS_IOC_[GS]ETFLAGS/FS_IOC_FS[GS]ETXATTR ioctls are now handled via the
fileattr api. The only unconverted filesystem remaining is CIFS and it is
not allowed to be overlayed due to case insensitive filenames.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Since fuse just passes ioctl args through to/from server, converting to the
fileattr API is more involved, than most other filesystems.
Both .fileattr_set() and .fileattr_get() need to obtain an open file to
operate on. The simplest way is with the following sequence:
FUSE_OPEN
FUSE_IOCTL
FUSE_RELEASE
If this turns out to be a performance problem, it could be optimized for
the case when there's already a file (any file) open for the inode.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Remove vfs_ioc_setflags_prepare(), vfs_ioc_fssetxattr_check() and
simple_fill_fsxattr(), which are no longer used.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Richard Weinberger <richard@nod.at>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Joel Becker <jlbec@evilplan.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Mike Marshall <hubcap@omnibond.com>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: David Sterba <dsterba@suse.com>
Add stacking for the fileattr operations.
Add hack for calling security_file_ioctl() for now. Probably better to
have a pair of specific hooks for these operations.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There's a substantial amount of boilerplate in filesystems handling
FS_IOC_[GS]ETFLAGS/ FS_IOC_FS[GS]ETXATTR ioctls.
Also due to userspace buffers being involved in the ioctl API this is
difficult to stack, as shown by overlayfs issues related to these ioctls.
Introduce a new internal API named "fileattr" (fsxattr can be confused with
xattr, xflags is inappropriate, since this is more than just flags).
There's significant overlap between flags and xflags and this API handles
the conversions automatically, so filesystems may choose which one to use.
In ->fileattr_get() a hint is provided to the filesystem whether flags or
xattr are being requested by userspace, but in this series this hint is
ignored by all filesystems, since generating all the attributes is cheap.
If a filesystem doesn't implemement the fileattr API, just fall back to
f_op->ioctl(). When all filesystems are converted, the fallback can be
removed.
32bit compat ioctls are now handled by the generic code as well.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Randy reports the following error on CONFIG_BLOCK not being set:
../fs/io_uring.c: In function ‘kiocb_done’:
../fs/io_uring.c:2766:7: error: implicit declaration of function ‘io_resubmit_prep’; did you mean ‘io_put_req’? [-Werror=implicit-function-declaration]
if (io_resubmit_prep(req)) {
Provide a dummy stub for io_resubmit_prep() like we do for
io_rw_should_reissue(), which also helps remove an ifdef sequence from
io_complete_rw_iopoll() as well.
Fixes: 8c130827f4 ("io_uring: don't alter iopoll reissue fail ret code")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The test in ovl_dentry_version_inc() was out-dated and did not include
the case where readdir cache is used on a non-merge dir that has origin
xattr, indicating that it may contain leftover whiteouts.
To make the code more robust, use the same helper ovl_dir_is_real()
to determine if readdir cache should be used and if readdir cache should
be invalidated.
Fixes: b79e05aaa1 ("ovl: no direct iteration for dir with origin xattr")
Link: https://lore.kernel.org/linux-unionfs/CAOQ4uxht70nODhNHNwGFMSqDyOKLXOKrY0H6g849os4BQ7cokA@mail.gmail.com/
Cc: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Commit 146d62e5a5 ("ovl: detect overlapping layers") made sure we don't
have overlapping layers, but it also broke the arguably valid use case of
mount -olowerdir=/,upperdir=/subdir,..
where upperdir overlaps lowerdir on the same filesystem. This has been
causing regressions.
Revert the check, but only for the specific case where upperdir and/or
workdir are subdirectories of lowerdir. Any other overlap (e.g. lowerdir
is subdirectory of upperdir, etc) case is crazy, so leave the check in
place for those.
Overlaps are detected at lookup time too, so reverting the mount time check
should be safe.
Fixes: 146d62e5a5 ("ovl: detect overlapping layers")
Cc: <stable@vger.kernel.org> # v5.2
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This was missed when adding the option.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Vivek Goyal <vgoyal@redhat.com>
Fixes: 2d2f2d7322 ("ovl: user xattr")
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
A typo is found out by codespell tool:
$ codespell ./fs/overlayfs/
./fs/overlayfs/util.c:217: dependig ==> depending
Fix a typo found by codespell.
Signed-off-by: Xiong Zhenwu <xiong.zhenwu@zte.com.cn>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In ovl_xattr_set() we have already copied attr of real inode
so no need to copy it again in ovl_posix_acl_xattr_set().
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>