This patch reverses the order of fetching log from SAL and
checking poll threshold. This will fix following trivial issues:
- If SAL_GET_SATE_INFO is unbelievably slow (due to huge system
or just its silly implementation) and if it takes more than
1/5 sec, CMCI/CPEI will never switch to CMCP/CPEP.
- Assuming terrible flood of interrupt (continuous corrected
errors let all CPUs enter to handler at once and bind them
in it), CPUs will be serialized by IA64_LOG_LOCK(*).
Now we check the poll threshold after the lock and log fetch,
so we need to call SAL_GET_STATE_INFO (num_online_cpus() + 4)
times in the worst case.
if we can check the threshold before the lock, we can shut up
interrupts quickly without waiting preceding log fetches, and
the number of times will be reduced to (num_online_cpus()) in
the same situation.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Printing message to console from MCA/INIT handler is useful,
however doing oops_in_progress = 1 in them exactly makes
something in kernel wrong. Especially it sounds ugly if
system goes wrong after returning from recoverable MCA.
This patch adds ia64_mca_printk() function that collects
messages into temporary-not-so-large message buffer during
in MCA/INIT environment and print them out later, after
returning to normal context or when handlers determine to
down the system.
Also this print function is exported for use in extensional
MCA handler. It would be useful to describe detail about
recovery.
NOTE:
I don't think it is sane thing if temporary message buffer
is enlarged enough to hold whole stack dumps from INIT, so
buffering is disabled during stack dump from INIT-monarch
(= default_monarch_init_process). please fix it in future.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
cleanup: remove task_t and convert all the uses to struct task_struct. I
introduced it for the scheduler anno and it was a mistake.
Conversion was mostly scripted, the result was reviewed and all
secondary whitespace and style impact (if any) was fixed up by hand.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use the new IRQF_ constants and remove the SA_INTERRUPT define
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cleanup: remove irq_descp() - explicit use of irq_desc[] is shorter and more
readable.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ia64_wait_for_slaves() was changed in 2.6.17-rc1 to report the slave
state. It incorrectly assumes that all slaves are for MCA, but
ia64_wait_for_slaves() is also called from the INIT monarch handler.
The existing message is very misleading, so correct it.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
The MCA/INIT handlers maintain important state in the SAL to OS (sos)
area and in the monarch_cpu flag. Kernel debuggers (such as KDB) need
this data, and may need to adjust the monarch_cpu field so make the
data available to the notify_die hooks. Define two more events for
calling the functions on the notify_die chain.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Memory errors encountered by user applications may surface
when the CPU is running in kernel context. The current code
will not attempt recovery if the MCA surfaces in kernel
context (privilage mode 0). This patch adds a check for cases
where the user initiated the load that surfaces in kernel
interrupt code.
An example is a user process lauching a load from memory
and the data in memory had bad ECC. Before the bad data
gets to the CPU register, and interrupt comes in. The
code jumps to the IVT interrupt entry point and begins
execution in kernel context. The process of saving the
user registers (SAVE_REST) causes the bad data to be loaded
into a CPU register, triggering the MCA. The MCA surfaces in
kernel context, even though the load was initiated from
user context.
As suggested by David and Tony, this patch uses an exception
table like approach, puting the tagged recovery addresses in
a searchable table. One difference from the exception table
is that MCAs do not surface in precise places (such as with
a TLB miss), so instead of tagging specific instructions,
address ranges are registers. A single macro is used to do
the tagging, with the input parameter being the label
of the starting address and the macro being the ending
address. This limits clutter in the code.
This patch only tags one spot, the interrupt ivt entry.
Testing showed that spot to be a "heavy hitter" with
MCAs surfacing while saving user registers. Other spots
can be added as needed by adding a single macro.
Signed-off-by: Russ Anderson (rja@sgi.com)
Signed-off-by: Tony Luck <tony.luck@intel.com>
Mark init related variable and functions with appropriate
__init* declaration to mca functions.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
No platform in the community tree uses PLATFORM_MCA_HANDLERS, remove
the references.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Update the comm field on the MCA handler for user tasks as well as for
verified kernel tasks. This helps to identify the task that was
running when the MCA occurred.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Print a message identifying the monarch MCA handler. Print a summary
of the status of the slave MCA cpus.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
on ia64 thread_info is at the constant offset from task_struct and stack
is embedded into the same beast. Set __HAVE_THREAD_FUNCTIONS, made
task_thread_info() just add a constant.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
here is the BSP removal support for IA64. Its pretty much the same thing that
was released a while back, but has your feedback incorporated.
- Removed CONFIG_BSP_REMOVE_WORKAROUND and associated cmdline param
- Fixed compile issue with sn2/zx1 due to a undefined fix_b0_for_bsp
- some formatting nits (whitespace etc)
This has been tested on tiger and long back by alex on hp systems as well.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
notify_die() added for MCA_{MONARCH,SLAVE,RENDEZVOUS}_{ENTER,PROCESS,LEAVE} and
INIT_{MONARCH,SLAVE}_{ENTER,PROCESS,LEAVE}. We need multiple
notification points for these events because they can take many seconds
to run which has nasty effects on the behaviour of the rest of the
system.
DIE_SS replaced by a generic DIE_FAULT which checks the vector number,
to allow interception of faults other than SS.
DIE_MACHINE_{HALT,RESTART} added to allow last minute close down
processing, especially when the halt/restart routines are called from
error handlers.
DIE_OOPS added.
The check for kprobe's break numbers has been moved from traps.c to
kprobes.c, allowing DIE_BREAK to be used for any additional break
numbers, i.e. it is no longer kprobes specific.
Hooks for kernel debuggers and kernel dumpers added, ENTER and LEAVE.
Both of these disable the system for long periods which impact on
watchdogs and heartbeat systems in general. More patches to come that
use these events to reset watchdogs and heartbeats.
unregister_die_notifier() added and both routines exported. Requested
by Dean Nelson.
Lock removed from {un,}register_die_notifier. notifier_chain_register()
already takes a lock. Also the generic notifier chain locking is being
reworked to distinguish between callbacks that can block and those that
cannot, the lock in {un,}register_die_notifier would interfere with
that change. http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2
Leading white space removed from arch/ia64/kernel/kprobes.c.
Typo in mca.c in original version of this patch found & fixed by Dean
Nelson.
Signed-off-by: Keith Owens <kaos@sgi.com>
Acked-by: Dean Nelson <dcn@sgi.com>
Acked-by: Anil Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
In arch/ia64 change the explicit use of a for-loop using NR_CPUS into the
general for_each_online_cpu() construct. This widens the scope of potential
future optimizations of the general constructs, as well as takes advantage
of the existing optimizations of first_cpu() and next_cpu(), which is
advantageous when the true CPU count is much smaller than NR_CPUS.
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
I've noticed a kernel hang during a storm of CMC interrupts, which was
tracked down to the continual execution of the interrupt handler.
There's code in the CMC handler that's supposed to disable CMC
interrupts and switch to polling mode when it sees a bunch of CMCs.
Because disabling CMCs across all CPUs isn't safe in interrupt context,
the disable is done with a schedule_work(). But with continual CMC
interrupts, the schedule_work() never gets executed.
The following patch immediately disables CMC interrupts for the current
CPU. This then allows (at least) one CPU to ignore CMC interrupts,
execute the schedule_work() code, and disable CMC interrupts on the rest
of the CPUs.
Acked-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Bryan Sutula <Bryan.Sutula@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
The bulk of the change. Use per cpu MCA/INIT stacks. Change the SAL
to OS state (sos) to be per process. Do all the assembler work on the
MCA/INIT stacks, leaving the original stack alone. Pass per cpu state
data to the C handlers for MCA and INIT, which also means changing the
mca_drv interfaces slightly. Lots of verification on whether the
original stack is usable before converting it to a sleeping process.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ACPI 3.0 added a Correctable Platform Error Interrupt (CPEI)
Processor Overide flag to MADT.Platform_Interrupt_Source.
Record the processor that was provided as hint from ACPI.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The attached patch cleans up a compilation warning when ACPI
is turned off (i.e., when compiling for the Ski simulator).
Signed-off-by: Tony Luck <tony.luck@intel.com>
acpi_request_vector() is called in ia64_mca_init() to get the cpe_vector.
The problem is that acpi_request_vector() looks in platform_intr_list[] to
get the vector, but platform_intr_list[] is not initialized with a valid
vector until later (in sn_setup()). Without a valid vector the code
defaults to polling mode.
This patch moves the call to acpi_request_vector() from ia64_mca_init()
to ia64_mca_late_init(), which is after platform_intr_list[] is initialized.
Signed-off-by: Russ Anderson (rja@sgi.com)
Signed-off-by: Tony Luck <tony.luck@intel.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!