- improve dma-debug scalability (Eric Dumazet)
- tiny dma-debug cleanup (Dan Carpenter)
- check for vmap memory in dma_map_single (Kees Cook)
- check for dma_addr_t overflows in dma-direct when using
DMA offsets (Nicolas Saenz Julienne)
- switch the x86 sta2x11 SOC to use more generic DMA code
(Nicolas Saenz Julienne)
- fix arm-nommu dma-ranges handling (Vladimir Murzin)
- use __initdata in CMA (Shyam Saini)
- replace the bus dma mask with a limit (Nicolas Saenz Julienne)
- merge the remapping helpers into the main dma-direct flow (me)
- switch xtensa to the generic dma remap handling (me)
- various cleanups around dma_capable (me)
- remove unused dev arguments to various dma-noncoherent helpers (me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl3f+eULHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPyPg/+PVHCrhmepudQQFHu6wfurE5U77iNnoUifvG+b5z5
5mHmTMkQwyox6rKDe8NuFApAhz1VJDSUgSelPmvTSOIEIGXCvX1p+GqRSVS5YQON
aLzGvbWKE8hCpaPdDHKYDauD1FZGMM8L2P5oOMF9X9fQ94xxRqfqJM6c8iD16Sgg
+aOgPNzTnxQHJFF/Dbt/mjJrKXWI+XF+bgUbH+l9yKa7Dd7ibmJR8yl9hs1jmp0H
1CZ+CizwnAs57rCd1a6Ybc6gj59tySc03NMnnbTko+KDxrcbD3Ee2tpqHVkkCjYz
Yl0m4FIpbotrpokL/FIS727bVvkjbWgoeM+kiVPoYzmZea3pq/tFDr6tp/BxDhFj
TZXSFfgQljlYMD3ppSoklFlfjGriVWV0tPO3arPXwuuMF5EX/IMQmvxei05jpc8n
iELNXOP9iZZkY4tLHy2hn2uWrxBRrS1WQwlLg9hahlNRzyfFSyHeP0zWlVDt+RgF
5CCbEI+HQcUqg1FApB30lQNWTn1+dJftrpKVBlgNBIyIa/z2rFbt8GdSnItxjfQX
/XX8EZbFvF6AcXkgURkYFIoKM/EbYShOSLcYA3PTUtcuTnF6Kk5eimySiGWZTVCS
prruSFDZJOvL3SnOIMIiYVmBdB7lEbDyLI/VYuhoECXEDCJpVmRktNkJNg4q6/E+
fjQ=
=e5wO
-----END PGP SIGNATURE-----
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux; tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- improve dma-debug scalability (Eric Dumazet)
- tiny dma-debug cleanup (Dan Carpenter)
- check for vmap memory in dma_map_single (Kees Cook)
- check for dma_addr_t overflows in dma-direct when using DMA offsets
(Nicolas Saenz Julienne)
- switch the x86 sta2x11 SOC to use more generic DMA code (Nicolas
Saenz Julienne)
- fix arm-nommu dma-ranges handling (Vladimir Murzin)
- use __initdata in CMA (Shyam Saini)
- replace the bus dma mask with a limit (Nicolas Saenz Julienne)
- merge the remapping helpers into the main dma-direct flow (me)
- switch xtensa to the generic dma remap handling (me)
- various cleanups around dma_capable (me)
- remove unused dev arguments to various dma-noncoherent helpers (me)
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux:
* tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping: (22 commits)
dma-mapping: treat dev->bus_dma_mask as a DMA limit
dma-direct: exclude dma_direct_map_resource from the min_low_pfn check
dma-direct: don't check swiotlb=force in dma_direct_map_resource
dma-debug: clean up put_hash_bucket()
powerpc: remove support for NULL dev in __phys_to_dma / __dma_to_phys
dma-direct: avoid a forward declaration for phys_to_dma
dma-direct: unify the dma_capable definitions
dma-mapping: drop the dev argument to arch_sync_dma_for_*
x86/PCI: sta2x11: use default DMA address translation
dma-direct: check for overflows on 32 bit DMA addresses
dma-debug: increase HASH_SIZE
dma-debug: reorder struct dma_debug_entry fields
xtensa: use the generic uncached segment support
dma-mapping: merge the generic remapping helpers into dma-direct
dma-direct: provide mmap and get_sgtable method overrides
dma-direct: remove the dma_handle argument to __dma_direct_alloc_pages
dma-direct: remove __dma_direct_free_pages
usb: core: Remove redundant vmap checks
kernel: dma-contiguous: mark CMA parameters __initdata/__initconst
dma-debug: add a schedule point in debug_dma_dump_mappings()
...
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore).
* Fix for possible overflow in get_tick_count() (Bob Moore).
* Introduction of acpi_unload_table() (Bob Moore).
* Debugger and utilities updates (Erik Schmauss).
* Fix for unloading tables loaded via configfs (Nikolaus Voss).
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams).
- Fix and clean up processing of the HMAT table (Brice Goglin,
Qian Cai, Tao Xu).
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake).
- Always build in support for the Generic Event Device (GED) to
allow one kernel binary to work both on systems with full
hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko).
- Rework the lid blacklist handling in the button driver and add
more lid quirks to it (Hans de Goede).
- Improve ACPI-based device enumeration for some platforms based
on Intel BayTrail SoCs (Hans de Goede).
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
and prevent handlers from being registered for unhandled PMIC
OpRegions (Hans de Goede).
- Unify ACPI _HID/_UID matching (Andy Shevchenko).
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
Evv5nzOIh8Hi
=7Cqr
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream revision
20191018, add support for EFI specific purpose memory, update the ACPI
EC driver to make it work on systems with hardware-reduced ACPI,
improve ACPI-based device enumeration for some platforms, rework the
lid blacklist handling in the button driver and add more lid quirks to
it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
the code and documentation.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore)
* Fix for possible overflow in get_tick_count() (Bob Moore)
* Introduction of acpi_unload_table() (Bob Moore)
* Debugger and utilities updates (Erik Schmauss)
* Fix for unloading tables loaded via configfs (Nikolaus Voss)
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams)
- Fix and clean up processing of the HMAT table (Brice Goglin, Qian
Cai, Tao Xu)
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake)
- Always build in support for the Generic Event Device (GED) to allow
one kernel binary to work both on systems with full hardware ACPI
and hardware-reduced ACPI (Arjan van de Ven)
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko)
- Rework the lid blacklist handling in the button driver and add more
lid quirks to it (Hans de Goede)
- Improve ACPI-based device enumeration for some platforms based on
Intel BayTrail SoCs (Hans de Goede)
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
prevent handlers from being registered for unhandled PMIC OpRegions
(Hans de Goede)
- Unify ACPI _HID/_UID matching (Andy Shevchenko)
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński)"
* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
ACPI: OSI: Shoot duplicate word
ACPI: HMAT: use %u instead of %d to print u32 values
ACPI: NUMA: HMAT: fix a section mismatch
ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
ACPI: NUMA: HMAT: Register HMAT at device_initcall level
device-dax: Add a driver for "hmem" devices
dax: Fix alloc_dax_region() compile warning
lib: Uplevel the pmem "region" ida to a global allocator
x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
arm/efi: EFI soft reservation to memblock
x86/efi: EFI soft reservation to E820 enumeration
efi: Common enable/disable infrastructure for EFI soft reservation
x86/efi: Push EFI_MEMMAP check into leaf routines
efi: Enumerate EFI_MEMORY_SP
ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
ACPICA: Update version to 20191018
ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
ACPICA: acpiexec: initialize all simple types and field units from user input
ACPICA: debugger: add field unit support for acpi_db_get_next_token
...
These are pure cache maintainance routines, so drop the unused
struct device argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Suggested-by: Daniel Vetter <daniel.vetter@ffwll.ch>
* for-next/elf-hwcap-docs:
: Update the arm64 ELF HWCAP documentation
docs/arm64: cpu-feature-registers: Rewrite bitfields that don't follow [e, s]
docs/arm64: cpu-feature-registers: Documents missing visible fields
docs/arm64: elf_hwcaps: Document HWCAP_SB
docs/arm64: elf_hwcaps: sort the HWCAP{, 2} documentation by ascending value
* for-next/smccc-conduit-cleanup:
: SMC calling convention conduit clean-up
firmware: arm_sdei: use common SMCCC_CONDUIT_*
firmware/psci: use common SMCCC_CONDUIT_*
arm: spectre-v2: use arm_smccc_1_1_get_conduit()
arm64: errata: use arm_smccc_1_1_get_conduit()
arm/arm64: smccc/psci: add arm_smccc_1_1_get_conduit()
* for-next/zone-dma:
: Reintroduction of ZONE_DMA for Raspberry Pi 4 support
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
dma/direct: turn ARCH_ZONE_DMA_BITS into a variable
arm64: Make arm64_dma32_phys_limit static
arm64: mm: Fix unused variable warning in zone_sizes_init
mm: refresh ZONE_DMA and ZONE_DMA32 comments in 'enum zone_type'
arm64: use both ZONE_DMA and ZONE_DMA32
arm64: rename variables used to calculate ZONE_DMA32's size
arm64: mm: use arm64_dma_phys_limit instead of calling max_zone_dma_phys()
* for-next/relax-icc_pmr_el1-sync:
: Relax ICC_PMR_EL1 (GICv3) accesses when ICC_CTLR_EL1.PMHE is clear
arm64: Document ICC_CTLR_EL3.PMHE setting requirements
arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear
* for-next/double-page-fault:
: Avoid a double page fault in __copy_from_user_inatomic() if hw does not support auto Access Flag
mm: fix double page fault on arm64 if PTE_AF is cleared
x86/mm: implement arch_faults_on_old_pte() stub on x86
arm64: mm: implement arch_faults_on_old_pte() on arm64
arm64: cpufeature: introduce helper cpu_has_hw_af()
* for-next/misc:
: Various fixes and clean-ups
arm64: kpti: Add NVIDIA's Carmel core to the KPTI whitelist
arm64: mm: Remove MAX_USER_VA_BITS definition
arm64: mm: simplify the page end calculation in __create_pgd_mapping()
arm64: print additional fault message when executing non-exec memory
arm64: psci: Reduce the waiting time for cpu_psci_cpu_kill()
arm64: pgtable: Correct typo in comment
arm64: docs: cpu-feature-registers: Document ID_AA64PFR1_EL1
arm64: cpufeature: Fix typos in comment
arm64/mm: Poison initmem while freeing with free_reserved_area()
arm64: use generic free_initrd_mem()
arm64: simplify syscall wrapper ifdeffery
* for-next/kselftest-arm64-signal:
: arm64-specific kselftest support with signal-related test-cases
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
* for-next/kaslr-diagnostics:
: Provide diagnostics on boot for KASLR
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".
The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback. Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.
For this patch, update the ARM paths that consider
EFI_CONVENTIONAL_MEMORY to optionally take the EFI_MEMORY_SP attribute
into account as a reservation indicator. Publish the soft reservation as
IORES_DESC_SOFT_RESERVED memory, similar to x86.
(Based on an original patch by Ard)
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the introduction of ZONE_DMA in arm64 we moved the default CMA and
crashkernel reservation into that area. This caused a regression on big
machines that need big CMA and crashkernel reservations. Note that
ZONE_DMA is only 1GB big.
Restore the previous behavior as the wide majority of devices are OK
with reserving these in ZONE_DMA32. The ones that need them in ZONE_DMA
will configure it explicitly.
Fixes: 1a8e1cef76 ("arm64: use both ZONE_DMA and ZONE_DMA32")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Calculate the page-aligned end address more simply.
The local variable, "length" is unneeded.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some architectures, notably ARM, are interested in tweaking this
depending on their runtime DMA addressing limitations.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When attempting to executing non-executable memory, the fault message
shows:
Unable to handle kernel read from unreadable memory at virtual address
ffff802dac469000
This may confuse someone, so add a new fault message for instruction
abort.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Xiang Zheng <zhengxiang9@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Move the synchronous exception paths from entry.S into a C file to
improve the code readability.
* for-next/entry-s-to-c:
arm64: entry-common: don't touch daif before bp-hardening
arm64: Remove asmlinkage from updated functions
arm64: entry: convert el0_sync to C
arm64: entry: convert el1_sync to C
arm64: add local_daif_inherit()
arm64: Add prototypes for functions called by entry.S
arm64: remove __exception annotations
This variable is only used in the arch/arm64/mm/init.c file for
ZONE_DMA32 initialisation, no need to expose it.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The previous patches mechanically transformed the assembly version of
entry.S to entry-common.c for synchronous exceptions.
The C version of local_daif_restore() doesn't quite do the same thing
as the assembly versions if pseudo-NMI is in use. In particular,
| local_daif_restore(DAIF_PROCCTX_NOIRQ)
will still allow pNMI to be delivered. This is not the behaviour
do_el0_ia_bp_hardening() and do_sp_pc_abort() want as it should not
be possible for the PMU handler to run as an NMI until the bp-hardening
sequence has run.
The bp-hardening calls were placed where they are because this was the
first C code to run after the relevant exceptions. As we've now moved
that point earlier, move the checks and calls earlier too.
This makes it clearer that this stuff runs before any kind of exception,
and saves modifying PSTATE twice.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that the callers of these functions have moved into C, they no longer
need the asmlinkage annotation. Remove it.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit 7326749801 ("arm64: unwind: reference pt_regs via embedded
stack frame") arm64 has not used the __exception annotation to dump
the pt_regs during stack tracing. in_exception_text() has no callers.
This annotation is only used to blacklist kprobes, it means the same as
__kprobes.
Section annotations like this require the functions to be grouped
together between the start/end markers, and placed according to
the linker script. For kprobes we also have NOKPROBE_SYMBOL() which
logs the symbol address in a section that kprobes parses and
blacklists at boot.
Using NOKPROBE_SYMBOL() instead lets kprobes publish the list of
blacklisted symbols, and saves us from having an arm64 specific
spelling of __kprobes.
do_debug_exception() already has a NOKPROBE_SYMBOL() annotation.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When detecting a spurious EL1 translation fault, we have the CPU retry
the translation using an AT S1E1R instruction, and inspect PAR_EL1 to
determine if the fault was spurious.
When PAR_EL1.F == 0, the AT instruction successfully translated the
address without a fault, which implies the original fault was spurious.
However, in this case we return false and treat the original fault as if
it was not spurious.
Invert the return value so that we treat such a case as spurious.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 42f91093b0 ("arm64: mm: Ignore spurious translation faults taken from the kernel")
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When building arm64 allnoconfig, CONFIG_ZONE_DMA and CONFIG_ZONE_DMA32
get disabled so there is a warning about max_dma being unused.
../arch/arm64/mm/init.c:215:16: warning: unused variable 'max_dma'
[-Wunused-variable]
unsigned long max_dma = min;
^
1 warning generated.
Add __maybe_unused to make this clear to the compiler.
Fixes: 1a8e1cef76 ("arm64: use both ZONE_DMA and ZONE_DMA32")
Reviewed-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Platform implementation for free_initmem() should poison the memory while
freeing it up. Hence pass across POISON_FREE_INITMEM while calling into
free_reserved_area(). The same is being followed in the generic fallback
for free_initmem() and some other platforms overriding it.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arm64 calls memblock_free() for the initrd area in its implementation of
free_initrd_mem(), but this call has no actual effect that late in the boot
process. By the time initrd is freed, all the reserved memory is managed by
the page allocator and the memblock.reserved is unused, so the only purpose
of the memblock_free() call is to keep track of initrd memory for debugging
and accounting.
Without the memblock_free() call the only difference between arm64 and the
generic versions of free_initrd_mem() is the memory poisoning.
Move memblock_free() call to the generic code, enable it there
for the architectures that define ARCH_KEEP_MEMBLOCK and use the generic
implementation of free_initrd_mem() on arm64.
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com> #arm64
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
So far all arm64 devices have supported 32 bit DMA masks for their
peripherals. This is not true anymore for the Raspberry Pi 4 as most of
it's peripherals can only address the first GB of memory on a total of
up to 4 GB.
This goes against ZONE_DMA32's intent, as it's expected for ZONE_DMA32
to be addressable with a 32 bit mask. So it was decided to re-introduce
ZONE_DMA in arm64.
ZONE_DMA will contain the lower 1G of memory, which is currently the
memory area addressable by any peripheral on an arm64 device.
ZONE_DMA32 will contain the rest of the 32 bit addressable memory.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Let the name indicate that they are used to calculate ZONE_DMA32's size
as opposed to ZONE_DMA.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
By the time we call zones_sizes_init() arm64_dma_phys_limit already
contains the result of max_zone_dma_phys(). We use the variable instead
of calling the function directly to save some precious cpu time.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When detecting a spurious EL1 translation fault, we attempt to compare
ESR_EL1.DFSC with PAR_EL1.FST. We erroneously use FIELD_PREP() to
extract PAR_EL1.FST, when we should be using FIELD_GET().
In the wise words of Robin Murphy:
| FIELD_GET() is a UBFX, FIELD_PREP() is a BFI
Using FIELD_PREP() means that that dfsc & ESR_ELx_FSC_TYPE is always
zero, and hence not equal to ESR_ELx_FSC_FAULT. Thus we detect any
unhandled translation fault as spurious.
... so let's use FIELD_GET() to ensure we don't decide all translation
faults are spurious. ESR_EL1.DFSC occupies bits [5:0], and requires no
shifting.
Fixes: 42f91093b0 ("arm64: mm: Ignore spurious translation faults taken from the kernel")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Robin Murphy <robin.murphy@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
If we take an unhandled fault in the kernel, we call show_pte() to dump
the {PGDP,PGD,PUD,PMD,PTE} values for the corresponding page table walk,
where the PGDP value is virt_to_phys(mm->pgd).
The boot-time and runtime kernel page tables, init_pg_dir and
swapper_pg_dir respectively, are kernel symbols. Thus, it is not valid
to call virt_to_phys() on either of these, though we'll do so if we take
a fault on a TTBR1 address.
When CONFIG_DEBUG_VIRTUAL is not selected, virt_to_phys() will silently
fix this up. However, when CONFIG_DEBUG_VIRTUAL is selected, this
results in splats as below. Depending on when these occur, they can
happen to suppress information needed to debug the original unhandled
fault, such as the backtrace:
| Unable to handle kernel paging request at virtual address ffff7fffec73cf0f
| Mem abort info:
| ESR = 0x96000004
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| Data abort info:
| ISV = 0, ISS = 0x00000004
| CM = 0, WnR = 0
| ------------[ cut here ]------------
| virt_to_phys used for non-linear address: 00000000102c9dbe (swapper_pg_dir+0x0/0x1000)
| WARNING: CPU: 1 PID: 7558 at arch/arm64/mm/physaddr.c:15 __virt_to_phys+0xe0/0x170 arch/arm64/mm/physaddr.c:12
| Kernel panic - not syncing: panic_on_warn set ...
| SMP: stopping secondary CPUs
| Dumping ftrace buffer:
| (ftrace buffer empty)
| Kernel Offset: disabled
| CPU features: 0x0002,23000438
| Memory Limit: none
| Rebooting in 1 seconds..
We can avoid this by ensuring that we call __pa_symbol() for
init_mm.pgd, as this will always be a kernel symbol. As the dumped
{PGD,PUD,PMD,PTE} values are the raw values from the relevant entries we
don't need to handle these specially.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The naming of pgtable_page_{ctor,dtor}() seems to have confused a few
people, and until recently arm64 used these erroneously/pointlessly for
other levels of page table.
To make it incredibly clear that these only apply to the PTE level, and to
align with the naming of pgtable_pmd_page_{ctor,dtor}(), let's rename them
to pgtable_pte_page_{ctor,dtor}().
These changes were generated with the following shell script:
----
git grep -lw 'pgtable_page_.tor' | while read FILE; do
sed -i '{s/pgtable_page_ctor/pgtable_pte_page_ctor/}' $FILE;
sed -i '{s/pgtable_page_dtor/pgtable_pte_page_dtor/}' $FILE;
done
----
... with the documentation re-flowed to remain under 80 columns, and
whitespace fixed up in macros to keep backslashes aligned.
There should be no functional change as a result of this patch.
Link: http://lkml.kernel.org/r/20190722141133.3116-1-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm64 handles top-down mmap layout in a way that can be easily reused by
other architectures, so make it available in mm. It then introduces a new
config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT that can be set by other
architectures to benefit from those functions. Note that this new config
depends on MMU being enabled, if selected without MMU support, a warning
will be thrown.
Link: http://lkml.kernel.org/r/20190730055113.23635-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not offset mmap base address because of stack randomization if current
task does not want randomization. Note that x86 already implements this
behaviour.
Link: http://lkml.kernel.org/r/20190730055113.23635-4-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each architecture has its own way to determine if a task is a compat task,
by using is_compat_task in arch_mmap_rnd, it allows more genericity and
then it prepares its moving to mm/.
Link: http://lkml.kernel.org/r/20190730055113.23635-3-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both pgtable_cache_init() and pgd_cache_init() are used to initialize kmem
cache for page table allocations on several architectures that do not use
PAGE_SIZE tables for one or more levels of the page table hierarchy.
Most architectures do not implement these functions and use __weak default
NOP implementation of pgd_cache_init(). Since there is no such default
for pgtable_cache_init(), its empty stub is duplicated among most
architectures.
Rename the definitions of pgd_cache_init() to pgtable_cache_init() and
drop empty stubs of pgtable_cache_init().
Link: http://lkml.kernel.org/r/1566457046-22637-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Will Deacon <will@kernel.org> [arm64]
Acked-by: Thomas Gleixner <tglx@linutronix.de> [x86]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make working with compound pages easier", v2.
These three patches add three helpers and convert the appropriate
places to use them.
This patch (of 3):
It's unnecessarily hard to find out the size of a potentially huge page.
Replace 'PAGE_SIZE << compound_order(page)' with page_size(page).
Link: http://lkml.kernel.org/r/20190721104612.19120-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- add dma-mapping and block layer helpers to take care of IOMMU
merging for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask (me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl2CSucLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPfrhAAgXZA/EdFPvkkCoDrmgtf3XkudX9gajeCd9g4NZy6
ZBQElTVvm4S0sQj7IXgALnMumDMbbTibW5SQLX5GwQDe+XXBpZ8ajpAnJAXc8a5T
qaFQ4SInr4CgBZf9nZKDkbSBZ1Tu3AQm1c0QI8riRCkrVTuX4L06xpCef4Yh4mgO
rwWEjIioYpQiKZMmu98riXh3ZNfFG3mVJRhKt8B6XJbBgnUnjDOPYGgaUwp6CU20
tFBKL2GaaV0vdLJ5wYhIGXT4DJ8tp9T5n3IYGZv1Ux889RaZEHlCrMxzelYeDbCT
KhZbhcSECGnddsh73t/UX7/KhytuqnfKa9n+Xo6AWuA47xO4c36quOOcTk9M0vE5
TfGDmewgL6WIv4lzokpRn5EkfDhyL33j8eYJrJ8e0ldcOhSQIFk4ciXnf2stWi6O
JrlzzzSid+zXxu48iTfoPdnMr7psTpiMvvRvKfEeMp2FX9Fg6EdMzJYLTEl+COHB
0WwNacZmY3P01+b5EZXEgqKEZevIIdmPKbyM9rPtTjz8BjBwkABHTpN3fWbVBf7/
Ax6OPYyW40xp1fnJuzn89m3pdOxn88FpDdOaeLz892Zd+Qpnro1ayulnFspVtqGM
mGbzA9whILvXNRpWBSQrvr2IjqMRjbBxX3BVACl3MMpOChgkpp5iANNfSDjCftSF
Zu8=
=/wGv
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- add dma-mapping and block layer helpers to take care of IOMMU merging
for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask
(me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
* tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping: (41 commits)
mmc: renesas_sdhi_internal_dmac: Add MMC_CAP2_MERGE_CAPABLE
mmc: queue: Fix bigger segments usage
arm64: use asm-generic/dma-mapping.h
swiotlb-xen: merge xen_unmap_single into xen_swiotlb_unmap_page
swiotlb-xen: simplify cache maintainance
swiotlb-xen: use the same foreign page check everywhere
swiotlb-xen: remove xen_swiotlb_dma_mmap and xen_swiotlb_dma_get_sgtable
xen: remove the exports for xen_{create,destroy}_contiguous_region
xen/arm: remove xen_dma_ops
xen/arm: simplify dma_cache_maint
xen/arm: use dev_is_dma_coherent
xen/arm: consolidate page-coherent.h
xen/arm: use dma-noncoherent.h calls for xen-swiotlb cache maintainance
arm: remove wrappers for the generic dma remap helpers
dma-mapping: introduce a dma_common_find_pages helper
dma-mapping: always use VM_DMA_COHERENT for generic DMA remap
vmalloc: lift the arm flag for coherent mappings to common code
dma-mapping: provide a better default ->get_required_mask
dma-mapping: remove the dma_declare_coherent_memory export
remoteproc: don't allow modular build
...
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl1yYREQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNAM3CAChqDFQkryXoHwdeEcaukMRVNxtxOi4pM4g
5xqkb7PoqRJssIblsuhaXjrSD97yWCgaqCmFe6rKoes++lP4bFcTe22KXPPyPBED
A+tK4nTuKKcZfVbEanUjI+ihXaHJmKZ/kwAxWsEBYZ4WCOe3voCiJVNO2fHxqg1M
8TskZ2BoayTbWMXih0eJg2MCy/xApBq4b3nZG4bKI7Z9UpXiKN1NYtDh98ZEBK4V
d/oNoHsJ2ZvIQsztoBJMsvr09DTCazCijWZiECadm6l41WEPFizngrACiSJLLtYo
0qu4qxgg9zgFlvBCRQmIYSggTuv35RgXSfcOwChmW5DUjHG+f9GK
=Ru4B
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Although there isn't tonnes of code in terms of line count, there are
a fair few headline features which I've noted both in the tag and also
in the merge commits when I pulled everything together.
The part I'm most pleased with is that we had 35 contributors this
time around, which feels like a big jump from the usual small group of
core arm64 arch developers. Hopefully they all enjoyed it so much that
they'll continue to contribute, but we'll see.
It's probably worth highlighting that we've pulled in a branch from
the risc-v folks which moves our CPU topology code out to where it can
be shared with others.
Summary:
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by
syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural
clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (114 commits)
arm64: remove __iounmap
arm64: atomics: Use K constraint when toolchain appears to support it
arm64: atomics: Undefine internal macros after use
arm64: lse: Make ARM64_LSE_ATOMICS depend on JUMP_LABEL
arm64: asm: Kill 'asm/atomic_arch.h'
arm64: lse: Remove unused 'alt_lse' assembly macro
arm64: atomics: Remove atomic_ll_sc compilation unit
arm64: avoid using hard-coded registers for LSE atomics
arm64: atomics: avoid out-of-line ll/sc atomics
arm64: Use correct ll/sc atomic constraints
jump_label: Don't warn on __exit jump entries
docs/perf: Add documentation for the i.MX8 DDR PMU
perf/imx_ddr: Add support for AXI ID filtering
arm64: kpti: ensure patched kernel text is fetched from PoU
arm64: fix fixmap copy for 16K pages and 48-bit VA
perf/smmuv3: Validate groups for global filtering
perf/smmuv3: Validate group size
arm64: Relax Documentation/arm64/tagged-pointers.rst
arm64: kvm: Replace hardcoded '1' with SYS_PAR_EL1_F
arm64: mm: Ignore spurious translation faults taken from the kernel
...
Now that the Xen special cases are gone nothing worth mentioning is
left in the arm64 <asm/dma-mapping.h> file, so switch to use the
asm-generic version instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
arm and arm64 can just use xen_swiotlb_dma_ops directly like x86, no
need for a pointer indirection.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
* for-next/52-bit-kva: (25 commits)
Support for 52-bit virtual addressing in kernel space
* for-next/cpu-topology: (9 commits)
Move CPU topology parsing into core code and add support for ACPI 6.3
* for-next/error-injection: (2 commits)
Support for function error injection via kprobes
* for-next/perf: (8 commits)
Support for i.MX8 DDR PMU and proper SMMUv3 group validation
* for-next/psci-cpuidle: (7 commits)
Move PSCI idle code into a new CPUidle driver
* for-next/rng: (4 commits)
Support for 'rng-seed' property being passed in the devicetree
* for-next/smpboot: (3 commits)
Reduce fragility of secondary CPU bringup in debug configurations
* for-next/tbi: (10 commits)
Introduce new syscall ABI with relaxed requirements for pointer tags
* for-next/tlbi: (6 commits)
Handle spurious page faults arising from kernel space
The memory allocated for the atomic pool needs to have the same
mapping attributes that we use for remapping, so use
pgprot_dmacoherent instead of open coding it. Also deduct a
suitable zone to allocate the memory from based on the presence
of the DMA zones.
Signed-off-by: Christoph Hellwig <hch@lst.de>
arch_dma_mmap_pgprot is used for two things:
1) to override the "normal" uncached page attributes for mapping
memory coherent to devices that can't snoop the CPU caches
2) to provide the special DMA_ATTR_WRITE_COMBINE semantics on older
arm systems and some mips platforms
Replace one with the pgprot_dmacoherent macro that is already provided
by arm and much simpler to use, and lift the DMA_ATTR_WRITE_COMBINE
handling to common code with an explicit arch opt-in.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Paul Burton <paul.burton@mips.com> # mips
While the MMUs is disabled, I-cache speculation can result in
instructions being fetched from the PoC. During boot we may patch
instructions (e.g. for alternatives and jump labels), and these may be
dirty at the PoU (and stale at the PoC).
Thus, while the MMU is disabled in the KPTI pagetable fixup code we may
load stale instructions into the I-cache, potentially leading to
subsequent crashes when executing regions of code which have been
modified at runtime.
Similarly to commit:
8ec4198743 ("arm64: mm: ensure patched kernel text is fetched from PoU")
... we can invalidate the I-cache after enabling the MMU to prevent such
issues.
The KPTI pagetable fixup code itself should be clean to the PoC per the
boot protocol, so no maintenance is required for this code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
With 16K pages and 48-bit VAs, the PGD level of table has two entries,
and so the fixmap shares a PGD with the kernel image. Since commit:
f9040773b7 ("arm64: move kernel image to base of vmalloc area")
... we copy the existing fixmap to the new fine-grained page tables at
the PUD level in this case. When walking to the new PUD, we forgot to
offset the PGD entry and always used the PGD entry at index 0, but this
worked as the kernel image and fixmap were in the low half of the TTBR1
address space.
As of commit:
14c127c957 ("arm64: mm: Flip kernel VA space")
... the kernel image and fixmap are in the high half of the TTBR1
address space, and hence use the PGD at index 1, but we didn't update
the fixmap copying code to account for this.
Thus, we'll erroneously try to copy the fixmap slots into a PUD under
the PGD entry at index 0. At the point we do so this PGD entry has not
been initialised, and thus we'll try to write a value to a small offset
from physical address 0, causing a number of potential problems.
Fix this be correctly offsetting the PGD. This is split over a few steps
for legibility.
Fixes: 14c127c957 ("arm64: mm: Flip kernel VA space")
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Acked-by: Steve Capper <Steve.Capper@arm.com>
Tested-by: Steve Capper <Steve.Capper@arm.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Thanks to address translation being performed out of order with respect to
loads and stores, it is possible for a CPU to take a translation fault when
accessing a page that was mapped by a different CPU.
For example, in the case that one CPU maps a page and then sets a flag to
tell another CPU:
CPU 0
-----
MOV X0, <valid pte>
STR X0, [Xptep] // Store new PTE to page table
DSB ISHST
ISB
MOV X1, #1
STR X1, [Xflag] // Set the flag
CPU 1
-----
loop: LDAR X0, [Xflag] // Poll flag with Acquire semantics
CBZ X0, loop
LDR X1, [X2] // Translates using the new PTE
then the final load on CPU 1 can raise a translation fault because the
translation can be performed speculatively before the read of the flag and
marked as "faulting" by the CPU. This isn't quite as bad as it sounds
since, in reality, code such as:
CPU 0 CPU 1
----- -----
spin_lock(&lock); spin_lock(&lock);
*ptr = vmalloc(size); if (*ptr)
spin_unlock(&lock); foo = **ptr;
spin_unlock(&lock);
will not trigger the fault because there is an address dependency on CPU 1
which prevents the speculative translation. However, more exotic code where
the virtual address is known ahead of time, such as:
CPU 0 CPU 1
----- -----
spin_lock(&lock); spin_lock(&lock);
set_fixmap(0, paddr, prot); if (mapped)
mapped = true; foo = *fix_to_virt(0);
spin_unlock(&lock); spin_unlock(&lock);
could fault. This can be avoided by any of:
* Introducing broadcast TLB maintenance on the map path
* Adding a DSB;ISB sequence after checking a flag which indicates
that a virtual address is now mapped
* Handling the spurious fault
Given that we have never observed a problem due to this under Linux and
future revisions of the architecture are being tightened so that
translation table walks are effectively ordered in the same way as explicit
memory accesses, we no longer treat spurious kernel faults as fatal if an
AT instruction indicates that the access does not trigger a translation
fault.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Currently in arm64, FDT is mapped to RO before it's passed to
early_init_dt_scan(). However, there might be some codes
(eg. commit "fdt: add support for rng-seed") that need to modify FDT
during init. Map FDT to RO after early fixups are done.
Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Will Deacon <will@kernel.org>
No module currently messed with clearing or setting the execute
permission of kernel memory, and none really should.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Will Deacon <will@kernel.org>
Prior to commit:
14c127c957 ("arm64: mm: Flip kernel VA space")
... VA_START described the start of the TTBR1 address space for a given
VA size described by VA_BITS, where all kernel mappings began.
Since that commit, VA_START described a portion midway through the
address space, where the linear map ends and other kernel mappings
begin.
To avoid confusion, let's rename VA_START to PAGE_END, making it clear
that it's not the start of the TTBR1 address space and implying that
it's related to PAGE_OFFSET. Comments and other mnemonics are updated
accordingly, along with a typo fix in the decription of VMEMMAP_SIZE.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
VA_START used to be the start of the TTBR1 address space, but now it's a
point midway though. In a couple of places we still use VA_START to get
the start of the TTBR1 address space, so let's fix these up to use
PAGE_OFFSET instead.
Fixes: 14c127c957 ("arm64: mm: Flip kernel VA space")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
All the way back to introducing dma_common_mmap we've defaulted to mark
the pages as uncached. But this is wrong for DMA coherent devices.
Later on DMA_ATTR_WRITE_COMBINE also got incorrect treatment as that
flag is only treated special on the alloc side for non-coherent devices.
Introduce a new dma_pgprot helper that deals with the check for coherent
devices so that only the remapping cases ever reach arch_dma_mmap_pgprot
and we thus ensure no aliasing of page attributes happens, which makes
the powerpc version of arch_dma_mmap_pgprot obsolete and simplifies the
remaining ones.
Note that this means arch_dma_mmap_pgprot is a bit misnamed now, but
we'll phase it out soon.
Fixes: 64ccc9c033 ("common: dma-mapping: add support for generic dma_mmap_* calls")
Reported-by: Shawn Anastasio <shawn@anastas.io>
Reported-by: Gavin Li <git@thegavinli.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> # arm64
Previous patches have enabled 52-bit kernel + user VAs and there is no
longer any scenario where user VA != kernel VA size.
This patch removes the, now redundant, vabits_user variable and replaces
usage with vabits_actual where appropriate.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Most of the machinery is now in place to enable 52-bit kernel VAs that
are detectable at boot time.
This patch adds a Kconfig option for 52-bit user and kernel addresses
and plumbs in the requisite CONFIG_ macros as well as sets TCR.T1SZ,
physvirt_offset and vmemmap at early boot.
To simplify things this patch also removes the 52-bit user/48-bit kernel
kconfig option.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
vmemmap is a preprocessor definition that depends on a variable,
memstart_addr. In a later patch we will need to expand the size of
the VMEMMAP region and optionally modify vmemmap depending upon
whether or not hardware support is available for 52-bit virtual
addresses.
This patch changes vmemmap to be a variable. As the old definition
depended on a variable load, this should not affect performance
noticeably.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When running with a 52-bit userspace VA and a 48-bit kernel VA we offset
ttbr1_el1 to allow the kernel pagetables with a 52-bit PTRS_PER_PGD to
be used for both userspace and kernel.
Moving on to a 52-bit kernel VA we no longer require this offset to
ttbr1_el1 should we be running on a system with HW support for 52-bit
VAs.
This patch introduces conditional logic to offset_ttbr1 to query
SYS_ID_AA64MMFR2_EL1 whenever 52-bit VAs are selected. If there is HW
support for 52-bit VAs then the ttbr1 offset is skipped.
We choose to read a system register rather than vabits_actual because
offset_ttbr1 can be called in places where the kernel data is not
actually mapped.
Calls to offset_ttbr1 appear to be made from rarely called code paths so
this extra logic is not expected to adversely affect performance.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>