Before, all snapshots and subvolumes lived in a single flat directory. This
was awkward and confusing because the single flat directory was only writable
with the ioctls.
This commit changes the ioctls to create subvols and snapshots at any
point in the directory tree. This requires making separate ioctls for
snapshot and subvol creation instead of a combining them into one.
The subvol ioctl does:
btrfsctl -S subvol_name parent_dir
After the ioctl is done subvol_name lives inside parent_dir.
The snapshot ioctl does:
btrfsctl -s path_for_snapshot root_to_snapshot
path_for_snapshot can be an absolute or relative path. btrfsctl breaks it up
into directory and basename components.
root_to_snapshot can be any file or directory in the FS. The snapshot
is taken of the entire root where that file lives.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds an additional CLONE_RANGE ioctl to clone an arbitrary
(block-aligned) file range to another file. The original CLONE ioctl
becomes a special case of cloning the entire file range. The logic is a
bit more complex now since ranges may be cloned to different offsets, and
because we may only be cloning the beginning or end of a particular extent
or checksum item.
An additional sanity check ensures the source and destination files aren't
the same (which would previously deadlock), although eventually this could
be extended to allow the duplication of file data at a different offset
within the same file.
Any extents within the destination range in the target file are dropped.
We currently do not cope with the case where a compressed inline extent
needs to be split. This will probably require decompressing the extent
into a temporary address_space, and inserting just the cloned portion as a
new compressed inline extent. For now, just return -EINVAL in this case.
Note that this never comes up in the more common case of cloning an entire
file.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These ioctls let a user application hold a transaction open while it
performs a series of operations. A final ioctl does a sync on the fs
(closing the current transaction). This is the main requirement for
Ceph's OSD to be able to keep the data it's storing in a btrfs volume
consistent, and AFAICS it works just fine. The application would do
something like
fd = ::open("some/file", O_RDONLY);
::ioctl(fd, BTRFS_IOC_TRANS_START);
/* do a bunch of stuff */
::ioctl(fd, BTRFS_IOC_TRANS_END);
or just
::close(fd);
And to ensure it commits to disk,
::ioctl(fd, BTRFS_IOC_SYNC);
When a transaction is held open, the trans_handle is attached to the
struct file (via private_data) so that it will get cleaned up if the
process dies unexpectedly. A held transaction is also ended on fsync() to
avoid a deadlock.
A misbehaving application could also deliberately hold a transaction open,
effectively locking up the FS, so it may make sense to restrict something
like this to root or something.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds two types of btree defrag, a run time form that tries to
defrag recently allocated blocks in the btree when they are still in ram,
and an ioctl that forces defrag of all btree blocks.
File data blocks are not defragged yet, but this can make a huge difference
in sequential btree reads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>