Writing the outer loop of an LL/SC sequence using do {...} while
constructs potentially allows the compiler to hoist memory accesses
between the STXR and the branch back to the LDXR. On CPUs that do not
guarantee forward progress of LL/SC loops when faced with memory
accesses to the same ERG (up to 2k) between the failed STXR and the
branch back, we may end up livelocking.
This patch avoids this issue in our percpu atomics by rewriting the
outer loop as part of the LL/SC inline assembly block.
Cc: <stable@vger.kernel.org>
Fixes: f97fc81079 ("arm64: percpu: Implement this_cpu operations")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When debug preempt or preempt tracer is enabled, preempt_count_add/sub()
can be traced by function and function graph tracing, and
preempt_disable/enable() would call preempt_count_add/sub(), so in Ftrace
subsystem we should use preempt_disable/enable_notrace instead.
In the commit 345ddcc882 ("ftrace: Have set_ftrace_pid use the bitmap
like events do") the function this_cpu_read() was added to
trace_graph_entry(), and if this_cpu_read() calls preempt_disable(), graph
tracer will go into a recursive loop, even if the tracing_on is
disabled.
So this patch change to use preempt_enable/disable_notrace instead in
this_cpu_read().
Since Yonghui Yang helped a lot to find the root cause of this problem,
so also add his SOB.
Signed-off-by: Yonghui Yang <mark.yang@spreadtrum.com>
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Nobody seems to be producing !SMP systems anymore, so this is just
becoming a source of kernel bugs, particularly if people want to use
coherent DMA with non-shared pages.
This patch forces CONFIG_SMP=y for arm64, removing a modest amount of
code in the process.
Signed-off-by: Will Deacon <will.deacon@arm.com>
this_cpu operations were implemented for arm64 in:
5284e1b arm64: xchg: Implement cmpxchg_double
f97fc81 arm64: percpu: Implement this_cpu operations
Unfortunately, it is possible for pre-emption to take place between
address generation and data access. This can lead to cases where data
is being manipulated by this_cpu for a different CPU than it was
called on. Which effectively breaks the spec.
This patch disables pre-emption for the this_cpu operations
guaranteeing that address generation and data manipulation take place
without a pre-emption in-between.
Fixes: 5284e1b4bc ("arm64: xchg: Implement cmpxchg_double")
Fixes: f97fc81079 ("arm64: percpu: Implement this_cpu operations")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[catalin.marinas@arm.com: remove space after type cast]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The generic this_cpu operations disable interrupts to ensure that the
requested operation is protected from pre-emption. For arm64, this is
overkill and can hurt throughput and latency.
This patch provides arm64 specific implementations for the this_cpu
operations. Rather than disable interrupts, we use the exclusive
monitor or atomic operations as appropriate.
The following operations are implemented: add, add_return, and, or,
read, write, xchg. We also wire up a cmpxchg implementation from
cmpxchg.h.
Testing was performed using the percpu_test module and hackbench on a
Juno board running 3.18-rc4.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
To support both Clang and GCC, use the global stack register variable vs
a local register variable.
Author: Mark Charlebois <charlebm@gmail.com>
Signed-off-by: Mark Charlebois <charlebm@gmail.com>
Signed-off-by: Behan Webster <behanw@converseincode.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit fb4a96029c (arm64: kernel: fix per-cpu offset restore on
resume) uses per_cpu_offset() unconditionally during CPU wakeup,
however, this is only defined for the SMP case.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Dave P Martin <Dave.Martin@arm.com>
This patch implements optimised percpu variable accesses using the
el1 r/w thread register (tpidr_el1) along the same lines as arch/arm/.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>