Remove all the code which was there to emit the system vector stubs. All
users are gone.
Move the now unused GET_CR2_INTO macro muck to head_64.S where the last
user is. Fixup the eye hurting comment there while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.927433002@linutronix.de
Device interrupts which go through do_IRQ() or the spurious interrupt
handler have their separate entry code on 64 bit for no good reason.
Both 32 and 64 bit transport the vector number through ORIG_[RE]AX in
pt_regs. Further the vector number is forced to fit into an u8 and is
complemented and offset by 0x80 so it's in the signed character
range. Otherwise GAS would expand the pushq to a 5 byte instruction for any
vector > 0x7F.
Treat the vector number like an error code and hand it to the C function as
argument. This allows to get rid of the extra entry code in a later step.
Simplify the error code push magic by implementing the pushq imm8 via a
'.byte 0x6a, vector' sequence so GAS is not able to screw it up. As the
pushq imm8 is sign extending the resulting error code needs to be truncated
to 8 bits in C code.
Originally-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.796915981@linutronix.de
The PUSH_AND_CLEAR_REGS macro zeroes each register immediately after
pushing it. If an NMI or exception hits after a register is cleared,
but before the UNWIND_HINT_REGS annotation, the ORC unwinder will
wrongly think the previous value of the register was zero. This can
confuse the unwinding process and cause it to exit early.
Because ORC is simpler than DWARF, there are a limited number of unwind
annotation states, so it's not possible to add an individual unwind hint
after each push/clear combination. Instead, the register clearing
instructions need to be consolidated and moved to after the
UNWIND_HINT_REGS annotation.
Fixes: 3f01daecd5 ("x86/entry/64: Introduce the PUSH_AND_CLEAN_REGS macro")
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Jones <dsj@fb.com>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lore.kernel.org/r/68fd3d0bc92ae2d62ff7879d15d3684217d51f08.1587808742.git.jpoimboe@redhat.com
Remove the superfluous "is" in the middle of the name. We want to
standardize the naming so that it can be expanded through suffixes:
context_tracking_enabled()
context_tracking_enabled_cpu()
context_tracking_enabled_this_cpu()
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Link: https://lkml.kernel.org/r/20191016025700.31277-6-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Spectre v1 isn't only about array bounds checks. It can affect any
conditional checks. The kernel entry code interrupt, exception, and NMI
handlers all have conditional swapgs checks. Those may be problematic in
the context of Spectre v1, as kernel code can speculatively run with a user
GS.
For example:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg
mov (%reg), %reg1
When coming from user space, the CPU can speculatively skip the swapgs, and
then do a speculative percpu load using the user GS value. So the user can
speculatively force a read of any kernel value. If a gadget exists which
uses the percpu value as an address in another load/store, then the
contents of the kernel value may become visible via an L1 side channel
attack.
A similar attack exists when coming from kernel space. The CPU can
speculatively do the swapgs, causing the user GS to get used for the rest
of the speculative window.
The mitigation is similar to a traditional Spectre v1 mitigation, except:
a) index masking isn't possible; because the index (percpu offset)
isn't user-controlled; and
b) an lfence is needed in both the "from user" swapgs path and the
"from kernel" non-swapgs path (because of the two attacks described
above).
The user entry swapgs paths already have SWITCH_TO_KERNEL_CR3, which has a
CR3 write when PTI is enabled. Since CR3 writes are serializing, the
lfences can be skipped in those cases.
On the other hand, the kernel entry swapgs paths don't depend on PTI.
To avoid unnecessary lfences for the user entry case, create two separate
features for alternative patching:
X86_FEATURE_FENCE_SWAPGS_USER
X86_FEATURE_FENCE_SWAPGS_KERNEL
Use these features in entry code to patch in lfences where needed.
The features aren't enabled yet, so there's no functional change.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
In preparation for wider use, move the ENCODE_FRAME_POINTER macros to
a common header and provide inline asm versions.
These macros are used to encode a pt_regs frame for the unwinder; see
unwind_frame.c:decode_frame_pointer().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
This reverts commit 5bdcd510c2.
The macro based workarounds for GCC's inlining bugs caused regressions: distcc
and other distro build setups broke, and the fixes are not easy nor will they
solve regressions on already existing installations.
So we are reverting this patch and the 8 followup patches.
What makes this revert easier is that GCC9 will likely include the new 'asm inline'
syntax that makes inlining of assembly blocks a lot more robust.
This is a superior method to any macro based hackeries - and might even be
backported to GCC8, which would make all modern distros get the inlining
fixes as well.
Many thanks to Masahiro Yamada and others for helping sort out these problems.
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
As described in:
77b0bf55bc67: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - which is also a minor cleanup for the jump-label code.
As a result the code size is slightly increased, but inlining decisions
are better:
text data bss dec hex filename
18163528 10226300 2957312 31347140 1de51c4 ./vmlinux before
18163608 10227348 2957312 31348268 1de562c ./vmlinux after (+1128)
And functions such as intel_pstate_adjust_policy_max(),
kvm_cpu_accept_dm_intr(), kvm_register_readl() are inlined.
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-4-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-11-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
To reduce the chance that random user space content leaks down the call
chain in registers, also clear lower registers on syscall entry:
For 64-bit syscalls, extend the register clearing in PUSH_AND_CLEAR_REGS
to %dx and %cx. This should not hurt at all, also on the other callers
of that macro. We do not need to clear %rdi and %rsi for syscall entry,
as those registers are used to pass the parameters to do_syscall_64().
For the 32-bit compat syscalls, do_int80_syscall_32() and
do_fast_syscall_32() each only take one parameter. Therefore, extend the
register clearing to %dx, %cx, and %si in entry_SYSCALL_compat and
entry_INT80_compat.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-8-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On 64-bit, the stack pointer is always aligned on interrupt, so instead
of setting the LSB of the pt_regs address, we can just add 1 to it.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180221024214.lhl5jfgw33c4vz3m@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On some x86 CPU microarchitectures using 'xorq' to clear general-purpose
registers is slower than 'xorl'. As 'xorl' is sufficient to clear all
64 bits of these registers due to zero-extension [*], switch the x86
64-bit entry code to use 'xorl'.
No change in functionality and no change in code size.
[*] According to Intel 64 and IA-32 Architecture Software Developer's
Manual, section 3.4.1.1, the result of 32-bit operands are "zero-
extended to a 64-bit result in the destination general-purpose
register." The AMD64 Architecture Programmer’s Manual Volume 3,
Appendix B.1, describes the same behaviour.
Suggested-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180214175924.23065-3-linux@dominikbrodowski.net
[ Improved on the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Play a little trick in the generic PUSH_AND_CLEAR_REGS macro
to insert the GP registers "above" the original return address.
This allows us to (re-)insert the macro in error_entry() and
paranoid_entry() and to remove it from the idtentry macro. This
reduces the static footprint significantly:
text data bss dec hex filename
24307 0 0 24307 5ef3 entry_64.o-orig
20987 0 0 20987 51fb entry_64.o
Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180214175924.23065-2-linux@dominikbrodowski.net
[ Small tweaks to comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
That macro was touched around 2.5.8 times, judging by the full history
linux repo, but it was unused even then. Get rid of it already.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux@dominikbrodowski.net
Link: http://lkml.kernel.org/r/20180212201318.GD14640@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previously, error_entry() and paranoid_entry() saved the GP registers
onto stack space previously allocated by its callers. Combine these two
steps in the callers, and use the generic PUSH_AND_CLEAR_REGS macro
for that.
This adds a significant amount ot text size. However, Ingo Molnar points
out that:
"these numbers also _very_ significantly over-represent the
extra footprint. The assumptions that resulted in
us compressing the IRQ entry code have changed very
significantly with the new x86 IRQ allocation code we
introduced in the last year:
- IRQ vectors are usually populated in tightly clustered
groups.
With our new vector allocator code the typical per CPU
allocation percentage on x86 systems is ~3 device vectors
and ~10 fixed vectors out of ~220 vectors - i.e. a very
low ~6% utilization (!). [...]
The days where we allocated a lot of vectors on every
CPU and the compression of the IRQ entry code text
mattered are over.
- Another issue is that only a small minority of vectors
is frequent enough to actually matter to cache utilization
in practice: 3-4 key IPIs and 1-2 device IRQs at most - and
those vectors tend to be tightly clustered as well into about
two groups, and are probably already on 2-3 cache lines in
practice.
For the common case of 'cache cold' IRQs it's the depth of
the call chain and the fragmentation of the resulting I$
that should be the main performance limit - not the overall
size of it.
- The CPU side cost of IRQ delivery is still very expensive
even in the best, most cached case, as in 'over a thousand
cycles'. So much stuff is done that maybe contemporary x86
IRQ entry microcode already prefetches the IDT entry and its
expected call target address."[*]
[*] http://lkml.kernel.org/r/20180208094710.qnjixhm6hybebdv7@gmail.com
The "testb $3, CS(%rsp)" instruction in the idtentry macro does not need
modification. Previously, %rsp was manually decreased by 15*8; with
this patch, %rsp is decreased by 15 pushq instructions.
[jpoimboe@redhat.com: unwind hint improvements]
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-7-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
entry_SYSCALL_64_after_hwframe() and nmi() can be converted to use
PUSH_AND_CLEAN_REGS instead of opencoded variants thereof. Due to
the interleaving, the additional XOR-based clearing of R8 and R9
in entry_SYSCALL_64_after_hwframe() should not have any noticeable
negative implications.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-6-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Those instances where ALLOC_PT_GPREGS_ON_STACK is called just before
SAVE_AND_CLEAR_REGS can trivially be replaced by PUSH_AND_CLEAN_REGS.
This macro uses PUSH instead of MOV and should therefore be faster, at
least on newer CPUs.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-5-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Same as is done for syscalls, interleave XOR with PUSH instructions
for exceptions/interrupts, in order to minimize the cost of the
additional instructions required for register clearing.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All current code paths call SAVE_C_REGS and then immediately
SAVE_EXTRA_REGS. Therefore, merge these two macros and order the MOV
sequeneces properly.
While at it, remove the macros to save all except specific registers,
as these macros have been unused for a long time.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clear the 'extra' registers on entering the 64-bit kernel for exceptions
and interrupts. The common registers are not cleared since they are
likely clobbered well before they can be exploited in a speculative
execution attack.
Originally-From: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/151787989146.7847.15749181712358213254.stgit@dwillia2-desk3.amr.corp.intel.com
[ Made small improvements to the changelog and the code comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The switch to the user space page tables in the low level ASM code sets
unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base
address of the page directory to the user part, bit 11 is switching the
PCID to the PCID associated with the user page tables.
This fails on a machine which lacks PCID support because bit 11 is set in
CR3. Bit 11 is reserved when PCID is inactive.
While the Intel SDM claims that the reserved bits are ignored when PCID is
disabled, the AMD APM states that they should be cleared.
This went unnoticed as the AMD APM was not checked when the code was
developed and reviewed and test systems with Intel CPUs never failed to
boot. The report is against a Centos 6 host where the guest fails to boot,
so it's not yet clear whether this is a virt issue or can happen on real
hardware too, but thats irrelevant as the AMD APM clearly ask for clearing
the reserved bits.
Make sure that on non PCID machines bit 11 is not set by the page table
switching code.
Andy suggested to rename the related bits and masks so they are clearly
describing what they should be used for, which is done as well for clarity.
That split could have been done with alternatives but the macro hell is
horrible and ugly. This can be done on top if someone cares to remove the
extra orq. For now it's a straight forward fix.
Fixes: 6fd166aae7 ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
Most NMI/paranoid exceptions will not in fact change pagetables and would
thus not require TLB flushing, however RESTORE_CR3 uses flushing CR3
writes.
Restores to kernel PCIDs can be NOFLUSH, because we explicitly flush the
kernel mappings and now that we track which user PCIDs need flushing we can
avoid those too when possible.
This does mean RESTORE_CR3 needs an additional scratch_reg, luckily both
sites have plenty available.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can use PCID to retain the TLBs across CR3 switches; including those now
part of the user/kernel switch. This increases performance of kernel
entry/exit at the cost of more expensive/complicated TLB flushing.
Now that we have two address spaces, one for kernel and one for user space,
we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID
(just like we use the PFN LSB for the PGD). Since we do TLB invalidation
from kernel space, the existing code will only invalidate the kernel PCID,
we augment that by marking the corresponding user PCID invalid, and upon
switching back to userspace, use a flushing CR3 write for the switch.
In order to access the user_pcid_flush_mask we use PER_CPU storage, which
means the previously established SWAPGS vs CR3 ordering is now mandatory
and required.
Having to do this memory access does require additional registers, most
sites have a functioning stack and we can spill one (RAX), sites without
functional stack need to otherwise provide the second scratch register.
Note: PCID is generally available on Intel Sandybridge and later CPUs.
Note: Up until this point TLB flushing was broken in this series.
Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it
enters the kernel and switch back when it exits. This essentially needs to
be done before leaving assembly code.
This is extra challenging because the switching context is tricky: the
registers that can be clobbered can vary. It is also hard to store things
on the stack because there is an established ABI (ptregs) or the stack is
entirely unsafe to use.
Establish a set of macros that allow changing to the user and kernel CR3
values.
Interactions with SWAPGS:
Previous versions of the PAGE_TABLE_ISOLATION code relied on having
per-CPU scratch space to save/restore a register that can be used for the
CR3 MOV. The %GS register is used to index into our per-CPU space, so
SWAPGS *had* to be done before the CR3 switch. That scratch space is gone
now, but the semantic that SWAPGS must be done before the CR3 MOV is
retained. This is good to keep because it is not that hard to do and it
allows to do things like add per-CPU debugging information.
What this does in the NMI code is worth pointing out. NMIs can interrupt
*any* context and they can also be nested with NMIs interrupting other
NMIs. The comments below ".Lnmi_from_kernel" explain the format of the
stack during this situation. Changing the format of this stack is hard.
Instead of storing the old CR3 value on the stack, this depends on the
*regular* register save/restore mechanism and then uses %r14 to keep CR3
during the NMI. It is callee-saved and will not be clobbered by the C NMI
handlers that get called.
[ PeterZ: ESPFIX optimization ]
Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
All users of RESTORE_EXTRA_REGS, RESTORE_C_REGS and such, and
REMOVE_PT_GPREGS_FROM_STACK are gone. Delete the macros.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c32672f6e47c561893316d48e06c7656b1039a36.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old code restored all the registers with movq instead of pop.
In theory, this was done because some CPUs have higher movq
throughput, but any gain there would be tiny and is almost certainly
outweighed by the higher text size.
This saves 96 bytes of text.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ad82520a207ccd851b04ba613f4f752b33ac05f7.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add unwind hint annotations to entry_64.S. This will enable the ORC
unwinder to unwind through any location in the entry code including
syscalls, interrupts, and exceptions.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/b9f6d478aadf68ba57c739dcfac34ec0dc021c4c.1499786555.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With frame pointers, when a task is interrupted, its stack is no longer
completely reliable because the function could have been interrupted
before it had a chance to save the previous frame pointer on the stack.
So the caller of the interrupted function could get skipped by a stack
trace.
This is problematic for live patching, which needs to know whether a
stack trace of a sleeping task can be relied upon. There's currently no
way to detect if a sleeping task was interrupted by a page fault
exception or preemption before it went to sleep.
Another issue is that when dumping the stack of an interrupted task, the
unwinder has no way of knowing where the saved pt_regs registers are, so
it can't print them.
This solves those issues by encoding the pt_regs pointer in the frame
pointer on entry from an interrupt or an exception.
This patch also updates the unwinder to be able to decode it, because
otherwise the unwinder would be broken by this change.
Note that this causes a change in the behavior of the unwinder: each
instance of a pt_regs on the stack is now considered a "frame". So
callers of unwind_get_return_address() will now get an occasional
'regs->ip' address that would have previously been skipped over.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SAVE_ALL and RESTORE_ALL macros for !CONFIG_X86_64 were
introduced in commit:
1a338ac32 commit ('sched, x86: Optimize the preempt_schedule() call')
... and were used in the ___preempt_schedule() and ___preempt_schedule_context()
functions from the arch/x86/kernel/preempt.S.
But the arch/x86/kernel/preempt.S file was removed in the following commit:
0ad6e3c5 commit ('x86: Speed up ___preempt_schedule*() by using THUNK helpers')
The ___preempt_schedule()/___preempt_schedule_context() functions were
reimplemeted and do not use SAVE_ALL/RESTORE_ALL anymore.
These macros have no users anymore, so we can remove them.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453126394-13717-1-git-send-email-kuleshovmail@gmail.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On CONFIG_CONTEXT_TRACKING kernels that have context tracking
disabled at runtime (which includes most distro kernels), we
still have the overhead of a call to enter_from_user_mode in
interrupt and exception entries.
If jump labels are available, this uses the jump label
infrastructure to skip the call.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/73ee804fff48cd8c66b65b724f9f728a11a8c686.1447361906.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prepare for the big rewrite of the error and interrupt exit
paths, we will need pt_regs completely filled in.
It's already completely filled in when error_exit runs, so rearrange
interrupt handling to match it. This will slow down interrupt
handling very slightly (eight instructions), but the
simplification it enables will be more than worth it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/d8a766a7f558b30e6e01352854628a2d9943460c.1435952415.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
asm/calling.h is private to the entry code, make this more apparent
by moving it to the new arch/x86/entry/ directory.
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>