mirror of https://gitee.com/openkylin/linux.git
1277 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Vlastimil Babka | e47483bca2 |
mm, page_alloc: fix premature OOM when racing with cpuset mems update
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode triggers OOM killer in few seconds, despite lots of free memory. The test attempts to repeatedly fault in memory in one process in a cpuset, while changing allowed nodes of the cpuset between 0 and 1 in another process. The problem comes from insufficient protection against cpuset changes, which can cause get_page_from_freelist() to consider all zones as non-eligible due to nodemask and/or current->mems_allowed. This was masked in the past by sufficient retries, but since commit |
|
Vlastimil Babka | 5ce9bfef1d |
mm, page_alloc: move cpuset seqcount checking to slowpath
This is a preparation for the following patch to make review simpler. While the primary motivation is a bug fix, this also simplifies the fast path, although the moved code is only enabled when cpusets are in use. Link: http://lkml.kernel.org/r/20170120103843.24587-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 16096c25bf |
mm, page_alloc: fix fast-path race with cpuset update or removal
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
One possible cause is that in the fast path we find the preferred
zoneref according to current mems_allowed, so that it points to the
middle of the zonelist, skipping e.g. zones of node 1 completely. If
the mems_allowed is updated to contain only node 1, we never reach it in
the zonelist, and trigger OOM before checking the cpuset_mems_cookie.
This patch fixes the particular case by redoing the preferred zoneref
search if we switch back to the original nodemask. The condition is
also slightly changed so that when the last non-root cpuset is removed,
we don't miss it.
Note that this is not a full fix, and more patches will follow.
Link: http://lkml.kernel.org/r/20170120103843.24587-3-vbabka@suse.cz
Fixes:
|
|
Vlastimil Babka | ea57485af8 |
mm, page_alloc: fix check for NULL preferred_zone
Patch series "fix premature OOM regression in 4.7+ due to cpuset races". This is v2 of my attempt to fix the recent report based on LTP cpuset stress test [1]. The intention is to go to stable 4.9 LTSS with this, as triggering repeated OOMs is not nice. That's why the patches try to be not too intrusive. Unfortunately why investigating I found that modifying the testcase to use per-VMA policies instead of per-task policies will bring the OOM's back, but that seems to be much older and harder to fix problem. I have posted a RFC [2] but I believe that fixing the recent regressions has a higher priority. Longer-term we might try to think how to fix the cpuset mess in a better and less error prone way. I was for example very surprised to learn, that cpuset updates change not only task->mems_allowed, but also nodemask of mempolicies. Until now I expected the parameter to alloc_pages_nodemask() to be stable. I wonder why do we then treat cpusets specially in get_page_from_freelist() and distinguish HARDWALL etc, when there's unconditional intersection between mempolicy and cpuset. I would expect the nodemask adjustment for saving overhead in g_p_f(), but that clearly doesn't happen in the current form. So we have both crazy complexity and overhead, AFAICS. [1] https://lkml.kernel.org/r/CAFpQJXUq-JuEP=QPidy4p_=FN0rkH5Z-kfB4qBvsf6jMS87Edg@mail.gmail.com [2] https://lkml.kernel.org/r/7c459f26-13a6-a817-e508-b65b903a8378@suse.cz This patch (of 4): Since commit |
|
Lucas Stach | 424f6c4818 |
mm: alloc_contig: re-allow CMA to compact FS pages
Commit |
|
Alexander Duyck | 2976db8018 |
mm: rename __page_frag functions to __page_frag_cache, drop order from drain
This patch does two things. First it goes through and renames the __page_frag prefixed functions to __page_frag_cache so that we can be clear that we are draining or refilling the cache, not the frags themselves. Second we drop the order parameter from __page_frag_cache_drain since we don't actually need to pass it since all fragments are either order 0 or must be a compound page. Link: http://lkml.kernel.org/r/20170104023954.13451.5678.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Duyck | 8c2dd3e4a4 |
mm: rename __alloc_page_frag to page_frag_alloc and __free_page_frag to page_frag_free
Patch series "Page fragment updates", v4. This patch series takes care of a few cleanups for the page fragments API. First we do some renames so that things are much more consistent. First we move the page_frag_ portion of the name to the front of the functions names. Secondly we split out the cache specific functions from the other page fragment functions by adding the word "cache" to the name. Finally I added a bit of documentation that will hopefully help to explain some of this. I plan to revisit this later as we get things more ironed out in the near future with the changes planned for the DMA setup to support eXpress Data Path. This patch (of 3): This patch renames the page frag functions to be more consistent with other APIs. Specifically we place the name page_frag first in the name and then have either an alloc or free call name that we append as the suffix. This makes it a bit clearer in terms of naming. In addition we drop the leading double underscores since we are technically no longer a backing interface and instead the front end that is called from the networking APIs. Link: http://lkml.kernel.org/r/20170104023854.13451.67390.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ard Biesheuvel | f073bdc517 |
mm: don't dereference struct page fields of invalid pages
The VM_BUG_ON() check in move_freepages() checks whether the node id of a page matches the node id of its zone. However, it does this before having checked whether the struct page pointer refers to a valid struct page to begin with. This is guaranteed in most cases, but may not be the case if CONFIG_HOLES_IN_ZONE=y. So reorder the VM_BUG_ON() with the pfn_valid_within() check. Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Yisheng Xie <xieyisheng1@huawei.com> Cc: Robert Richter <rrichter@cavium.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 41b6167e8f |
mm: get rid of __GFP_OTHER_NODE
The flag was introduced by commit
|
|
Michal Hocko | 2df26639e7 |
mm: fix remote numa hits statistics
Jia He has noticed that commit |
|
Alexander Duyck | 44fdffd705 |
mm: add support for releasing multiple instances of a page
Add a function that allows us to batch free a page that has multiple references outstanding. Specifically this function can be used to drop a page being used in the page frag alloc cache. With this drivers can make use of functionality similar to the page frag alloc cache without having to do any workarounds for the fact that there is no function that frees multiple references. Link: http://lkml.kernel.org/r/20161110113606.76501.70752.stgit@ahduyck-blue-test.jf.intel.com Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Cc: Helge Deller <deller@gmx.de> Cc: James Hogan <james.hogan@imgtec.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Keguang Zhang <keguang.zhang@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Steven Miao <realmz6@gmail.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | e34bac726d |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - various misc bits - most of MM (quite a lot of MM material is awaiting the merge of linux-next dependencies) - kasan - printk updates - procfs updates - MAINTAINERS - /lib updates - checkpatch updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits) init: reduce rootwait polling interval time to 5ms binfmt_elf: use vmalloc() for allocation of vma_filesz checkpatch: don't emit unified-diff error for rename-only patches checkpatch: don't check c99 types like uint8_t under tools checkpatch: avoid multiple line dereferences checkpatch: don't check .pl files, improve absolute path commit log test scripts/checkpatch.pl: fix spelling checkpatch: don't try to get maintained status when --no-tree is given lib/ida: document locking requirements a bit better lib/rbtree.c: fix typo in comment of ____rb_erase_color lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM MAINTAINERS: add drm and drm/i915 irc channels MAINTAINERS: add "C:" for URI for chat where developers hang out MAINTAINERS: add drm and drm/i915 bug filing info MAINTAINERS: add "B:" for URI where to file bugs get_maintainer: look for arbitrary letter prefixes in sections printk: add Kconfig option to set default console loglevel printk/sound: handle more message headers printk/btrfs: handle more message headers printk/kdb: handle more message headers ... |
|
Linus Torvalds | e71c3978d6 |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner: "This is the final round of converting the notifier mess to the state machine. The removal of the notifiers and the related infrastructure will happen around rc1, as there are conversions outstanding in other trees. The whole exercise removed about 2000 lines of code in total and in course of the conversion several dozen bugs got fixed. The new mechanism allows to test almost every hotplug step standalone, so usage sites can exercise all transitions extensively. There is more room for improvement, like integrating all the pointlessly different architecture mechanisms of synchronizing, setting cpus online etc into the core code" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) tracing/rb: Init the CPU mask on allocation soc/fsl/qbman: Convert to hotplug state machine soc/fsl/qbman: Convert to hotplug state machine zram: Convert to hotplug state machine KVM/PPC/Book3S HV: Convert to hotplug state machine arm64/cpuinfo: Convert to hotplug state machine arm64/cpuinfo: Make hotplug notifier symmetric mm/compaction: Convert to hotplug state machine iommu/vt-d: Convert to hotplug state machine mm/zswap: Convert pool to hotplug state machine mm/zswap: Convert dst-mem to hotplug state machine mm/zsmalloc: Convert to hotplug state machine mm/vmstat: Convert to hotplug state machine mm/vmstat: Avoid on each online CPU loops mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead() tracing/rb: Convert to hotplug state machine oprofile/nmi timer: Convert to hotplug state machine net/iucv: Use explicit clean up labels in iucv_init() x86/pci/amd-bus: Convert to hotplug state machine x86/oprofile/nmi: Convert to hotplug state machine ... |
|
Mel Gorman | a6de734bc0 |
mm, page_alloc: keep pcp count and list contents in sync if struct page is corrupted
Vlastimil Babka pointed out that commit |
|
Minchan Kim | 29fac03bef |
mm: make unreserve highatomic functions reliable
Currently, unreserve_highatomic_pageblock bails out if it found highatomic pageblock regardless of really moving free pages from the one so that it could mitigate unreserve logic's goal which saves OOM of a process. This patch makes unreserve functions bail out only if it moves some pages out of !highatomic free list to avoid such false positive. Another potential problem is that by race between page freeing and reserve highatomic function, pages could be in highatomic free list even though the pageblock is !high atomic migratetype. In that case, unreserve_highatomic_pageblock can be void if count of highatomic reserve is less than pageblock_nr_pages. We could solve it simply via draining all of reserved pages before the OOM. It would have a safeguard role to exhuast reserved pages before converging to OOM. Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 04c8716f7b |
mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel. It had enough free memory but failed to allocate GFP_KERNEL order-0 page and finally encountered OOM kill. It occured during QA process which launches several apps, switching and so on. It happned rarely. IOW, In normal situation, it was not a problem but if we are unluck so that several apps uses peak memory at the same time, it can happen. If we manage to pass the phase, the system can go working well. I could reproduce it with my test(memory spike easily. Look at below. The reason is free pages(19M) of DMA32 zone are reserved for HIGHORDERATOMIC and doesn't unreserved before the OOM. balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0 balloon cpuset=/ mems_allowed=0 CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: dump_stack+0x63/0x90 dump_header+0x5c/0x1ce oom_kill_process+0x22e/0x400 out_of_memory+0x1ac/0x210 __alloc_pages_nodemask+0x101e/0x1040 handle_mm_fault+0xa0a/0xbf0 __do_page_fault+0x1dd/0x4d0 trace_do_page_fault+0x43/0x130 do_async_page_fault+0x1a/0xa0 async_page_fault+0x28/0x30 Mem-Info: active_anon:383949 inactive_anon:106724 isolated_anon:0 active_file:15 inactive_file:44 isolated_file:0 unevictable:0 dirty:0 writeback:24 unstable:0 slab_reclaimable:2483 slab_unreclaimable:3326 mapped:0 shmem:0 pagetables:1906 bounce:0 free:6898 free_pcp:291 free_cma:0 Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 1952 1952 1952 DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB 51131 total pagecache pages 50795 pages in swap cache Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228 Free swap = 8kB Total swap = 255996kB 524158 pages RAM 0 pages HighMem/MovableOnly 12658 pages reserved 0 pages cma reserved 0 pages hwpoisoned Another example exceeded the limit by the race is in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK) CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: dump_stack+0x63/0x90 warn_alloc_failed+0xdb/0x130 __alloc_pages_nodemask+0x4d6/0xdb0 new_slab+0x339/0x490 ___slab_alloc.constprop.74+0x367/0x480 __slab_alloc.constprop.73+0x20/0x40 __kmalloc+0x1a4/0x1e0 alloc_indirect.isra.14+0x1d/0x50 virtqueue_add_sgs+0x1c4/0x470 __virtblk_add_req+0xae/0x1f0 virtio_queue_rq+0x12d/0x290 __blk_mq_run_hw_queue+0x239/0x370 blk_mq_run_hw_queue+0x8f/0xb0 blk_mq_insert_requests+0x18c/0x1a0 blk_mq_flush_plug_list+0x125/0x140 blk_flush_plug_list+0xc7/0x220 blk_finish_plug+0x2c/0x40 __do_page_cache_readahead+0x196/0x230 filemap_fault+0x448/0x4f0 ext4_filemap_fault+0x36/0x50 __do_fault+0x75/0x140 handle_mm_fault+0x84d/0xbe0 __do_page_fault+0x1dd/0x4d0 trace_do_page_fault+0x43/0x130 do_async_page_fault+0x1a/0xa0 async_page_fault+0x28/0x30 Mem-Info: active_anon:363826 inactive_anon:121283 isolated_anon:32 active_file:65 inactive_file:152 isolated_file:0 unevictable:0 dirty:0 writeback:46 unstable:0 slab_reclaimable:2778 slab_unreclaimable:3070 mapped:112 shmem:0 pagetables:1822 bounce:0 free:9469 free_pcp:231 free_cma:0 Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 1952 1952 1952 DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB 2775 total pagecache pages 2536 pages in swap cache Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077 Free swap = 108744kB Total swap = 255996kB 524158 pages RAM 0 pages HighMem/MovableOnly 12648 pages reserved 0 pages cma reserved 0 pages hwpoisoned It's weird to show that zone has enough free memory above min watermark but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic pages. As last resort, try to unreserve highatomic pages again and if it has moved pages to non-highatmoc free list, retry reclaim once more. Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 4855e4a7f2 |
mm: prevent double decrease of nr_reserved_highatomic
There is race between page freeing and unreserved highatomic. CPU 0 CPU 1 free_hot_cold_page mt = get_pfnblock_migratetype set_pcppage_migratetype(page, mt) unreserve_highatomic_pageblock spin_lock_irqsave(&zone->lock) move_freepages_block set_pageblock_migratetype(page) spin_unlock_irqrestore(&zone->lock) free_pcppages_bulk __free_one_page(mt) <- mt is stale By above race, a page on CPU 0 could go non-highorderatomic free list since the pageblock's type is changed. By that, unreserve logic of highorderatomic can decrease reserved count on a same pageblock severak times and then it will make mismatch between nr_reserved_highatomic and the number of reserved pageblock. So, this patch verifies whether the pageblock is highatomic or not and decrease the count only if the pageblock is highatomic. Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 88ed365ea2 |
mm: don't steal highatomic pageblock
Patch series "use up highorder free pages before OOM", v3. I got OOM report from production team with v4.4 kernel. It had enough free memory but failed to allocate GFP_KERNEL order-0 page and finally encountered OOM kill. It occured during QA process which launches several apps, switching and so on. It happned rarely. IOW, In normal situation, it was not a problem but if we are unluck so that several apps uses peak memory at the same time, it can happen. If we manage to pass the phase, the system can go working well. I could reproduce it with my test(memory spike easily. Look at below. The reason is free pages(19M) of DMA32 zone are reserved for HIGHORDERATOMIC and doesn't unreserved before the OOM. balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0 balloon cpuset=/ mems_allowed=0 CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: dump_stack+0x63/0x90 dump_header+0x5c/0x1ce oom_kill_process+0x22e/0x400 out_of_memory+0x1ac/0x210 __alloc_pages_nodemask+0x101e/0x1040 handle_mm_fault+0xa0a/0xbf0 __do_page_fault+0x1dd/0x4d0 trace_do_page_fault+0x43/0x130 do_async_page_fault+0x1a/0xa0 async_page_fault+0x28/0x30 Mem-Info: active_anon:383949 inactive_anon:106724 isolated_anon:0 active_file:15 inactive_file:44 isolated_file:0 unevictable:0 dirty:0 writeback:24 unstable:0 slab_reclaimable:2483 slab_unreclaimable:3326 mapped:0 shmem:0 pagetables:1906 bounce:0 free:6898 free_pcp:291 free_cma:0 Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 1952 1952 1952 DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB 51131 total pagecache pages 50795 pages in swap cache Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228 Free swap = 8kB Total swap = 255996kB 524158 pages RAM 0 pages HighMem/MovableOnly 12658 pages reserved 0 pages cma reserved 0 pages hwpoisoned Another example exceeded the limit by the race is in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK) CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: dump_stack+0x63/0x90 warn_alloc_failed+0xdb/0x130 __alloc_pages_nodemask+0x4d6/0xdb0 new_slab+0x339/0x490 ___slab_alloc.constprop.74+0x367/0x480 __slab_alloc.constprop.73+0x20/0x40 __kmalloc+0x1a4/0x1e0 alloc_indirect.isra.14+0x1d/0x50 virtqueue_add_sgs+0x1c4/0x470 __virtblk_add_req+0xae/0x1f0 virtio_queue_rq+0x12d/0x290 __blk_mq_run_hw_queue+0x239/0x370 blk_mq_run_hw_queue+0x8f/0xb0 blk_mq_insert_requests+0x18c/0x1a0 blk_mq_flush_plug_list+0x125/0x140 blk_flush_plug_list+0xc7/0x220 blk_finish_plug+0x2c/0x40 __do_page_cache_readahead+0x196/0x230 filemap_fault+0x448/0x4f0 ext4_filemap_fault+0x36/0x50 __do_fault+0x75/0x140 handle_mm_fault+0x84d/0xbe0 __do_page_fault+0x1dd/0x4d0 trace_do_page_fault+0x43/0x130 do_async_page_fault+0x1a/0xa0 async_page_fault+0x28/0x30 Mem-Info: active_anon:363826 inactive_anon:121283 isolated_anon:32 active_file:65 inactive_file:152 isolated_file:0 unevictable:0 dirty:0 writeback:46 unstable:0 slab_reclaimable:2778 slab_unreclaimable:3070 mapped:112 shmem:0 pagetables:1822 bounce:0 free:9469 free_pcp:231 free_cma:0 Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 1952 1952 1952 DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB 2775 total pagecache pages 2536 pages in swap cache Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077 Free swap = 108744kB Total swap = 255996kB 524158 pages RAM 0 pages HighMem/MovableOnly 12648 pages reserved 0 pages cma reserved 0 pages hwpoisoned During the investigation, I found some problems with highatomic so this patch aims to solve the problems and the final goal is to unreserve every highatomic free pages before the OOM kill. This patch (of 4): In page freeing path, migratetype is racy so that a highorderatomic page could free into non-highorderatomic free list. If that page is allocated, VM can change the pageblock from higorderatomic to something. In that case, highatomic pageblock accounting is broken so it doesn't work(e.g., VM cannot reserve highorderatomic pageblocks any more although it doesn't reach 1% limit). So, this patch prohibits the changing from highatomic to other type. It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback array so stealing will only happen due to unexpected races which is really rare. Also, such prohibiting keeps highatomic pageblock more longer so it would be better for highorderatomic page allocation. Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ingo Molnar | 89a01c51cb |
Merge branch 'x86/cpufeature' into x86/asm, to pick up dependency
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Tetsuo Handa | 9e80c719a8 |
mm: remove extra newline from allocation stall warning
Commit
|
|
Sebastian Andrzej Siewior | 005fd4bbef |
mm/page_alloc: Convert to hotplug state machine
Install the callbacks via the state machine. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20161103145021.28528-7-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
Linus Torvalds | 577f12c07e |
- make sure required exports from gcc plugins are visible to gcc
- switch latent_entropy to unsigned long to avoid stack frame bloat -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 Comment: Kees Cook <kees@outflux.net> iQIcBAABCgAGBQJYGNL6AAoJEIly9N/cbcAm9kkP/3kx3vKAv9lidmylMppvsT/u IyLe+SgT7NmouYKaYcXfLF3rJsGar5+RBpMmBhm+8rsrBdDKru9L30jacXkHPuMd /6stf84thUu5VJHrHHOehaI5s5PDaEohdV2CQJfYR0U3x+uIP4RTPBLJOVog/l1g sDh9tx3Pp5VTtEV7N9utuqrbH8fDDcHdjhidlbf7AoVXvQf1tBxCPmgiayIufan7 NAoH4m6KhtRAPsNG9JQwfstB2OKFvnMwcHEOOv4w8R+whXEWXUkC3s+0ILivtmQA p677ZCLydA9N75fRT5iuaxWTorT7iHwwjh4hZvwLTNvizG4QKtU28eAl6Nip4zH9 +zL0/RONvBH0kjOrh9m/hFFvoPWyvAVKbztiF7CMWaG8poqgQfGQCUecfGLUCBu+ zj0FluBJInWBRAlMsc0F40ztVmjZGDga4l2a0Ip8SdqH796aC+0UTgGSF+HmabCR K3vKhEUJsYpy97+EwX51bWXB1nMBlxp1jVp1hmZUFm4kP7CMr4kiQL3Rn03duKEG emg0KXhza0Iu8PxAdO413TX/zUJNuBFlUKeIxHSXuoQsUJIUlw18TznxmrA2qSyD 88tnTQlGy37SMWwDK96GKYARKW2u1VGnEKGH0glud1sLNWj7p2hDY5Mg/gZmDD3g uyrM66DG3IWdOFTcFcHE =EQJ9 -----END PGP SIGNATURE----- Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull gcc plugin fixes from Kees Cook: - make sure required exports from gcc plugins are visible to gcc - switch latent_entropy to unsigned long to avoid stack frame bloat * tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: latent_entropy: Fix wrong gcc code generation with 64 bit variables gcc-plugins: Export symbols needed by gcc |
|
Ingo Molnar | 05b93c19d5 |
Merge branch 'linus' into x86/asm, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Kees Cook | 58bea4144d |
latent_entropy: Fix wrong gcc code generation with 64 bit variables
The stack frame size could grow too large when the plugin used long long on 32-bit architectures when the given function had too many basic blocks. The gcc warning was: drivers/pci/hotplug/ibmphp_ebda.c: In function 'ibmphp_access_ebda': drivers/pci/hotplug/ibmphp_ebda.c:409:1: warning: the frame size of 1108 bytes is larger than 1024 bytes [-Wframe-larger-than=] This switches latent_entropy from u64 to unsigned long. Thanks to PaX Team and Emese Revfy for the patch. Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Joe Perches | 1f84a18fc0 |
mm: page_alloc: use KERN_CONT where appropriate
Recent changes to printk require KERN_CONT uses to continue logging
messages. So add KERN_CONT where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Fixes:
|
|
Linus Torvalds | 9dcb8b685f |
mm: remove per-zone hashtable of bitlock waitqueues
The per-zone waitqueues exist because of a scalability issue with the page waitqueues on some NUMA machines, but it turns out that they hurt normal loads, and now with the vmalloced stacks they also end up breaking gfs2 that uses a bit_wait on a stack object: wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE) where 'gh' can be a reference to the local variable 'mount_gh' on the stack of fill_super(). The reason the per-zone hash table breaks for this case is that there is no "zone" for virtual allocations, and trying to look up the physical page to get at it will fail (with a BUG_ON()). It turns out that I actually complained to the mm people about the per-zone hash table for another reason just a month ago: the zone lookup also hurts the regular use of "unlock_page()" a lot, because the zone lookup ends up forcing several unnecessary cache misses and generates horrible code. As part of that earlier discussion, we had a much better solution for the NUMA scalability issue - by just making the page lock have a separate contention bit, the waitqueue doesn't even have to be looked at for the normal case. Peter Zijlstra already has a patch for that, but let's see if anybody even notices. In the meantime, let's fix the actual gfs2 breakage by simplifying the bitlock waitqueues and removing the per-zone issue. Reported-by: Andreas Gruenbacher <agruenba@redhat.com> Tested-by: Bob Peterson <rpeterso@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Josh Poimboeuf | adb1fe9ae2 |
mm/page_alloc: Remove kernel address exposure in free_reserved_area()
Linus suggested we try to remove some of the low-hanging fruit related to kernel address exposure in dmesg. The only leaks I see on my local system are: Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000) Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000) Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000) Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000) Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000) Linus says: "I suspect we should just remove [the addresses in the 'Freeing' messages]. I'm sure they are useful in theory, but I suspect they were more useful back when the whole "free init memory" was originally done. These days, if we have a use-after-free, I suspect the init-mem situation is the easiest situation by far. Compared to all the dynamic allocations which are much more likely to show it anyway. So having debug output for that case is likely not all that productive." With this patch the freeing messages now look like this: Freeing SMP alternatives memory: 32K Freeing initrd memory: 10588K Freeing unused kernel memory: 3592K Freeing unused kernel memory: 1352K Freeing unused kernel memory: 632K Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Linus Torvalds | 9ffc66941d |
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 Comment: Kees Cook <kees@outflux.net> iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk 1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4 8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R pa/A7CNQwibIV6YD8+/p =1dUK -----END PGP SIGNATURE----- Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull gcc plugins update from Kees Cook: "This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals" * tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: latent_entropy: Mark functions with __latent_entropy gcc-plugins: Add latent_entropy plugin |
|
Emese Revfy | 0766f788eb |
latent_entropy: Mark functions with __latent_entropy
The __latent_entropy gcc attribute can be used only on functions and variables. If it is on a function then the plugin will instrument it for gathering control-flow entropy. If the attribute is on a variable then the plugin will initialize it with random contents. The variable must be an integer, an integer array type or a structure with integer fields. These specific functions have been selected because they are init functions (to help gather boot-time entropy), are called at unpredictable times, or they have variable loops, each of which provide some level of latent entropy. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message] Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Emese Revfy | 38addce8b6 |
gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Michal Hocko | 63f53dea0c |
mm: warn about allocations which stall for too long
Currently we do warn only about allocation failures but small allocations are basically nofail and they might loop in the page allocator for a long time. Especially when the reclaim cannot make any progress - e.g. GFP_NOFS cannot invoke the oom killer and rely on a different context to make a forward progress in case there is a lot memory used by filesystems. Give us at least a clue when something like this happens and warn about allocations which take more than 10s. Print the basic allocation context information along with the cumulative time spent in the allocation as well as the allocation stack. Repeat the warning after every 10 seconds so that we know that the problem is permanent rather than ephemeral. Link: http://lkml.kernel.org/r/20160929084407.7004-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 7877cdcc38 |
mm: consolidate warn_alloc_failed users
warn_alloc_failed is currently used from the page and vmalloc allocators. This is a good reuse of the code except that vmalloc would appreciate a slightly different warning message. This is already handled by the fmt parameter except that "%s: page allocation failure: order:%u, mode:%#x(%pGg)" is printed anyway. This might be quite misleading because it might be a vmalloc failure which leads to the warning while the page allocator is not the culprit here. Fix this by always using the fmt string and only print the context that makes sense for the particular context (e.g. order makes only very little sense for the vmalloc context). Rename the function to not miss any user and also because a later patch will reuse it also for !failure cases. Link: http://lkml.kernel.org/r/20160929084407.7004-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 423b452e15 |
mm, page_alloc: pull no_progress_loops update to should_reclaim_retry()
The should_reclaim_retry() makes decisions based on no_progress_loops, so it makes sense to also update the counter there. It will be also consistent with should_compact_retry() and compaction_retries. No functional change. [hillf.zj@alibaba-inc.com: fix missing pointer dereferences] Link: http://lkml.kernel.org/r/20160926162025.21555-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | c2033b00db |
mm, compaction: restrict full priority to non-costly orders
The new ultimate compaction priority disables some heuristics, which may result in excessive cost. This is fine for non-costly orders where we want to try hard before resulting for OOM, but might be disruptive for costly orders which do not trigger OOM and should generally have some fallback. Thus, we disable the full priority for costly orders. Suggested-by: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | d943649831 |
mm, compaction: more reliably increase direct compaction priority
During reclaim/compaction loop, compaction priority can be increased by the should_compact_retry() function, but the current code is not optimal. Priority is only increased when compaction_failed() is true, which means that compaction has scanned the whole zone. This may not happen even after multiple attempts with a lower priority due to parallel activity, so we might needlessly struggle on the lower priorities and possibly run out of compaction retry attempts in the process. After this patch we are guaranteed at least one attempt at the highest compaction priority even if we exhaust all retries at the lower priorities. Link: http://lkml.kernel.org/r/20160906135258.18335-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 3250845d05 |
Revert "mm, oom: prevent premature OOM killer invocation for high order request"
Patch series "reintroduce compaction feedback for OOM decisions". After several people reported OOM's for order-2 allocations in 4.7 due to Michal Hocko's OOM rework, he reverted the part that considered compaction feedback [1] in the decisions to retry reclaim/compaction. This was to provide a fix quickly for 4.8 rc and 4.7 stable series, while mmotm had an almost complete solution that instead improved compaction reliability. This series completes the mmotm solution and reintroduces the compaction feedback into OOM decisions. The first two patches restore the state of mmotm before the temporary solution was merged, the last patch should be the missing piece for reliability. The third patch restricts the hardened compaction to non-costly orders, since costly orders don't result in OOMs in the first place. [1] http://marc.info/?i=20160822093249.GA14916%40dhcp22.suse.cz%3E This patch (of 4): Commit |
|
Srikar Dronamraju | f6f34b4387 |
mm: introduce arch_reserved_kernel_pages()
Currently arch specific code can reserve memory blocks but alloc_large_system_hash() may not take it into consideration when sizing the hashes. This can lead to bigger hash than required and lead to no available memory for other purposes. This is specifically true for systems with CONFIG_DEFERRED_STRUCT_PAGE_INIT enabled. One approach to solve this problem would be to walk through the memblock regions and calculate the available memory and base the size of hash system on the available memory. The other approach would be to depend on the architecture to provide the number of pages that are reserved. This change provides hooks to allow the architecture to provide the required info. Link: http://lkml.kernel.org/r/1472476010-4709-2-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Suggested-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | c9634cf012 |
mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the zonelist. This makes it more readable. No functionality change by this patch. Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 980ac1672e |
mm/page_ext: support extra space allocation by page_ext user
Until now, if some page_ext users want to use it's own field on page_ext, it should be defined in struct page_ext by hard-coding. It has a problem that wastes memory in following situation. struct page_ext { #ifdef CONFIG_A int a; #endif #ifdef CONFIG_B int b; #endif }; Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we enable feature A and doesn't enable feature B at runtime, each entry of struct page_ext takes two int rather than one int. It's undesirable result so this patch tries to fix it. To solve above problem, this patch implements to support extra space allocation at runtime. When need() callback returns true, it's extra memory requirement is summed to entry size of page_ext. Also, offset for each user's extra memory space is returned. With this offset, user can use this extra space and there is no need to define needed field on page_ext by hard-coding. This patch only implements an infrastructure. Following patch will use it for page_owner which is only user having it's own fields on page_ext. Link: http://lkml.kernel.org/r/1471315879-32294-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | f1c1e9f7b5 |
mm/debug_pagealloc.c: don't allocate page_ext if we don't use guard page
What debug_pagealloc does is just mapping/unmapping page table. Basically, it doesn't need additional memory space to memorize something. But, with guard page feature, it requires additional memory to distinguish if the page is for guard or not. Guard page is only used when debug_guardpage_minorder is non-zero so this patch removes additional memory allocation (page_ext) if debug_guardpage_minorder is zero. It saves memory if we just use debug_pagealloc and not guard page. Link: http://lkml.kernel.org/r/1471315879-32294-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | acbc15a4b3 |
mm/debug_pagealloc.c: clean-up guard page handling code
Patch series "Reduce memory waste by page extension user". This patchset tries to reduce memory waste by page extension user. First case is architecture supported debug_pagealloc. It doesn't requires additional memory if guard page isn't used. 8 bytes per page will be saved in this case. Second case is related to page owner feature. Until now, if page_ext users want to use it's own fields on page_ext, fields should be defined in struct page_ext by hard-coding. It has a following problem. struct page_ext { #ifdef CONFIG_A int a; #endif #ifdef CONFIG_B int b; #endif }; Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we enable feature A and doesn't enable feature B at runtime, each entry of struct page_ext takes two int rather than one int. It's undesirable waste so this patch tries to reduce it. By this patchset, we can save 20 bytes per page dedicated for page owner feature in some configurations. This patch (of 6): We can make code clean by moving decision condition for set_page_guard() into set_page_guard() itself. It will help code readability. There is no functional change. Link: http://lkml.kernel.org/r/1471315879-32294-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Xishi Qiu | e780149bcd |
mm: fix set pageblock migratetype in deferred struct page init
On x86_64 MAX_ORDER_NR_PAGES is usually 4M, and a pageblock is usually
2M, so we only set one pageblock's migratetype in deferred_free_range()
if pfn is aligned to MAX_ORDER_NR_PAGES. That means it causes
uninitialized migratetype blocks, you can see from "cat
/proc/pagetypeinfo", almost half blocks are Unmovable.
Also we missed freeing the last block in deferred_init_memmap(), it
causes memory leak.
Fixes:
|
|
Xishi Qiu | e506b99696 |
mem-hotplug: fix node spanned pages when we have a movable node
Commit
|
|
Vlastimil Babka | 8348faf91f |
mm, compaction: require only min watermarks for non-costly orders
The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. Then __isolate_free_page uses low watermark check to decide if particular free page can be isolated. In the latter case, using low watermark is needlessly pessimistic, as the free page isolations are only temporary. For __compaction_suitable() the higher watermark makes sense for high-order allocations where more freepages increase the chance of success, and we can typically fail with some order-0 fallback when the system is struggling to reach that watermark. But for low-order allocation, forming the page should not be that hard. So using low watermark here might just prevent compaction from even trying, and eventually lead to OOM killer even if we are above min watermarks. So after this patch, we use min watermark for non-costly orders in __compaction_suitable(), and for all orders in __isolate_free_page(). [vbabka@suse.cz: clarify __isolate_free_page() comment] Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 984fdba6a3 |
mm, compaction: use proper alloc_flags in __compaction_suitable()
The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. This check uses direct compactor's alloc_flags, but that's wrong, since these flags are not applicable for freepage isolation. For example, alloc_flags may indicate access to memory reserves, making compaction proceed, and then fail watermark check during the isolation. A similar problem exists for ALLOC_CMA, which may be part of alloc_flags, but not during freepage isolation. In this case however it makes sense to use ALLOC_CMA both in __compaction_suitable() and __isolate_free_page(), since there's actually nothing preventing the freepage scanner to isolate from CMA pageblocks, with the assumption that a page that could be migrated once by compaction can be migrated also later by CMA allocation. Thus we should count pages in CMA pageblocks when considering compaction suitability and when isolating freepages. To sum up, this patch should remove some false positives from __compaction_suitable(), and allow compaction to proceed when free pages required for compaction reside in the CMA pageblocks. Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 6aa303defb |
mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel. Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit
|
|
Michal Hocko | 6b4e3181d7 |
mm, oom: prevent premature OOM killer invocation for high order request
There have been several reports about pre-mature OOM killer invocation
in 4.7 kernel when order-2 allocation request (for the kernel stack)
invoked OOM killer even during basic workloads (light IO or even kernel
compile on some filesystems). In all reported cases the memory is
fragmented and there are no order-2+ pages available. There is usually
a large amount of slab memory (usually dentries/inodes) and further
debugging has shown that there are way too many unmovable blocks which
are skipped during the compaction. Multiple reporters have confirmed
that the current linux-next which includes [1] and [2] helped and OOMs
are not reproducible anymore.
A simpler fix for the late rc and stable is to simply ignore the
compaction feedback and retry as long as there is a reclaim progress and
we are not getting OOM for order-0 pages. We already do that for
CONFING_COMPACTION=n so let's reuse the same code when compaction is
enabled as well.
[1] http://lkml.kernel.org/r/20160810091226.6709-1-vbabka@suse.cz
[2] http://lkml.kernel.org/r/f7a9ea9d-bb88-bfd6-e340-3a933559305a@suse.cz
Fixes:
|
|
Mel Gorman | 2f95ff90b9 |
proc, meminfo: use correct helpers for calculating LRU sizes in meminfo
meminfo_proc_show() and si_mem_available() are using the wrong helpers for calculating the size of the LRUs. The user-visible impact is that there appears to be an abnormally high number of unevictable pages. Link: http://lkml.kernel.org/r/20160805105805.GR2799@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 6423aa8192 |
mm/page_alloc.c: recalculate some of node threshold when on/offline memory
Some of node threshold depends on number of managed pages in the node. When memory is going on/offline, it can be changed and we need to adjust them. Add recalculation to appropriate places and clean-up related functions for better maintenance. Link: http://lkml.kernel.org/r/1470724248-26780-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 81cbcbc2d8 |
mm/page_alloc.c: fix wrong initialization when sysctl_min_unmapped_ratio changes
Before resetting min_unmapped_pages, we need to initialize
min_unmapped_pages rather than min_slab_pages.
Fixes:
|
|
Vladimir Davydov | c4159a75b6 |
mm: memcontrol: only mark charged pages with PageKmemcg
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512. Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context. To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true. The latter is set iff there are kmem-enabled memory cgroups
(online or offline). The root cgroup is not considered kmem-enabled.
As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.
# no memory cgroups has been created yet, create one
mkdir /sys/fs/cgroup/memory/test
# run something allocating pages with __GFP_ACCOUNT, e.g.
# a program using pipe
dmesg | tail
# remove the memory cgroup
rmdir /sys/fs/cgroup/memory/test
we'll get bad page state bug complaining about page->_mapcount != -1:
BUG: Bad page state in process swapper/0 pfn:1fd945c
page:ffffea007f651700 count:0 mapcount:-511 mapping: (null) index:0x0
flags: 0x1000000000000000()
To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.
Fixes:
|
|
Mel Gorman | b4911ea2bc |
mm: initialise per_cpu_nodestats for all online pgdats at boot
Paul Mackerras and Reza Arbab reported that machines with memoryless nodes fail when vmstats are refreshed. Paul reported an oops as follows Unable to handle kernel paging request for data at address 0xff7a10000 Faulting instruction address: 0xc000000000270cd0 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.7.0-kvm+ #118 task: c000000ff0680010 task.stack: c000000ff0704000 NIP: c000000000270cd0 LR: c000000000270ce8 CTR: 0000000000000000 REGS: c000000ff0707900 TRAP: 0300 Not tainted (4.7.0-kvm+) MSR: 9000000102009033 <SF,HV,VEC,EE,ME,IR,DR,RI,LE,TM[E]> CR: 846b6824 XER: 20000000 CFAR: c000000000008768 DAR: 0000000ff7a10000 DSISR: 42000000 SOFTE: 1 NIP refresh_zone_stat_thresholds+0x80/0x240 LR refresh_zone_stat_thresholds+0x98/0x240 Call Trace: refresh_zone_stat_thresholds+0xb8/0x240 (unreliable) Both supplied potential fixes but one potentially misses checks and another had redundant initialisations. This version initialises per_cpu_nodestats on a per-pgdat basis instead of on a per-zone basis. Link: http://lkml.kernel.org/r/20160804092404.GI2799@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reported-by: Paul Mackerras <paulus@ozlabs.org> Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Fabian Frederick | bd721ea73e |
treewide: replace obsolete _refok by __ref
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit
|
|
Vlastimil Babka | c3486f5376 |
mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched(). Since
|
|
Vlastimil Babka | a5508cd83f |
mm, compaction: introduce direct compaction priority
In the context of direct compaction, for some types of allocations we would like the compaction to either succeed or definitely fail while trying as hard as possible. Current async/sync_light migration mode is insufficient, as there are heuristics such as caching scanner positions, marking pageblocks as unsuitable or deferring compaction for a zone. At least the final compaction attempt should be able to override these heuristics. To communicate how hard compaction should try, we replace migration mode with a new enum compact_priority and change the relevant function signatures. In compact_zone_order() where struct compact_control is constructed, the priority is mapped to suitable control flags. This patch itself has no functional change, as the current priority levels are mapped back to the same migration modes as before. Expanding them will be done next. Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is removed, as the only caller exists under CONFIG_COMPACTION. Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 2516035499 |
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 3eb2771b06 |
mm, page_alloc: make THP-specific decisions more generic
Since THP allocations during page faults can be costly, extra decisions are employed for them to avoid excessive reclaim and compaction, if the initial compaction doesn't look promising. The detection has never been perfect as there is no gfp flag specific to THP allocations. At this moment it checks the whole combination of flags that makes up GFP_TRANSHUGE, and hopes that no other users of such combination exist, or would mind being treated the same way. Extra care is also taken to separate allocations from khugepaged, where latency doesn't matter that much. It is however possible to distinguish these allocations in a simpler and more reliable way. The key observation is that after the initial compaction followed by the first iteration of "standard" reclaim/compaction, both __GFP_NORETRY allocations and costly allocations without __GFP_REPEAT are declared as failures: /* Do not loop if specifically requested */ if (gfp_mask & __GFP_NORETRY) goto nopage; /* * Do not retry costly high order allocations unless they are * __GFP_REPEAT */ if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) goto nopage; This means we can further distinguish allocations that are costly order *and* additionally include the __GFP_NORETRY flag. As it happens, GFP_TRANSHUGE allocations do already fall into this category. This will also allow other costly allocations with similar high-order benefit vs latency considerations to use this semantic. Furthermore, we can distinguish THP allocations that should try a bit harder (such as from khugepageed) by removing __GFP_NORETRY, as will be done in the next patch. Link: http://lkml.kernel.org/r/20160721073614.24395-6-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | a8161d1ed6 |
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying reclaim and compaction (and OOM), until either the allocation succeeds, or returns with failure. Success here is more probable when reclaim precedes compaction, as certain watermarks have to be met for compaction to even try, and more free pages increase the probability of compaction success. On the other hand, starting with light async compaction (if the watermarks allow it), can be more efficient, especially for smaller orders, if there's enough free memory which is just fragmented. Thus, the current code starts with compaction before reclaim, and to make sure that the last reclaim is always followed by a final compaction, there's another direct compaction call at the end of the loop. This makes the code hard to follow and adds some duplicated handling of migration_mode decisions. It's also somewhat inefficient that even if reclaim or compaction decides not to retry, the final compaction is still attempted. Some gfp flags combination also shortcut these retry decisions by "goto noretry;", making it even harder to follow. This patch attempts to restructure the code with only minimal functional changes. The call to the first compaction and THP-specific checks are now placed above the retry loop, and the "noretry" direct compaction is removed. The initial compaction is additionally restricted only to costly orders, as we can expect smaller orders to be held back by watermarks, and only larger orders to suffer primarily from fragmentation. This better matches the checks in reclaim's shrink_zones(). There are two other smaller functional changes. One is that the upgrade from async migration to light sync migration will always occur after the initial compaction. This is how it has been until recent patch "mm, oom: protect !costly allocations some more", which introduced upgrading the mode based on COMPACT_COMPLETE result, but kept the final compaction always upgraded, which made it even more special. It's better to return to the simpler handling for now, as migration modes will be further modified later in the series. The second change is that once both reclaim and compaction declare it's not worth to retry the reclaim/compact loop, there is no final compaction attempt. As argued above, this is intentional. If that final compaction were to succeed, it would be due to a wrong retry decision, or simply a race with somebody else freeing memory for us. The main outcome of this patch should be simpler code. Logically, the initial compaction without reclaim is the exceptional case to the reclaim/compaction scheme, but prior to the patch, it was the last loop iteration that was exceptional. Now the code matches the logic better. The change also enable the following patches. Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 23771235bb |
mm, page_alloc: don't retry initial attempt in slowpath
After __alloc_pages_slowpath() sets up new alloc_flags and wakes up kswapd, it first tries get_page_from_freelist() with the new alloc_flags, as it may succeed e.g. due to using min watermark instead of low watermark. It makes sense to to do this attempt before adjusting zonelist based on alloc_flags/gfp_mask, as it's still relatively a fast path if we just wake up kswapd and successfully allocate. This patch therefore moves the initial attempt above the retry label and reorganizes a bit the part below the retry label. We still have to attempt get_page_from_freelist() on each retry, as some allocations cannot do that as part of direct reclaim or compaction, and yet are not allowed to fail (even though they do a WARN_ON_ONCE() and thus should not exist). We can reuse the call meant for ALLOC_NO_WATERMARKS attempt and just set alloc_flags to ALLOC_NO_WATERMARKS if the context allows it. As a side-effect, the attempts from direct reclaim/compaction will also no longer obey watermarks once this is set, but there's little harm in that. Kswapd wakeups are also done on each retry to be safe from potential races resulting in kswapd going to sleep while a process (that may not be able to reclaim by itself) is still looping. Link: http://lkml.kernel.org/r/20160721073614.24395-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 31a6c1909f |
mm, page_alloc: set alloc_flags only once in slowpath
In __alloc_pages_slowpath(), alloc_flags doesn't change after it's initialized, so move the initialization above the retry: label. Also make the comment above the initialization more descriptive. The only exception in the alloc_flags being constant is ALLOC_NO_WATERMARKS, which may change due to TIF_MEMDIE being set on the allocating thread. We can fix this, and make the code simpler and a bit more effective at the same time, by moving the part that determines ALLOC_NO_WATERMARKS from gfp_to_alloc_flags() to gfp_pfmemalloc_allowed(). This means we don't have to mask out ALLOC_NO_WATERMARKS in numerous places in __alloc_pages_slowpath() anymore. The only two tests for the flag can instead call gfp_pfmemalloc_allowed(). Link: http://lkml.kernel.org/r/20160721073614.24395-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andy Lutomirski | d30dd8be06 |
mm: track NR_KERNEL_STACK in KiB instead of number of stacks
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone. This only makes sense if each kernel stack exists entirely in one zone, and allowing vmapped stacks could break this assumption. Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all architectures. Keep it simple and use KiB. Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 71c799f498 |
mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently which didn't ever happen in zone-lru. gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 .. .. __alloc_pages_nodemask+0xe52/0xe60 ? new_slab+0x39c/0x3b0 new_slab+0x39c/0x3b0 ___slab_alloc.constprop.87+0x6da/0x840 ? __alloc_skb+0x3c/0x260 ? _raw_spin_unlock_irq+0x27/0x60 ? trace_hardirqs_on_caller+0xec/0x1b0 ? finish_task_switch+0xa6/0x220 ? poll_select_copy_remaining+0x140/0x140 __slab_alloc.isra.81.constprop.86+0x40/0x6d ? __alloc_skb+0x3c/0x260 kmem_cache_alloc+0x22c/0x260 ? __alloc_skb+0x3c/0x260 __alloc_skb+0x3c/0x260 alloc_skb_with_frags+0x4e/0x1a0 sock_alloc_send_pskb+0x16a/0x1b0 ? wait_for_unix_gc+0x31/0x90 ? alloc_set_pte+0x2ad/0x310 unix_stream_sendmsg+0x28d/0x340 sock_sendmsg+0x2d/0x40 sock_write_iter+0x6c/0xc0 __vfs_write+0xc0/0x120 vfs_write+0x9b/0x1a0 ? __might_fault+0x49/0xa0 SyS_write+0x44/0x90 do_fast_syscall_32+0xa6/0x1e0 sysenter_past_esp+0x45/0x74 Mem-Info: active_anon:104698 inactive_anon:105791 isolated_anon:192 active_file:433 inactive_file:283 isolated_file:22 unevictable:0 dirty:0 writeback:296 unstable:0 slab_reclaimable:6389 slab_unreclaimable:78927 mapped:474 shmem:0 pagetables:101426 bounce:0 free:10518 free_pcp:334 free_cma:0 Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 25121 total pagecache pages 24160 pages in swap cache Swap cache stats: add 86371, delete 62211, find 42865/60187 Free swap = 4015560kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9658 pages reserved 0 pages cma reserved The order-0 allocation for normal zone failed while there are a lot of reclaimable memory(i.e., anonymous memory with free swap). I wanted to analyze the problem but it was hard because we removed per-zone lru stat so I couldn't know how many of anonymous memory there are in normal/dma zone. When we investigate OOM problem, reclaimable memory count is crucial stat to find a problem. Without it, it's hard to parse the OOM message so I believe we should keep it. With per-zone lru stat, gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 Mem-Info: active_anon:101103 inactive_anon:102219 isolated_anon:0 active_file:503 inactive_file:544 isolated_file:0 unevictable:0 dirty:0 writeback:34 unstable:0 slab_reclaimable:6298 slab_unreclaimable:74669 mapped:863 shmem:0 pagetables:100998 bounce:0 free:23573 free_pcp:1861 free_cma:0 Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 54409 total pagecache pages 53215 pages in swap cache Swap cache stats: add 300982, delete 247765, find 157978/226539 Free swap = 3803244kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9642 pages reserved 0 pages cma reserved With that, we can see normal zone has a 86M reclaimable memory so we can know something goes wrong(I will fix the problem in next patch) in reclaim. [mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat] Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | 33e077bd60 |
mm: show node_pages_scanned per node, not zone
The node_pages_scanned represents the number of scanned pages of node for reclaim so it's pointless to show it as kilobytes. As well, node_pages_scanned is per-node value, not per-zone. This patch changes node_pages_scanned per-zone-killobytes with per-node-count. [minchan@kernel.org: fix node_pages_scanned] Link: http://lkml.kernel.org/r/20160716101431.GA10305@bbox Link: http://lkml.kernel.org/r/1468588165-12461-5-git-send-email-mgorman@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
|
|
Mel Gorman | 16709d1de1 |
mm: vmstat: replace __count_zone_vm_events with a zone id equivalent
This is partially a preparation patch for more vmstat work but it also has the slight advantage that __count_zid_vm_events is cheaper to calculate than __count_zone_vm_events(). Link: http://lkml.kernel.org/r/1467970510-21195-32-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 3b8c0be43c |
mm: page_alloc: cache the last node whose dirty limit is reached
If a page is about to be dirtied then the page allocator attempts to limit the total number of dirty pages that exists in any given zone. The call to node_dirty_ok is expensive so this patch records if the last pgdat examined hit the dirty limits. In some cases, this reduces the number of calls to node_dirty_ok(). Link: http://lkml.kernel.org/r/1467970510-21195-31-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e6cbd7f2ef |
mm, page_alloc: remove fair zone allocation policy
The fair zone allocation policy interleaves allocation requests between zones to avoid an age inversion problem whereby new pages are reclaimed to balance a zone. Reclaim is now node-based so this should no longer be an issue and the fair zone allocation policy is not free. This patch removes it. Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | a5f5f91da6 |
mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be node_reclaim. It is possible that a node will be reclaimed multiple times if it has multiple zones but this is unavoidable without caching all nodes traversed so far. The documentation and interface to userspace is the same from a configuration perspective and will will be similar in behaviour unless the node-local allocation requests were also limited to lower zones. Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 52e9f87ae8 |
mm, page_alloc: wake kswapd based on the highest eligible zone
The ac_classzone_idx is used as the basis for waking kswapd and that is based on the preferred zoneref. If the preferred zoneref's first zone is lower than what is available on other nodes, it's possible that kswapd is woken on a zone with only higher, but still eligible, zones. As classzone_idx is strictly adhered to now, it causes a problem because eligible pages are skipped. For example, node 0 has only DMA32 and node 1 has only NORMAL. An allocating context running on node 0 may wake kswapd on node 1 telling it to skip all NORMAL pages. Link: http://lkml.kernel.org/r/1467970510-21195-23-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e1a556374a |
mm, vmscan: only wakeup kswapd once per node for the requested classzone
kswapd is woken when zones are below the low watermark but the wakeup decision is not taking the classzone into account. Now that reclaim is node-based, it is only required to wake kswapd once per node and only if all zones are unbalanced for the requested classzone. Note that one node might be checked multiple times if the zonelist is ordered by node because there is no cheap way of tracking what nodes have already been visited. For zone-ordering, each node should be checked only once. Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 50658e2e04 |
mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 281e37265f |
mm, page_alloc: consider dirtyable memory in terms of nodes
Historically dirty pages were spread among zones but now that LRUs are per-node it is more appropriate to consider dirty pages in a node. Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | a9dd0a8310 |
mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 38087d9b03 |
mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should stay awake based on the classzone_idx and the requested order. It is unnecessarily complex and passes in an invalid classzone_idx to balance_pgdat(). What matters most of all is whether a larger order has been requsted and whether kswapd successfully reclaimed at the previous order. This patch irons out the logic to check just that and the end result is less headache inducing. Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | a52633d8e9 |
mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 75ef718405 |
mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9" This series moves LRUs from the zones to the node. While this is a current rebase, the test results were based on mmotm as of June 23rd. Conceptually, this series is simple but there are a lot of details. Some of the broad motivations for this are; 1. The residency of a page partially depends on what zone the page was allocated from. This is partially combatted by the fair zone allocation policy but that is a partial solution that introduces overhead in the page allocator paths. 2. Currently, reclaim on node 0 behaves slightly different to node 1. For example, direct reclaim scans in zonelist order and reclaims even if the zone is over the high watermark regardless of the age of pages in that LRU. Kswapd on the other hand starts reclaim on the highest unbalanced zone. A difference in distribution of file/anon pages due to when they were allocated results can result in a difference in again. While the fair zone allocation policy mitigates some of the problems here, the page reclaim results on a multi-zone node will always be different to a single-zone node. it was scheduled on as a result. 3. kswapd and the page allocator scan zones in the opposite order to avoid interfering with each other but it's sensitive to timing. This mitigates the page allocator using pages that were allocated very recently in the ideal case but it's sensitive to timing. When kswapd is allocating from lower zones then it's great but during the rebalancing of the highest zone, the page allocator and kswapd interfere with each other. It's worse if the highest zone is small and difficult to balance. 4. slab shrinkers are node-based which makes it harder to identify the exact relationship between slab reclaim and LRU reclaim. The reason we have zone-based reclaim is that we used to have large highmem zones in common configurations and it was necessary to quickly find ZONE_NORMAL pages for reclaim. Today, this is much less of a concern as machines with lots of memory will (or should) use 64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are rare. Machines that do use highmem should have relatively low highmem:lowmem ratios than we worried about in the past. Conceptually, moving to node LRUs should be easier to understand. The page allocator plays fewer tricks to game reclaim and reclaim behaves similarly on all nodes. The series has been tested on a 16 core UMA machine and a 2-socket 48 core NUMA machine. The UMA results are presented in most cases as the NUMA machine behaved similarly. pagealloc --------- This is a microbenchmark that shows the benefit of removing the fair zone allocation policy. It was tested uip to order-4 but only orders 0 and 1 are shown as the other orders were comparable. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%) Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%) Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%) Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%) Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%) Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%) Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%) Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%) Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%) Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%) Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%) Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%) Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%) Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%) Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%) Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%) Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%) Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%) Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%) Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%) Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%) Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%) Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%) Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%) Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%) Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%) Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%) This shows a steady improvement throughout. The primary benefit is from reduced system CPU usage which is obvious from the overall times; 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 User 189.19 191.80 System 2604.45 2533.56 Elapsed 2855.30 2786.39 The vmstats also showed that the fair zone allocation policy was definitely removed as can be seen here; 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v8 DMA32 allocs 28794729769 0 Normal allocs 48432501431 77227309877 Movable allocs 0 0 tiobench on ext4 ---------------- tiobench is a benchmark that artifically benefits if old pages remain resident while new pages get reclaimed. The fair zone allocation policy mitigates this problem so pages age fairly. While the benchmark has problems, it is important that tiobench performance remains constant as it implies that page aging problems that the fair zone allocation policy fixes are not re-introduced. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%) Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%) Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%) Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%) Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%) Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%) Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%) Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%) Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%) Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%) Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%) Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%) Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%) Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%) Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%) Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%) Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%) Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%) Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%) Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%) Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 approx-v9 User 645.72 525.90 System 403.85 331.75 Elapsed 6795.36 6783.67 This shows that the series has little or not impact on tiobench which is desirable and a reduction in system CPU usage. It indicates that the fair zone allocation policy was removed in a manner that didn't reintroduce one class of page aging bug. There were only minor differences in overall reclaim activity 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Minor Faults 645838 647465 Major Faults 573 640 Swap Ins 0 0 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 46041453 44190646 Normal allocs 78053072 79887245 Movable allocs 0 0 Allocation stalls 24 67 Stall zone DMA 0 0 Stall zone DMA32 0 0 Stall zone Normal 0 2 Stall zone HighMem 0 0 Stall zone Movable 0 65 Direct pages scanned 10969 30609 Kswapd pages scanned 93375144 93492094 Kswapd pages reclaimed 93372243 93489370 Direct pages reclaimed 10969 30609 Kswapd efficiency 99% 99% Kswapd velocity 13741.015 13781.934 Direct efficiency 100% 100% Direct velocity 1.614 4.512 Percentage direct scans 0% 0% kswapd activity was roughly comparable. There were differences in direct reclaim activity but negligible in the context of the overall workload (velocity of 4 pages per second with the patches applied, 1.6 pages per second in the baseline kernel). pgbench read-only large configuration on ext4 --------------------------------------------- pgbench is a database benchmark that can be sensitive to page reclaim decisions. This also checks if removing the fair zone allocation policy is safe pgbench Transactions 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%) Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%) Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%) Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%) Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%) Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%) Negligible differences again. As with tiobench, overall reclaim activity was comparable. bonnie++ on ext4 ---------------- No interesting performance difference, negligible differences on reclaim stats. paralleldd on ext4 ------------------ This workload uses varying numbers of dd instances to read large amounts of data from disk. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%) Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%) Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%) Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%) Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%) Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 User 1548.01 1552.44 System 8609.71 8515.08 Elapsed 3587.10 3594.54 There is little or no change in performance but some drop in system CPU usage. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Minor Faults 362662 367360 Major Faults 1204 1143 Swap Ins 22 0 Swap Outs 2855 1029 DMA allocs 0 0 DMA32 allocs 31409797 28837521 Normal allocs 46611853 49231282 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 40845270 40869088 Kswapd pages reclaimed 40830976 40855294 Direct pages reclaimed 0 0 Kswapd efficiency 99% 99% Kswapd velocity 11386.711 11369.769 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Page writes by reclaim 2855 1029 Page writes file 0 0 Page writes anon 2855 1029 Page reclaim immediate 771 1628 Sector Reads 293312636 293536360 Sector Writes 18213568 18186480 Page rescued immediate 0 0 Slabs scanned 128257 132747 Direct inode steals 181 56 Kswapd inode steals 59 1131 It basically shows that kswapd was active at roughly the same rate in both kernels. There was also comparable slab scanning activity and direct reclaim was avoided in both cases. There appears to be a large difference in numbers of inodes reclaimed but the workload has few active inodes and is likely a timing artifact. stutter ------- stutter simulates a simple workload. One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. The primary metric is checking for mmap latency. stutter 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%) 1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%) 2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%) 3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%) Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%) Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%) Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%) Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%) Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%) Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%) Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%) Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%) Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%) Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%) Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%) Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%) Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%) This shows a number of improvements with the worst-case outlier greatly improved. Some of the vmstats are interesting 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Swap Ins 163 502 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 618719206 1381662383 Normal allocs 891235743 564138421 Movable allocs 0 0 Allocation stalls 2603 1 Direct pages scanned 216787 2 Kswapd pages scanned 50719775 41778378 Kswapd pages reclaimed 41541765 41777639 Direct pages reclaimed 209159 0 Kswapd efficiency 81% 99% Kswapd velocity 16859.554 14329.059 Direct efficiency 96% 0% Direct velocity 72.061 0.001 Percentage direct scans 0% 0% Page writes by reclaim 6215049 0 Page writes file 6215049 0 Page writes anon 0 0 Page reclaim immediate 70673 90 Sector Reads 81940800 81680456 Sector Writes 100158984 98816036 Page rescued immediate 0 0 Slabs scanned 1366954 22683 While this is not guaranteed in all cases, this particular test showed a large reduction in direct reclaim activity. It's also worth noting that no page writes were issued from reclaim context. This series is not without its hazards. There are at least three areas that I'm concerned with even though I could not reproduce any problems in that area. 1. Reclaim/compaction is going to be affected because the amount of reclaim is no longer targetted at a specific zone. Compaction works on a per-zone basis so there is no guarantee that reclaiming a few THP's worth page pages will have a positive impact on compaction success rates. 2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers are called is now different. This may or may not be a problem but if it is, it'll be because shrinkers are not called enough and some balancing is required. 3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are distributed between zones and the fair zone allocation policy used to do something very similar for anon. The distribution is now different but not necessarily in any way that matters but it's still worth bearing in mind. VM statistic counters for reclaim decisions are zone-based. If the kernel is to reclaim on a per-node basis then we need to track per-node statistics but there is no infrastructure for that. The most notable change is that the old node_page_state is renamed to sum_zone_node_page_state. The new node_page_state takes a pglist_data and uses per-node stats but none exist yet. There is some renaming such as vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical patch with no functional change. There is a lot of similarity between the node and zone helpers which is unfortunate but there was no obvious way of reusing the code and maintaining type safety. Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | a621184ac6 |
mm, meminit: remove early_page_nid_uninitialised
The helper early_page_nid_uninitialised() has been dead since commit
|
|
zhong jiang | 400bc7fd4f |
mm: update the comment in __isolate_free_page
We need to assure the comment is consistent with the code. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1466171914-21027-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 65c453778a |
mm, rmap: account shmem thp pages
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 9a73f61bdb |
thp, mlock: do not mlock PTE-mapped file huge pages
As with anon THP, we only mlock file huge pages if we can prove that the page is not mapped with PTE. This way we can avoid mlock leak into non-mlocked vma on split. We rely on PageDoubleMap() under lock_page() to check if the the page may be PTE mapped. PG_double_map is set by page_add_file_rmap() when the page mapped with PTEs. Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vladimir Davydov | 4949148ad4 |
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vladimir Davydov | 452647784b |
mm: memcontrol: cleanup kmem charge functions
- Handle memcg_kmem_enabled check out to the caller. This reduces the number of function definitions making the code easier to follow. At the same time it doesn't result in code bloat, because all of these functions are used only in one or two places. - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't have to dive deep into memcg implementation to see which allocations are charged and which are not. - Refresh comments. Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 46f24fd857 |
mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1]. There are two ways to get freepage from the allocator. One is using normal memory allocation API and the other is __isolate_free_page() which is internally used for compaction and pageblock isolation. Later usage is rather tricky since it doesn't do whole post allocation processing done by normal API. One problematic thing I already know is that poisoned page would not be checked if it is allocated by __isolate_free_page(). Perhaps, there would be more. We could add more debug logic for allocated page in the future and this separation would cause more problem. I'd like to fix this situation at this time. Solution is simple. This patch commonize some logic for newly allocated page and uses it on all sites. This will solve the problem. [1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E [iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3] Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | a9627bc5e3 |
mm/page_owner: introduce split_page_owner and replace manual handling
split_page() calls set_page_owner() to set up page_owner to each pages. But, it has a drawback that head page and the others have different stacktrace because callsite of set_page_owner() is slightly differnt. To avoid this problem, this patch copies head page's page_owner to the others. It needs to introduce new function, split_page_owner() but it also remove the other function, get_page_owner_gfp() so looks good to do. Link: http://lkml.kernel.org/r/1464230275-25791-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 83358ece26 |
mm/page_owner: initialize page owner without holding the zone lock
It's not necessary to initialized page_owner with holding the zone lock. It would cause more contention on the zone lock although it's not a big problem since it is just debug feature. But, it is better than before so do it. This is also preparation step to use stackdepot in page owner feature. Stackdepot allocates new pages when there is no reserved space and holding the zone lock in this case will cause deadlock. Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 66c64223ad |
mm/compaction: split freepages without holding the zone lock
We don't need to split freepages with holding the zone lock. It will cause more contention on zone lock so not desirable. [rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Minchan Kim | bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vladimir Davydov | 2a966b77ae |
mm: oom: add memcg to oom_control
It's a part of oom context just like allocation order and nodemask, so let's move it to oom_control instead of passing it in the argument list. Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Oliver O'Halloran | 90cae1fe1c |
mm/init: fix zone boundary creation
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone. ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture. Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list. The core of the issue is:
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero. This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].
Thie is low priority. To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum. As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.
I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel. This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (
|
|
Mel Gorman | ef70b6f41c |
mm, meminit: ensure node is online before checking whether pages are uninitialised
early_page_uninitialised looks up an arbitrary PFN. While a machine without node 0 will boot with "mm, page_alloc: Always return a valid node from early_pfn_to_nid", it works because it assumes that nodes are always in PFN order. This is not guaranteed so this patch adds robustness by always checking if the node being checked is online. Link: http://lkml.kernel.org/r/1468008031-3848-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e4568d3803 |
mm, meminit: always return a valid node from early_pfn_to_nid
early_pfn_to_nid can return node 0 if a PFN is invalid on machines that has no node 0. A machine with only node 1 was observed to crash with the following message: BUG: unable to handle kernel paging request at 000000000002a3c8 PGD 0 Modules linked in: Hardware name: Supermicro H8DSP-8/H8DSP-8, BIOS 080011 06/30/2006 task: ffffffff81c0d500 ti: ffffffff81c00000 task.ti: ffffffff81c00000 RIP: reserve_bootmem_region+0x6a/0xef CR2: 000000000002a3c8 CR3: 0000000001c06000 CR4: 00000000000006b0 Call Trace: free_all_bootmem+0x4b/0x12a mem_init+0x70/0xa3 start_kernel+0x25b/0x49b The problem is that early_page_uninitialised uses the early_pfn_to_nid helper which returns node 0 for invalid PFNs. No caller of early_pfn_to_nid cares except early_page_uninitialised. This patch has early_pfn_to_nid always return a valid node. Link: http://lkml.kernel.org/r/1468008031-3848-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e46e7b77c9 |
mm, page_alloc: recalculate the preferred zoneref if the context can ignore memory policies
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations. The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.
However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct. This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies. This will alter the zone used for statistics but only after
it is known that it makes sense for that context. Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone. Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.
Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes:
|
|
Mel Gorman | 0d0bd89435 |
mm, page_alloc: reset zonelist iterator after resetting fair zone allocation policy
Geert Uytterhoeven reported the following problem that bisected to commit |
|
Vlastimil Babka | 83b9355bf6 |
mm, page_alloc: prevent infinite loop in buffered_rmqueue()
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list. Fix this by removing the page
before retrying. Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.
Fixes:
|
|
Yang Shi | f86e427197 |
mm: check the return value of lookup_page_ext for all call sites
Per the discussion with Joonsoo Kim [1], we need check the return value of lookup_page_ext() for all call sites since it might return NULL in some cases, although it is unlikely, i.e. memory hotplug. Tested with ltp with "page_owner=0". [1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE [akpm@linux-foundation.org: fix build-breaking typos] [arnd@arndb.de: fix build problems from lookup_page_ext] Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org Signed-off-by: Yang Shi <yang.shi@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Naoya Horiguchi | e570f56ccc |
mm: check_new_page_bad() directly returns in __PG_HWPOISON case
Currently we check page->flags twice for "HWPoisoned" case of check_new_page_bad(), which can cause a race with unpoisoning. This race unnecessarily taints kernel with "BUG: Bad page state". check_new_page_bad() is the only caller of bad_page() which is interested in __PG_HWPOISON, so let's move the hwpoison related code in bad_page() to it. Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
seokhoon.yoon | 29b52de182 |
mm, kasan: fix to call kasan_free_pages() after poisoning page
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled, free_pages_prepare()'s codeflow is below. 1)kmemcheck_free_shadow() 2)kasan_free_pages() - set shadow byte of page is freed 3)kernel_poison_pages() 3.1) check access to page is valid or not using kasan ---> error occur, kasan think it is invalid access 3.2) poison page 4)kernel_map_pages() So kasan_free_pages() should be called after poisoning the page. Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com Signed-off-by: seokhoon.yoon <iamyooon@gmail.com> Cc: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |