mirror of https://gitee.com/openkylin/linux.git
678 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Vladimir Murzin | 5ffdfaedfa |
arm64: mm: Support Common Not Private translations
Common Not Private (CNP) is a feature of ARMv8.2 extension which allows translation table entries to be shared between different PEs in the same inner shareable domain, so the hardware can use this fact to optimise the caching of such entries in the TLB. CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to the hardware that the translation table entries pointed to by this TTBR are the same as every PE in the same inner shareable domain for which the equivalent TTBR also has CNP bit set. In case CNP bit is set but TTBR does not point at the same translation table entries for a given ASID and VMID, then the system is mis-configured, so the results of translations are UNPREDICTABLE. For kernel we postpone setting CNP till all cpus are up and rely on cpufeature framework to 1) patch the code which is sensitive to CNP and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be reprogrammed as result of hibernation or cpuidle (via __enable_mmu). For these two cases we restore CnP bit via __cpu_suspend_exit(). There are a few cases we need to care of changes in TTBR0_EL1: - a switch to idmap - software emulated PAN we rule out latter via Kconfig options and for the former we make sure that CNP is set for non-zero ASIDs only. Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> [catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Will Deacon | b8925ee2e1 |
arm64: cpu: Move errata and feature enable callbacks closer to callers
The cpu errata and feature enable callbacks are only called via their respective arm64_cpu_capabilities structure and therefore shouldn't exist in the global namespace. Move the PAN, RAS and cache maintenance emulation enable callbacks into the same files as their corresponding arm64_cpu_capabilities structures, making them static in the process. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Will Deacon | 4733c7c79e |
arm64: dump: Use consistent capitalisation for page-table dumps
Being consistent in our capitalisation for page-table dumps helps when grepping for things like "end". Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Linus Torvalds | 6ada4e2826 |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - a few misc things - a few Y2038 fixes - ntfs fixes - arch/sh tweaks - ocfs2 updates - most of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (111 commits) mm/hmm.c: remove unused variables align_start and align_end fs/userfaultfd.c: remove redundant pointer uwq mm, vmacache: hash addresses based on pmd mm/list_lru: introduce list_lru_shrink_walk_irq() mm/list_lru.c: pass struct list_lru_node* as an argument to __list_lru_walk_one() mm/list_lru.c: move locking from __list_lru_walk_one() to its caller mm/list_lru.c: use list_lru_walk_one() in list_lru_walk_node() mm, swap: make CONFIG_THP_SWAP depend on CONFIG_SWAP mm/sparse: delete old sparse_init and enable new one mm/sparse: add new sparse_init_nid() and sparse_init() mm/sparse: move buffer init/fini to the common place mm/sparse: use the new sparse buffer functions in non-vmemmap mm/sparse: abstract sparse buffer allocations mm/hugetlb.c: don't zero 1GiB bootmem pages mm, page_alloc: double zone's batchsize mm/oom_kill.c: document oom_lock mm/hugetlb: remove gigantic page support for HIGHMEM mm, oom: remove sleep from under oom_lock kernel/dma: remove unsupported gfp_mask parameter from dma_alloc_from_contiguous() mm/cma: remove unsupported gfp_mask parameter from cma_alloc() ... |
|
Marek Szyprowski | d834c5ab83 |
kernel/dma: remove unsupported gfp_mask parameter from dma_alloc_from_contiguous()
The CMA memory allocator doesn't support standard gfp flags for memory
allocation, so there is no point having it as a parameter for
dma_alloc_from_contiguous() function. Replace it by a boolean no_warn
argument, which covers all the underlaying cma_alloc() function
supports.
This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit
|
|
Souptick Joarder | 50a7ca3c6f |
mm: convert return type of handle_mm_fault() caller to vm_fault_t
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit
|
|
Linus Torvalds | edb0a20009 |
A couple of arm64 fixes
- Fix boot on Hikey-960 by avoiding an IPI with interrupts disabled - Fix address truncation in pfn_valid() implementation -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJbdp+EAAoJELescNyEwWM0Ld8H/iJqjvPwNLRC0KGL/rCQJH70 D80qlNBnwlrs2eUJTeNeRVZC+t2l9vJIoT17W938WkjxV+DSGDsfFDy3/BQ7VTji 7e33mwFBNoH+feAfMYmzht3sRlvyZ0oqXSIq/GrdZ8a4Gg/6iNVz7K1kpboBVFXp LFnFIN4I7mNwdl1nAyNmnU081MMWfyvgRB82Xd9eS00KCAm3ueHfkwBNcwkfulDg RT2ZXPzwd3Yxsdy3Z+r1vyXMHAw2GjcYpL5pjvHf34zMdvqkk03sMsx2yReuSR1U M6MpNCdZfWHgMlFWbsEoEOd0g0CF5s6TQK3hBqoUEE3AUVNrQ8ixZMip326axoQ= =C2YW -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A couple of arm64 fixes - Fix boot on Hikey-960 by avoiding an IPI with interrupts disabled - Fix address truncation in pfn_valid() implementation" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: mm: check for upper PAGE_SHIFT bits in pfn_valid() arm64: Avoid calling stop_machine() when patching jump labels |
|
Greg Hackmann | 5ad356eabc |
arm64: mm: check for upper PAGE_SHIFT bits in pfn_valid()
ARM64's pfn_valid() shifts away the upper PAGE_SHIFT bits of the input
before seeing if the PFN is valid. This leads to false positives when
some of the upper bits are set, but the lower bits match a valid PFN.
For example, the following userspace code looks up a bogus entry in
/proc/kpageflags:
int pagemap = open("/proc/self/pagemap", O_RDONLY);
int pageflags = open("/proc/kpageflags", O_RDONLY);
uint64_t pfn, val;
lseek64(pagemap, [...], SEEK_SET);
read(pagemap, &pfn, sizeof(pfn));
if (pfn & (1UL << 63)) { /* valid PFN */
pfn &= ((1UL << 55) - 1); /* clear flag bits */
pfn |= (1UL << 55);
lseek64(pageflags, pfn * sizeof(uint64_t), SEEK_SET);
read(pageflags, &val, sizeof(val));
}
On ARM64 this causes the userspace process to crash with SIGSEGV rather
than reading (1 << KPF_NOPAGE). kpageflags_read() treats the offset as
valid, and stable_page_flags() will try to access an address between the
user and kernel address ranges.
Fixes:
|
|
Linus Torvalds | 1202f4fdbc |
arm64 updates for 4.19
A bunch of good stuff in here: - Wire up support for qspinlock, replacing our trusty ticket lock code - Add an IPI to flush_icache_range() to ensure that stale instructions fetched into the pipeline are discarded along with the I-cache lines - Support for the GCC "stackleak" plugin - Support for restartable sequences, plus an arm64 port for the selftest - Kexec/kdump support on systems booting with ACPI - Rewrite of our syscall entry code in C, which allows us to zero the GPRs on entry from userspace - Support for chained PMU counters, allowing 64-bit event counters to be constructed on current CPUs - Ensure scheduler topology information is kept up-to-date with CPU hotplug events - Re-enable support for huge vmalloc/IO mappings now that the core code has the correct hooks to use break-before-make sequences - Miscellaneous, non-critical fixes and cleanups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJbbV41AAoJELescNyEwWM0WoEIALhrKtsIn6vqFlSs/w6aDuJL cMWmFxjTaKLmIq2+cJIdFLOJ3CH80Pu9gB+nEv/k+cZdCTfUVKfRf28HTpmYWsht bb4AhdHMC7yFW752BHk+mzJspeC8h/2Rm8wMuNVplZ3MkPrwo3vsiuJTofLhVL/y BihlU3+5sfBvCYIsWnuEZIev+/I/s/qm1ASiqIcKSrFRZP6VTt5f9TC75vFI8seW 7yc3odKb0CArexB8yBjiPNziehctQF42doxQyL45hezLfWw4qdgHOSiwyiOMxEz9 Fwwpp8Tx33SKLNJgqoqYznGW9PhYJ7n2Kslv19uchJrEV+mds82vdDNaWRULld4= =kQn6 -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "A bunch of good stuff in here. Worth noting is that we've pulled in the x86/mm branch from -tip so that we can make use of the core ioremap changes which allow us to put down huge mappings in the vmalloc area without screwing up the TLB. Much of the positive diffstat is because of the rseq selftest for arm64. Summary: - Wire up support for qspinlock, replacing our trusty ticket lock code - Add an IPI to flush_icache_range() to ensure that stale instructions fetched into the pipeline are discarded along with the I-cache lines - Support for the GCC "stackleak" plugin - Support for restartable sequences, plus an arm64 port for the selftest - Kexec/kdump support on systems booting with ACPI - Rewrite of our syscall entry code in C, which allows us to zero the GPRs on entry from userspace - Support for chained PMU counters, allowing 64-bit event counters to be constructed on current CPUs - Ensure scheduler topology information is kept up-to-date with CPU hotplug events - Re-enable support for huge vmalloc/IO mappings now that the core code has the correct hooks to use break-before-make sequences - Miscellaneous, non-critical fixes and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (90 commits) arm64: alternative: Use true and false for boolean values arm64: kexec: Add comment to explain use of __flush_icache_range() arm64: sdei: Mark sdei stack helper functions as static arm64, kaslr: export offset in VMCOREINFO ELF notes arm64: perf: Add cap_user_time aarch64 efi/libstub: Only disable stackleak plugin for arm64 arm64: drop unused kernel_neon_begin_partial() macro arm64: kexec: machine_kexec should call __flush_icache_range arm64: svc: Ensure hardirq tracing is updated before return arm64: mm: Export __sync_icache_dcache() for xen-privcmd drivers/perf: arm-ccn: Use devm_ioremap_resource() to map memory arm64: Add support for STACKLEAK gcc plugin arm64: Add stack information to on_accessible_stack drivers/perf: hisi: update the sccl_id/ccl_id when MT is supported arm64: fix ACPI dependencies rseq/selftests: Add support for arm64 arm64: acpi: fix alignment fault in accessing ACPI efi/arm: map UEFI memory map even w/o runtime services enabled efi/arm: preserve early mapping of UEFI memory map longer for BGRT drivers: acpi: add dependency of EFI for arm64 ... |
|
Linus Torvalds | 2c20443ec2 |
ACPI updates for 4.19-rc1
- Revert two ACPICA commits that are not needed any more (Erik Schmauss). - Rework property graph support in the ACPI device properties framework to make it behave more like the analogous DT code and update the documentation of it (Sakari Ailus). - Change the default ACPI device status after initialization to ACPI_STA_DEFAULT instead of 0 (Hans de Goede). - Add a special platform driver for enumerating multiple I2C devices hooked up to the same object in the ACPI tables (Hans de Goede). - Fix the ACPI battery driver to avoid reporting full capacity on systems without support for that and clean it up (Hans de Goede, Dmitry Rozhkov, Lucas Rangit Magasweran). - Add two system wakeup quirks to the ACPI EC driver (Aaron Ma, Mika Westerberg). - Add the touchscreen on Dell Venue Pro 7139 to the list of "always present" devices to make it work (Tristian Celestin). - Revert a special tables handling quirk for Dell XPS 9570 and Precision M5530 which is not needed any more (Kai Heng Feng). - Add support for a new OEM _OSI string to allow system vendors to work around issues with NVidia HDMI audio (Alex Hung). - Prevent the ACPI button driver from reporting excessive system wakeup events and clean it up (Ravi Chandra Sadineni, Randy Dunlap). - Clean up two minor code style issues in the ACPI core and GHES handling on ARM64 (Dongjiu Geng, John Garry, Tom Todd). -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJbcqQyAAoJEILEb/54YlRxpeIP/i+eB9sq+Pwwb6rpvrcx8JkQ cWYbjBQPZLsqqHBQDlwVC4I5o0gn6OhRsQlgSQdxheXA+G6kRtbh942oPptIH7NY vF0g0OYFZGhahjgkLyBtXlacMi+A+aSFkZ6lc4Ie4x/nFAELumjpYtef4v09Ecme p1G5wz5KYv+47t0DHl+Lb1NglIHsLKtiNMiy9QHyXl3oxrcbW7VIG5o8INw6TgIg /yaYOAzU8UMjnhcn6gDgrD+OKdux8jt3yAaHW/90/zBp4qbAJ9fp8zhb5LP7M0sE r63pC2qUq7NDKAl99sMuX5I2jSub9d2yJcjcOSyt+FnB/ErsBCbJGm5rEkK4sRHv wkV8ybHdq+PkOblR1ob5LMvDXcTlsVTMPonS/oPbEH4J7+jbJjU4vxZxblJGyan6 6GeiOoI6tMyZB7DBiTJH4EgwcNu6GESfPURnyUqRGCUswS7ocQBmRdSbsf6hRgn9 loOZnYXb+PPIxYHH9deFsej71d6En9bMUyUZmOGeLWZ+NSW69XISgnke0tmtgvlZ pj3zJ7Egnw4SBms2gL/VtPEulxJ2MxScju1RbKMpjP86oIDrO4u3pD8tYSTouSSG P3AjFXVqpKMTmfVUnbqu/Avg7GsuDHcv8lgUbY8BQGLXaZVni2oJBtcwc8Ca0lJg 8q0xTvX+YEnuOwgvNoNz =5mW8 -----END PGP SIGNATURE----- Merge tag 'acpi-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI updates from Rafael Wysocki: "These revert two ACPICA commits that are not needed any more, rework the property graphs support in ACPI to be more aligned with the analogous DT code, add some new quirks and remove one that isn't needed any more, add a special platform driver to enumerate multiple I2C devices hooked up to the same device object in the ACPI tables and update the battery and button drivers. Specifics: - Revert two ACPICA commits that are not needed any more (Erik Schmauss). - Rework property graph support in the ACPI device properties framework to make it behave more like the analogous DT code and update the documentation of it (Sakari Ailus). - Change the default ACPI device status after initialization to ACPI_STA_DEFAULT instead of 0 (Hans de Goede). - Add a special platform driver for enumerating multiple I2C devices hooked up to the same object in the ACPI tables (Hans de Goede). - Fix the ACPI battery driver to avoid reporting full capacity on systems without support for that and clean it up (Hans de Goede, Dmitry Rozhkov, Lucas Rangit Magasweran). - Add two system wakeup quirks to the ACPI EC driver (Aaron Ma, Mika Westerberg). - Add the touchscreen on Dell Venue Pro 7139 to the list of "always present" devices to make it work (Tristian Celestin). - Revert a special tables handling quirk for Dell XPS 9570 and Precision M5530 which is not needed any more (Kai Heng Feng). - Add support for a new OEM _OSI string to allow system vendors to work around issues with NVidia HDMI audio (Alex Hung). - Prevent the ACPI button driver from reporting excessive system wakeup events and clean it up (Ravi Chandra Sadineni, Randy Dunlap). - Clean up two minor code style issues in the ACPI core and GHES handling on ARM64 (Dongjiu Geng, John Garry, Tom Todd)" * tag 'acpi-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (34 commits) platform/x86: Add ACPI i2c-multi-instantiate pseudo driver ACPI / x86: utils: Remove status workaround from acpi_device_always_present() ACPI / scan: Create platform device for fwnodes with multiple i2c devices ACPI / scan: Initialize status to ACPI_STA_DEFAULT ACPI / EC: Add another entry for Thinkpad X1 Carbon 6th ACPI: bus: Fix a pointer coding style issue arm64 / ACPI: clean the additional checks before calling ghes_notify_sea() ACPI / scan: Add static attribute to indirect_io_hosts[] ACPI / battery: Do not export energy_full[_design] on devices without full_charge_capacity ACPI / EC: Use ec_no_wakeup on ThinkPad X1 Yoga 3rd ACPI / battery: get rid of negations in conditions ACPI / battery: use specialized print macros ACPI / battery: reorder headers alphabetically ACPI / battery: drop inclusion of init.h ACPI: battery: remove redundant old_present check on insertion ACPI: property: graph: Update graph documentation to use generic references ACPI: property: graph: Improve graph documentation for port/ep numbering ACPI: property: graph: Fix graph documentation ACPI: property: Update documentation for hierarchical data extension 1.1 ACPI: property: Document key numbering for hierarchical data extension refs ... |
|
Linus Torvalds | 203b4fc903 |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Thomas Gleixner: - Make lazy TLB mode even lazier to avoid pointless switch_mm() operations, which reduces CPU load by 1-2% for memcache workloads - Small cleanups and improvements all over the place * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Remove redundant check for kmem_cache_create() arm/asm/tlb.h: Fix build error implicit func declaration x86/mm/tlb: Make clear_asid_other() static x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off() x86/mm/tlb: Always use lazy TLB mode x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs x86/mm/tlb: Make lazy TLB mode lazier x86/mm/tlb: Restructure switch_mm_irqs_off() x86/mm/tlb: Leave lazy TLB mode at page table free time mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids x86/mm: Add TLB purge to free pmd/pte page interfaces ioremap: Update pgtable free interfaces with addr x86/mm: Disable ioremap free page handling on x86-PAE |
|
Dongjiu Geng | 1035a07835 |
arm64 / ACPI: clean the additional checks before calling ghes_notify_sea()
In order to remove the additional check before calling the ghes_notify_sea(), make stub definition when !CONFIG_ACPI_APEI_SEA. After this cleanup, we can simply call the ghes_notify_sea() to let APEI driver handle the SEA notification. Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
|
Linus Torvalds | 8b11ec1b5f |
mm: do not initialize TLB stack vma's with vma_init()
Commit |
|
Linus Torvalds | 864af0d40c |
Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton: "11 fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: kvm, mm: account shadow page tables to kmemcg zswap: re-check zswap_is_full() after do zswap_shrink() include/linux/eventfd.h: include linux/errno.h mm: fix vma_is_anonymous() false-positives mm: use vma_init() to initialize VMAs on stack and data segments mm: introduce vma_init() mm: fix exports that inadvertently make put_page() EXPORT_SYMBOL_GPL ipc/sem.c: prevent queue.status tearing in semop mm: disallow mappings that conflict for devm_memremap_pages() kasan: only select SLUB_DEBUG with SYSFS=y delayacct: fix crash in delayacct_blkio_end() after delayacct init failure |
|
Ben Hutchings | c5157101e7 |
arm64: mm: Export __sync_icache_dcache() for xen-privcmd
The xen-privcmd driver, which can be modular, calls set_pte_at()
which in turn may call __sync_icache_dcache().
The call to __sync_icache_dcache() may be optimised out because it is
conditional on !pte_special(), and xen-privcmd calls pte_mkspecial().
But it seems unwise to rely on this optimisation.
Fixes:
|
|
Kirill A. Shutemov | 2c4541e24c |
mm: use vma_init() to initialize VMAs on stack and data segments
Make sure to initialize all VMAs properly, not only those which come from vm_area_cachep. Link: http://lkml.kernel.org/r/20180724121139.62570-3-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 7b0eb6b41a |
arm64: fix vmemmap BUILD_BUG_ON() triggering on !vmemmap setups
Arnd reports the following arm64 randconfig build error with the PSI patches that add another page flag: /git/arm-soc/arch/arm64/mm/init.c: In function 'mem_init': /git/arm-soc/include/linux/compiler.h:357:38: error: call to '__compiletime_assert_618' declared with attribute error: BUILD_BUG_ON failed: sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT) The additional page flag causes other information stored in page->flags to get bumped into their own struct page member: #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT+LAST_CPUPID_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS #define LAST_CPUPID_WIDTH LAST_CPUPID_SHIFT #else #define LAST_CPUPID_WIDTH 0 #endif #if defined(CONFIG_NUMA_BALANCING) && LAST_CPUPID_WIDTH == 0 #define LAST_CPUPID_NOT_IN_PAGE_FLAGS #endif which in turn causes the struct page size to exceed the size set in STRUCT_PAGE_MAX_SHIFT. This value is an an estimate used to size the VMEMMAP page array according to address space and struct page size. However, the check is performed - and triggers here - on a !VMEMMAP config, which consumes an additional 22 page bits for the sparse section id. When VMEMMAP is enabled, those bits are returned, cpupid doesn't need its own member, and the page passes the VMEMMAP check. Restrict that check to the situation it was meant to check: that we are sizing the VMEMMAP page array correctly. Says Arnd: Further experiments show that the build error already existed before, but was only triggered with larger values of CONFIG_NR_CPU and/or CONFIG_NODES_SHIFT that might be used in actual configurations but not in randconfig builds. With longer CPU and node masks, I could recreate the problem with kernels as old as linux-4.7 when arm64 NUMA support got added. Reported-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Arnd Bergmann <arnd@arndb.de> Cc: stable@vger.kernel.org Fixes: |
|
Mark Rutland | 25be597ada |
arm64: kill config_sctlr_el1()
Now that we have sysreg_clear_set(), we can consistently use this instead of config_sctlr_el1(). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Will Deacon | bedbeec65c |
arm64: mm: Export __flush_icache_range() to modules
lkdtm calls flush_icache_range(), which results in an out-of-line call
to __flush_icache_range(), which is not exported to modules.
Export the symbol to modules to fix this build breakage.
Fixes:
|
|
Sudeep Holla | 97fd6016a7 |
arm64: numa: separate out updates to percpu nodeid and NUMA node cpumap
Currently numa_clear_node removes both cpu information from the NUMA node cpumap as well as the NUMA node id from the cpu. Similarly numa_store_cpu_info updates both percpu nodeid and NUMA cpumap. However we need to retain the numa node id for the cpu and only remove the cpu information from the numa node cpumap during CPU hotplug out. The same can be extended for hotplugging in the CPU. This patch separates out numa_{add,remove}_cpu from numa_clear_node and numa_store_cpu_info. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Chintan Pandya | ec28bb9c9b |
arm64: Implement page table free interfaces
arm64 requires break-before-make. Originally, before setting up new pmd/pud entry for huge mapping, in few cases, the modifying pmd/pud entry was still valid and pointing to next level page table as we only clear off leaf PTE in unmap leg. a) This was resulting into stale entry in TLBs (as few TLBs also cache intermediate mapping for performance reasons) b) Also, modifying pmd/pud was the only reference to next level page table and it was getting lost without freeing it. So, page leaks were happening. Implement pud_free_pmd_page() and pmd_free_pte_page() to enforce BBM and also free the leaking page tables. Implementation requires, 1) Clearing off the current pud/pmd entry 2) Invalidation of TLB 3) Freeing of the un-used next level page tables Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Chintan Pandya <cpandya@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Will Deacon | f355152041 |
Merge branch 'x86/mm' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into aarch64/for-next/core
Pull in core ioremap changes from -tip, since we depend on these for re-enabling huge I/O mappings on arm64. Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Will Deacon | 3b8c9f1cdf |
arm64: IPI each CPU after invalidating the I-cache for kernel mappings
When invalidating the instruction cache for a kernel mapping via flush_icache_range(), it is also necessary to flush the pipeline for other CPUs so that instructions fetched into the pipeline before the I-cache invalidation are discarded. For example, if module 'foo' is unloaded and then module 'bar' is loaded into the same area of memory, a CPU could end up executing instructions from 'foo' when branching into 'bar' if these instructions were fetched into the pipeline before 'foo' was unloaded. Whilst this is highly unlikely to occur in practice, particularly as any exception acts as a context-synchronizing operation, following the letter of the architecture requires us to execute an ISB on each CPU in order for the new instruction stream to be visible. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Chintan Pandya | 785a19f9d1 |
ioremap: Update pgtable free interfaces with addr
The following kernel panic was observed on ARM64 platform due to a stale TLB entry. 1. ioremap with 4K size, a valid pte page table is set. 2. iounmap it, its pte entry is set to 0. 3. ioremap the same address with 2M size, update its pmd entry with a new value. 4. CPU may hit an exception because the old pmd entry is still in TLB, which leads to a kernel panic. Commit |
|
Peng Donglin | 90aff8d091 |
ARM64: dump: Convert to use DEFINE_SHOW_ATTRIBUTE macro
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code. Signed-off-by: Peng Donglin <dolinux.peng@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Will Deacon | 71c8fc0c96 |
arm64: mm: Ensure writes to swapper are ordered wrt subsequent cache maintenance
When rewriting swapper using nG mappings, we must performance cache
maintenance around each page table access in order to avoid coherency
problems with the host's cacheable alias under KVM. To ensure correct
ordering of the maintenance with respect to Device memory accesses made
with the Stage-1 MMU disabled, DMBs need to be added between the
maintenance and the corresponding memory access.
This patch adds a missing DMB between writing a new page table entry and
performing a clean+invalidate on the same line.
Fixes:
|
|
Marek Szyprowski | dd65a941f6 |
arm64: dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag
dma_alloc_*() buffers might be exposed to userspace via mmap() call, so they should be cleared on allocation. In case of IOMMU-based dma-mapping implementation such buffer clearing was missing in the code path for DMA_ATTR_FORCE_CONTIGUOUS flag handling, because dma_alloc_from_contiguous() doesn't honor __GFP_ZERO flag. This patch fixes this issue. For more information on clearing buffers allocated by dma_alloc_* functions, see commit |
|
Stefan Agner | d7dc899abe |
treewide: use PHYS_ADDR_MAX to avoid type casting ULLONG_MAX
With PHYS_ADDR_MAX there is now a type safe variant for all bits set. Make use of it. Patch created using a semantic patch as follows: // <smpl> @@ typedef phys_addr_t; @@ -(phys_addr_t)ULLONG_MAX +PHYS_ADDR_MAX // </smpl> Link: http://lkml.kernel.org/r/20180419214204.19322-1-stefan@agner.ch Signed-off-by: Stefan Agner <stefan@agner.ch> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kees Cook | 6396bb2215 |
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Linus Torvalds | 410feb75de |
arm64 updates for 4.18:
- Spectre v4 mitigation (Speculative Store Bypass Disable) support for arm64 using SMC firmware call to set a hardware chicken bit - ACPI PPTT (Processor Properties Topology Table) parsing support and enable the feature for arm64 - Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The primary motivation is Scalable Vector Extensions which requires more space on the signal frame than the currently defined MINSIGSTKSZ - ARM perf patches: allow building arm-cci as module, demote dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups - cmpwait() WFE optimisation to avoid some spurious wakeups - L1_CACHE_BYTES reverted back to 64 (for performance reasons that have to do with some network allocations) while keeping ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual hardware Cache Writeback Granule - Turn LSE atomics on by default in Kconfig - Kernel fault reporting tidying - Some #include and miscellaneous cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlsaoqsACgkQa9axLQDI XvH+8RAAqRCrEtkNPS7zxHyMK/D2cxSy9EVtlJ1sxhmsONEe5t5MDTWX9byobQ5A PAKMSQBQgUvecqHLOtD7SJWef1il30zgWmc/yPcgNv3OsA1Au7j2g3ht/Drw+N5I Vy0aOUEtw+Jzs7y/CJyl6lufSkkOzszOujt2Nybiz6omztOrwkW9isKnURzQBNj5 gquZI35h604YJ9F0TqS6ZqU7tNcuB9q02FxvVBpLmb83jP4jSEjYACUJwVVxvEAB UXjdD4N130rRXDS5OMRWo5+4SAj+kPYhdVYEvaDx7xTOIRHhXK05GlJbsUAc5E6l xy810fH5Dm0diYpVvYWTA5J+BU1jNOvCys5zKWl7gs2P8YB59PdqY4M2YBPNGb5H PaVgq73TZAsww6ZInbZlK+wZOIxZZIOf//Z+QKn6EPtu3RmzIFWwyttTj01w1E3i LhjcUoGnvxJFcMoCr59ihDwfP9nkCVrNc4REOGaWDk6L/t/bOfaZfDz+OCGbwQdL akCFKZI6q5O/no+YfhtdtNFpCQb/Bo1J88KuotICRXq8z4vO41zIG53bi97W8QeG rCBiX0NxUxYJ3ybus7kZHTmMGieMyEHP28n12QffwvJj4vJBsUXQBrV8hclx0djZ HMt7iPi/0BW6nVV7ngIgN3cdCpaDCEGRsfO4Ch0rFZrC9UbYQnE= =uums -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Apart from the core arm64 and perf changes, the Spectre v4 mitigation touches the arm KVM code and the ACPI PPTT support touches drivers/ (acpi and cacheinfo). I should have the maintainers' acks in place. Summary: - Spectre v4 mitigation (Speculative Store Bypass Disable) support for arm64 using SMC firmware call to set a hardware chicken bit - ACPI PPTT (Processor Properties Topology Table) parsing support and enable the feature for arm64 - Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The primary motivation is Scalable Vector Extensions which requires more space on the signal frame than the currently defined MINSIGSTKSZ - ARM perf patches: allow building arm-cci as module, demote dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups - cmpwait() WFE optimisation to avoid some spurious wakeups - L1_CACHE_BYTES reverted back to 64 (for performance reasons that have to do with some network allocations) while keeping ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual hardware Cache Writeback Granule - Turn LSE atomics on by default in Kconfig - Kernel fault reporting tidying - Some #include and miscellaneous cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (53 commits) arm64: Fix syscall restarting around signal suppressed by tracer arm64: topology: Avoid checking numa mask for scheduler MC selection ACPI / PPTT: fix build when CONFIG_ACPI_PPTT is not enabled arm64: cpu_errata: include required headers arm64: KVM: Move VCPU_WORKAROUND_2_FLAG macros to the top of the file arm64: signal: Report signal frame size to userspace via auxv arm64/sve: Thin out initialisation sanity-checks for sve_max_vl arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_ID arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests arm64: KVM: Add ARCH_WORKAROUND_2 support for guests arm64: KVM: Add HYP per-cpu accessors arm64: ssbd: Add prctl interface for per-thread mitigation arm64: ssbd: Introduce thread flag to control userspace mitigation arm64: ssbd: Restore mitigation status on CPU resume arm64: ssbd: Skip apply_ssbd if not using dynamic mitigation arm64: ssbd: Add global mitigation state accessor arm64: Add 'ssbd' command-line option arm64: Add ARCH_WORKAROUND_2 probing arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2 arm64: Call ARCH_WORKAROUND_2 on transitions between EL0 and EL1 ... |
|
Linus Torvalds | 93e95fa574 |
Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo updates from Eric Biederman: "This set of changes close the known issues with setting si_code to an invalid value, and with not fully initializing struct siginfo. There remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64 and x86 to get the code that generates siginfo into a simpler and more maintainable state. Most of that work involves refactoring the signal handling code and thus careful code review. Also not included is the work to shrink the in kernel version of struct siginfo. That depends on getting the number of places that directly manipulate struct siginfo under control, as it requires the introduction of struct kernel_siginfo for the in kernel things. Overall this set of changes looks like it is making good progress, and with a little luck I will be wrapping up the siginfo work next development cycle" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits) signal/sh: Stop gcc warning about an impossible case in do_divide_error signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions signal/um: More carefully relay signals in relay_signal. signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR} signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code signal/signalfd: Add support for SIGSYS signal/signalfd: Remove __put_user from signalfd_copyinfo signal/xtensa: Use force_sig_fault where appropriate signal/xtensa: Consistenly use SIGBUS in do_unaligned_user signal/um: Use force_sig_fault where appropriate signal/sparc: Use force_sig_fault where appropriate signal/sparc: Use send_sig_fault where appropriate signal/sh: Use force_sig_fault where appropriate signal/s390: Use force_sig_fault where appropriate signal/riscv: Replace do_trap_siginfo with force_sig_fault signal/riscv: Use force_sig_fault where appropriate signal/parisc: Use force_sig_fault where appropriate signal/parisc: Use force_sig_mceerr where appropriate signal/openrisc: Use force_sig_fault where appropriate signal/nios2: Use force_sig_fault where appropriate ... |
|
Linus Torvalds | e5a594643a |
dma-mapping updates for 4.18:
- replaceme the force_dma flag with a dma_configure bus method. (Nipun Gupta, although one patch is іncorrectly attributed to me due to a git rebase bug) - use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai) - remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the right thing for bounce buffering. - move dma-debug initialization to common code, and apply a few cleanups to the dma-debug code. - cleanup the Kconfig mess around swiotlb selection - swiotlb comment fixup (Yisheng Xie) - a trivial swiotlb fix. (Dan Carpenter) - support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt) - add a new generic dma-noncoherent dma_map_ops implementation and use it for arc, c6x and nds32. - improve scatterlist validity checking in dma-debug. (Robin Murphy) - add a struct device quirk to limit the dma-mask to 32-bit due to bridge/system issues, and switch x86 to use it instead of a local hack for VIA bridges. - handle devices without a dma_mask more gracefully in the dma-direct code. -----BEGIN PGP SIGNATURE----- iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlsU1hwLHGhjaEBsc3Qu ZGUACgkQD55TZVIEUYPraxAAocC7JiFKW133/VugCtGA1x9uE8DPHealtsWTAeEq KOOB3GxWMU2hKqQ4km5tcfdWoGJvvab6hmDXcitzZGi2JajO7Ae0FwIy3yvxSIKm iH/ON7c4sJt8gKrXYsLVylmwDaimNs4a6xfODoCRgnWuovI2QrrZzupnlzPNsiOC lv8ezzcW+Ay/gvDD/r72psO+w3QELETif/OzR/qTOtvLrVabM06eHmPQ8Wb98smu /UPMMv6/3XwQnxpxpdyqN+p/gUdneXithzT261wTeZ+8gDXmcWBwHGcMBCimcoBi FklW52moazIPIsTysqoNlVFsLGJTeS4p2D3BLAp5NwWYsLv+zHUVZsI1JY/8u5Ox mM11LIfvu9JtUzaqD9SvxlxIeLhhYZZGnUoV3bQAkpHSQhN/xp2YXd5NWSo5ac2O dch83+laZkZgd6ryw6USpt/YTPM/UHBYy7IeGGHX/PbmAke0ZlvA6Rae7kA5DG59 7GaLdwQyrHp8uGFgwze8P+R4POSk1ly73HHLBT/pFKnDD7niWCPAnBzuuEQGJs00 0zuyWLQyzOj1l6HCAcMNyGnYSsMp8Fx0fvEmKR/EYs8O83eJKXi6L9aizMZx4v1J 0wTolUWH6SIIdz474YmewhG5YOLY7mfe9E8aNr8zJFdwRZqwaALKoteRGUxa3f6e zUE= =6Acj -----END PGP SIGNATURE----- Merge tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping Pull dma-mapping updates from Christoph Hellwig: - replace the force_dma flag with a dma_configure bus method. (Nipun Gupta, although one patch is іncorrectly attributed to me due to a git rebase bug) - use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai) - remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the right thing for bounce buffering. - move dma-debug initialization to common code, and apply a few cleanups to the dma-debug code. - cleanup the Kconfig mess around swiotlb selection - swiotlb comment fixup (Yisheng Xie) - a trivial swiotlb fix. (Dan Carpenter) - support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt) - add a new generic dma-noncoherent dma_map_ops implementation and use it for arc, c6x and nds32. - improve scatterlist validity checking in dma-debug. (Robin Murphy) - add a struct device quirk to limit the dma-mask to 32-bit due to bridge/system issues, and switch x86 to use it instead of a local hack for VIA bridges. - handle devices without a dma_mask more gracefully in the dma-direct code. * tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping: (48 commits) dma-direct: don't crash on device without dma_mask nds32: use generic dma_noncoherent_ops nds32: implement the unmap_sg DMA operation nds32: consolidate DMA cache maintainance routines x86/pci-dma: switch the VIA 32-bit DMA quirk to use the struct device flag x86/pci-dma: remove the explicit nodac and allowdac option x86/pci-dma: remove the experimental forcesac boot option Documentation/x86: remove a stray reference to pci-nommu.c core, dma-direct: add a flag 32-bit dma limits dma-mapping: remove unused gfp_t parameter to arch_dma_alloc_attrs dma-debug: check scatterlist segments c6x: use generic dma_noncoherent_ops arc: use generic dma_noncoherent_ops arc: fix arc_dma_{map,unmap}_page arc: fix arc_dma_sync_sg_for_{cpu,device} arc: simplify arc_dma_sync_single_for_{cpu,device} dma-mapping: provide a generic dma-noncoherent implementation dma-mapping: simplify Kconfig dependencies riscv: add swiotlb support riscv: only enable ZONE_DMA32 for 64-bit ... |
|
Laura Abbott | 82034c23fc |
arm64: Make sure permission updates happen for pmd/pud
Commit |
|
Mark Rutland | c870f14ea1 |
arm64: Unify kernel fault reporting
In do_page_fault(), we handle some kernel faults early, and simply die() with a message. For faults handled later, we dump the faulting address, decode the ESR, walk the page tables, and perform a number of steps to ensure that this data is reported. Let's unify the handling of fatal kernel faults with a new die_kernel_fault() helper, handling all of these details. This is largely the same as the existing logic in __do_kernel_fault(), except that addresses are consistently padded to 16 hex characters, as would be expected for a 64-bit address. The messages currently logged in do_page_fault are adjusted to fit into the die_kernel_fault() message template. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Mark Rutland | 969e61ba87 |
arm64: make is_permission_fault() name clearer
The naming of is_permission_fault() makes it sound like it should return true for permission faults from EL0, but by design, it only does so for faults from EL1. Let's make this clear by dropping el1 in the name, as we do for is_el1_instruction_abort(). Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Peter Maydell | cc19846079 |
arm64: fault: Don't leak data in ESR context for user fault on kernel VA
If userspace faults on a kernel address, handing them the raw ESR value on the sigframe as part of the delivered signal can leak data useful to attackers who are using information about the underlying hardware fault type (e.g. translation vs permission) as a mechanism to defeat KASLR. However there are also legitimate uses for the information provided in the ESR -- notably the GCC and LLVM sanitizers use this to report whether wild pointer accesses by the application are reads or writes (since a wild write is a more serious bug than a wild read), so we don't want to drop the ESR information entirely. For faulting addresses in the kernel, sanitize the ESR. We choose to present userspace with the illusion that there is nothing mapped in the kernel's part of the address space at all, by reporting all faults as level 0 translation faults taken to EL1. These fields are safe to pass through to userspace as they depend only on the instruction that userspace used to provoke the fault: EC IL (always) ISV CM WNR (for all data aborts) All the other fields in ESR except DFSC are architecturally RES0 for an L0 translation fault taken to EL1, so can be zeroed out without confusing userspace. The illusion is not entirely perfect, as there is a tiny wrinkle where we will report an alignment fault that was not due to the memory type (for instance a LDREX to an unaligned address) as a translation fault, whereas if you do this on real unmapped memory the alignment fault takes precedence. This is not likely to trip anybody up in practice, as the only users we know of for the ESR information who care about the behaviour for kernel addresses only really want to know about the WnR bit. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Catalin Marinas | ebc7e21e0f |
arm64: Increase ARCH_DMA_MINALIGN to 128
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves the fallback in cache_line_size() from L1_CACHE_BYTES to this constant. In addition, it warns (and taints) if the CWG is larger than ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA. Cc: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Christoph Hellwig | 15b28bbcd5 |
dma-debug: move initialization to common code
Most mainstream architectures are using 65536 entries, so lets stick to that. If someone is really desperate to override it that can still be done through <asm/dma-mapping.h>, but I'd rather see a really good rationale for that. dma_debug_init is now called as a core_initcall, which for many architectures means much earlier, and provides dma-debug functionality earlier in the boot process. This should be safe as it only relies on the memory allocator already being available. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> |
|
CHANDAN VN | 05c58752f9 |
arm64: To remove initrd reserved area entry from memblock
INITRD reserved area entry is not removed from memblock even though initrd reserved area is freed. After freeing the memory it is released from memblock. The same can be checked from /sys/kernel/debug/memblock/reserved. The patch makes sure that the initrd entry is removed from memblock when keepinitrd is not enabled. The patch only affects accounting and debugging. This does not fix any memory leak. Acked-by: Laura Abbott <labbott@redhat.com> Signed-off-by: CHANDAN VN <chandan.vn@samsung.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Eric W. Biederman | 3eb0f5193b |
signal: Ensure every siginfo we send has all bits initialized
Call clear_siginfo to ensure every stack allocated siginfo is properly initialized before being passed to the signal sending functions. Note: It is not safe to depend on C initializers to initialize struct siginfo on the stack because C is allowed to skip holes when initializing a structure. The initialization of struct siginfo in tracehook_report_syscall_exit was moved from the helper user_single_step_siginfo into tracehook_report_syscall_exit itself, to make it clear that the local variable siginfo gets fully initialized. In a few cases the scope of struct siginfo has been reduced to make it clear that siginfo siginfo is not used on other paths in the function in which it is declared. Instances of using memset to initialize siginfo have been replaced with calls clear_siginfo for clarity. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
|
Shaokun Zhang | 907e21c15c |
arm64: mm: drop addr parameter from sync icache and dcache
The addr parameter isn't used for anything. Let's simplify and get rid of it, like arm. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Mark Rutland | 800cb2e553 |
arm64: kasan: avoid pfn_to_nid() before page array is initialized
In arm64's kasan_init(), we use pfn_to_nid() to find the NUMA node a span of memory is in, hoping to allocate shadow from the same NUMA node. However, at this point, the page array has not been initialized, and thus this is bogus. Since commit: |
|
Kees Cook | 8f2af155b5 |
exec: pass stack rlimit into mm layout functions
Patch series "exec: Pin stack limit during exec". Attempts to solve problems with the stack limit changing during exec continue to be frustrated[1][2]. In addition to the specific issues around the Stack Clash family of flaws, Andy Lutomirski pointed out[3] other places during exec where the stack limit is used and is assumed to be unchanging. Given the many places it gets used and the fact that it can be manipulated/raced via setrlimit() and prlimit(), I think the only way to handle this is to move away from the "current" view of the stack limit and instead attach it to the bprm, and plumb this down into the functions that need to know the stack limits. This series implements the approach. [1] |
|
Linus Torvalds | 23221d997b |
arm64 updates for 4.17
Nothing particularly stands out here, probably because people were tied up with spectre/meltdown stuff last time around. Still, the main pieces are: - Rework of our CPU features framework so that we can whitelist CPUs that don't require kpti even in a heterogeneous system - Support for the IDC/DIC architecture extensions, which allow us to elide instruction and data cache maintenance when writing out instructions - Removal of the large memory model which resulted in suboptimal codegen by the compiler and increased the use of literal pools, which could potentially be used as ROP gadgets since they are mapped as executable - Rework of forced signal delivery so that the siginfo_t is well-formed and handling of show_unhandled_signals is consolidated and made consistent between different fault types - More siginfo cleanup based on the initial patches from Eric Biederman - Workaround for Cortex-A55 erratum #1024718 - Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi - Misc cleanups and non-critical fixes -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJaw1TCAAoJELescNyEwWM0gyQIAJVMK4QveBW+LwF96NYdZo16 p90Aa+nqKelh/s93govQArDMv1gxyuXdFlQZVOGPQHfqpz6RhJWmBA2tFsUbQrUc OBcioPrRihqTmKBe+1r1XORwZxkVX6GGmCn0LYpPR7I3TjxXZpvxqaxGxiUvHkci yVxWlDTyN/7eL3akhCpCDagN3Fxwk3QnJLqE3fxOFMlY7NvQcmUxcITiUl/s469q xK6SWH9SRH1JK8jTHPitwUBiU//3FfCqSI9HLEdDIDoTuPcVM8UetWvi4QzrzJL1 UYg8lmU0CXNmflDzZJDaMf+qFApOrGxR0YVPpBzlQvxe0JIY69g48f+JzDPz8nc= =+gNa -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Nothing particularly stands out here, probably because people were tied up with spectre/meltdown stuff last time around. Still, the main pieces are: - Rework of our CPU features framework so that we can whitelist CPUs that don't require kpti even in a heterogeneous system - Support for the IDC/DIC architecture extensions, which allow us to elide instruction and data cache maintenance when writing out instructions - Removal of the large memory model which resulted in suboptimal codegen by the compiler and increased the use of literal pools, which could potentially be used as ROP gadgets since they are mapped as executable - Rework of forced signal delivery so that the siginfo_t is well-formed and handling of show_unhandled_signals is consolidated and made consistent between different fault types - More siginfo cleanup based on the initial patches from Eric Biederman - Workaround for Cortex-A55 erratum #1024718 - Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi - Misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (70 commits) arm64: uaccess: Fix omissions from usercopy whitelist arm64: fpsimd: Split cpu field out from struct fpsimd_state arm64: tlbflush: avoid writing RES0 bits arm64: cmpxchg: Include linux/compiler.h in asm/cmpxchg.h arm64: move percpu cmpxchg implementation from cmpxchg.h to percpu.h arm64: cmpxchg: Include build_bug.h instead of bug.h for BUILD_BUG arm64: lse: Include compiler_types.h and export.h for out-of-line LL/SC arm64: fpsimd: include <linux/init.h> in fpsimd.h drivers/perf: arm_pmu_platform: do not warn about affinity on uniprocessor perf: arm_spe: include linux/vmalloc.h for vmap() Revert "arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)" arm64: cpufeature: Avoid warnings due to unused symbols arm64: Add work around for Arm Cortex-A55 Erratum 1024718 arm64: Delay enabling hardware DBM feature arm64: Add MIDR encoding for Arm Cortex-A55 and Cortex-A35 arm64: capabilities: Handle shared entries arm64: capabilities: Add support for checks based on a list of MIDRs arm64: Add helpers for checking CPU MIDR against a range arm64: capabilities: Clean up midr range helpers arm64: capabilities: Change scope of VHE to Boot CPU feature ... |
|
Will Deacon | 3f251cf0ab |
Revert "arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)"
This reverts commit
|
|
Suzuki K Poulose | 05abb595bb |
arm64: Delay enabling hardware DBM feature
We enable hardware DBM bit in a capable CPU, very early in the boot via __cpu_setup. This doesn't give us a flexibility of optionally disable the feature, as the clearing the bit is a bit costly as the TLB can cache the settings. Instead, we delay enabling the feature until the CPU is brought up into the kernel. We use the feature capability mechanism to handle it. The hardware DBM is a non-conflicting feature. i.e, the kernel can safely run with a mix of CPUs with some using the feature and the others don't. So, it is safe for a late CPU to have this capability and enable it, even if the active CPUs don't. To get this handled properly by the infrastructure, we unconditionally set the capability and only enable it on CPUs which really have the feature. Also, we print the feature detection from the "matches" call back to make sure we don't mislead the user when none of the CPUs could use the feature. Cc: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Dave Martin | c0cda3b8ee |
arm64: capabilities: Update prototype for enable call back
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit
|
|
Toshi Kani | b6bdb7517c |
mm/vmalloc: add interfaces to free unmapped page table
On architectures with CONFIG_HAVE_ARCH_HUGE_VMAP set, ioremap() may
create pud/pmd mappings. A kernel panic was observed on arm64 systems
with Cortex-A75 in the following steps as described by Hanjun Guo.
1. ioremap a 4K size, valid page table will build,
2. iounmap it, pte0 will set to 0;
3. ioremap the same address with 2M size, pgd/pmd is unchanged,
then set the a new value for pmd;
4. pte0 is leaked;
5. CPU may meet exception because the old pmd is still in TLB,
which will lead to kernel panic.
This panic is not reproducible on x86. INVLPG, called from iounmap,
purges all levels of entries associated with purged address on x86. x86
still has memory leak.
The patch changes the ioremap path to free unmapped page table(s) since
doing so in the unmap path has the following issues:
- The iounmap() path is shared with vunmap(). Since vmap() only
supports pte mappings, making vunmap() to free a pte page is an
overhead for regular vmap users as they do not need a pte page freed
up.
- Checking if all entries in a pte page are cleared in the unmap path
is racy, and serializing this check is expensive.
- The unmap path calls free_vmap_area_noflush() to do lazy TLB purges.
Clearing a pud/pmd entry before the lazy TLB purges needs extra TLB
purge.
Add two interfaces, pud_free_pmd_page() and pmd_free_pte_page(), which
clear a given pud/pmd entry and free up a page for the lower level
entries.
This patch implements their stub functions on x86 and arm64, which work
as workaround.
[akpm@linux-foundation.org: fix typo in pmd_free_pte_page() stub]
Link: http://lkml.kernel.org/r/20180314180155.19492-2-toshi.kani@hpe.com
Fixes:
|
|
Dave Martin | af40ff687b |
arm64: signal: Ensure si_code is valid for all fault signals
Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Shanker Donthineni | 6ae4b6e057 |
arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC
The DCache clean & ICache invalidation requirements for instructions to be data coherence are discoverable through new fields in CTR_EL0. The following two control bits DIC and IDC were defined for this purpose. No need to perform point of unification cache maintenance operations from software on systems where CPU caches are transparent. This patch optimize the three functions __flush_cache_user_range(), clean_dcache_area_pou() and invalidate_icache_range() if the hardware reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic in order to avoid the unnecessary overhead. CTR_EL0.DIC: Instruction cache invalidation requirements for instruction to data coherence. The meaning of this bit[29]. 0: Instruction cache invalidation to the point of unification is required for instruction to data coherence. 1: Instruction cache cleaning to the point of unification is not required for instruction to data coherence. CTR_EL0.IDC: Data cache clean requirements for instruction to data coherence. The meaning of this bit[28]. 0: Data cache clean to the point of unification is required for instruction to data coherence, unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000). 1: Data cache clean to the point of unification is not required for instruction to data coherence. Co-authored-by: Philip Elcan <pelcan@codeaurora.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |