These aren't used outside of volumes.c.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some static functions are needlessly forward declared. Let's remove those
declarations since they add no value.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both wait_for_commit() and wait_for_writer() are checking the
condition out of the mutex lock.
This refactors code a bit to be lock safe.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since TASK_UNINTERRUPTIBLE has been used here, wait_event() can do the
same job.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're still going to wait after schedule(), we don't have to do
finish_wait() to remove our %wait_queue_entry since prepare_to_wait()
won't add the same %wait_queue_entry twice.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Block layer has a limit on plug, ie. BLK_MAX_REQUEST_COUNT == 16, so
we don't gain benefits by batching 64 bios here.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[AV: in addition to the fix in previous commit]
Signed-off-by: Matthew Garrett <mjg59@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from David Sterba:
"Two more fixes for bugs introduced in 4.13.
The sector_t problem with 32bit architecture and !LBDAF config seems
serious but the number of affected deployments is hopefully low.
The clashing status bits could lead to a confusing in-memory state of
the whole-filesystem operations if used with the quota override sysfs
knob"
* 'for-4.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix overlap of fs_info::flags values
btrfs: avoid overflow when sector_t is 32 bit
Because the values of BTRFS_FS_EXCL_OP and BTRFS_FS_QUOTA_OVERRIDE overlap,
we should change the value.
First, BTRFS_FS_EXCL_OP was set to 14.
commit 171938e528 ("btrfs: track exclusive filesystem operation in flags")
Next, the value of BTRFS_FS_QUOTA_OVERRIDE was set to 14.
commit f29efe2921 ("btrfs: add quota override flag to enable quota override for CAP_SYS_RESOURCE")
As a result, the value 14 overlapped, by accident.
This problem is solved by defining the value of BTRFS_FS_EXCL_OP as 16,
the flags are internal.
Fixes: f29efe2921 ("btrfs: add quota override flag to enable quota override for CAP_SYS_RESOURCE")
CC: stable@vger.kernel.org # 4.13+
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minimize the change, update only BTRFS_FS_EXCL_OP ]
Signed-off-by: David Sterba <dsterba@suse.com>
Jean-Denis Girard noticed commit c821e7f3 "pass bytes to
btrfs_bio_alloc" (https://patchwork.kernel.org/patch/9763081/)
introduces a regression on 32 bit machines.
When CONFIG_LBDAF is _not_ defined (CONFIG_LBDAF == Support for large
(2TB+) block devices and files) sector_t is 32 bit on 32bit machines.
In the function submit_extent_page, 'sector' (which is sector_t type) is
multiplied by 512 to convert it from sectors to bytes, leading to an
overflow when the disk is bigger than 4GB (!).
I added a cast to u64 to avoid overflow.
Fixes: c821e7f3 ("btrfs: pass bytes to btrfs_bio_alloc")
CC: stable@vger.kernel.org # 4.13+
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from David Sterba:
"We've collected a bunch of isolated fixes, for crashes, user-visible
behaviour or missing bits from other subsystem cleanups from the past.
The overall number is not small but I was not able to make it
significantly smaller. Most of the patches are supposed to go to
stable"
* 'for-4.14-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: log csums for all modified extents
Btrfs: fix unexpected result when dio reading corrupted blocks
btrfs: Report error on removing qgroup if del_qgroup_item fails
Btrfs: skip checksum when reading compressed data if some IO have failed
Btrfs: fix kernel oops while reading compressed data
Btrfs: use btrfs_op instead of bio_op in __btrfs_map_block
Btrfs: do not backup tree roots when fsync
btrfs: remove BTRFS_FS_QUOTA_DISABLING flag
btrfs: propagate error to btrfs_cmp_data_prepare caller
btrfs: prevent to set invalid default subvolid
Btrfs: send: fix error number for unknown inode types
btrfs: fix NULL pointer dereference from free_reloc_roots()
btrfs: finish ordered extent cleaning if no progress is found
btrfs: clear ordered flag on cleaning up ordered extents
Btrfs: fix incorrect {node,sector}size endianness from BTRFS_IOC_FS_INFO
Btrfs: do not reset bio->bi_ops while writing bio
Btrfs: use the new helper wbc_to_write_flags
Amir reported a bug discovered by his cleaned up version of my
dm-log-writes xfstests where we were missing csums at certain replay
points. This is because fsx was doing an msync(), which essentially
fsync()'s a specific range of a file. We will log all modified extents,
but only search for the checksums in the range we are being asked to
sync. We cannot simply log the extents in the range we're being asked
because we are logging the inode item as it is currently, which if it
has had a i_size update before the msync means we will miss extents when
replaying. We could possibly get around this by marking the inode with
the transaction that extended the i_size to see if we have this case,
but this would be racy and we'd have to lock the whole range of the
inode to make sure we didn't have an ordered extent outside of our range
that was in the middle of completing.
Fix this simply by keeping track of the modified extents range and
logging the csums for the entire range of extents that we are logging.
This makes the xfstest pass.
Reported-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
commit 4246a0b63b ("block: add a bi_error field to struct bio")
changed the logic of how dio read endio reports errors.
For single stripe dio read, %bio->bi_status reflects the error before
verifying checksum, and now we're updating it when data block matches
with its checksum, while in the mismatching case, %bio->bi_status is
not updated to relfect that.
When some blocks in a file have been corrupted on disk, reading such a
file ends up with
1) checksum errors are reported in kernel log
2) read(2) returns successfully with some content being 0x01.
In order to fix it, we need to report its checksum mismatch error to
the upper layer (dio layer in this case) as well.
Fixes: 4246a0b63b ("block: add a bi_error field to struct bio")
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Goffredo Baroncelli <kreijack@inwind.it>
Tested-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously, we were calling del_qgroup_item, and ignoring the return code
resulting in a potential to have divergent in-memory state without an
error. Perhaps, it makes sense to handle this error code, and put the
filesystem into a read only, or similar state.
This patch only adds reporting of the error if the error is fatal,
(any error other than qgroup not found).
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently even if the underlying disk reports failure on IO,
compressed read endio still gets to verify checksum and reports it as
a checksum error.
In fact, if some IO have failed during reading a compressed data
extent , there's no way the checksum could match, therefore, we can
skip that in order to return error quickly to the upper layer.
Please note that we need to do this after recording the failed mirror
index so that read-repair in the upper layer's endio can work
properly.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Paul Jones <paul@pauljones.id.au>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The kernel oops happens at
kernel BUG at fs/btrfs/extent_io.c:2104!
...
RIP: clean_io_failure+0x263/0x2a0 [btrfs]
It's showing that read-repair code is using an improper mirror index.
This is due to the fact that compression read's endio hasn't recorded
the failed mirror index in %cb->orig_bio.
With this, btrfs's read-repair can work properly on reading compressed
data.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Paul Jones <paul@pauljones.id.au>
Tested-by: Paul Jones <paul@pauljones.id.au>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This seems to be a leftover of commit cf8cddd38b ("btrfs: don't
abuse REQ_OP_* flags for btrfs_map_block").
It should use btrfs_op() helper to provide one of 'enum btrfs_map_op'
types.
Fixes: cf8cddd38b ("btrfs: don't abuse REQ_OP_* flags for btrfs_map_block")
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Satoru Takeuchi <satoru.takeuchi@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It doesn't make sense to backup tree roots when doing fsync, since
during fsync those tree roots have not been consistent on disk.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, "btrfs quota enable" would fail after "btrfs quota disable" on
the first time with syslog output "qgroup_rescan_init failed with -22", but
it would succeed on the second time.
When "quota disable" is called, BTRFS_FS_QUOTA_DISABLING flag bit will be
set in fs_info->flags in btrfs_quota_disable(), but it will not be droppd
in btrfs_run_qgroups() (which is called in btrfs_commit_transaction())
because quota_root has already been freed. If "quota enable" is called
after that, both BTRFS_FS_QUOTA_DISABLING and BTRFS_FS_QUOTA_ENABLED flag
would be dropped in the btrfs_run_qgroups() since quota_root is not NULL.
This leads to the failure of "quota enable" on the first time.
BTRFS_FS_QUOTA_DISABLING flag is not used outside of "quota disable"
context and is equivalent to whether quota_root is NULL or not.
btrfs_run_qgroups() checks whether quota_root is NULL or not in the first
place.
So, let's remove BTRFS_FS_QUOTA_DISABLING flag.
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_cmp_data_prepare() (almost) always returns 0 i.e. ignoring errors
from gather_extent_pages(). While the pages are freed by
btrfs_cmp_data_free(), cmp->num_pages still has > 0. Then,
btrfs_extent_same() try to access the already freed pages causing faults
(or violates PageLocked assertion).
This patch just return the error as is so that the caller stop the process.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Fixes: f441460202 ("btrfs: fix deadlock with extent-same and readpage")
Cc: <stable@vger.kernel.org> # 4.2
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
`btrfs sub set-default` succeeds to set an ID which isn't corresponding to any
fs/file tree. If such the bad ID is set to a filesystem, we can't mount this
filesystem without specifying `subvol` or `subvolid` mount options.
Fixes: 6ef5ed0d38 ("Btrfs: add ioctl and incompat flag to set the default mount subvol")
Cc: <stable@vger.kernel.org>
Signed-off-by: Satoru Takeuchi <satoru.takeuchi@gmail.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
ENOTSUPP should not be returned to the user program.
(cf. include/linux/errno.h)
Therefore, EOPNOTSUPP is used instead of ENOTSUPP.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__del_reloc_root should be called before freeing up reloc_root->node.
If not, calling __del_reloc_root() dereference reloc_root->node, causing
the system BUG.
Fixes: 6bdf131fac ("Btrfs: don't leak reloc root nodes on error")
Cc: <stable@vger.kernel.org> # 4.9
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__endio_write_update_ordered() repeats the search until it reaches the end
of the specified range. This works well with direct IO path, because before
the function is called, it's ensured that there are ordered extents filling
whole the range. It's not the case, however, when it's called from
run_delalloc_range(): it is possible to have error in the midle of the loop
in e.g. run_delalloc_nocow(), so that there exisits the range not covered
by any ordered extents. By cleaning such "uncomplete" range,
__endio_write_update_ordered() stucks at offset where there're no ordered
extents.
Since the ordered extents are created from head to tail, we can stop the
search if there are no offset progress.
Fixes: 524272607e ("btrfs: Handle delalloc error correctly to avoid ordered extent hang")
Cc: <stable@vger.kernel.org> # 4.12
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 524272607e ("btrfs: Handle delalloc error correctly to avoid
ordered extent hang") introduced btrfs_cleanup_ordered_extents() to cleanup
submitted ordered extents. However, it does not clear the ordered bit
(Private2) of corresponding pages. Thus, the following BUG occurs from
free_pages_check_bad() (on btrfs/125 with nospace_cache).
BUG: Bad page state in process btrfs pfn:3fa787
page:ffffdf2acfe9e1c0 count:0 mapcount:0 mapping: (null) index:0xd
flags: 0x8000000000002008(uptodate|private_2)
raw: 8000000000002008 0000000000000000 000000000000000d 00000000ffffffff
raw: ffffdf2acf5c1b20 ffffb443802238b0 0000000000000000 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags: 0x2000(private_2)
This patch clears the flag same as other places calling
btrfs_dec_test_ordered_pending() for every page in the specified range.
Fixes: 524272607e ("btrfs: Handle delalloc error correctly to avoid ordered extent hang")
Cc: <stable@vger.kernel.org> # 4.12
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fs_info->super_copy->{node,sector}size are little-endian, but the ioctl
should return the values in native endianness. Use the cached values in
btrfs_fs_info instead. Found with sparse.
Fixes: 80a773fbfc ("btrfs: retrieve more info from FS_INFO ioctl")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
flush_epd_write_bio() sets bio->bi_opf by itself to honor REQ_SYNC,
but it's not needed at all since bio->bi_opf has set up properly in
both __extent_writepage() and write_one_eb(), and in the case of
write_one_eb(), it also sets REQ_META, which we will lose in
flush_epd_write_bio().
This remove this unnecessary bio->bi_opf setting.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This updates btrfs to use the helper wbc_to_write_flags which has been
applied in ext4/xfs/f2fs/block.
Please note that, with this, btrfs's dirty pages written by a
writeback job will carry the flag REQ_BACKGROUND, which is currently
used by writeback-throttle to determine whether it should go to get a
request or wait.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull nowait read support from Al Viro:
"Support IOCB_NOWAIT for buffered reads and block devices"
* 'work.read_write' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
block_dev: support RFW_NOWAIT on block device nodes
fs: support RWF_NOWAIT for buffered reads
fs: support IOCB_NOWAIT in generic_file_buffered_read
fs: pass iocb to do_generic_file_read
Pull mount flag updates from Al Viro:
"Another chunk of fmount preparations from dhowells; only trivial
conflicts for that part. It separates MS_... bits (very grotty
mount(2) ABI) from the struct super_block ->s_flags (kernel-internal,
only a small subset of MS_... stuff).
This does *not* convert the filesystems to new constants; only the
infrastructure is done here. The next step in that series is where the
conflicts would be; that's the conversion of filesystems. It's purely
mechanical and it's better done after the merge, so if you could run
something like
list=$(for i in MS_RDONLY MS_NOSUID MS_NODEV MS_NOEXEC MS_SYNCHRONOUS MS_MANDLOCK MS_DIRSYNC MS_NOATIME MS_NODIRATIME MS_SILENT MS_POSIXACL MS_KERNMOUNT MS_I_VERSION MS_LAZYTIME; do git grep -l $i fs drivers/staging/lustre drivers/mtd ipc mm include/linux; done|sort|uniq|grep -v '^fs/namespace.c$')
sed -i -e 's/\<MS_RDONLY\>/SB_RDONLY/g' \
-e 's/\<MS_NOSUID\>/SB_NOSUID/g' \
-e 's/\<MS_NODEV\>/SB_NODEV/g' \
-e 's/\<MS_NOEXEC\>/SB_NOEXEC/g' \
-e 's/\<MS_SYNCHRONOUS\>/SB_SYNCHRONOUS/g' \
-e 's/\<MS_MANDLOCK\>/SB_MANDLOCK/g' \
-e 's/\<MS_DIRSYNC\>/SB_DIRSYNC/g' \
-e 's/\<MS_NOATIME\>/SB_NOATIME/g' \
-e 's/\<MS_NODIRATIME\>/SB_NODIRATIME/g' \
-e 's/\<MS_SILENT\>/SB_SILENT/g' \
-e 's/\<MS_POSIXACL\>/SB_POSIXACL/g' \
-e 's/\<MS_KERNMOUNT\>/SB_KERNMOUNT/g' \
-e 's/\<MS_I_VERSION\>/SB_I_VERSION/g' \
-e 's/\<MS_LAZYTIME\>/SB_LAZYTIME/g' \
$list
and commit it with something along the lines of 'convert filesystems
away from use of MS_... constants' as commit message, it would save a
quite a bit of headache next cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
VFS: Differentiate mount flags (MS_*) from internal superblock flags
VFS: Convert sb->s_flags & MS_RDONLY to sb_rdonly(sb)
vfs: Add sb_rdonly(sb) to query the MS_RDONLY flag on s_flags
Pull more set_fs removal from Al Viro:
"Christoph's 'use kernel_read and friends rather than open-coding
set_fs()' series"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: unexport vfs_readv and vfs_writev
fs: unexport vfs_read and vfs_write
fs: unexport __vfs_read/__vfs_write
lustre: switch to kernel_write
gadget/f_mass_storage: stop messing with the address limit
mconsole: switch to kernel_read
btrfs: switch write_buf to kernel_write
net/9p: switch p9_fd_read to kernel_write
mm/nommu: switch do_mmap_private to kernel_read
serial2002: switch serial2002_tty_write to kernel_{read/write}
fs: make the buf argument to __kernel_write a void pointer
fs: fix kernel_write prototype
fs: fix kernel_read prototype
fs: move kernel_read to fs/read_write.c
fs: move kernel_write to fs/read_write.c
autofs4: switch autofs4_write to __kernel_write
ashmem: switch to ->read_iter
Pull zstd support from Chris Mason:
"Nick Terrell's patch series to add zstd support to the kernel has been
floating around for a while. After talking with Dave Sterba, Herbert
and Phillip, we decided to send the whole thing in as one pull
request.
zstd is a big win in speed over zlib and in compression ratio over
lzo, and the compression team here at FB has gotten great results
using it in production. Nick will continue to update the kernel side
with new improvements from the open source zstd userland code.
Nick has a number of benchmarks for the main zstd code in his lib/zstd
commit:
I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB
of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel
Core i7 processor, 16 GB of RAM, and a SSD. I benchmarked using
`silesia.tar` [3], which is 211,988,480 B large. Run the following
commands for the benchmark:
sudo modprobe zstd_compress_test
sudo mknod zstd_compress_test c 245 0
sudo cp silesia.tar zstd_compress_test
The time is reported by the time of the userland `cp`.
The MB/s is computed with
1,536,217,008 B / time(buffer size, hash)
which includes the time to copy from userland.
The Adjusted MB/s is computed with
1,536,217,088 B / (time(buffer size, hash) - time(buffer size, none)).
The memory reported is the amount of memory the compressor
requests.
| Method | Size (B) | Time (s) | Ratio | MB/s | Adj MB/s | Mem (MB) |
|----------|----------|----------|-------|---------|----------|----------|
| none | 11988480 | 0.100 | 1 | 2119.88 | - | - |
| zstd -1 | 73645762 | 1.044 | 2.878 | 203.05 | 224.56 | 1.23 |
| zstd -3 | 66988878 | 1.761 | 3.165 | 120.38 | 127.63 | 2.47 |
| zstd -5 | 65001259 | 2.563 | 3.261 | 82.71 | 86.07 | 2.86 |
| zstd -10 | 60165346 | 13.242 | 3.523 | 16.01 | 16.13 | 13.22 |
| zstd -15 | 58009756 | 47.601 | 3.654 | 4.45 | 4.46 | 21.61 |
| zstd -19 | 54014593 | 102.835 | 3.925 | 2.06 | 2.06 | 60.15 |
| zlib -1 | 77260026 | 2.895 | 2.744 | 73.23 | 75.85 | 0.27 |
| zlib -3 | 72972206 | 4.116 | 2.905 | 51.50 | 52.79 | 0.27 |
| zlib -6 | 68190360 | 9.633 | 3.109 | 22.01 | 22.24 | 0.27 |
| zlib -9 | 67613382 | 22.554 | 3.135 | 9.40 | 9.44 | 0.27 |
I benchmarked zstd decompression using the same method on the same
machine. The benchmark file is located in the upstream zstd repo
under `contrib/linux-kernel/zstd_decompress_test.c` [4]. The
memory reported is the amount of memory required to decompress
data compressed with the given compression level. If you know the
maximum size of your input, you can reduce the memory usage of
decompression irrespective of the compression level.
| Method | Time (s) | MB/s | Adjusted MB/s | Memory (MB) |
|----------|----------|---------|---------------|-------------|
| none | 0.025 | 8479.54 | - | - |
| zstd -1 | 0.358 | 592.15 | 636.60 | 0.84 |
| zstd -3 | 0.396 | 535.32 | 571.40 | 1.46 |
| zstd -5 | 0.396 | 535.32 | 571.40 | 1.46 |
| zstd -10 | 0.374 | 566.81 | 607.42 | 2.51 |
| zstd -15 | 0.379 | 559.34 | 598.84 | 4.61 |
| zstd -19 | 0.412 | 514.54 | 547.77 | 8.80 |
| zlib -1 | 0.940 | 225.52 | 231.68 | 0.04 |
| zlib -3 | 0.883 | 240.08 | 247.07 | 0.04 |
| zlib -6 | 0.844 | 251.17 | 258.84 | 0.04 |
| zlib -9 | 0.837 | 253.27 | 287.64 | 0.04 |
I ran a long series of tests and benchmarks on the btrfs side and the
gains are very similar to the core benchmarks Nick ran"
* 'zstd-minimal' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
squashfs: Add zstd support
btrfs: Add zstd support
lib: Add zstd modules
lib: Add xxhash module
Pull btrfs updates from David Sterba:
"The changes range through all types: cleanups, core chagnes, sanity
checks, fixes, other user visible changes, detailed list below:
- deprecated: user transaction ioctl
- mount option ssd does not change allocation alignments
- degraded read-write mount is allowed if all the raid profile
constraints are met, now based on more accurate check
- defrag: do not reset compression afterwards; the NOCOMPRESS flag
can be now overriden by defrag
- prep work for better extent reference tracking (related to the
qgroup slowness with balance)
- prep work for compression heuristics
- memory allocation reductions (may help latencies on a loaded
system)
- better accounting for io waiting states
- error handling improvements (removed BUGs)
- added more sanity checks for shared refs
- fix readdir vs pagefault deadlock under some circumstances
- fix for 'no-hole' mode, certain combination of compressed and
inline extents
- send: fix emission of invalid clone operations
- fixup file mode if setting acls fail
- more fixes from fuzzing
- oher cleanups"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (104 commits)
btrfs: submit superblock io with REQ_META and REQ_PRIO
btrfs: remove unnecessary memory barrier in btrfs_direct_IO
btrfs: remove superfluous chunk_tree argument from btrfs_alloc_dev_extent
btrfs: Remove chunk_objectid parameter of btrfs_alloc_dev_extent
btrfs: pass fs_info to btrfs_del_root instead of tree_root
Btrfs: add one more sanity check for shared ref type
Btrfs: remove BUG_ON in __add_tree_block
Btrfs: remove BUG() in add_data_reference
Btrfs: remove BUG() in print_extent_item
Btrfs: remove BUG() in btrfs_extent_inline_ref_size
Btrfs: convert to use btrfs_get_extent_inline_ref_type
Btrfs: add a helper to retrive extent inline ref type
btrfs: scrub: simplify scrub worker initialization
btrfs: scrub: clean up division in scrub_find_csum
btrfs: scrub: clean up division in __scrub_mark_bitmap
btrfs: scrub: use bool for flush_all_writes
btrfs: preserve i_mode if __btrfs_set_acl() fails
btrfs: Remove extraneous chunk_objectid variable
btrfs: Remove chunk_objectid argument from btrfs_make_block_group
btrfs: Remove extra parentheses from condition in copy_items()
...
Pull block layer updates from Jens Axboe:
"This is the first pull request for 4.14, containing most of the code
changes. It's a quiet series this round, which I think we needed after
the churn of the last few series. This contains:
- Fix for a registration race in loop, from Anton Volkov.
- Overflow complaint fix from Arnd for DAC960.
- Series of drbd changes from the usual suspects.
- Conversion of the stec/skd driver to blk-mq. From Bart.
- A few BFQ improvements/fixes from Paolo.
- CFQ improvement from Ritesh, allowing idling for group idle.
- A few fixes found by Dan's smatch, courtesy of Dan.
- A warning fixup for a race between changing the IO scheduler and
device remova. From David Jeffery.
- A few nbd fixes from Josef.
- Support for cgroup info in blktrace, from Shaohua.
- Also from Shaohua, new features in the null_blk driver to allow it
to actually hold data, among other things.
- Various corner cases and error handling fixes from Weiping Zhang.
- Improvements to the IO stats tracking for blk-mq from me. Can
drastically improve performance for fast devices and/or big
machines.
- Series from Christoph removing bi_bdev as being needed for IO
submission, in preparation for nvme multipathing code.
- Series from Bart, including various cleanups and fixes for switch
fall through case complaints"
* 'for-4.14/block' of git://git.kernel.dk/linux-block: (162 commits)
kernfs: checking for IS_ERR() instead of NULL
drbd: remove BIOSET_NEED_RESCUER flag from drbd_{md_,}io_bio_set
drbd: Fix allyesconfig build, fix recent commit
drbd: switch from kmalloc() to kmalloc_array()
drbd: abort drbd_start_resync if there is no connection
drbd: move global variables to drbd namespace and make some static
drbd: rename "usermode_helper" to "drbd_usermode_helper"
drbd: fix race between handshake and admin disconnect/down
drbd: fix potential deadlock when trying to detach during handshake
drbd: A single dot should be put into a sequence.
drbd: fix rmmod cleanup, remove _all_ debugfs entries
drbd: Use setup_timer() instead of init_timer() to simplify the code.
drbd: fix potential get_ldev/put_ldev refcount imbalance during attach
drbd: new disk-option disable-write-same
drbd: Fix resource role for newly created resources in events2
drbd: mark symbols static where possible
drbd: Send P_NEG_ACK upon write error in protocol != C
drbd: add explicit plugging when submitting batches
drbd: change list_for_each_safe to while(list_first_entry_or_null)
drbd: introduce drbd_recv_header_maybe_unplug
...
Instead of playing with the addressing limits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is based on the old idea and code from Milosz Tanski. With the aio
nowait code it becomes mostly trivial now. Buffered writes continue to
return -EOPNOTSUPP if RWF_NOWAIT is passed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This fixes several instances of blk_status_t and bare errno ints being
mixed up, some of which are real bugs.
In the normal case, 0 matches BLK_STS_OK, so we don't observe any
effects of the missing conversion, but in case of errors or passes
through the repair/retry paths, the errors get mixed up.
The changes were identified using 'sparse', we don't have reports of the
buggy behaviour.
Fixes: 4e4cbee93d ("block: switch bios to blk_status_t")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This way we don't need a block_device structure to submit I/O. The
block_device has different life time rules from the gendisk and
request_queue and is usually only available when the block device node
is open. Other callers need to explicitly create one (e.g. the lightnvm
passthrough code, or the new nvme multipathing code).
For the actual I/O path all that we need is the gendisk, which exists
once per block device. But given that the block layer also does
partition remapping we additionally need a partition index, which is
used for said remapping in generic_make_request.
Note that all the block drivers generally want request_queue or
sometimes the gendisk, so this removes a layer of indirection all
over the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We won't have the struct block_device available in the bio soon, so switch
to the numerical dev_t instead of the block_device pointer for looking up
the check-integrity state.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The superblock is also metadata of the filesystem so the relevant IO
should be tagged as such. We also tag it as high priority, as it's the
last block committed for metadata from a given transaction. Any delays
would effectively block the whole transaction, also blocking any other
operation holding the device_list_mutex.
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 38851cc19a ("Btrfs: implement unlocked dio write") implemented
unlocked dio write, allowing multiple dio writers to write to
non-overlapping, and non-eof-extending regions. In doing so it also
introduced a broken memory barrier. It is broken due to 2 things:
1. Memory barriers _MUST_ always be paired, this is clearly not the case
here
2. Checkpatch actually produces a warning if a memory barrier is
introduced that doesn't have a comment explaining how it's being
paired.
Specifically for inode::i_dio_count that's wrapped inside
inode_dio_begin, there is no explicit barrier semantics attached, so
removing is fine as the atomic is used in common the waiter/wakeup
pattern.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently this function is always called with the object id of the root
key of the chunk_tree, which is always BTRFS_CHUNK_TREE_OBJECTID. So
let's subsume it straight into the function itself. No functional
change.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
THe function is always called with chunk_objectid set to
BTRFS_FIRST_CHUNK_TREE_OBJECTID. Let's collapse the parameter in the
function itself. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Every shared ref has a parent tree block, which can be get from
btrfs_extent_inline_ref_offset(). And the tree block must be aligned
to the nodesize, so we'd know this inline ref is not valid if this
block's bytenr is not aligned to the nodesize, in which case, most
likely the ref type has been misused.
This adds the above mentioned check and also updates
print_extent_item() called by btrfs_print_leaf() to point out the
invalid ref while printing the tree structure.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BUG_ON() can be triggered when the caller is processing an invalid
extent inline ref, e.g.
a shared data ref is offered instead of an extent data ref, such that
it tries to find a non-existent tree block and then btrfs_search_slot
returns 1 for no such item.
This replaces the BUG_ON() with a WARN() followed by calling
btrfs_print_leaf() to show more details about what's going on and
returning -EINVAL to upper callers.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a helper to report invalid value of extent inline ref
type, we need to quit gracefully instead of throwing out a kernel panic.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_print_leaf() is used in btrfs_get_extent_inline_ref_type, so
here we really want to print the invalid value of ref type instead of
causing a kernel panic.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_get_extent_inline_ref_type() can report if type is a
valid one and all callers can gracefully deal with that, we don't need
to crash here.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have a helper which can do sanity check, this converts all
btrfs_extent_inline_ref_type to it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An invalid value of extent inline ref type may be read from a
malicious image which may force btrfs to crash.
This adds a helper which does sanity check for the ref type, so we can
know if it's sane, return he type, otherwise return an error.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minimal tweak const types, causing warnings due to other cleanup patches ]
Signed-off-by: David Sterba <dsterba@suse.com>
flush_all_writes is an atomic but does not use the semantics at all,
it's just on/off indicator, we can use bool.
Signed-off-by: David Sterba <dsterba@suse.com>
When changing a file's acl mask, btrfs_set_acl() will first set the
group bits of i_mode to the value of the mask, and only then set the
actual extended attribute representing the new acl.
If the second part fails (due to lack of space, for example) and the
file had no acl attribute to begin with, the system will from now on
assume that the mask permission bits are actual group permission bits,
potentially granting access to the wrong users.
Prevent this by restoring the original mode bits if __btrfs_set_acl
fails.
Signed-off-by: Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS_FIRST_CHUNK_TREE_OBJECTIS id the only objectid being used in the
chunk_tree. So remove a variable which is always set to that value and collapse
its usage in callees which are passed this variable. No functional changes
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_make_block_group is always called with chunk_objectid set to
BTRFS_FIRST_CHUNK_TREE_OBJECTID. There's no reason why this behavior will
change anytime soon, so let's remove the argument and decrease the cognitive
load when reading the code path. No functional change
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no need for the extra pair of parentheses, remove it. This
fixes the following warning when building with clang:
fs/btrfs/tree-log.c:3694:10: warning: equality comparison with extraneous
parentheses [-Wparentheses-equality]
if ((i == (nr - 1)))
~~^~~~~~~~~~~
Also remove the unnecessary parentheses around the substraction.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_alloc_dev_extent currently unconditionally sets the uuid in the
leaf block header the function is working with. This is unnecessary
since this operation is peformed by the core btree handling code
(splitting a node, allocating a new btree block etc). So let's remove
it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch provides a band aid to improve the 'out of the box'
behaviour of btrfs for disks that are detected as being an ssd. In a
general purpose mixed workload scenario, the current ssd mode causes
overallocation of available raw disk space for data, while leaving
behind increasing amounts of unused fragmented free space. This
situation leads to early ENOSPC problems which are harming user
experience and adoption of btrfs as a general purpose filesystem.
This patch modifies the data extent allocation behaviour of the ssd mode
to make it behave identical to nossd mode. The metadata behaviour and
additional ssd_spread option stay untouched so far.
Recommendations for future development are to reconsider the current
oversimplified nossd / ssd distinction and the broken detection
mechanism based on the rotational attribute in sysfs and provide
experienced users with a more flexible way to choose allocator behaviour
for data and metadata, optimized for certain use cases, while keeping
sane 'out of the box' default settings. The internals of the current
btrfs code have more potential than what currently gets exposed to the
user to choose from.
The SSD story...
In the first year of btrfs development, around early 2008, btrfs
gained a mount option which enables specific functionality for
filesystems on solid state devices. The first occurance of this
functionality is in commit e18e4809, labeled "Add mount -o ssd, which
includes optimizations for seek free storage".
The effect on allocating free space for doing (data) writes is to
'cluster' writes together, writing them out in contiguous space, as
opposed to a 'tetris' way of putting all separate writes into any free
space fragment that fits (which is what the -o nossd behaviour does).
A somewhat simplified explanation of what happens is that, when for
example, the 'cluster' size is set to 2MiB, when we do some writes, the
data allocator will search for a free space block that is 2MiB big, and
put the writes in there. The ssd mode itself might allow a 2MiB cluster
to be composed of multiple free space extents with some existing data in
between, while the additional ssd_spread mount option kills off this
option and requires fully free space.
The idea behind this is (commit 536ac8ae): "The [...] clusters make it
more likely a given IO will completely overwrite the ssd block, so it
doesn't have to do an internal rwm cycle."; ssd block meaning nand erase
block. So, effectively this means applying a "locality based algorithm"
and trying to outsmart the actual ssd.
Since then, various changes have been made to the involved code, but the
basic idea is still present, and gets activated whenever the ssd mount
option is active. This also happens by default, when the rotational flag
as seen at /sys/block/<device>/queue/rotational is set to 0.
However, there's a number of problems with this approach.
First, what the optimization is trying to do is outsmart the ssd by
assuming there is a relation between the physical address space of the
block device as seen by btrfs and the actual physical storage of the
ssd, and then adjusting data placement. However, since the introduction
of the Flash Translation Layer (FTL) which is a part of the internal
controller of an ssd, these attempts are futile. The use of good quality
FTL in consumer ssd products might have been limited in 2008, but this
situation has changed drastically soon after that time. Today, even the
flash memory in your automatic cat feeding machine or your grandma's
wheelchair has a full featured one.
Second, the behaviour as described above results in the filesystem being
filled up with badly fragmented free space extents because of relatively
small pieces of space that are freed up by deletes, but not selected
again as part of a 'cluster'. Since the algorithm prefers allocating a
new chunk over going back to tetris mode, the end result is a filesystem
in which all raw space is allocated, but which is composed of
underutilized chunks with a 'shotgun blast' pattern of fragmented free
space. Usually, the next problematic thing that happens is the
filesystem wanting to allocate new space for metadata, which causes the
filesystem to fail in spectacular ways.
Third, the default mount options you get for an ssd ('ssd' mode enabled,
'discard' not enabled), in combination with spreading out writes over
the full address space and ignoring freed up space leads to worst case
behaviour in providing information to the ssd itself, since it will
never learn that all the free space left behind is actually free. There
are two ways to let an ssd know previously written data does not have to
be preserved, which are sending explicit signals using discard or
fstrim, or by simply overwriting the space with new data. The worst
case behaviour is the btrfs ssd_spread mount option in combination with
not having discard enabled. It has a side effect of minimizing the reuse
of free space previously written in.
Fourth, the rotational flag in /sys/ does not reliably indicate if the
device is a locally attached ssd. For example, iSCSI or NBD displays as
non-rotational, while a loop device on an ssd shows up as rotational.
The combination of the second and third problem effectively means that
despite all the good intentions, the btrfs ssd mode reliably causes the
ssd hardware and the filesystem structures and performance to be choked
to death. The clickbait version of the title of this story would have
been "Btrfs ssd optimizations considered harmful for ssds".
The current nossd 'tetris' mode (even still without discard) allows a
pattern of overwriting much more previously used space, causing many
more implicit discards to happen because of the overwrite information
the ssd gets. The actual location in the physical address space, as seen
from the point of view of btrfs is irrelevant, because the actual writes
to the low level flash are reordered anyway thanks to the FTL.
Changes made in the code
1. Make ssd mode data allocation identical to tetris mode, like nossd.
2. Adjust and clean up filesystem mount messages so that we can easily
identify if a kernel has this patch applied or not, when providing
support to end users. Also, make better use of the *_and_info helpers to
only trigger messages on actual state changes.
Backporting notes
Notes for whoever wants to backport this patch to their 4.9 LTS kernel:
* First apply commit 951e7966 "btrfs: drop the nossd flag when
remounting with -o ssd", or fixup the differences manually.
* The rest of the conflicts are because of the fs_info refactoring. So,
for example, instead of using fs_info, it's root->fs_info in
extent-tree.c
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although this bio has no data attached, it will reach this condition
(bio->bi_opf & REQ_PREFLUSH) and then update the flush_gen of dev_state
in __btrfsic_submit_bio. So we should still submit it through integrity
checker. Otherwise, the integrity checker will throw the following warning
when I mount a newly created btrfs filesystem.
[10264.755497] btrfs: attempt to write superblock which references block M @29523968 (sdb1/1111654400/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
[10264.755498] btrfs: attempt to write superblock which references block M @29523968 (sdb1/37912576/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send it's possible that the computed send stream
contains clone operations that will fail on the receiver if the receiver
has compression enabled and the clone operations target a sector sized
extent that starts at a zero file offset, is not compressed on the source
filesystem but ends up being compressed and inlined at the destination
filesystem.
Example scenario:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
# By doing a direct IO write, the data is not compressed.
$ xfs_io -f -d -c "pwrite -S 0xab 0 4K" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap1
$ xfs_io -c "reflink /mnt/foobar 0 8K 4K" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap2
$ btrfs send -f /tmp/1.snap /mnt/mysnap1
$ btrfs send -f /tmp/2.snap -p /mnt/mysnap1 /mnt/mysnap2
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount -o compress /dev/sdc /mnt
$ btrfs receive -f /tmp/1.snap /mnt
$ btrfs receive -f /tmp/2.snap /mnt
ERROR: failed to clone extents to foobar
Operation not supported
The same could be achieved by mounting the source filesystem without
compression and doing a buffered IO write instead of a direct IO one,
and mounting the destination filesystem with compression enabled.
So fix this by issuing regular write operations in the send stream
instead of clone operations when the source offset is zero and the
range has a length matching the sector size.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a corner case that slips through the checkers in functions
reading extent buffer, ie.
if (start < eb->len) and (start + len > eb->len),
then
a) map_private_extent_buffer() returns immediately because
it's thinking the range spans across two pages,
b) and the checkers in read_extent_buffer(), WARN_ON(start > eb->len)
and WARN_ON(start + len > eb->start + eb->len), both are OK in this
corner case, but it'd actually try to access the eb->pages out of
bounds because of (start + len > eb->len).
The case is found by switching extent inline ref type from shared data
ref to non-shared data ref, which is a kind of metadata corruption.
It'd use the wrong helper to access the eb,
eg. btrfs_extent_data_ref_root(eb, ref) is used but the %ref passing
here is "struct btrfs_shared_data_ref". And if the extent item
happens to be the first item in the eb, then offset/length will get
over eb->len which ends up an invalid memory access.
This is adding proper checks in order to avoid invalid memory access,
ie. 'general protection fault', before it's too late.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The buffer passed to btrfs_ioctl_tree_search* functions have to be at least
sizeof(struct btrfs_ioctl_search_header). If this is not the case then the
ioctl should return -EOVERFLOW and set the uarg->buf_size to the minimum
required size. Currently btrfs_ioctl_tree_search_v2 would return an -EOVERFLOW
error with ->buf_size being set to the value passed by user space. Fix this by
removing the size check and relying on search_ioctl, which already includes it
and correctly sets buf_size.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the code checks whether we should do data checksumming in
btrfs_submit_direct and the boolean result of this check is passed to
btrfs_submit_direct_hook, in turn passing it to __btrfs_submit_dio_bio which
actually consumes it. The last function actually has all the necessary context
to figure out whether to skip the check or not, so let's move the check closer
to where it's being consumed. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If the range being cleared was not marked for defrag and we are not
about to clear the range from the defrag status, we don't need to
lock and unlock the inode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Chris Mason <clm@fb.com>
Reviewed-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error return variable ret is initialized to zero and then is
checked to see if it is non-zero in the if-block that follows it.
It is therefore impossible for ret to be non-zero after the if-block
hence the check is redundant and can be removed.
Detected by CoverityScan, CID#1021040 ("Logically dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The internal free space tree management routines are always exposed for
testing purposes. Make them dependent on SANITY_TESTS being on so that
they are exposed only when they really have to.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This variable was added in 1abe9b8a13 ("Btrfs: add initial tracepointi
support for btrfs"), yet it never really got used, only assigned to. So
let's remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a WARN_ON(!var) inside an if branch which is executed (among
others) only when var is true.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We aren't using this define, so removing it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Though BTRFS_FSID_SIZE and BTRFS_UUID_SIZE are of the same size, we
should use the matching constant for the fsid buffer.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our dir_context->pos is supposed to hold the next position we're
supposed to look. If we successfully insert a delayed dir index we
could end up with a duplicate entry because we don't increase ctx->pos
after doing the dir_emit.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Readdir does dir_emit while under the btree lock. dir_emit can trigger
the page fault which means we can deadlock. Fix this by allocating a
buffer on opening a directory and copying the readdir into this buffer
and doing dir_emit from outside of the tree lock.
Thread A
readdir <holding tree lock>
dir_emit
<page fault>
down_read(mmap_sem)
Thread B
mmap write
down_write(mmap_sem)
page_mkwrite
wait_ordered_extents
Process C
finish_ordered_extent
insert_reserved_file_extent
try to lock leaf <hang>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy the deadlock scenario to changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently should_alloc_chunk uses ->total_bytes - ->bytes_readonly to
signify the total amount of bytes in this space info. However, given
Jeff's patch which adds bytes_pinned and bytes_may_use to the calculation
of num_allocated it becomes a lot more clear to just eliminate num_bytes
altogether and add the bytes_readonly to the amount of used space. That
way we don't change the results of the following statements. In the
process also start using btrfs_space_info_used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a heavy write scenario, we can end up with a large number of pinned bytes.
This can translate into (very) premature ENOSPC because pinned bytes
must be accounted for when allowing a reservation but aren't accounted for
when deciding whether to create a new chunk.
This patch adds the accounting to should_alloc_chunk so that we can
create the chunk.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a minimal patch intended to be backported to older kernels.
We're going to extend the string specifying the compression method and
this would fail on kernels before that change (the string is compared
exactly).
Relax the string matching only to the prefix, ie. ignoring anything that
goes after "zlib" or "lzo", regardless of th format extension we decide
to use. This applies to the mount options and properties.
That way, patched old kernels could be booted on systems already
utilizing the new compression spec.
Applicable since commit 63541927c8, v3.14.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, the BTRFS_INODE_NOCOMPRESS will prevent any compression on a
given file, except when the mount is force-compress. As users have
reported on IRC, this will also prevent compression when requested by
defrag (btrfs fi defrag -c file).
The nocompress flag is set automatically by filesystem when the ratios
are bad and the user would have to manually drop the bit in order to
make defrag -c work. This is not good from the usability perspective.
This patch will raise priority for the defrag -c over nocompress, ie.
any file with NOCOMPRESS bit set will get defragmented. The bit will
remain untouched.
Alternate option was to also drop the nocompress bit and keep the
decision logic as is, but I think this is not the right solution.
Signed-off-by: David Sterba <dsterba@suse.com>
Add new value for compression to distinguish between defrag and
property. Previously, a single variable was used and this caused clashes
when the per-file 'compression' was set and a defrag -c was called.
The property-compression is loaded when the file is open, defrag will
overwrite the same variable and reset to 0 (ie. NONE) at when the file
defragmentaion is finished. That's considered a usability bug.
Now we won't touch the property value, use the defrag-compression. The
precedence of defrag is higher than for property (and whole-filesystem).
Signed-off-by: David Sterba <dsterba@suse.com>
This is preparatory for separating inode compression requested by defrag
and set via properties. This will fix a usability bug when defrag will
reset compression type to NONE. If the file has compression set via
property, it will not apply anymore (until next mount or reset through
command line).
We're going to fix that by adding another variable just for the defrag
call and won't touch the property. The defrag will have higher priority
when deciding whether to compress the data.
Signed-off-by: David Sterba <dsterba@suse.com>
Add skeleton code for compresison heuristics. Now it iterates over all
the pages, but in the end always says "yes, compress please", ie it does
not change the current behaviour.
In the future we're going to add various heuristics to analyze the data.
This patch can be used as a baseline for measuring if the effectivness
and performance.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhanced changelog, modified comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Correctly account for IO when waiting for a submitted bio in scrub. This
only for the accounting purposes and should not change other behaviour.
Signed-off-by: David Sterba <dsterba@suse.com>
Correctly account for IO when waiting for a submitted DIO read, the case
when we're retrying. This only for the accounting purposes and should
not change other behaviour.
Signed-off-by: David Sterba <dsterba@suse.com>
The pinned chunks might be left over so we clean them but at this point
of close_ctree, there's noone to race with, the locking can be removed.
Signed-off-by: David Sterba <dsterba@suse.com>
The return value of flush_space was used to have significance in the
early days when the code was first introduced and before the ticketed
enospc rework. Since the latter got introduced the return value lost any
significance whatsoever to its callers. So let's remove it. While at it
also remove the unused ticket variable in
btrfs_async_reclaim_metadata_space. It was used in the initial version
of the ticketed ENOSPC work, however Wang Xiaoguang detected a problem
with this and fixed it in ce129655c9 ("btrfs: introduce tickets_id to
determine whether asynchronous metadata reclaim work makes progress").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Userspace transactions were introduced in commit 6bf13c0cc8 ("Btrfs:
transaction ioctls") to provide semantics that Ceph's object store
required. However, things have changed significantly since then, to the
point where btrfs is no longer suitable as a backend for ceph and in
fact it's actively advised against such usages. Considering this, there
doesn't seem to be a widespread, legit use case of userspace
transaction. They also clutter the file->private pointer.
So to end the agony let's nuke the userspace transaction ioctls. As a
first step let's give time for people to voice their objection by just
WARN()ining when the userspace transaction is used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ move the warning past perm checks, keep the has-been-printed state;
we're ok with just one warning over all filesystems ]
Signed-off-by: David Sterba <dsterba@suse.com>
Superblock is read and written using buffer heads, we need to set the
bdev blocksize. The magic constant has been hardcoded in several places,
so replace it with a named constant.
Signed-off-by: David Sterba <dsterba@suse.com>
There are two independent parts, one that writes the superblocks and
another that waits for completion. No functional changes, but cleanups,
reformatting and comment updates.
Signed-off-by: David Sterba <dsterba@suse.com>
Polish the helper:
* drop underscores, no special meaning here
* pass fs_devices, as this is what the API implements
* drop noinline, no apparent reason for such simple helper
* constify uuid
* add comment
Signed-off-by: David Sterba <dsterba@suse.com>
There are two helpers called in chain from one location, we can merge the
functionaliy.
Originally, alloc_fs_devices could fill the device uuid randomly if we
we didn't give the uuid buffer. This happens for seed devices but the
fsid is generated in btrfs_prepare_sprout, so we can remove it.
Signed-off-by: David Sterba <dsterba@suse.com>
The function submit_extent_page has 15(!) parameters right now, op and
op_flags are effectively one value stored to bio::bi_opf, no need to
pass them separately. So it's 14 parameters now.
Signed-off-by: David Sterba <dsterba@suse.com>
This function prints an informative message and then continues
dev-replace. The message contains a progress percentage which is read
from the status. The status is allocated dynamically, about 2600 bytes,
just to read the single value. That's an overkill. We'll use the new
helper and drop the allocation.
Signed-off-by: David Sterba <dsterba@suse.com>
We'll want to read the percentage value from dev_replace elsewhere, move
the logic to a separate helper.
Signed-off-by: David Sterba <dsterba@suse.com>
All sorts of readahead errors are not considered fatal. We can continue
defragmentation without it, with some potential slow down, which will
last only for the current inode.
Signed-off-by: David Sterba <dsterba@suse.com>
We can safely use GFP_KERNEL, the function is called from two contexts:
- ioctl handler, called directly, no locks taken
- cleaner thread, running all queued defrag work, outside of any locks
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to restrict the allocation flags in btrfs_mount or
_remount. No big filesystem locks are held (possibly s_umount but that
does no count here).
Signed-off-by: David Sterba <dsterba@suse.com>
One of the error handling paths in __add_reloc_root contains btrfs_panic()
followed by some other code. As the name implies what it does is print
some error message and call BUG, naturally what follow afterwards is not
invoked. So remove this extra code.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This also adjusts the respective callers in other files. Those were
found with -Wunused-parameter.
btrfs_full_stripe_len's mapping_tree - introduced by 53b381b3ab
("Btrfs: RAID5 and RAID6") but it was never really used even in that
commit
btrfs_is_parity_mirror's mirror_num - same as above
chunk_drange_filter's chunk_offset - introduced by 94e60d5a5c ("Btrfs:
devid subset filter") and never used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
clear_super - usage was removed in commit cea67ab92d ("btrfs: clean
the old superblocks before freeing the device") but that change forgot
to remove the actual variable.
max_key - commit 6174d3cb43 ("Btrfs: remove unused max_key arg from
btrfs_search_forward") removed the max_key parameter but it forgot to
remove references from callers.
stripe_len - this one was added by e06cd3dd7c ("Btrfs: add validadtion
checks for chunk loading") but even then it wasn't used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
find_raid56_stripe_len statically returns SZ_64K which equals BTRFS_STRIPE_LEN.
It's sole caller is __btrfs_alloc_chunk and it assigns the return value to ai
variable which is already set to BTRFS_STRIPE_LEN. So remove the function
invocation altogether and remove the function itself. Also remove the variable
since it's only aliasing BTRFS_STRIPE_LEN and use the define directly. Use
the occassion to simplify the rounding down of stripe_size now that the value
we want it to align is a power of 2.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes, just make the code more self-explanatory.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_new_inode() is the only consumer move it to inode.c,
from ioctl.c.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
find_workspace() allocates up to num_online_cpus() + 1 workspaces.
free_workspace() will only keep num_online_cpus() workspaces. When
(de)compressing we will allocate num_online_cpus() + 1 workspaces, then
free one, and repeat. Instead, we can just keep num_online_cpus() + 1
workspaces around, and never have to allocate/free another workspace in the
common case.
I tested on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. I mounted a
BtrFS partition with -o compress-force={lzo,zlib,zstd} and logged whenever
a workspace was allocated of freed. Then I copied vmlinux (527 MB) to the
partition. Before the patch, during the copy it would allocate and free 5-6
workspaces. After, it only allocated the initial 3. This held true for lzo,
zlib, and zstd. The time it took to execute cp vmlinux /mnt/btrfs && sync
dropped from 1.70s to 1.44s with lzo compression, and from 2.04s to 1.80s
for zstd compression.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers append "\n" so we can keep the actual strings shorter. The
extra newline will print an empty line. Some messages have been
slightly modified to be more consistent with the rest (lowercase first
letter).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current code was erroneously checking for
root_level > BTRFS_MAX_LEVEL. If we had a root_level of 8 then the check
won't trigger and we could potentially hit a buffer overflow. The
correct check should be root_level >= BTRFS_MAX_LEVEL .
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For a missing device, btrfs will just refuse to mount with almost
meaningless kernel message like:
BTRFS info (device vdb6): disk space caching is enabled
BTRFS info (device vdb6): has skinny extents
BTRFS error (device vdb6): failed to read the system array: -5
BTRFS error (device vdb6): open_ctree failed
This patch will print a new message about the missing device:
BTRFS info (device vdb6): disk space caching is enabled
BTRFS info (device vdb6): has skinny extents
BTRFS warning (device vdb6): devid 2 uuid 80470722-cad2-4b90-b7c3-fee294552f1b is missing
BTRFS error (device vdb6): failed to read the system array: -5
BTRFS error (device vdb6): open_ctree failed
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As we use per-chunk degradable check, the global
num_tolerated_disk_barrier_failures is of no use.
We can now remove it.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The last user of num_tolerated_disk_barrier_failures is
barrier_all_devices().
But it can be easily changed to the new per-chunk degradable check
framework.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just the same for mount time check, use btrfs_check_rw_degradable() to
check if we are OK to be remounted rw.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now use the btrfs_check_rw_degradable() to check if we can mount in the
degraded mode.
With this patch, we can mount in the following case:
# mkfs.btrfs -f -m raid1 -d single /dev/sdb /dev/sdc
# wipefs -a /dev/sdc
# mount /dev/sdb /mnt/btrfs -o degraded
As the single data chunk is only on sdb, so it's OK to mount as
degraded, as missing one device is OK for RAID1.
But still fail in the following case as expected:
# mkfs.btrfs -f -m raid1 -d single /dev/sdb /dev/sdc
# wipefs -a /dev/sdb
# mount /dev/sdc /mnt/btrfs -o degraded
As the data chunk is only in sdb, so it's not OK to mount it as
degraded.
Reported-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reported-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new function, btrfs_check_rw_degradable(), to check if all
chunks in btrfs is OK for degraded rw mount.
It provides the new basis for accurate btrfs mount/remount and even
runtime degraded mount check other than old one-size-fit-all method.
Btrfs currently uses num_tolerated_disk_barrier_failures to do global
check for tolerated missing device.
Although the one-size-fit-all solution is quite safe, it's too strict
if data and metadata has different duplication level.
For example, if one use Single data and RAID1 metadata for 2 disks, it
means any missing device will make the fs unable to be degraded
mounted.
But in fact, some times all single chunks may be in the existing
device and in that case, we should allow it to be rw degraded mounted.
Such case can be easily reproduced using the following script:
# mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc
# wipefs -f /dev/sdc
# mount /dev/sdb -o degraded,rw
If using btrfs-debug-tree to check /dev/sdb, one should find that the
data chunk is only in sdb, so in fact it should allow degraded mount.
This patchset will introduce a new per-chunk degradable check for
btrfs, allow above case to succeed, and it's quite small anyway.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copied text from cover letter with more details about the problem being
solved ]
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs fails the checksum check, it'll fill the whole page with
"1".
However, if %csum_expected is 0 (which means there is no checksum), then
for some unknown reason, we just pretend that the read is correct, so
userspace would be confused about the dilemma that read is successful but
getting a page with all content being "1".
This can happen due to a bug in btrfs-convert.
This fixes it by always returning errors if checksum doesn't match.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_full_stripe_len/btrfs_is_parity_mirror we have similar code which
gets the chunk map for a particular range via get_chunk_map. However,
get_chunk_map can return an ERR_PTR value and while the 2 callers do catch
this with a WARN_ON they then proceed to indiscriminately dereference the
extent map. This of course leads to a crash. Fix the offenders by making the
dereference conditional on IS_ERR.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Many commits ago the data space_info in alloc_data_chunk_ondemand used to be
acquired from the inode. At that point commit
33b4d47f5e ("Btrfs: deal with NULL space info") got introduced to deal with
spurios cases where the space info could be null, following a rebalance.
Nowadays, however, the space info is referenced directly from the btrfs_fs_info
struct which is initialised at filesystem mount time. This makes the null
checks redundant, so remove them.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of flush_space pass the same number for orig/num_bytes
arguments. Let's remove one of the numbers and also modify the trace
point to show only a single number - bytes requested.
Seems that last point where the two parameters were treated differently
is before the ticketed enospc rework.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several distributions mount the "proper root" as ro during initrd and
then remount it as rw before pivot_root(2). Thus, if a rescan had been
aborted by a previous shutdown, the rescan would never be resumed.
This issue would manifest itself as several btrfs ioctl(2)s causing the
entire machine to hang when btrfs_qgroup_wait_for_completion was hit
(due to the fs_info->qgroup_rescan_running flag being set but the rescan
itself not being resumed). Notably, Docker's btrfs storage driver makes
regular use of BTRFS_QUOTA_CTL_DISABLE and BTRFS_IOC_QUOTA_RESCAN_WAIT
(causing this problem to be manifested on boot for some machines).
Cc: <stable@vger.kernel.org> # v3.11+
Cc: Jeff Mahoney <jeffm@suse.com>
Fixes: b382a324b6 ("Btrfs: fix qgroup rescan resume on mount")
Signed-off-by: Aleksa Sarai <asarai@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Repeating the same computation in multiple places is not
necessary.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When called with a struct share_check, find_parent_nodes()
will detect a shared extent and immediately return with
BACKREF_SHARED_FOUND.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since backref resolution is CPU-intensive, the cond_resched calls
should help alleviate soft lockup occurences.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds a tracepoint event for prelim_ref insertion and
merging. For each, the ref being inserted or merged and the count
of tree nodes is issued.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds counters to each of the rbtrees so that we can tell
how large they are growing for a given workload. These counters
will be exported by tracepoints in the next patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's been known for a while that the use of multiple lists
that are periodically merged was an algorithmic problem within
btrfs. There are several workloads that don't complete in any
reasonable amount of time (e.g. btrfs/130) and others that cause
soft lockups.
The solution is to use a set of rbtrees that do insertion merging
for both indirect and direct refs, with the former converting
refs into the latter. The result is a btrfs/130 workload that
used to take several hours now takes about half of that. This
runtime still isn't acceptable and a future patch will address that
by moving the rbtrees higher in the stack so the lookups can be
shared across multiple calls to find_parent_nodes.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit afce772e87 ("btrfs: fix check_shared for fiemap ioctl") added
the ref_tree code in backref.c to reduce backref searching for
shared extents under the FIEMAP ioctl. This code will not be
compatible with the upcoming rbtree changes for improved backref
searching, so this patch removes the ref_tree code. The rbtree
changes will provide the equivalent functionality for FIEMAP.
The above commit also introduced transaction semantics around calls to
btrfs_check_shared() in order to accurately account for delayed refs.
This functionality needs to be retained, so a complete revert of the
above commit is not desirable. This patch therefore removes the
ref_tree portion of the commit as above, however it does not remove
the transaction portion.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit afce772e87 ("btrfs: fix check_shared for fiemap ioctl") added
transaction semantics around calls to btrfs_check_shared() in order to
provide accurate accounting of delayed refs. The transaction management
should be done inside btrfs_check_shared(), so that callers do not need
to manage transactions individually.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We typically use __ to indicate a helper routine that shouldn't be
called directly without understanding the proper context required
to do so. We use static functions to indicate that a function is
private to a particular C file. The backref code uses static
function and __ prefixes on nearly everything, which makes the code
difficult to read and establishes a pattern for future code that
shouldn't be followed. This patch drops all the unnecessary prefixes.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replacing the double cast and ternary conditional with a helper makes
the code easier on the eyes.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Tracepoint arguments are all read-only. If we mark the arguments
as const, we're able to keep or convert those arguments to const
where appropriate.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have reader helpers for most of the on-disk structures that use
an extent_buffer and pointer as offset into the buffer that are
read-only. We should mark them as const and, in turn, allow consumers
of these interfaces to mark the buffers const as well.
No impact on code, but serves as documentation that a buffer is intended
not to be modified.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The sectorsize member of btrfs_block_group_cache is unused. So remove it, this
reduces the number of holes in the struct.
With patch:
/* size: 856, cachelines: 14, members: 40 */
/* sum members: 837, holes: 4, sum holes: 19 */
/* bit holes: 1, sum bit holes: 29 bits */
/* last cacheline: 24 bytes */
Without patch:
/* size: 864, cachelines: 14, members: 41 */
/* sum members: 841, holes: 5, sum holes: 23 */
/* bit holes: 1, sum bit holes: 29 bits */
/* last cacheline: 32 bytes */
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_alloc_chunk contains code which boils down to:
ndevs = min(ndevs, devs_max)
It's conditional upon devs_max not being 0. However, it cannot really be 0
since it's always set to either BTRFS_MAX_DEVS_SYS_CHUNK or
BTRFS_MAX_DEVS(fs_info->chunk_root). So eliminate the condition check and use
min explicitly. This has no functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes, just make the loop a bit more readable
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add zstd compression and decompression support to BtrFS. zstd at its
fastest level compresses almost as well as zlib, while offering much
faster compression and decompression, approaching lzo speeds.
I benchmarked btrfs with zstd compression against no compression, lzo
compression, and zlib compression. I benchmarked two scenarios. Copying
a set of files to btrfs, and then reading the files. Copying a tarball
to btrfs, extracting it to btrfs, and then reading the extracted files.
After every operation, I call `sync` and include the sync time.
Between every pair of operations I unmount and remount the filesystem
to avoid caching. The benchmark files can be found in the upstream
zstd source repository under
`contrib/linux-kernel/{btrfs-benchmark.sh,btrfs-extract-benchmark.sh}`
[1] [2].
I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM.
The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor,
16 GB of RAM, and a SSD.
The first compression benchmark is copying 10 copies of the unzipped
Silesia corpus [3] into a BtrFS filesystem mounted with
`-o compress-force=Method`. The decompression benchmark times how long
it takes to `tar` all 10 copies into `/dev/null`. The compression ratio is
measured by comparing the output of `df` and `du`. See the benchmark file
[1] for details. I benchmarked multiple zstd compression levels, although
the patch uses zstd level 1.
| Method | Ratio | Compression MB/s | Decompression speed |
|---------|-------|------------------|---------------------|
| None | 0.99 | 504 | 686 |
| lzo | 1.66 | 398 | 442 |
| zlib | 2.58 | 65 | 241 |
| zstd 1 | 2.57 | 260 | 383 |
| zstd 3 | 2.71 | 174 | 408 |
| zstd 6 | 2.87 | 70 | 398 |
| zstd 9 | 2.92 | 43 | 406 |
| zstd 12 | 2.93 | 21 | 408 |
| zstd 15 | 3.01 | 11 | 354 |
The next benchmark first copies `linux-4.11.6.tar` [4] to btrfs. Then it
measures the compression ratio, extracts the tar, and deletes the tar.
Then it measures the compression ratio again, and `tar`s the extracted
files into `/dev/null`. See the benchmark file [2] for details.
| Method | Tar Ratio | Extract Ratio | Copy (s) | Extract (s)| Read (s) |
|--------|-----------|---------------|----------|------------|----------|
| None | 0.97 | 0.78 | 0.981 | 5.501 | 8.807 |
| lzo | 2.06 | 1.38 | 1.631 | 8.458 | 8.585 |
| zlib | 3.40 | 1.86 | 7.750 | 21.544 | 11.744 |
| zstd 1 | 3.57 | 1.85 | 2.579 | 11.479 | 9.389 |
[1] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-benchmark.sh
[2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-extract-benchmark.sh
[3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
[4] https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.11.6.tar.xz
zstd source repository: https://github.com/facebook/zstd
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from David Sterba:
"Fixes addressing problems reported by users, and there's one more
regression fix"
* 'for-4.13-part3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: round down size diff when shrinking/growing device
Btrfs: fix early ENOSPC due to delalloc
btrfs: fix lockup in find_free_extent with read-only block groups
Btrfs: fix dir item validation when replaying xattr deletes
Further testing showed that the fix introduced in 7dfb8be11b ("btrfs:
Round down values which are written for total_bytes_size") was
insufficient and it could still lead to discrepancies between the
total_bytes in the super block and the device total bytes. So this patch
also ensures that the difference between old/new sizes when
shrinking/growing is also rounded down. This ensure that we won't be
subtracting/adding a non-sectorsize multiples to the superblock/device
total sizees.
Fixes: 7dfb8be11b ("btrfs: Round down values which are written for total_bytes_size")
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a lot of metadata is reserved for outstanding delayed allocations, we
rely on shrink_delalloc() to reclaim metadata space in order to fulfill
reservation tickets. However, shrink_delalloc() has a shortcut where if
it determines that space can be overcommitted, it will stop early. This
made sense before the ticketed enospc system, but now it means that
shrink_delalloc() will often not reclaim enough space to fulfill any
tickets, leading to an early ENOSPC. (Reservation tickets don't care
about being able to overcommit, they need every byte accounted for.)
Fix it by getting rid of the shortcut so that shrink_delalloc() reclaims
all of the metadata it is supposed to. This fixes early ENOSPCs we were
seeing when doing a btrfs receive to populate a new filesystem, as well
as early ENOSPCs Christoph saw when doing a big cp -r onto Btrfs.
Fixes: 957780eb27 ("Btrfs: introduce ticketed enospc infrastructure")
Tested-by: Christoph Anton Mitterer <mail@christoph.anton.mitterer.name>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a block group that is all of the following:
1) uncached in memory
2) is read-only
3) has a disk cache state that indicates we need to recreate the cache
AND the file system has enough free space fragmentation such that the
request for an extent of a given size can't be honored;
AND have a single CPU core;
AND it's the block group with the highest starting offset such that
there are no opportunities (like reading from disk) for the loop to
yield the CPU;
We can end up with a lockup.
The root cause is simple. Once we're in the position that we've read in
all of the other block groups directly and none of those block groups
can honor the request, there are no more opportunities to sleep. We end
up trying to start a caching thread which never gets run if we only have
one core. This *should* present as a hung task waiting on the caching
thread to make some progress, but it doesn't. Instead, it degrades into
a busy loop because of the placement of the read-only check.
During the first pass through the loop, block_group->cached will be set
to BTRFS_CACHE_STARTED and have_caching_bg will be set. Then we hit the
read-only check and short circuit the loop. We're not yet in
LOOP_CACHING_WAIT, so we skip that loop back before going through the
loop again for other raid groups.
Then we move to LOOP_CACHING_WAIT state.
During the this pass through the loop, ->cached will still be
BTRFS_CACHE_STARTED, which means it's not cached, so we'll enter
cache_block_group, do a lot of nothing, and return, and also set
have_caching_bg again. Then we hit the read-only check and short circuit
the loop. The same thing happens as before except now we DO trigger
the LOOP_CACHING_WAIT && have_caching_bg check and loop back up to the
top. We do this forever.
There are two fixes in this patch since they address the same underlying
bug.
The first is to add a cond_resched to the end of the loop to ensure
that the caching thread always has an opportunity to run. This will
fix the soft lockup issue, but find_free_extent will still loop doing
nothing until the thread has completed.
The second is to move the read-only check to the top of the loop. We're
never going to return an allocation within a read-only block group so
we may as well skip it early. The check for ->cached == BTRFS_CACHE_ERROR
would cause the same problem except that BTRFS_CACHE_ERROR is considered
a "done" state and we won't re-set have_caching_bg again.
Many thanks to Stephan Kulow <coolo@suse.de> for his excellent help in
the testing process.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were passing an incorrect slot number to the function that validates
directory items when we are replaying xattr deletes from a log tree. The
correct slot is stored at variable 'i' and not at 'path->slots[0]', so
the call to the validation function was only correct for the first
iteration of the loop, when 'i == path->slots[0]'.
After this fix, the fstest generic/066 passes again.
Fixes: 8ee8c2d62d ("btrfs: Verify dir_item in replay_xattr_deletes")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Firstly by applying the following with coccinelle's spatch:
@@ expression SB; @@
-SB->s_flags & MS_RDONLY
+sb_rdonly(SB)
to effect the conversion to sb_rdonly(sb), then by applying:
@@ expression A, SB; @@
(
-(!sb_rdonly(SB)) && A
+!sb_rdonly(SB) && A
|
-A != (sb_rdonly(SB))
+A != sb_rdonly(SB)
|
-A == (sb_rdonly(SB))
+A == sb_rdonly(SB)
|
-!(sb_rdonly(SB))
+!sb_rdonly(SB)
|
-A && (sb_rdonly(SB))
+A && sb_rdonly(SB)
|
-A || (sb_rdonly(SB))
+A || sb_rdonly(SB)
|
-(sb_rdonly(SB)) != A
+sb_rdonly(SB) != A
|
-(sb_rdonly(SB)) == A
+sb_rdonly(SB) == A
|
-(sb_rdonly(SB)) && A
+sb_rdonly(SB) && A
|
-(sb_rdonly(SB)) || A
+sb_rdonly(SB) || A
)
@@ expression A, B, SB; @@
(
-(sb_rdonly(SB)) ? 1 : 0
+sb_rdonly(SB)
|
-(sb_rdonly(SB)) ? A : B
+sb_rdonly(SB) ? A : B
)
to remove left over excess bracketage and finally by applying:
@@ expression A, SB; @@
(
-(A & MS_RDONLY) != sb_rdonly(SB)
+(bool)(A & MS_RDONLY) != sb_rdonly(SB)
|
-(A & MS_RDONLY) == sb_rdonly(SB)
+(bool)(A & MS_RDONLY) == sb_rdonly(SB)
)
to make comparisons against the result of sb_rdonly() (which is a bool)
work correctly.
Signed-off-by: David Howells <dhowells@redhat.com>
Pull ->s_options removal from Al Viro:
"Preparations for fsmount/fsopen stuff (coming next cycle). Everything
gets moved to explicit ->show_options(), killing ->s_options off +
some cosmetic bits around fs/namespace.c and friends. Basically, the
stuff needed to work with fsmount series with minimum of conflicts
with other work.
It's not strictly required for this merge window, but it would reduce
the PITA during the coming cycle, so it would be nice to have those
bits and pieces out of the way"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
isofs: Fix isofs_show_options()
VFS: Kill off s_options and helpers
orangefs: Implement show_options
9p: Implement show_options
isofs: Implement show_options
afs: Implement show_options
affs: Implement show_options
befs: Implement show_options
spufs: Implement show_options
bpf: Implement show_options
ramfs: Implement show_options
pstore: Implement show_options
omfs: Implement show_options
hugetlbfs: Implement show_options
VFS: Don't use save/replace_mount_options if not using generic_show_options
VFS: Provide empty name qstr
VFS: Make get_filesystem() return the affected filesystem
VFS: Clean up whitespace in fs/namespace.c and fs/super.c
Provide a function to create a NUL-terminated string from unterminated data
Pull btrfs fixes from David Sterba:
"We've identified and fixed a silent corruption (introduced by code in
the first pull), a fixup after the blk_status_t merge and two fixes to
incremental send that Filipe has been hunting for some time"
* 'for-4.13-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix unexpected return value of bio_readpage_error
btrfs: btrfs_create_repair_bio never fails, skip error handling
btrfs: cloned bios must not be iterated by bio_for_each_segment_all
Btrfs: fix write corruption due to bio cloning on raid5/6
Btrfs: incremental send, fix invalid memory access
Btrfs: incremental send, fix invalid path for link commands
With blk_status_t conversion (that are now present in master),
bio_readpage_error() may return 1 as now ->submit_bio_hook() may not set
%ret if it runs without problems.
This fixes that unexpected return value by changing
btrfs_check_repairable() to return a bool instead of updating %ret, and
patch is applicable to both codebases with and without blk_status_t.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As the function uses the non-failing bio allocation, we can remove error
handling from the callers as well.
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've started using cloned bios more in 4.13, there are some specifics
regarding the iteration. Filipe found [1] that the raid56 iterated a
cloned bio using bio_for_each_segment_all, which is incorrect. The
cloned bios have wrong bi_vcnt and this could lead to silent
corruptions. This patch adds assertions to all remaining
bio_for_each_segment_all cases.
[1] https://patchwork.kernel.org/patch/9838535/
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fix from David Sterba:
"This fixes a user-visible bug introduced by the nowait-aio patches
merged in this cycle"
* 'nowait-aio-btrfs-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: nowait aio: Correct assignment of pos
Assigning pos for usage early messes up in append mode, where the pos is
re-assigned in generic_write_checks(). Assign pos later to get the
correct position to write from iocb->ki_pos.
Since check_can_nocow also uses the value of pos, we shift
generic_write_checks() before check_can_nocow(). Checks with IOCB_DIRECT
are present in generic_write_checks(), so checking for IOCB_NOWAIT is
enough.
Also, put locking sequence in the fast path.
This fixes a user visible bug, as reported:
"apparently breaks several shell related features on my system.
In zsh history stopped working, because no new entries are added
anymore.
I fist noticed the issue when I tried to build mplayer. It uses a shell
script to generate a help_mp.h file:
[...]
Here is a simple testcase:
% echo "foo" >> test
% echo "foo" >> test
% cat test
foo
%
"
Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: Jens Axboe <axboe@kernel.dk>
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Link: https://lkml.kernel.org/r/20170704042306.GA274@x4
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
yKWjj9wfYRQ0vSUqhsI5
=3Z93
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling updates from Jeff Layton:
"This pile represents the bulk of the writeback error handling fixes
that I have for this cycle. Some of the earlier patches in this pile
may look trivial but they are prerequisites for later patches in the
series.
The aim of this set is to improve how we track and report writeback
errors to userland. Most applications that care about data integrity
will periodically call fsync/fdatasync/msync to ensure that their
writes have made it to the backing store.
For a very long time, we have tracked writeback errors using two flags
in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
writeback error occurs (via mapping_set_error) and are cleared as a
side-effect of filemap_check_errors (as you noted yesterday). This
model really sucks for userland.
Only the first task to call fsync (or msync or fdatasync) will see the
error. Any subsequent task calling fsync on a file will get back 0
(unless another writeback error occurs in the interim). If I have
several tasks writing to a file and calling fsync to ensure that their
writes got stored, then I need to have them coordinate with one
another. That's difficult enough, but in a world of containerized
setups that coordination may even not be possible.
But wait...it gets worse!
The calls to filemap_check_errors can be buried pretty far down in the
call stack, and there are internal callers of filemap_write_and_wait
and the like that also end up clearing those errors. Many of those
callers ignore the error return from that function or return it to
userland at nonsensical times (e.g. truncate() or stat()). If I get
back -EIO on a truncate, there is no reason to think that it was
because some previous writeback failed, and a subsequent fsync() will
(incorrectly) return 0.
This pile aims to do three things:
1) ensure that when a writeback error occurs that that error will be
reported to userland on a subsequent fsync/fdatasync/msync call,
regardless of what internal callers are doing
2) report writeback errors on all file descriptions that were open at
the time that the error occurred. This is a user-visible change,
but I think most applications are written to assume this behavior
anyway. Those that aren't are unlikely to be hurt by it.
3) document what filesystems should do when there is a writeback
error. Today, there is very little consistency between them, and a
lot of cargo-cult copying. We need to make it very clear what
filesystems should do in this situation.
To achieve this, the set adds a new data type (errseq_t) and then
builds new writeback error tracking infrastructure around that. Once
all of that is in place, we change the filesystems to use the new
infrastructure for reporting wb errors to userland.
Note that this is just the initial foray into cleaning up this mess.
There is a lot of work remaining here:
1) convert the rest of the filesystems in a similar fashion. Once the
initial set is in, then I think most other fs' will be fairly
simple to convert. Hopefully most of those can in via individual
filesystem trees.
2) convert internal waiters on writeback to use errseq_t for
detecting errors instead of relying on the AS_* flags. I have some
draft patches for this for ext4, but they are not quite ready for
prime time yet.
This was a discussion topic this year at LSF/MM too. If you're
interested in the gory details, LWN has some good articles about this:
https://lwn.net/Articles/718734/https://lwn.net/Articles/724307/"
* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
xfs: minimal conversion to errseq_t writeback error reporting
ext4: use errseq_t based error handling for reporting data writeback errors
fs: convert __generic_file_fsync to use errseq_t based reporting
block: convert to errseq_t based writeback error tracking
dax: set errors in mapping when writeback fails
Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
fs: new infrastructure for writeback error handling and reporting
lib: add errseq_t type and infrastructure for handling it
mm: don't TestClearPageError in __filemap_fdatawait_range
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
jbd2: don't clear and reset errors after waiting on writeback
buffer: set errors in mapping at the time that the error occurs
fs: check for writeback errors after syncing out buffers in generic_file_fsync
buffer: use mapping_set_error instead of setting the flag
mm: fix mapping_set_error call in me_pagecache_dirty
When doing an incremental send, while processing an extent that changed
between the parent and send snapshots and that extent was an inline extent
in the parent snapshot, it's possible to access a memory region beyond
the end of leaf if the inline extent is very small and it is the first
item in a leaf.
An example scenario is described below.
The send snapshot has the following leaf:
leaf 33865728 items 33 free space 773 generation 46 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
(...)
item 14 key (335 EXTENT_DATA 0) itemoff 3052 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 12791808 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
item 15 key (335 EXTENT_DATA 8192) itemoff 2999 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 138170368 nr 225280
extent data offset 0 nr 225280 ram 225280
extent compression 0 (none)
(...)
And the parent snapshot has the following leaf:
leaf 31272960 items 17 free space 17 generation 31 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
item 0 key (335 EXTENT_DATA 0) itemoff 3951 itemsize 44
generation 31 type 0 (inline)
inline extent data size 23 ram_bytes 613 compression 1 (zlib)
(...)
When computing the send stream, it is detected that the extent of inode
335, at file offset 0, and at fs/btrfs/send.c:is_extent_unchanged() we
grab the leaf from the parent snapshot and access the inline extent item.
However, before jumping to the 'out' label, we access the 'offset' and
'disk_bytenr' fields of the extent item, which should not be done for
inline extents since the inlined data starts at the offset of the
'disk_bytenr' field and can be very small. For example accessing the
'offset' field of the file extent item results in the following trace:
[ 599.705368] general protection fault: 0000 [#1] PREEMPT SMP
[ 599.706296] Modules linked in: btrfs psmouse i2c_piix4 ppdev acpi_cpufreq serio_raw parport_pc i2c_core evdev tpm_tis tpm_tis_core sg pcspkr parport tpm button su$
[ 599.709340] CPU: 7 PID: 5283 Comm: btrfs Not tainted 4.10.0-rc8-btrfs-next-46+ #1
[ 599.709340] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 599.709340] task: ffff88023eedd040 task.stack: ffffc90006658000
[ 599.709340] RIP: 0010:read_extent_buffer+0xdb/0xf4 [btrfs]
[ 599.709340] RSP: 0018:ffffc9000665ba00 EFLAGS: 00010286
[ 599.709340] RAX: db73880000000000 RBX: 0000000000000000 RCX: 0000000000000001
[ 599.709340] RDX: ffffc9000665ba60 RSI: db73880000000000 RDI: ffffc9000665ba5f
[ 599.709340] RBP: ffffc9000665ba30 R08: 0000000000000001 R09: ffff88020dc5e098
[ 599.709340] R10: 0000000000001000 R11: 0000160000000000 R12: 6db6db6db6db6db7
[ 599.709340] R13: ffff880000000000 R14: 0000000000000000 R15: ffff88020dc5e088
[ 599.709340] FS: 00007f519555a8c0(0000) GS:ffff88023f3c0000(0000) knlGS:0000000000000000
[ 599.709340] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 599.709340] CR2: 00007f1411afd000 CR3: 0000000235f8e000 CR4: 00000000000006e0
[ 599.709340] Call Trace:
[ 599.709340] btrfs_get_token_64+0x93/0xce [btrfs]
[ 599.709340] ? printk+0x48/0x50
[ 599.709340] btrfs_get_64+0xb/0xd [btrfs]
[ 599.709340] process_extent+0x3a1/0x1106 [btrfs]
[ 599.709340] ? btree_read_extent_buffer_pages+0x5/0xef [btrfs]
[ 599.709340] changed_cb+0xb03/0xb3d [btrfs]
[ 599.709340] ? btrfs_get_token_32+0x7a/0xcc [btrfs]
[ 599.709340] btrfs_compare_trees+0x432/0x53d [btrfs]
[ 599.709340] ? process_extent+0x1106/0x1106 [btrfs]
[ 599.709340] btrfs_ioctl_send+0x960/0xe26 [btrfs]
[ 599.709340] btrfs_ioctl+0x181b/0x1fed [btrfs]
[ 599.709340] ? trace_hardirqs_on_caller+0x150/0x1ac
[ 599.709340] vfs_ioctl+0x21/0x38
[ 599.709340] ? vfs_ioctl+0x21/0x38
[ 599.709340] do_vfs_ioctl+0x611/0x645
[ 599.709340] ? rcu_read_unlock+0x5b/0x5d
[ 599.709340] ? __fget+0x6d/0x79
[ 599.709340] SyS_ioctl+0x57/0x7b
[ 599.709340] entry_SYSCALL_64_fastpath+0x18/0xad
[ 599.709340] RIP: 0033:0x7f51945eec47
[ 599.709340] RSP: 002b:00007ffc21c13e98 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 599.709340] RAX: ffffffffffffffda RBX: ffffffff81096459 RCX: 00007f51945eec47
[ 599.709340] RDX: 00007ffc21c13f20 RSI: 0000000040489426 RDI: 0000000000000004
[ 599.709340] RBP: ffffc9000665bf98 R08: 00007f519450d700 R09: 00007f519450d700
[ 599.709340] R10: 00007f519450d9d0 R11: 0000000000000202 R12: 0000000000000046
[ 599.709340] R13: ffffc9000665bf78 R14: 0000000000000000 R15: 00007f5195574040
[ 599.709340] ? trace_hardirqs_off_caller+0x43/0xb1
[ 599.709340] Code: 29 f0 49 39 d8 4c 0f 47 c3 49 03 81 58 01 00 00 44 89 c1 4c 01 c2 4c 29 c3 48 c1 f8 03 49 0f af c4 48 c1 e0 0c 4c 01 e8 48 01 c6 <f3> a4 31 f6 4$
[ 599.709340] RIP: read_extent_buffer+0xdb/0xf4 [btrfs] RSP: ffffc9000665ba00
[ 599.762057] ---[ end trace fe00d7af61b9f49e ]---
This is because the 'offset' field starts at an offset of 37 bytes
(offsetof(struct btrfs_file_extent_item, offset)), has a length of 8
bytes and therefore attemping to read it causes a 1 byte access beyond
the end of the leaf, as the first item's content in a leaf is located
at the tail of the leaf, the item size is 44 bytes and the offset of
that field plus its length (37 + 8 = 45) goes beyond the item's size
by 1 byte.
So fix this by accessing the 'offset' and 'disk_bytenr' fields after
jumping to the 'out' label if we are processing an inline extent. We
move the reading operation of the 'disk_bytenr' field too because we
have the same problem as for the 'offset' field explained above when
the inline data is less then 8 bytes. The access to the 'generation'
field is also moved but just for the sake of grouping access to all
the fields.
Fixes: e1cbfd7bf6 ("Btrfs: send, fix file hole not being preserved due to inline extent")
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
In some scenarios an incremental send stream can contain link commands
with an invalid target path. Such scenarios happen after moving some
directory inode A, renaming a regular file inode B into the old name of
inode A and finally creating a new hard link for inode B at directory
inode A.
Consider the following example scenario where this issue happens.
Parent snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
| |--- dir2/ (ino 258)
| |--- dir3/ (ino 259)
| |--- file1 (ino 261)
| |--- dir4/ (ino 262)
|
|--- dir5/ (ino 260)
Send snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
| |--- dir3/ (ino 259)
| |--- dir4 (ino 261)
|
|--- dir6/ (ino 263)
|--- dir44/ (ino 262)
|--- file11 (ino 261)
|--- dir55/ (ino 260)
When attempting to apply the corresponding incremental send stream, a
link command contains an invalid target path which makes the receiver
fail. The following is the verbose output of the btrfs receive command:
receiving snapshot mysnap2 uuid=90076fe6-5ba6-e64a-9321-9279670ed16b (...)
utimes
utimes dir1
utimes dir1/dir2/dir3
utimes
rename dir1/dir2/dir3/dir4 -> o262-7-0
link dir1/dir2/dir3/dir4 -> dir1/dir2/dir3/file1
link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1
ERROR: link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1 failed: Not a directory
The following steps happen during the computation of the incremental send
stream the lead to this issue:
1) When processing inode 261, we orphanize inode 262 due to a name/location
collision with one of the new hard links for inode 261 (created in the
second step below).
2) We create one of the 2 new hard links for inode 261, the one whose
location is at "dir1/dir2/dir3/dir4".
3) We then attempt to create the other new hard link for inode 261, which
has inode 262 as its parent directory. Because the path for this new
hard link was computed before we started processing the new references
(hard links), it reflects the old name/location of inode 262, that is,
it does not account for the orphanization step that happened when
we started processing the new references for inode 261, whence it is
no longer valid, causing the receiver to fail.
So fix this issue by recomputing the full path of new references if we
ended up orphanizing other inodes which are directories.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull percpu updates from Tejun Heo:
"These are the percpu changes for the v4.13-rc1 merge window. There are
a couple visibility related changes - tracepoints and allocator stats
through debugfs, along with __ro_after_init markings and a cosmetic
rename in percpu_counter.
Please note that the simple O(#elements_in_the_chunk) area allocator
used by percpu allocator is again showing scalability issues,
primarily with bpf allocating and freeing large number of counters.
Dennis is working on the replacement allocator and the percpu
allocator will be seeing increased churns in the coming cycles"
* 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: fix static checker warnings in pcpu_destroy_chunk
percpu: fix early calls for spinlock in pcpu_stats
percpu: resolve err may not be initialized in pcpu_alloc
percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch
percpu: add tracepoint support for percpu memory
percpu: expose statistics about percpu memory via debugfs
percpu: migrate percpu data structures to internal header
percpu: add missing lockdep_assert_held to func pcpu_free_area
mark most percpu globals as __ro_after_init
Just check and advance the errseq_t in the file before returning, and
use an errseq_t based check for writeback errors.
Other internal callers of filemap_* functions are left as-is.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
btrfs, debugfs, reiserfs and tracefs call save_mount_options() and reiserfs
calls replace_mount_options(), but they then implement their own
->show_options() methods and don't touch s_options, rendering the saved
options unnecessary. I'm trying to eliminate s_options to make it easier
to implement a context-based mount where the mount options can be passed
individually over a file descriptor.
Remove the calls to save/replace_mount_options() call in these cases.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Chris Mason <clm@fb.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Steven Rostedt <rostedt@goodmis.org>
cc: linux-btrfs@vger.kernel.org
cc: reiserfs-devel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs updates from David Sterba:
"The core updates improve error handling (mostly related to bios), with
the usual incremental work on the GFP_NOFS (mis)use removal,
refactoring or cleanups. Except the two top patches, all have been in
for-next for an extensive amount of time.
User visible changes:
- statx support
- quota override tunable
- improved compression thresholds
- obsoleted mount option alloc_start
Core updates:
- bio-related updates:
- faster bio cloning
- no allocation failures
- preallocated flush bios
- more kvzalloc use, memalloc_nofs protections, GFP_NOFS updates
- prep work for btree_inode removal
- dir-item validation
- qgoup fixes and updates
- cleanups:
- removed unused struct members, unused code, refactoring
- argument refactoring (fs_info/root, caller -> callee sink)
- SEARCH_TREE ioctl docs"
* 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (115 commits)
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
btrfs: Don't clear SGID when inheriting ACLs
btrfs: fix integer overflow in calc_reclaim_items_nr
btrfs: scrub: fix target device intialization while setting up scrub context
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges
btrfs: qgroup: Introduce extent changeset for qgroup reserve functions
btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled
btrfs: qgroup: Return actually freed bytes for qgroup release or free data
btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function
btrfs: qgroup: Add quick exit for non-fs extents
Btrfs: rework delayed ref total_bytes_pinned accounting
Btrfs: return old and new total ref mods when adding delayed refs
Btrfs: always account pinned bytes when dropping a tree block ref
Btrfs: update total_bytes_pinned when pinning down extents
Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT()
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
btrfs: fix validation of XATTR_ITEM dir items
btrfs: Verify dir_item in iterate_object_props
btrfs: Check name_len before in btrfs_del_root_ref
btrfs: Check name_len before reading btrfs_get_name
...
Pull core block/IO updates from Jens Axboe:
"This is the main pull request for the block layer for 4.13. Not a huge
round in terms of features, but there's a lot of churn related to some
core cleanups.
Note this depends on the UUID tree pull request, that Christoph
already sent out.
This pull request contains:
- A series from Christoph, unifying the error/stats codes in the
block layer. We now use blk_status_t everywhere, instead of using
different schemes for different places.
- Also from Christoph, some cleanups around request allocation and IO
scheduler interactions in blk-mq.
- And yet another series from Christoph, cleaning up how we handle
and do bounce buffering in the block layer.
- A blk-mq debugfs series from Bart, further improving on the support
we have for exporting internal information to aid debugging IO
hangs or stalls.
- Also from Bart, a series that cleans up the request initialization
differences across types of devices.
- A series from Goldwyn Rodrigues, allowing the block layer to return
failure if we will block and the user asked for non-blocking.
- Patch from Hannes for supporting setting loop devices block size to
that of the underlying device.
- Two series of patches from Javier, fixing various issues with
lightnvm, particular around pblk.
- A series from me, adding support for write hints. This comes with
NVMe support as well, so applications can help guide data placement
on flash to improve performance, latencies, and write
amplification.
- A series from Ming, improving and hardening blk-mq support for
stopping/starting and quiescing hardware queues.
- Two pull requests for NVMe updates. Nothing major on the feature
side, but lots of cleanups and bug fixes. From the usual crew.
- A series from Neil Brown, greatly improving the bio rescue set
support. Most notably, this kills the bio rescue work queues, if we
don't really need them.
- Lots of other little bug fixes that are all over the place"
* 'for-4.13/block' of git://git.kernel.dk/linux-block: (217 commits)
lightnvm: pblk: set line bitmap check under debug
lightnvm: pblk: verify that cache read is still valid
lightnvm: pblk: add initialization check
lightnvm: pblk: remove target using async. I/Os
lightnvm: pblk: use vmalloc for GC data buffer
lightnvm: pblk: use right metadata buffer for recovery
lightnvm: pblk: schedule if data is not ready
lightnvm: pblk: remove unused return variable
lightnvm: pblk: fix double-free on pblk init
lightnvm: pblk: fix bad le64 assignations
nvme: Makefile: remove dead build rule
blk-mq: map all HWQ also in hyperthreaded system
nvmet-rdma: register ib_client to not deadlock in device removal
nvme_fc: fix error recovery on link down.
nvmet_fc: fix crashes on bad opcodes
nvme_fc: Fix crash when nvme controller connection fails.
nvme_fc: replace ioabort msleep loop with completion
nvme_fc: fix double calls to nvme_cleanup_cmd()
nvme-fabrics: verify that a controller returns the correct NQN
nvme: simplify nvme_dev_attrs_are_visible
...
Commit 4751832da9 ("btrfs: fiemap: Cache and merge fiemap extent before
submit it to user") introduced a warning to catch unemitted cached
fiemap extent.
However such warning doesn't take the following case into consideration:
0 4K 8K
|<---- fiemap range --->|
|<----------- On-disk extent ------------------>|
In this case, the whole 0~8K is cached, and since it's larger than
fiemap range, it break the fiemap extent emit loop.
This leaves the fiemap extent cached but not emitted, and caught by the
final fiemap extent sanity check, causing kernel warning.
This patch removes the kernel warning and renames the sanity check to
emit_last_fiemap_cache() since it's possible and valid to have cached
fiemap extent.
Reported-by: David Sterba <dsterba@suse.cz>
Reported-by: Adam Borowski <kilobyte@angband.pl>
Fixes: 4751832da9 ("btrfs: fiemap: Cache and merge fiemap extent ...")
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.
Fix the problem by moving posix_acl_update_mode() out of
__btrfs_set_acl() into btrfs_set_acl(). That way the function will not be
called when inheriting ACLs which is what we want as it prevents SGID
bit clearing and the mode has been properly set by posix_acl_create()
anyway.
Fixes: 073931017b
CC: stable@vger.kernel.org
CC: linux-btrfs@vger.kernel.org
CC: David Sterba <dsterba@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.com>
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with
v4.12-rc6. This was because commit 70e7af244 made it possible for
calc_reclaim_items_nr() to return a negative number. It's not really a
bug in that commit, it just didn't go far enough down the stack to find
all the possible 64->32 bit overflows.
This switches calc_reclaim_items_nr() to return a u64 and changes everyone
that uses the results of that math to u64 as well.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 70e7af2 ("Btrfs: fix delalloc accounting leak caused by u32 overflow")
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit "btrfs: scrub: inline helper scrub_setup_wr_ctx" inlined a
helper but wrongly sets up the target device. Incidentally there's a
local variable with the same name as a parameter in the previous
function, so this got caught during runtime as crash in test btrfs/027.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For the following case, btrfs can underflow qgroup reserved space
at an error path:
(Page size 4K, function name without "btrfs_" prefix)
Task A | Task B
----------------------------------------------------------------------
Buffered_write [0, 2K) |
|- check_data_free_space() |
| |- qgroup_reserve_data() |
| Range aligned to page |
| range [0, 4K) <<< |
| 4K bytes reserved <<< |
|- copy pages to page cache |
| Buffered_write [2K, 4K)
| |- check_data_free_space()
| | |- qgroup_reserved_data()
| | Range alinged to page
| | range [0, 4K)
| | Already reserved by A <<<
| | 0 bytes reserved <<<
| |- delalloc_reserve_metadata()
| | And it *FAILED* (Maybe EQUOTA)
| |- free_reserved_data_space()
|- qgroup_free_data()
Range aligned to page range
[0, 4K)
Freeing 4K
(Special thanks to Chandan for the detailed report and analyse)
[CAUSE]
Above Task B is freeing reserved data range [0, 4K) which is actually
reserved by Task A.
And at writeback time, page dirty by Task A will go through writeback
routine, which will free 4K reserved data space at file extent insert
time, causing the qgroup underflow.
[FIX]
For btrfs_qgroup_free_data(), add @reserved parameter to only free
data ranges reserved by previous btrfs_qgroup_reserve_data().
So in above case, Task B will try to free 0 byte, so no underflow.
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new parameter, struct extent_changeset for
btrfs_qgroup_reserved_data() and its callers.
Such extent_changeset was used in btrfs_qgroup_reserve_data() to record
which range it reserved in current reserve, so it can free it in error
paths.
The reason we need to export it to callers is, at buffered write error
path, without knowing what exactly which range we reserved in current
allocation, we can free space which is not reserved by us.
This will lead to qgroup reserved space underflow.
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Under the following case, we can underflow qgroup reserved space.
Task A | Task B
---------------------------------------------------------------
Quota disabled |
Buffered write |
|- btrfs_check_data_free_space() |
| *NO* qgroup space is reserved |
| since quota is *DISABLED* |
|- All pages are copied to page |
cache |
| Enable quota
| Quota scan finished
|
| Sync_fs
| |- run_delalloc_range
| |- Write pages
| |- btrfs_finish_ordered_io
| |- insert_reserved_file_extent
| |- btrfs_qgroup_release_data()
| Since no qgroup space is
reserved in Task A, we
underflow qgroup reserved
space
This can be detected by fstest btrfs/104.
[CAUSE]
In insert_reserved_file_extent() we tell qgroup to release the @ram_bytes
size of qgroup reserved_space in all cases.
And btrfs_qgroup_release_data() will check if quotas are enabled.
However in the above case, the buffered write happens before quota is
enabled, so we don't have the reserved space for that range.
[FIX]
In insert_reserved_file_extent(), we tell qgroup to release the acctual
byte number it released.
In the above case, since we don't have the reserved space, we tell
qgroups to release 0 byte, so the problem can be fixed.
And thanks to the @reserved parameter introduced by the qgroup rework,
and previous patch to return released bytes, the fix can be as small as
10 lines.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_qgroup_release/free_data() only returns 0 or a negative error
number (ENOMEM is the only possible error).
This is normally good enough, but sometimes we need the exact byte
count it freed/released.
Change it to return actually released/freed bytenr number instead of 0
for success.
And slightly modify related extent_changeset structure, since in btrfs
one no-hole data extent won't be larger than 128M, so "unsigned int"
is large enough for the use case.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Quite a lot of qgroup corruption happens due to wrong time of calling
btrfs_qgroup_prepare_account_extents().
Since the safest time is to call it just before
btrfs_qgroup_account_extents(), there is no need to separate these 2
functions.
Merging them will make code cleaner and less bug prone.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog and comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents.
The quick exit condition is:
1) The extent belongs to a non-fs tree
Only fs-tree extents can affect qgroup numbers and is the only case
where extent can be shared between different trees.
Although strictly speaking extent in data-reloc or tree-reloc tree
can be shared, data/tree-reloc root won't appear in the result of
btrfs_find_all_roots(), so we can ignore such case.
So we can check the first root in old_roots/new_roots ulist.
- if we find the 1st root is a not a fs/subvol root, then we can skip
the extent
- if we find the 1st root is a fs/subvol root, then we must continue
calculation
OR
2) both 'nr_old_roots' and 'nr_new_roots' are 0
This means either such extent got allocated then freed in current
transaction or it's a new reloc tree extent, whose nr_new_roots is 0.
Either way it won't affect qgroup accounting and can be skipped
safely.
Such quick exit can make trace output more quite and less confusing:
(example with fs uuid and time stamp removed)
Before:
------
add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0
btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1
------
Extent tree block will trigger btrfs_qgroup_account_extent() trace point
while no qgroup number is changed, as extent tree won't affect qgroup
accounting.
After:
------
add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0
------
Now such unrelated extent won't trigger btrfs_qgroup_account_extent()
trace point, making the trace less noisy.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog and comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
The total_bytes_pinned counter is completely broken when accounting
delayed refs:
- If two drops for the same extent are merged, we will decrement
total_bytes_pinned twice but only increment it once.
- If an add is merged into a drop or vice versa, we will decrement the
total_bytes_pinned counter but never increment it.
- If multiple references to an extent are dropped, we will account it
multiple times, potentially vastly over-estimating the number of bytes
that will be freed by a commit and doing unnecessary work when we're
close to ENOSPC.
The last issue is relatively minor, but the first two make the
total_bytes_pinned counter leak or underflow very often. These
accounting issues were introduced in b150a4f10d ("Btrfs: use a percpu
to keep track of possibly pinned bytes"), but they were papered over by
zeroing out the counter on every commit until d288db5dc0 ("Btrfs: fix
race of using total_bytes_pinned").
We need to make sure that an extent is accounted as pinned exactly once
if and only if we will drop references to it when when the transaction
is committed. Ideally we would only add to total_bytes_pinned when the
*last* reference is dropped, but this information isn't readily
available for data extents. Again, this over-estimation can lead to
extra commits when we're close to ENOSPC, but it's not as bad as before.
The fix implemented here is to increment total_bytes_pinned when the
total refmod count for an extent goes negative and decrement it if the
refmod count goes back to non-negative or after we've run all of the
delayed refs for that extent.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need this to decide when to account pinned bytes.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we only increment total_bytes_pinned in
btrfs_free_tree_block() when dropping the last reference on the block.
However, when the delayed ref is run later, we will decrement
total_bytes_pinned regardless of whether it was the last reference or
not. This causes the counter to underflow when the reference we dropped
was not the last reference. Fix it by incrementing the counter
unconditionally, which is what btrfs_free_extent() does. This makes
total_bytes_pinned an overestimate when references to shared extents are
dropped, but in the worst case this will just make us try to commit the
transaction to try to free up space and find we didn't free enough.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extents marked in pin_down_extent() will be unpinned later in
unpin_extent_range(), which decrements total_bytes_pinned.
pin_down_extent() must increment the counter to avoid underflowing it.
Also adjust btrfs_free_tree_block() to avoid accounting for the same
extent twice.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of flags is one of DATA/METADATA/SYSTEM, they must exist at
when add_pinned_bytes is called.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ added changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we pass in a negative num_bytes, so make it
signed for clarity. Also move it up in the file since later patches will
need it there.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The XATTR_ITEM is a type of a directory item so we use the common
validator helper. Unlike other dir items, it can have data. The way the
name len validation is currently implemented does not reflect that. We'd
have to adjust by the data_len when comparing the read and item limits.
However, this will not work for multi-item xattr dir items.
Example from tree dump of generic/337:
item 7 key (257 XATTR_ITEM 751495445) itemoff 15667 itemsize 147
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 3 name_len 11
name: user.foobar
data 123
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 6 name_len 13
name: user.WvG1c1Td
data qwerty
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 5 name_len 19
name: user.J3__T_Km3dVsW_
data hello
At the point of btrfs_is_name_len_valid call we don't have access to the
data_len value of the 2nd and 3rd sub-item. So simple btrfs_dir_data_len(leaf,
di) would always return 3, although we'd need to get 6 and 5 respectively to
get the claculations right. (read_end + name_len + data_len vs item_end)
We'd have to also pass data_len externally, which is not point of the
name validation. The last check is supposed to test if there's at least
one dir item space after the one we're processing. I don't think this is
particularly useful, validation of the next item would catch that too.
So the check is removed and we don't weaken the validation. Now tests
btrfs/048, btrfs/053, generic/273 and generic/337 pass.
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Call verify_dir_item before memcmp_extent_buffer reading name from
dir_item.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_del_root_ref calls btrfs_search_slot and reads name from root_ref.
Call btrfs_is_name_len_valid before memcmp.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_get_name, there's btrfs_search_slot and reads name from
inode_ref/root_ref.
Call btrfs_is_name_len_valid in btrfs_get_name.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since iterate_dir_item checks name_len in its own way,
so use btrfs_is_name_len_valid not 'verify_dir_item' to make more strict
name_len check.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ switched ENAMETOOLONG to EIO ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_log_inode, btrfs_search_forward gets the buffer and then
btrfs_check_ref_name_override will read name from ref/extref for the
first time.
Call btrfs_is_name_len_valid before reading name.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
replay_xattr_deletes calls btrfs_search_slot to get buffer and reads
name.
Call verify_dir_item to check name_len in replay_xattr_deletes to avoid
reading out of boundary.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
replay_one_buffer first reads buffers and dispatches items accroding to
the item type.
In this patch, add_inode_ref handles inode_ref and inode_extref.
Then add_inode_ref calls ref_get_fields and extref_get_fields to read
ref/extref name for the first time.
So checking name_len before reading those two is fine.
add_inode_ref also calls inode_in_dir to match ref/extref in parent_dir.
The call graph includes btrfs_match_dir_item_name to read dir_item name
in the parent dir.
Checking first dir_item is not enough. Change it to verify every
dir_item while doing matches.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce function btrfs_is_name_len_valid.
The function compares parameter @name_len with item boundary then
returns true if name_len is valid.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ s/btrfs_leaf_data/BTRFS_LEAF_DATA_OFFSET/ ]
Signed-off-by: David Sterba <dsterba@suse.com>
We should really just wait in wait_dev_flush and let the caller decide
what to do with the error value.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to what submit_bio_wait does, we should account for IO while
waiting for a bio completion. This has marginal visible effects, flush
bio is short-lived.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For devices that support flushing, we allocate a bio, submit, wait for
it and then free it. The bio allocation does not fail so ENOMEM is not a
problem but we still may unnecessarily stress the allocation subsystem.
Instead, we can allocate the bio at the same time we allocate the device
and reuse it each time we need to flush the barriers. The bio is reset
before each use. Reference counting is simplified to just device
allocation (get) and freeing (put).
The bio used to be submitted through the integrity checker which will
find out that bio has no data attached and call submit_bio.
Status of the bio in flight needs to be tracked separately in case the
device caches get switched off between write and wait.
Signed-off-by: David Sterba <dsterba@suse.com>
An incremental send can contain unlink operations with an invalid target
path when we rename some directory inode A, then rename some file inode B
to the old name of inode A and directory inode A is an ancestor of inode B
in the parent snapshot (but not anymore in the send snapshot).
Consider the following example scenario where this issue happens.
Parent snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
| |--- file1 (ino 259)
| |--- file3 (ino 261)
|
|--- dir3/ (ino 262)
|--- file22 (ino 260)
|--- dir4/ (ino 263)
Send snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
|--- dir3 (ino 260)
|--- file3/ (ino 262)
|--- dir4/ (ino 263)
|--- file11 (ino 269)
|--- file33 (ino 261)
When attempting to apply the corresponding incremental send stream, an
unlink operation contains an invalid path which makes the receiver fail.
The following is verbose output of the btrfs receive command:
receiving snapshot snap2 uuid=7d5450da-a573-e043-a451-ec85f4879f0f (...)
utimes
utimes dir1
utimes dir1/dir2
link dir1/dir3/dir4/file11 -> dir1/dir2/file1
unlink dir1/dir2/file1
utimes dir1/dir2
truncate dir1/dir3/dir4/file11 size=0
utimes dir1/dir3/dir4/file11
rename dir1/dir3 -> o262-7-0
link dir1/dir3 -> o262-7-0/file22
unlink dir1/dir3/file22
ERROR: unlink dir1/dir3/file22 failed. Not a directory
The following steps happen during the computation of the incremental send
stream the lead to this issue:
1) Before we start processing the new and deleted references for inode
260, we compute the full path of the deleted reference
("dir1/dir3/file22") and cache it in the list of deleted references
for our inode.
2) We then start processing the new references for inode 260, for which
there is only one new, located at "dir1/dir3". When processing this
new reference, we check that inode 262, which was not yet processed,
collides with the new reference and because of that we orphanize
inode 262 so its new full path becomes "o262-7-0".
3) After the orphanization of inode 262, we create the new reference for
inode 260 by issuing a link command with a target path of "dir1/dir3"
and a source path of "o262-7-0/file22".
4) We then start processing the deleted references for inode 260, for
which there is only one with the base name of "file22", and issue
an unlink operation containing the target path computed at step 1,
which is wrong because that path no longer exists and should be
replaced with "o262-7-0/file22".
So fix this issue by recomputing the full path of deleted references if
when we processed the new references for an inode we ended up orphanizing
any other inode that is an ancestor of our inode in the parent snapshot.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[ adjusted after prev patch removed fs_path::dir_path and dir_path_len ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently an incremental snapshot can generate link operations which
contain an invalid target path. Such case happens when in the send
snapshot a file was renamed, a new hard link added for it and some
other inode (with a lower number) got renamed to the former name of
that file. Example:
Parent snapshot
. (ino 256)
|
|--- f1 (ino 257)
|--- f2 (ino 258)
|--- f3 (ino 259)
Send snapshot
. (ino 256)
|
|--- f2 (ino 257)
|--- f3 (ino 258)
|--- f4 (ino 259)
|--- f5 (ino 258)
The following steps happen when computing the incremental send stream:
1) When processing inode 257, inode 258 is orphanized (renamed to
"o258-7-0"), because its current reference has the same name as the
new reference for inode 257;
2) When processing inode 258, we iterate over all its new references,
which have the names "f3" and "f5". The first iteration sees name
"f5" and renames the inode from its orphan name ("o258-7-0") to
"f5", while the second iteration sees the name "f3" and, incorrectly,
issues a link operation with a target name matching the orphan name,
which no longer exists. The first iteration had reset the current
valid path of the inode to "f5", but in the second iteration we lost
it because we found another inode, with a higher number of 259, which
has a reference named "f3" as well, so we orphanized inode 259 and
recomputed the current valid path of inode 258 to its old orphan
name because inode 259 could be an ancestor of inode 258 and therefore
the current valid path could contain the pre-orphanization name of
inode 259. However in this case inode 259 is not an ancestor of inode
258 so the current valid path should not be recomputed.
This makes the receiver fail with the following error:
ERROR: link f3 -> o258-7-0 failed: No such file or directory
So fix this by not recomputing the current valid path for an inode
whenever we find a colliding reference from some not yet processed inode
(inode number higher then the one currently being processed), unless
that other inode is an ancestor of the one we are currently processing.
A test case for fstests will follow soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While punching a hole in a range that is not aligned with the sector size
(currently the same as the page size) we can end up leaving an extent map
in memory with a length that is smaller then the sector size or with a
start offset that is not aligned to the sector size. Both cases are not
expected and can lead to problems. This issue is easily detected
after the patch from commit a7e3b975a0 ("Btrfs: fix reported number of
inode blocks"), introduced in kernel 4.12-rc1, in a scenario like the
following for example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -c "pwrite -S 0xaa -b 100K 0 100K" /mnt/foo
$ xfs_io -c "fpunch 60K 90K" /mnt/foo
$ xfs_io -c "pwrite -S 0xbb -b 100K 50K 100K" /mnt/foo
$ xfs_io -c "pwrite -S 0xcc -b 50K 100K 50K" /mnt/foo
$ umount /mnt
After the unmount operation we can see several warnings emmitted due to
underflows related to space reservation counters:
[ 2837.443299] ------------[ cut here ]------------
[ 2837.447395] WARNING: CPU: 8 PID: 2474 at fs/btrfs/inode.c:9444 btrfs_destroy_inode+0xe8/0x27e [btrfs]
[ 2837.452108] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button se
rio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_gene
ric raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.458389] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.459754] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.462379] Call Trace:
[ 2837.462379] dump_stack+0x68/0x92
[ 2837.462379] __warn+0xc2/0xdd
[ 2837.462379] warn_slowpath_null+0x1d/0x1f
[ 2837.462379] btrfs_destroy_inode+0xe8/0x27e [btrfs]
[ 2837.462379] destroy_inode+0x3d/0x55
[ 2837.462379] evict+0x177/0x17e
[ 2837.462379] dispose_list+0x50/0x71
[ 2837.462379] evict_inodes+0x132/0x141
[ 2837.462379] generic_shutdown_super+0x3f/0xeb
[ 2837.462379] kill_anon_super+0x12/0x1c
[ 2837.462379] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.462379] deactivate_locked_super+0x30/0x68
[ 2837.462379] deactivate_super+0x36/0x39
[ 2837.462379] cleanup_mnt+0x58/0x76
[ 2837.462379] __cleanup_mnt+0x12/0x14
[ 2837.462379] task_work_run+0x77/0x9b
[ 2837.462379] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.462379] syscall_return_slowpath+0x196/0x1b9
[ 2837.462379] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.462379] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.462379] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.462379] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.462379] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.462379] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.462379] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.462379] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.519355] ---[ end trace e79345fe24b30b8d ]---
[ 2837.596256] ------------[ cut here ]------------
[ 2837.597625] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:5699 btrfs_free_block_groups+0x246/0x3eb [btrfs]
[ 2837.603547] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.659372] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.663359] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.663359] Call Trace:
[ 2837.663359] dump_stack+0x68/0x92
[ 2837.663359] __warn+0xc2/0xdd
[ 2837.663359] warn_slowpath_null+0x1d/0x1f
[ 2837.663359] btrfs_free_block_groups+0x246/0x3eb [btrfs]
[ 2837.663359] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.663359] ? evict_inodes+0x132/0x141
[ 2837.663359] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.663359] generic_shutdown_super+0x6a/0xeb
[ 2837.663359] kill_anon_super+0x12/0x1c
[ 2837.663359] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.663359] deactivate_locked_super+0x30/0x68
[ 2837.663359] deactivate_super+0x36/0x39
[ 2837.663359] cleanup_mnt+0x58/0x76
[ 2837.663359] __cleanup_mnt+0x12/0x14
[ 2837.663359] task_work_run+0x77/0x9b
[ 2837.663359] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.663359] syscall_return_slowpath+0x196/0x1b9
[ 2837.663359] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.663359] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.663359] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.663359] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.663359] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.663359] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.663359] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.663359] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.739445] ---[ end trace e79345fe24b30b8e ]---
[ 2837.745595] ------------[ cut here ]------------
[ 2837.746412] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:5700 btrfs_free_block_groups+0x261/0x3eb [btrfs]
[ 2837.747955] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.755395] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.756769] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.758526] Call Trace:
[ 2837.758925] dump_stack+0x68/0x92
[ 2837.759383] __warn+0xc2/0xdd
[ 2837.759383] warn_slowpath_null+0x1d/0x1f
[ 2837.759383] btrfs_free_block_groups+0x261/0x3eb [btrfs]
[ 2837.759383] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.759383] ? evict_inodes+0x132/0x141
[ 2837.759383] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.759383] generic_shutdown_super+0x6a/0xeb
[ 2837.759383] kill_anon_super+0x12/0x1c
[ 2837.759383] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.759383] deactivate_locked_super+0x30/0x68
[ 2837.759383] deactivate_super+0x36/0x39
[ 2837.759383] cleanup_mnt+0x58/0x76
[ 2837.759383] __cleanup_mnt+0x12/0x14
[ 2837.759383] task_work_run+0x77/0x9b
[ 2837.759383] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.759383] syscall_return_slowpath+0x196/0x1b9
[ 2837.759383] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.759383] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.759383] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.759383] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.759383] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.759383] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.759383] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.759383] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.777063] ---[ end trace e79345fe24b30b8f ]---
[ 2837.778235] ------------[ cut here ]------------
[ 2837.778856] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:9825 btrfs_free_block_groups+0x348/0x3eb [btrfs]
[ 2837.791385] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.797711] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.798594] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.800118] Call Trace:
[ 2837.800515] dump_stack+0x68/0x92
[ 2837.801015] __warn+0xc2/0xdd
[ 2837.801471] warn_slowpath_null+0x1d/0x1f
[ 2837.801698] btrfs_free_block_groups+0x348/0x3eb [btrfs]
[ 2837.801698] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.801698] ? evict_inodes+0x132/0x141
[ 2837.801698] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.801698] generic_shutdown_super+0x6a/0xeb
[ 2837.801698] kill_anon_super+0x12/0x1c
[ 2837.801698] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.801698] deactivate_locked_super+0x30/0x68
[ 2837.801698] deactivate_super+0x36/0x39
[ 2837.801698] cleanup_mnt+0x58/0x76
[ 2837.801698] __cleanup_mnt+0x12/0x14
[ 2837.801698] task_work_run+0x77/0x9b
[ 2837.801698] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.801698] syscall_return_slowpath+0x196/0x1b9
[ 2837.801698] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.801698] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.801698] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.801698] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.801698] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.801698] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.801698] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.801698] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.818441] ---[ end trace e79345fe24b30b90 ]---
[ 2837.818991] BTRFS info (device sdc): space_info 1 has 7974912 free, is not full
[ 2837.819830] BTRFS info (device sdc): space_info total=8388608, used=417792, pinned=0, reserved=0, may_use=18446744073709547520, readonly=0
What happens in the above example is the following:
1) When punching the hole, at btrfs_punch_hole(), the variable tail_len
is set to 2048 (as tail_start is 148Kb + 1 and offset + len is 150Kb).
This results in the creation of an extent map with a length of 2Kb
starting at file offset 148Kb, through find_first_non_hole() ->
btrfs_get_extent().
2) The second write (first write after the hole punch operation), sets
the range [50Kb, 152Kb[ to delalloc.
3) The third write, at btrfs_find_new_delalloc_bytes(), sees the extent
map covering the range [148Kb, 150Kb[ and ends up calling
set_extent_bit() for the same range, which results in splitting an
existing extent state record, covering the range [148Kb, 152Kb[ into
two 2Kb extent state records, covering the ranges [148Kb, 150Kb[ and
[150Kb, 152Kb[.
4) Finally at lock_and_cleanup_extent_if_need(), immediately after calling
btrfs_find_new_delalloc_bytes() we clear the delalloc bit from the
range [100Kb, 152Kb[ which results in the btrfs_clear_bit_hook()
callback being invoked against the two 2Kb extent state records that
cover the ranges [148Kb, 150Kb[ and [150Kb, 152Kb[. When called against
the first 2Kb extent state, it calls btrfs_delalloc_release_metadata()
with a length argument of 2048 bytes. That function rounds up the length
to a sector size aligned length, so it ends up considering a length of
4096 bytes, and then calls calc_csum_metadata_size() which results in
decrementing the inode's csum_bytes counter by 4096 bytes, so after
it stays a value of 0 bytes. Then the same happens when
btrfs_clear_bit_hook() is called against the second extent state that
has a length of 2Kb, covering the range [150Kb, 152Kb[, the length is
rounded up to 4096 and calc_csum_metadata_size() ends up being called
to decrement 4096 bytes from the inode's csum_bytes counter, which
at that time has a value of 0, leading to an underflow, which is
exactly what triggers the first warning, at btrfs_destroy_inode().
All the other warnings relate to several space accounting counters
that underflow as well due to similar reasons.
A similar case but where the hole punching operation creates an extent map
with a start offset not aligned to the sector size is the following:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "fpunch 695K 820K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xaa 1008K 307K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xbb -b 630K 1073K 630K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xcc -b 459K 1068K 459K" $SCRATCH_MNT/bar
$ umount /mnt
During the unmount operation we get similar traces for the same reasons as
in the first example.
So fix the hole punching operation to make sure it never creates extent
maps with a length that is not aligned to the sector size nor with a start
offset that is not aligned to the sector size, as this breaks all
assumptions and it's a land mine.
Fixes: d77815461f ("btrfs: Avoid trucating page or punching hole in a already existed hole.")
Cc: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On an uncontended system, we can end up hitting soft lockups while
doing replace_path. At the core, and frequently called is
btrfs_qgroup_trace_leaf_items, so it makes sense to add a cond_resched
there.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is supposed to return blk_status_t error codes now but
there was a stray -ENOMEM left behind.
Fixes: 4e4cbee93d ("block: switch bios to blk_status_t")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, percpu_counter_add is a wrapper around __percpu_counter_add
which is preempt safe due to explicit calls to preempt_disable. Given
how __ prefix is used in percpu related interfaces, the naming
unfortunately creates the false sense that __percpu_counter_add is
less safe than percpu_counter_add. In terms of context-safety,
they're equivalent. The only difference is that the __ version takes
a batch parameter.
Make this a bit more explicit by just renaming __percpu_counter_add to
percpu_counter_add_batch.
This patch doesn't cause any functional changes.
tj: Minor updates to patch description for clarity. Cosmetic
indentation updates.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: linux-mm@kvack.org
Cc: "David S. Miller" <davem@davemloft.net>
Return EAGAIN if any of the following checks fail
+ i_rwsem is not lockable
+ NODATACOW or PREALLOC is not set
+ Cannot nocow at the desired location
+ Writing beyond end of file which is not allocated
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We got an internal report about a file system not wanting to mount
following 99e3ecfcb9 ("Btrfs: add more validation checks for
superblock").
BTRFS error (device sdb1): super_total_bytes 1000203816960 mismatch with
fs_devices total_rw_bytes 1000203820544
Subtracting the numbers we get a difference of less than a 4kb. Upon
closer inspection it became apparent that mkfs actually rounds down the
size of the device to a multiple of sector size. However, the same
cannot be said for various functions which modify the total size and are
called from btrfs_balance as well as when adding a new device. So this
patch ensures that values being saved into on-disk data structures are
always rounded down to a multiple of sectorsize.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The device->total_bytes member needs to always be rounded down to sectorsize
so that it corresponds to the value of super->total_bytes. However, there are
multiple places where the setter is fed a value which is not rounded which
can cause a fs to be unmountable due to the check introduced in
99e3ecfcb9 ("Btrfs: add more validation checks for superblock"). This patch
implements the getter/setter manually so that in a later patch I can add
necessary code to catch offenders.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mount option alloc_start was used in the past for debugging and
stressing the chunk allocator. Not meant to be used by users, so we're
not breaking anybody's setup.
There was some added complexity handling changes of the value and when
it was not same as default. Such code has likely been untested and I
think it's better to remove it.
This patch kills all use of alloc_start, and by doing that also fixes
a bug when alloc_size is set, potentially called from statfs:
in btrfs_calc_avail_data_space, traversing the list in RCU, the RCU
protection is temporarily dropped so btrfs_account_dev_extents_size can
be called and then RCU is locked again! Doing that inside
list_for_each_entry_rcu is just asking for trouble, but unlikely to be
observed in practice.
Signed-off-by: David Sterba <dsterba@suse.com>
We can keep the state among the other fs_info flags, there's no reason
why fs_frozen would need to be separate.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pattern when err is used for function exit and ret is used for
return values of callees is not used here.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is called from ioctl context and we don't hold any locks
that take part in writeback. Right now it's only fs_info::volume_mutex.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't hold any locks here. Inidirectly called from statfs.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Submit and wait parts of write_dev_flush() can be split into two
separate functions for better readability.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no extra benefit to count null bdev during the submit loop,
as these null devices will be anyway checked during command
completion device loop just after the submit loop. We are holding the
device_list_mutex, the device->bdev status won't change in between.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit "btrfs: btrfs_io_bio_alloc never fails, skip error handling"
write_dev_flush will not return ENOMEM in the sending part. We do not
need to check for it in the callers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We already skip storing data where compression does not make the result
at least one byte less. Let's make the logic better and check
that compression frees at least one sector size of bytes, otherwise it's
not that useful.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changelog updated ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can hardcode GFP_NOFS to btrfs_io_bio_alloc, although it means we
change it back from GFP_KERNEL in scrub. I'd rather save a few stack
bytes from not passing the gfp flags in the remaining, more imporatant,
contexts and the bio allocating API now looks more consistent.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use btrfs_bioset for bios and ask to allocate the entire size of
btrfs_io_bio from btrfs bio_alloc_bioset. The member 'bio' is
initialized but the bytes from 0 to offset of 'bio' are left
uninitialized. Although we initialize some of the members in our
helpers, we should initialize the whole structures.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently dio read also goes to verify checksum if -EIO has been returned,
although it usually fails on checksum, it's not necessary at all, we could
directly check if there is another copy to read.
And with this, the behavior of dio read is now consistent with that of
buffered read.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use bool for uptodate ]
Signed-off-by: David Sterba <dsterba@suse.com>
With raid1 profile, dio read isn't tolerating IO errors if read length is
less than the stripe length (64K).
Our bio didn't get split in btrfs_submit_direct_hook() if (dip->flags &
BTRFS_DIO_ORIG_BIO_SUBMITTED) is true and that happens when the read
length is less than 64k. In this case, if the underlying device returns
error somehow, bio->bi_error has recorded that error.
If we could recover the correct data from another copy in profile raid1/10/5/6,
with btrfs_subio_endio_read() returning 0, bio would have the correct data in
its vector, but bio->bi_error is not updated accordingly so that the following
dio_end_io(dio_bio, bio->bi_error) makes directIO think this read has failed.
This fixes the problem by setting bio's error to 0 if a good copy has been
found.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most callers of btrfs_bio_alloc convert from bytes to sectors. Hide that
in the helper and simplify the logic in the callsers.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
compressed_bio_alloc is now a trivial wrapper around btrfs_bio_alloc, no
point keeping it. The error handling can be simplified, as we know
btrfs_bio_alloc will never fail.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass gfp_flags=GFP_NOFS and nr_vecs=BIO_MAX_PAGES.
submit_extent_page adds __GFP_HIGH that does not make a difference in
our case as it allows access to memory reserves but otherwise does not
change the constraints.
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_io_bio_alloc that do error handling, that
we can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_bio_clone that do error handling, that we
can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_bio_alloc that do error handling, that we
can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Christoph pointed out that bio allocations backed by a bioset will never
fail. As we always use a bioset for all bio allocations, we can skip
the error handling. This patch adjusts our low-level helpers, the
cascaded changes to all callers will come next.
CC: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compression workspace buffers are larger than a page so we use
vmalloc, unconditionally. This is not always necessary as there might be
contiguous memory available.
Let's use the kvmalloc helpers that will try kmalloc first and fallback
to vmalloc. For that they require GFP_KERNEL flags. As we now have the
alloc_workspace calls protected by memalloc_nofs in the critical
contexts, we can safely use GFP_KERNEL.
Signed-off-by: David Sterba <dsterba@suse.com>
As alloc_workspace is now protected by memalloc_nofs where needed,
we can switch the kmalloc to use GFP_KERNEL.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The workspaces are preallocated at the beginning where we can safely use
GFP_KERNEL, but in some cases the find_workspace might reach the
allocation again, now in a more restricted context when the bios or
pages are being compressed.
To avoid potential lockup when alloc_workspace -> vmalloc would silently
use the GFP_KERNEL, add the memalloc_nofs helpers around the critical
call site.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As we don't use vmalloc/vzalloc/vfree directly in ctree.c, we can now
use the proper header that defines kvmalloc.
Signed-off-by: David Sterba <dsterba@suse.com>
Now that init_ipath is called either from a safe context or with
memalloc_nofs protection, we can switch to GFP_KERNEL allocations in
init_path and init_data_container.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
init_ipath is called from a safe ioctl context and from scrub when
printing an error. The protection is added for three reasons:
* init_data_container calls vmalloc and this does not work as expected
in the GFP_NOFS context, so this silently does GFP_KERNEL and might
deadlock in some cases
* keep the context constraint of GFP_NOFS, used by scrub
* we want to use GFP_KERNEL unconditionally inside init_ipath or its
callees
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use a growing buffer for xattrs larger than a page size, at some
point vmalloc is unconditionally used for larger buffers. We can still
try to avoid it using the kvmalloc helper.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logic of kmalloc and vmalloc fallback is opencoded in
several places, we can now use the existing helper.
Signed-off-by: David Sterba <dsterba@suse.com>
Logic already skips if compression makes data bigger, let's sync lzo
with zlib and also return error if compressed size is equal to
input size.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
bio_io_error was introduced in the commit 4246a0b63b
("block: add a bi_error field to struct bio"), so use it to simplify
code.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
First, instead of open-coding the vmalloc() fallback, use the new
kvzalloc() helper. Second, use memalloc_nofs_{save,restore}() instead of
GFP_NOFS, as vmalloc() uses some GFP_KERNEL allocations internally which
could lead to deadlocks.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Observing the number of slab objects of btrfs_transaction, there's just
one active on an almost quiescent filesystem, and the number of objects
goes to about ten when sync is in progress. Then the nubmer goes down to
1. This matches the expectations of the transaction lifetime.
For such use the separate slab cache is not justified, as we do not
reuse objects frequently. For the shortlived transaction, the generic
slab (size 512) should be ok. We can optimistically expect that the 512
slabs are not all used (fragmentation) and there are free slots to take
when we do the allocation, compared to potentially allocating a whole new
page for the separate slab.
We'll lose the stats about the object use, which could be added later if
we really need them.
Signed-off-by: David Sterba <dsterba@suse.com>
The structure scrub_wr_ctx is not used anywhere just the scrub context,
we can move the members there. The tgtdev is renamed so it's more clear
that it belongs to the "wr" part.
Signed-off-by: David Sterba <dsterba@suse.com>
As we now have the node/block sizes in fs_info, we can use them and can
drop the local copies.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix copy paste typo in debug message for lzo.c, lzo is not deflate.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nothing checks its return value.
Is it safe to skip checking return value of btrfs_wait_tree_block_writeback?
Liu Bo: I think yes, it's used in walk_log_tree which is called in two
places, free_log_tree and log replay. For free_log_tree, it waits for
any running writeback of the extent buffer under freeing to finish in
case we need to access the eb pointer from page->private, and it's OK to
not check the return value, while for log replay, it's doesn't wait
because wc->wait is not set. So neither cares about the writeback error.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
[ added more explanation to changelog, from Liu Bo ]
Signed-off-by: David Sterba <dsterba@suse.com>
__BTRFS_LAF_DATA_SIZE is used only by BTRFS_LEAF_DATA_SIZE. Make the
latter subsume the former.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 5f39d397df ("Btrfs: Create extent_buffer interface
for large blocksizes") refactored btrfs_leaf_data function to take
extent_buffer rather than struct btrfs_leaf. However, as it turns out the
parameter being passed is never used. Furthermore this function no longer
returns the leaf data but rather the offset to it. So rename the function
to BTRFS_LEAF_DATA_OFFSET to make it consistent with other BTRFS_LEAF_*
helpers and turn it into a macro.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ removed () from the macro ]
Signed-off-by: David Sterba <dsterba@suse.com>
struct compressed_bio pointer can be used instead.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of sending each argument of struct compressed_bio, send
the compressed_bio itself.
Also by having struct compressed_bio in btrfs_decompress_bio()
it would help tracing.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the factoring out of the creation code udpate_space_info can
only be called for already-existing space_info structs. As such it
cannot fail. Remove superfluous error handling and make the function
return void.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the struct space_info creation code is intermixed in the
udpate_space_info function. There are well-defined points at which the
we actually want to create brand-new space_info structs (e.g. during
mount of the filesystem as well as sometimes when adding/initialising
new chunks). In such cases update_space_info is called with 0 as the
bytes parameter. All of this makes for spaghetti code.
Fix it by factoring out the creation code in a separate
create_space_info structure. This also allows to simplify the internals.
Also remove BUG_ON from do_alloc_chunk since the callers handle errors.
Furthermore it will make the update_space_info function not fail,
allowing us to remove error handling in callers. This will come in a
follow up patch.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds chunk_objectid and flags, with flags we can recognize whether
the block group is about data or metadata.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We commit transaction in order to reclaim space from pinned bytes because
it could process delayed refs, and in may_commit_transaction(), we check
first if pinned bytes are enough for the required space, we then check if
that plus bytes reserved for delayed insert are enough for the required
space.
This changes the code to the above logic.
Fixes: b150a4f10d ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to take the mutex and zero out wr_cur_bio, as this is
called after the scrub finished.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_free_wr_ctx is used only once and fits into
scrub_free_ctx as it continues sctx shutdown, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_setup_wr_ctx is used only once and fits into
scrub_setup_ctx as it continues intialization, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
can_overcommit using the root to determine the allocation profile
is the only use of a root in the call graph below reserve_metadata_bytes.
It turns out that we only need to know whether the allocation is for
the chunk root or not -- and we can pass that around as a bool instead.
This allows us to pull root usage out of the reservation path all the
way up to reserve_metadata_bytes itself, which uses it only to compare
against fs_info->chunk_root to set the bool. In turn, this eliminates
a bunch of races where we use a particular root too early in the mount
process.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places where we don't already know what kind of alloc
profile we need before calling btrfs_get_alloc_profile, but we need
access to a root everywhere we call it.
This patch adds helpers for btrfs_{data,metadata,system}_alloc_profile()
and relegates btrfs_system_alloc_profile to a static for use in those
two cases. The next patch will eliminate one of those.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The end io work queue items have been tracked by the work queues since
"Btrfs: Add async worker threads for pre and post IO checksumming"
(8b71284292) (2008).
Signed-off-by: David Sterba <dsterba@suse.com>
The list used to track checksums in the early version (2.6.29), but I
was able not pinpoint the commit that stopped using it. Everything
apparently works without it for a long time.
Signed-off-by: David Sterba <dsterba@suse.com>
Seems to be unused since the initial commit, we ignore readahead errors
anyway, the full read will handle that if necessary.
Signed-off-by: David Sterba <dsterba@suse.com>
Both btrfs_create_free_space_tree and btrfs_clear_free_space_tree
contain:
if (ret)
return ret;
return 0;
The if statement is only false when ret equals zero, and since we return
zero in such cases, we can safely remove the branching.
Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only pass GFP_NOFS to btrfs_bio_clone_partial, so lets hardcode it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A rewrite of btrfs_submit_direct_hook appears to have introduced a warning:
fs/btrfs/inode.c: In function 'btrfs_submit_direct_hook':
fs/btrfs/inode.c:8467:14: error: 'bio' may be used uninitialized in this function [-Werror=maybe-uninitialized]
Where the 'bio' variable was previously initialized unconditionally, it
is now set in the "while (submit_len > 0)" loop that would never execute
if submit_len is zero.
Assuming this cannot happen in practice, we can avoid the warning
by simply replacing the while{} loop with a do{}while() loop so
the compiler knows that it will always be entered at least once.
Fixes changes introduced in "Btrfs: use bio_clone_bioset_partial to
simplify DIO submit".
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
All dio endio functions are using io_bio for struct btrfs_io_bio, this
makes btrfs_submit_direct to follow this convention.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some check-integrity code depends on bio->bi_vcnt, this changes it to use
bio segments because some bios passing here may not have a reliable
bi_vcnt.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the nocsum case of dio read endio, it returns immediately if an error
gets returned when repairing, which leaves the rest blocks unrepaired. The
behavior is different from how buffered read endio works in the same case.
This changes it to record error only and go on repairing the rest blocks.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since dio submit has used bio_clone_fast, the submitted bio may not have a
reliable bi_vcnt, for the bio vector iterations in checksum related
functions, bio->bi_iter is not modified yet and it's safe to use
bio_for_each_segment, while for those bio vector iterations in dio read's
endio, we now save a copy of bvec_iter in struct btrfs_io_bio when cloning
bios and use the helper __bio_for_each_segment with the saved bvec_iter to
access each bvec.
Also for dio reads which don't get split, we also need to save a copy of
bio iterator in btrfs_bio_clone to let __bio_for_each_segments to access
each bvec in dio read's endio. Note that it doesn't affect other calls of
btrfs_bio_clone() because they don't need to use this iterator.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when mapping bio to limit bio to a single stripe length, we
split bio by adding page to bio one by one, but later we don't modify
the vector of bio at all, thus we can use bio_clone_fast to use the
original bio vector directly.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds a new helper btrfs_bio_clone_partial, it'll allocate a cloned
bio that only owns a part of the original bio's data.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For raid1 and raid10, we clone the original bio to the bios which are then
sent to different disks.
Right now we use bio_clone_bioset to create a clone bio with iterating
bi_io_vec to initialize it. This changes it to use bio_clone_fast()
which creates a clone bio but only copies the bi_io_vec pointer
instead of iterating bi_io_vec.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead pass around the failure tree and the io tree.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Once we remove the btree_inode we won't have an inode to pass anymore,
just pass the fs_info directly and the inum since we use that to print
out the repair message.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For extent_io tree's we have carried the address_mapping of the inode
around in the io tree in order to pull the inode back out for calling
into various tree ops hooks. This works fine when everything that has
an extent_io_tree has an inode. But we are going to remove the
btree_inode, so we need to change this. Instead just have a generic
void * for private data that we can initialize with, and have all the
tree ops use that instead. This had a lot of cascading changes but
should be relatively straightforward.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor reordering of the callback prototypes ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds the read-write attribute quota_override into sysfs.
Any process which has CAP_SYS_RESOURCE can set this flag to on, and
once it is set to true, processes with CAP_SYS_RESOURCE can exceed
the quota.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor changelog edits ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch introduces the quota override flag to btrfs_fs_info, and a
change to quota limit checking code to temporarily allow for quota to be
overridden for processes with CAP_SYS_RESOURCE.
It's useful for administrative programs, such as log rotation, that may
need to temporarily use more disk space in order to free up a greater
amount of overall disk space without yielding more disk space to the
rest of userland.
Eventually, we may want to add the idea of an operator-specific quota,
operator reserved space, or something else to allow for administrative
override, but this is perhaps the simplest solution.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor changelog edits ]
Signed-off-by: David Sterba <dsterba@suse.com>
The ->free_chunk_space variable is used to track the unallocated space
and access to it is protected by a spinlock, which is not used for
anything else. Make the code a bit self-explanatory by switching the
variable to an atomic64_t type and kill the spinlock.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ not a performance critical code, use of atomic type is ok ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds comments to the flush error handling part of the code, and
hopes to maintain the same logic with a framework which can be used to
handle the errors at the volume level.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These FIXMEs were already addressed in 2013. All functions check for
qgroup existence:
* btrfs_add_qgroup_relation
* btrfs_ioctl_qgroup_create
* btrfs_limit_qgroup
* btrfs_del_qgroup_relation
Signed-off-by: Daichou <tommy0705c@gmail.com>
[ enhance and reformat changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Remove NULL test on kmap() as it will always return a valid pointer.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
"flags" arguments are often seen as good API design as they allow
easy extensibility.
bioset_create_nobvec() is implemented internally as a variation in
flags passed to __bioset_create().
To support future extension, make the internal structure part of the
API.
i.e. add a 'flags' argument to bioset_create() and discard
bioset_create_nobvec().
Note that the bio_split allocations in drivers/md/raid* do not need
the bvec mempool - they should have used bioset_create_nobvec().
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull crypto fix from Herbert Xu:
"This fixes a bug on sparc where we may dereference freed stack memory"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: Work around deallocated stack frame reference gcc bug on sparc.
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJZPdbLAAoJEHm+PkMAQRiGx4wH/1nCjfnl6fE8oJ24/1gEAOUh
biFdqJkYZmlLYHVtYfLm4Ueg4adJdg0wx6qM/4RaAzmQVvLfDV34bc1qBf1+P95G
kVF+osWyXrZo5cTwkwapHW/KNu4VJwAx2D1wrlxKDVG5AOrULH1pYOYGOpApEkZU
4N+q5+M0ce0GJpqtUZX+UnI33ygjdDbBxXoFKsr24B7eA0ouGbAJ7dC88WcaETL+
2/7tT01SvDMo0jBSV0WIqlgXwZ5gp3yPGnklC3F4159Yze6VFrzHMKS/UpPF8o8E
W9EbuzwxsKyXUifX2GY348L1f+47glen/1sedbuKnFhP6E9aqUQQJXvEO7ueQl4=
=m2Gx
-----END PGP SIGNATURE-----
Merge tag 'v4.12-rc5' into for-4.13/block
We've already got a few conflicts and upcoming work depends on some of the
changes that have gone into mainline as regression fixes for this series.
Pull in 4.12-rc5 to resolve these conflicts and make it easier on down stream
trees to continue working on 4.13 changes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull btrfs fixes from Chris Mason:
"Some fixes that Dave Sterba collected.
We've been hitting an early enospc problem on production machines that
Omar tracked down to an old int->u64 mistake. I waited a bit on this
pull to make sure it was really the problem from production, but it's
on ~2100 hosts now and I think we're good.
Omar also noticed a commit in the queue would make new early ENOSPC
problems. I pulled that out for now, which is why the top three
commits are younger than the rest.
Otherwise these are all fixes, some explaining very old bugs that
we've been poking at for a while"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting leak caused by u32 overflow
Btrfs: clear EXTENT_DEFRAG bits in finish_ordered_io
btrfs: tree-log.c: Wrong printk information about namelen
btrfs: fix race with relocation recovery and fs_root setup
btrfs: fix memory leak in update_space_info failure path
btrfs: use correct types for page indices in btrfs_page_exists_in_range
btrfs: fix incorrect error return ret being passed to mapping_set_error
btrfs: Make flush bios explicitely sync
btrfs: fiemap: Cache and merge fiemap extent before submit it to user
btrfs_calc_trans_metadata_size() does an unsigned 32-bit multiplication,
which can overflow if num_items >= 4 GB / (nodesize * BTRFS_MAX_LEVEL * 2).
For a nodesize of 16kB, this overflow happens at 16k items. Usually,
num_items is a small constant passed to btrfs_start_transaction(), but
we also use btrfs_calc_trans_metadata_size() for metadata reservations
for extent items in btrfs_delalloc_{reserve,release}_metadata().
In drop_outstanding_extents(), num_items is calculated as
inode->reserved_extents - inode->outstanding_extents. The difference
between these two counters is usually small, but if many delalloc
extents are reserved and then the outstanding extents are merged in
btrfs_merge_extent_hook(), the difference can become large enough to
overflow in btrfs_calc_trans_metadata_size().
The overflow manifests itself as a leak of a multiple of 4 GB in
delalloc_block_rsv and the metadata bytes_may_use counter. This in turn
can cause early ENOSPC errors. Additionally, these WARN_ONs in
extent-tree.c will be hit when unmounting:
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0);
Fix it by casting nodesize to a u64 so that
btrfs_calc_trans_metadata_size() does a full 64-bit multiplication.
While we're here, do the same in btrfs_calc_trunc_metadata_size(); this
can't overflow with any existing uses, but it's better to be safe here
than have another hard-to-debug problem later on.
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before this, we use 'filled' mode here, ie. if all range has been
filled with EXTENT_DEFRAG bits, get to clear it, but if the defrag
range joins the adjacent delalloc range, then we'll have EXTENT_DEFRAG
bits in extent_state until releasing this inode's pages, and that
prevents extent_data from being freed.
This clears the bit if any was found within the ordered extent.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In verify_dir_item, it wants to printk name_len of dir_item but
printk data_len acutally.
Fix it by calling btrfs_dir_name_len instead of btrfs_dir_data_len.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
On sparc, if we have an alloca() like situation, as is the case with
SHASH_DESC_ON_STACK(), we can end up referencing deallocated stack
memory. The result can be that the value is clobbered if a trap
or interrupt arrives at just the right instruction.
It only occurs if the function ends returning a value from that
alloca() area and that value can be placed into the return value
register using a single instruction.
For example, in lib/libcrc32c.c:crc32c() we end up with a return
sequence like:
return %i7+8
lduw [%o5+16], %o0 ! MEM[(u32 *)__shash_desc.1_10 + 16B],
%o5 holds the base of the on-stack area allocated for the shash
descriptor. But the return released the stack frame and the
register window.
So if an intererupt arrives between 'return' and 'lduw', then
the value read at %o5+16 can be corrupted.
Add a data compiler barrier to work around this problem. This is
exactly what the gcc fix will end up doing as well, and it absolutely
should not change the code generated for other cpus (unless gcc
on them has the same bug :-)
With crucial insight from Eric Sandeen.
Cc: <stable@vger.kernel.org>
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If we have to recover relocation during mount, we'll ultimately have to
evict the orphan inode. That goes through the reservation dance, where
priority_reclaim_metadata_space and flush_space expect fs_info->fs_root
to be valid. That's the next thing to be set up during mount, so we
crash, almost always in flush_space trying to join the transaction
but priority_reclaim_metadata_space is possible as well. This call
path has been problematic in the past WRT whether ->fs_root is valid
yet. Commit 957780eb27 (Btrfs: introduce ticketed enospc
infrastructure) added new users that are called in the direct path
instead of the async path that had already been worked around.
The thing is that we don't actually need the fs_root, specifically, for
anything. We either use it to determine whether the root is the
chunk_root for use in choosing an allocation profile or as a root to pass
btrfs_join_transaction before immediately committing it. Anything that
isn't the chunk root works in the former case and any root works in
the latter.
A simple fix is to use a root we know will always be there: the
extent_root.
Cc: <stable@vger.kernel.org> # v4.8+
Fixes: 957780eb27 (Btrfs: introduce ticketed enospc infrastructure)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to add the space_info kobject, we'll leak the memory
for the percpu counter.
Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs)
Cc: <stable@vger.kernel.org> # v3.14+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Variables start_idx and end_idx are supposed to hold a page index
derived from the file offsets. The int type is not the right one though,
offsets larger than 1 << 44 will get silently trimmed off the high bits.
(1 << 44 is 16TiB)
What can go wrong, if start is below the boundary and end gets trimmed:
- if there's a page after start, we'll find it (radix_tree_gang_lookup_slot)
- the final check "if (page->index <= end_idx)" will unexpectedly fail
The function will return false, ie. "there's no page in the range",
although there is at least one.
btrfs_page_exists_in_range is used to prevent races in:
* in hole punching, where we make sure there are not pages in the
truncated range, otherwise we'll wait for them to finish and redo
truncation, but we're going to replace the pages with holes anyway so
the only problem is the intermediate state
* lock_extent_direct: we want to make sure there are no pages before we
lock and start DIO, to prevent stale data reads
For practical occurence of the bug, there are several constaints. The
file must be quite large, the affected range must cross the 16TiB
boundary and the internal state of the file pages and pending operations
must match. Also, we must not have started any ordered data in the
range, otherwise we don't even reach the buggy function check.
DIO locking tries hard in several places to avoid deadlocks with
buffered IO and avoids waiting for ranges. The worst consequence seems
to be stale data read.
CC: Liu Bo <bo.li.liu@oracle.com>
CC: stable@vger.kernel.org # 3.16+
Fixes: fc4adbff82 ("btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking")
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The setting of return code ret should be based on the error code
passed into function end_extent_writepage and not on ret. Thanks
to Liu Bo for spotting this mistake in the original fix I submitted.
Detected by CoverityScan, CID#1414312 ("Logically dead code")
Fixes: 5dca6eea91 ("Btrfs: mark mapping with error flag to report errors to userspace")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit b685d3d65a "block: treat REQ_FUA and REQ_PREFLUSH as
synchronous" removed REQ_SYNC flag from WRITE_{FUA|PREFLUSH|...}
definitions. generic_make_request_checks() however strips REQ_FUA and
REQ_PREFLUSH flags from a bio when the storage doesn't report volatile
write cache and thus write effectively becomes asynchronous which can
lead to performance regressions
Fix the problem by making sure all bios which are synchronous are
properly marked with REQ_SYNC.
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Fixes: b685d3d65a
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Cycle mount btrfs can cause fiemap to return different result.
Like:
# mount /dev/vdb5 /mnt/btrfs
# dd if=/dev/zero bs=16K count=4 oflag=dsync of=/mnt/btrfs/file
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
# umount /mnt/btrfs
# mount /dev/vdb5 /mnt/btrfs
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..31]: 25088..25119 32 0x0
1: [32..63]: 25120..25151 32 0x0
2: [64..95]: 25152..25183 32 0x0
3: [96..127]: 25184..25215 32 0x1
But after above fiemap, we get correct merged result if we call fiemap
again.
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
[REASON]
Btrfs will try to merge extent map when inserting new extent map.
btrfs_fiemap(start=0 len=(u64)-1)
|- extent_fiemap(start=0 len=(u64)-1)
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=0 len=64k)
| | Found on-disk (ino, EXTENT_DATA, 0)
| |- add_extent_mapping()
| |- Return (em->start=0, len=16k)
|
|- fiemap_fill_next_extent(logic=0 phys=X len=16k)
|
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=16k len=48k)
| | Found on-disk (ino, EXTENT_DATA, 16k)
| |- add_extent_mapping()
| | |- try_merge_map()
| | Merge with previous em start=0 len=16k
| | resulting em start=0 len=32k
| |- Return (em->start=0, len=32K) << Merged result
|- Stripe off the unrelated range (0~16K) of return em
|- fiemap_fill_next_extent(logic=16K phys=X+16K len=16K)
^^^ Causing split fiemap extent.
And since in add_extent_mapping(), em is already merged, in next
fiemap() call, we will get merged result.
[FIX]
Here we introduce a new structure, fiemap_cache, which records previous
fiemap extent.
And will always try to merge current fiemap_cache result before calling
fiemap_fill_next_extent().
Only when we failed to merge current fiemap extent with cached one, we
will call fiemap_fill_next_extent() to submit cached one.
So by this method, we can merge all fiemap extents.
It can also be done in fs/ioctl.c, however the problem is if
fieinfo->fi_extents_max == 0, we have no space to cache previous fiemap
extent.
So I choose to merge it in btrfs.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This has fixes and cleanups Dave Sterba collected for the merge
window.
The biggest functional fixes are between btrfs raid5/6 and scrub, and
raid5/6 and device replacement. Some of our pending qgroup fixes are
included as well while I bash on the rest in testing.
We also have the usual set of cleanups, including one that makes
__btrfs_map_block() much more maintainable, and conversions from
atomic_t to refcount_t"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (71 commits)
btrfs: fix the gfp_mask for the reada_zones radix tree
Btrfs: fix reported number of inode blocks
Btrfs: send, fix file hole not being preserved due to inline extent
Btrfs: fix extent map leak during fallocate error path
Btrfs: fix incorrect space accounting after failure to insert inline extent
Btrfs: fix invalid attempt to free reserved space on failure to cow range
btrfs: Handle delalloc error correctly to avoid ordered extent hang
btrfs: Fix metadata underflow caused by btrfs_reloc_clone_csum error
btrfs: check if the device is flush capable
btrfs: delete unused member nobarriers
btrfs: scrub: Fix RAID56 recovery race condition
btrfs: scrub: Introduce full stripe lock for RAID56
btrfs: Use ktime_get_real_ts for root ctime
Btrfs: handle only applicable errors returned by btrfs_get_extent
btrfs: qgroup: Fix qgroup corruption caused by inode_cache mount option
btrfs: use q which is already obtained from bdev_get_queue
Btrfs: switch to div64_u64 if with a u64 divisor
Btrfs: update scrub_parity to use u64 stripe_len
Btrfs: enable repair during read for raid56 profile
btrfs: use clear_page where appropriate
...
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many code paths opencoding kvmalloc. Let's use the helper
instead. The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator. E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation. This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously. There is no guarantee something like that happens
though.
This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.
Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commits cc8385b59e and 7ef70b4d99 added preallocation for the
reada radix trees and also switched them over to GFP_KERNEL for the
default gfp mask.
Since we're doing radix tree insertions under spinlocks, we need
to make sure the mask doesn't allow sleeping. This fix keeps
the radix preallocation but switches back to the original gfp_mask.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull block layer updates from Jens Axboe:
- Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ
was initially a fork of CFQ, but subsequently changed to implement
fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant
to be used on desktop type single drives, providing good fairness.
From Paolo.
- Add Kyber IO scheduler. This is a full multiqueue aware scheduler,
using a scalable token based algorithm that throttles IO based on
live completion IO stats, similary to blk-wbt. From Omar.
- A series from Jan, moving users to separately allocated backing
devices. This continues the work of separating backing device life
times, solving various problems with hot removal.
- A series of updates for lightnvm, mostly from Javier. Includes a
'pblk' target that exposes an open channel SSD as a physical block
device.
- A series of fixes and improvements for nbd from Josef.
- A series from Omar, removing queue sharing between devices on mostly
legacy drivers. This helps us clean up other bits, if we know that a
queue only has a single device backing. This has been overdue for
more than a decade.
- Fixes for the blk-stats, and improvements to unify the stats and user
windows. This both improves blk-wbt, and enables other users to
register a need to receive IO stats for a device. From Omar.
- blk-throttle improvements from Shaohua. This provides a scalable
framework for implementing scalable priotization - particularly for
blk-mq, but applicable to any type of block device. The interface is
marked experimental for now.
- Bucketized IO stats for IO polling from Stephen Bates. This improves
efficiency of polled workloads in the presence of mixed block size
IO.
- A few fixes for opal, from Scott.
- A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics.
From a variety of folks, mostly Sagi and James Smart.
- A series from Bart, improving our exposed info and capabilities from
the blk-mq debugfs support.
- A series from Christoph, cleaning up how handle WRITE_ZEROES.
- A series from Christoph, cleaning up the block layer handling of how
we track errors in a request. On top of being a nice cleanup, it also
shrinks the size of struct request a bit.
- Removal of mg_disk and hd (sorry Linus) by Christoph. The former was
never used by platforms, and the latter has outlived it's usefulness.
- Various little bug fixes and cleanups from a wide variety of folks.
* 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits)
block: hide badblocks attribute by default
blk-mq: unify hctx delay_work and run_work
block: add kblock_mod_delayed_work_on()
blk-mq: unify hctx delayed_run_work and run_work
nbd: fix use after free on module unload
MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler
blk-mq-sched: alloate reserved tags out of normal pool
mtip32xx: use runtime tag to initialize command header
scsi: Implement blk_mq_ops.show_rq()
blk-mq: Add blk_mq_ops.show_rq()
blk-mq: Show operation, cmd_flags and rq_flags names
blk-mq: Make blk_flags_show() callers append a newline character
blk-mq: Move the "state" debugfs attribute one level down
blk-mq: Unregister debugfs attributes earlier
blk-mq: Only unregister hctxs for which registration succeeded
blk-mq-debugfs: Rename functions for registering and unregistering the mq directory
blk-mq: Let blk_mq_debugfs_register() look up the queue name
blk-mq: Register <dev>/queue/mq after having registered <dev>/queue
ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset
ide-pm: always pass 0 error to __blk_end_request_all
..
Pull btrfs fix from Chris Mason:
"We have one more fix for btrfs.
This gets rid of a new WARN_ON from rc1 that ended up making more
noise than we really want. The larger fix for the underflow got
delayed a bit and it's better for now to put it under
CONFIG_BTRFS_DEBUG"
* 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: qgroup: move noisy underflow warning to debugging build
Currently when there are buffered writes that were not yet flushed and
they fall within allocated ranges of the file (that is, not in holes or
beyond eof assuming there are no prealloc extents beyond eof), btrfs
simply reports an incorrect number of used blocks through the stat(2)
system call (or any of its variants), regardless of mount options or
inode flags (compress, compress-force, nodatacow). This is because the
number of blocks used that is reported is based on the current number
of bytes in the vfs inode plus the number of dealloc bytes in the btrfs
inode. The later covers bytes that both fall within allocated regions
of the file and holes.
Example scenarios where the number of reported blocks is wrong while the
buffered writes are not flushed:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (259.336 MiB/sec and 66390.0415 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (192.308 MiB/sec and 49230.7692 ops/sec)
# The following should have reported 64K...
$ du -h /mnt/sdc/foo1
128K /mnt/sdc/foo1
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo1
64K /mnt/sdc/foo1
$ xfs_io -f -c "falloc -k 0 128K" -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (520.833 MiB/sec and 133333.3333 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 64K 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 65536
64 KiB, 16 ops; 0.0000 sec (260.417 MiB/sec and 66666.6667 ops/sec)
# The following should have reported 128K...
$ du -h /mnt/sdc/foo2
192K /mnt/sdc/foo2
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo2
128K /mnt/sdc/foo2
So the number of used file blocks is simply incorrect, unlike in other
filesystems such as ext4 and xfs for example, but only while the buffered
writes are not flushed.
Fix this by tracking the number of delalloc bytes that fall within holes
and beyond eof of a file, and use instead this new counter when reporting
the number of used blocks for an inode.
Another different problem that exists is that the delalloc bytes counter
is reset when writeback starts (by clearing the EXTENT_DEALLOC flag from
the respective range in the inode's iotree) and the vfs inode's bytes
counter is only incremented when writeback finishes (through
insert_reserved_file_extent()). Therefore while writeback is ongoing we
simply report a wrong number of blocks used by an inode if the write
operation covers a range previously unallocated. While this change does
not fix this problem, it does minimizes it a lot by shortening that time
window, as the new dealloc bytes counter (new_delalloc_bytes) is only
decremented when writeback finishes right before updating the vfs inode's
bytes counter. Fully fixing this second problem is not trivial and will
be addressed later by a different patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Normally we don't have inline extents followed by regular extents, but
there's currently at least one harmless case where this happens. For
example, when the page size is 4Kb and compression is enabled:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" -c "fsync" /mnt/foobar
$ xfs_io -c "pwrite -S 0xbb 8K 4K" -c "fsync" /mnt/foobar
In this case we get a compressed inline extent, representing 4Kb of
data, followed by a hole extent and then a regular data extent. The
inline extent was not expanded/converted to a regular extent exactly
because it represents 4Kb of data. This does not cause any apparent
problem (such as the issue solved by commit e1699d2d7b
("btrfs: add missing memset while reading compressed inline extents"))
except trigger an unexpected case in the incremental send code path
that makes us issue an operation to write a hole when it's not needed,
resulting in more writes at the receiver and wasting space at the
receiver.
So teach the incremental send code to deal with this particular case.
The issue can be currently triggered by running fstests btrfs/137 with
compression enabled (MOUNT_OPTIONS="-o compress" ./check btrfs/137).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
If the call to btrfs_qgroup_reserve_data() failed, we were leaking an
extent map structure. The failure can happen either due to an -ENOMEM
condition or, when quotas are enabled, due to -EDQUOT for example.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[BUG]
If run_delalloc_range() returns error and there is already some ordered
extents created, btrfs will be hanged with the following backtrace:
Call Trace:
__schedule+0x2d4/0xae0
schedule+0x3d/0x90
btrfs_start_ordered_extent+0x160/0x200 [btrfs]
? wake_atomic_t_function+0x60/0x60
btrfs_run_ordered_extent_work+0x25/0x40 [btrfs]
btrfs_scrubparity_helper+0x1c1/0x620 [btrfs]
btrfs_flush_delalloc_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
[CAUSE]
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>| |<---------- cleanup range --------->|
||
\_=> First page handled by end_extent_writepage() in __extent_writepage()
The problem is caused by error handler of run_delalloc_range(), which
doesn't handle any created ordered extents, leaving them waiting on
btrfs_finish_ordered_io() to finish.
However after run_delalloc_range() returns error, __extent_writepage()
won't submit bio, so btrfs_writepage_end_io_hook() won't be triggered
except the first page, and btrfs_finish_ordered_io() won't be triggered
for created ordered extents either.
So OE 2~n will hang forever, and if OE 1 is larger than one page, it
will also hang.
[FIX]
Introduce btrfs_cleanup_ordered_extents() function to cleanup created
ordered extents and finish them manually.
The function is based on existing
btrfs_endio_direct_write_update_ordered() function, and modify it to
act just like btrfs_writepage_endio_hook() but handles specified range
other than one page.
After fix, delalloc error will be handled like:
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>|<-------- ----------->|<------ old error handler --------->|
|| ||
|| \_=> Cleaned up by cleanup_ordered_extents()
\_=> First page handled by end_extent_writepage() in __extent_writepage()
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[BUG]
When btrfs_reloc_clone_csum() reports error, it can underflow metadata
and leads to kernel assertion on outstanding extents in
run_delalloc_nocow() and cow_file_range().
BTRFS info (device vdb5): relocating block group 12582912 flags data
BTRFS info (device vdb5): found 1 extents
assertion failed: inode->outstanding_extents >= num_extents, file: fs/btrfs//extent-tree.c, line: 5858
Currently, due to another bug blocking ordered extents, the bug is only
reproducible under certain block group layout and using error injection.
a) Create one data block group with one 4K extent in it.
To avoid the bug that hangs btrfs due to ordered extent which never
finishes
b) Make btrfs_reloc_clone_csum() always fail
c) Relocate that block group
[CAUSE]
run_delalloc_nocow() and cow_file_range() handles error from
btrfs_reloc_clone_csum() wrongly:
(The ascii chart shows a more generic case of this bug other than the
bug mentioned above)
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- cleanup range --------------->|
|<----------- ----------->|
\/
btrfs_finish_ordered_io() range
So error handler, which calls extent_clear_unlock_delalloc() with
EXTENT_DELALLOC and EXTENT_DO_ACCOUNT bits, and btrfs_finish_ordered_io()
will both cover OE n, and free its metadata, causing metadata under flow.
[Fix]
The fix is to ensure after calling btrfs_add_ordered_extent(), we only
call error handler after increasing the iteration offset, so that
cleanup range won't cover any created ordered extent.
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- ----------->|<---------- cleanup range --------->|
\/
btrfs_finish_ordered_io() range
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Allocate struct backing_dev_info separately instead of embedding it
inside superblock. This unifies handling of bdi among users.
CC: Chris Mason <clm@fb.com>
CC: Josef Bacik <jbacik@fb.com>
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
The WARN_ON and warning from report_reserved_underflow can become very
noisy and is visible unconditionally although this is namely for
debugging. The patch "btrfs: Add WARN_ON for qgroup reserved underflow"
(18dc22c19b) went to 4.11-rc1 and the plan
was to get the fix as well, but this hasn't happened.
CC: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block layer call chain from submit_bio will check if the write cache
is enabled for the given queue before submitting the flush. This will
add a code to fail fast if its not.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog to reflect current code stat, blkdev_issue_flush is
not used yet ]
Signed-off-by: David Sterba <dsterba@suse.com>
The last consumer of nobarriers is removed by the commit [1] and sync
won't fail with EOPNOTSUPP anymore. Thus, now when write cache is write
through it just return success without actually transpiring such a
request to the block device/lun.
[1]
commit b25de9d6da
block: remove BIO_EOPNOTSUPP
And, as the device/lun write cache state may change dynamically saving
such as state won't help either. So deleting the member nobarriers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_root_item maintains the ctime for root updates. This is not part
of vfs_inode.
Since current_time() uses struct inode* as an argument as Linus
suggested, this cannot be used to update root times unless, we modify
the signature to use inode.
Since btrfs uses nanosecond time granularity, it can also use
ktime_get_real_ts directly to obtain timestamp for the root. It is
necessary to use the timespec time api here because the same
btrfs_set_stack_timespec_*() apis are used for vfs inode times as well.
These can be transitioned to using timespec64 when btrfs internally
changes to use timespec64 as well.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_get_extent() never returns NULL pointers, so this code introduces
a static checker warning.
The btrfs_get_extent() is a bit complex, but trust me that it doesn't
return NULLs and also if it did we would trigger the BUG_ON(!em) before
the last return statement.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[ updated subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The easist way to reproduce the bug is:
------
# mkfs.btrfs -f $dev -n 16K
# mount $dev $mnt -o inode_cache
# btrfs quota enable $mnt
# btrfs quota rescan -w $mnt
# btrfs qgroup show $mnt
qgroupid rfer excl
-------- ---- ----
0/5 32.00KiB 32.00KiB
^^ Twice the correct value
------
And fstests/btrfs qgroup test group can easily detect them with
inode_cache mount option.
Although some of them are false alerts since old test cases are using
fixed golden output.
While new test cases will use "btrfs check" to detect qgroup mismatch.
[CAUSE]
Inode_cache mount option will make commit_fs_roots() to call
btrfs_save_ino_cache() to update fs/subvol trees, and generate new
delayed refs.
However we call btrfs_qgroup_prepare_account_extents() too early, before
commit_fs_roots().
This makes the "old_roots" for newly generated extents are always NULL.
For freeing extent case, this makes both new_roots and old_roots to be
empty, while correct old_roots should not be empty.
This causing qgroup numbers not decreased correctly.
[FIX]
Modify the timing of calling btrfs_qgroup_prepare_account_extents() to
just before btrfs_qgroup_account_extents(), and add needed delayed_refs
handler.
So qgroup can handle inode_map mount options correctly.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have already assigned q from bdev_get_queue() so use it.
And rearrange the code for better view.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is fixing code pieces where we use div_u64 when passing a u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 3d8da67817 ("Btrfs: fix divide error upon chunk's stripe_len")
changed stripe_len in struct map_lookup to u64, but didn't update
stripe_len in struct scrub_parity.
This updates the type and switches to div64_u64_rem to match u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that scrub can fix data errors with the help of parity for raid56
profile, repair during read is able to as well.
Although the mirror num in raid56 scenario has different meanings, i.e.
0 or 1: read data directly
> 1: do recover with parity,
it could be fit into how we repair bad block during read.
The trick is to use BTRFS_MAP_READ instead of BTRFS_MAP_WRITE to get the
device and position on it.
Cc: David Sterba <dsterba@suse.cz>
Tested-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a helper to clear whole page, with a arch-specific optimized
code. The replaced cases do not seem to be in performace critical code,
but we still might get some percent gain.
Signed-off-by: David Sterba <dsterba@suse.com>
scrub_setup_recheck_block() calls btrfs_map_sblock() and then accesses
bbio without protection of bio_counter.
This can lead to use-after-free if racing with dev replace cancel.
Fix it by increasing bio_counter before calling btrfs_map_sblock() and
decreasing the bio_counter when corresponding recover is finished.
Cc: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When raid56 dev-replace is cancelled by running scrub, we will free
target device without waiting for in-flight bios, causing the following
NULL pointer deference or general protection failure.
BUG: unable to handle kernel NULL pointer dereference at 00000000000005e0
IP: generic_make_request_checks+0x4d/0x610
CPU: 1 PID: 11676 Comm: kworker/u4:14 Tainted: G O 4.11.0-rc2 #72
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Workqueue: btrfs-endio-raid56 btrfs_endio_raid56_helper [btrfs]
task: ffff88002875b4c0 task.stack: ffffc90001334000
RIP: 0010:generic_make_request_checks+0x4d/0x610
Call Trace:
? generic_make_request+0xc7/0x360
generic_make_request+0x24/0x360
? generic_make_request+0xc7/0x360
submit_bio+0x64/0x120
? page_in_rbio+0x4d/0x80 [btrfs]
? rbio_orig_end_io+0x80/0x80 [btrfs]
finish_rmw+0x3f4/0x540 [btrfs]
validate_rbio_for_rmw+0x36/0x40 [btrfs]
raid_rmw_end_io+0x7a/0x90 [btrfs]
bio_endio+0x56/0x60
end_workqueue_fn+0x3c/0x40 [btrfs]
btrfs_scrubparity_helper+0xef/0x620 [btrfs]
btrfs_endio_raid56_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
RIP: generic_make_request_checks+0x4d/0x610 RSP: ffffc90001337bb8
In btrfs_dev_replace_finishing(), we will call
btrfs_rm_dev_replace_blocked() to wait bios before destroying the target
device when scrub is finished normally.
However when dev-replace is aborted, either due to error or cancelled by
scrub, we didn't wait for bios, this can lead to use-after-free if there
are bios holding the target device.
Furthermore, for raid56 scrub, at least 2 places are calling
btrfs_map_sblock() without protection of bio_counter, leading to the
problem.
This patch fixes the problem:
1) Wait for bio_counter before freeing target device when canceling
replace
2) When calling btrfs_map_sblock() for raid56, use bio_counter to
protect the call.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the following situation, scrub will calculate wrong parity to
overwrite the correct one:
RAID5 full stripe:
Before
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0x0000 (Bad) | 0xcdcd | 0x0000 |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
After scrubbing dev3 only:
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0xcdcd (Good) | 0xcdcd | 0xcdcd (Bad) |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
The reason is that after raid56 read rebuild rbio->stripe_pages are all
correctly recovered (0xcd for data stripes).
However when we check and repair parity in
scrub_parity_check_and_repair(), we will append pages in sparity->spages
list to rbio->bio_pages[], which contains old on-disk data.
And when we submit parity data to disk, we calculate parity using
rbio->bio_pages[] first, if rbio->bio_pages[] not found, then fallback
to rbio->stripe_pages[].
The patch fix it by not appending pages from sparity->spages.
So finish_parity_scrub() will use rbio->stripe_pages[] which is correct.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Newly introduced qgroup reserved space trace points are normally nested
into several common qgroup operations.
While some other trace points are not well placed to co-operate with
them, causing confusing output.
This patch re-arrange trace_btrfs_qgroup_release_data() and
trace_btrfs_qgroup_free_delayed_ref() trace points so they are triggered
before reserved space ones.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce the following trace points:
qgroup_update_reserve
qgroup_meta_reserve
These trace points are handy to trace qgroup reserve space related
problems.
Also export btrfs_qgroup structure, as now we directly pass btrfs_qgroup
structure to trace points, so that structure needs to be exported.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In raid56 scenario, after trying parity recovery, we didn't set
mirror_num for btrfs_bio with failed mirror_num, hence
end_bio_extent_readpage() will report a random mirror_num in dmesg
log.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Scrub repairs data by the unit called scrub_block, which may contain
several pages. Scrub always tries to look up a good copy of a whole
block, but if there's no such copy, it tries to do repair page by page.
If we don't set page's io_error when checking this bad copy, in the last
step, we may skip this page when repairing bad copy from good copy.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several operations, usually started from ioctls, that cannot
run concurrently. The status is tracked in
mutually_exclusive_operation_running as an atomic_t. We can easily track
the status as one of the per-filesystem flag bits with same
synchronization guarantees.
The conversion replaces:
* atomic_xchg(..., 1) -> test_and_set_bit(FLAG, ...)
* atomic_set(..., 0) -> clear_bit(FLAG, ...)
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are facing the same problem with EDQUOT which was experienced with
ENOSPC. Not sure if we require a full ticketing system such as ENOSPC, but
here is a quick fix, which may be too big a hammer.
Quotas are reserved during the start of an operation, incrementing
qg->reserved. However, it is written to disk in a commit_transaction
which could take as long as commit_interval. In the meantime there
could be deletions which are not accounted for because deletions are
accounted for only while committed (free_refroot). So, when we get
a EDQUOT flush the data to disk and try again.
This fixes fstests btrfs/139.
Here is a sample script which shows this issue.
DEVICE=/dev/vdb
MOUNTPOINT=/mnt
TESTVOL=$MOUNTPOINT/tmp
QUOTA=5
PROG=btrfs
DD_BS="4k"
DD_COUNT="256"
RUN_TIMES=5000
mkfs.btrfs -f $DEVICE
mount -o commit=240 $DEVICE $MOUNTPOINT
$PROG subvolume create $TESTVOL
$PROG quota enable $TESTVOL
$PROG qgroup limit ${QUOTA}G $TESTVOL
typeset -i DD_RUN_GOOD
typeset -i QUOTA
function _check_cmd() {
if [[ ${?} > 0 ]]; then
echo -n "$(date) E: Running previous command"
echo ${*}
echo "Without sync"
$PROG qgroup show -pcreFf ${TESTVOL}
echo "With sync"
$PROG qgroup show -pcreFf --sync ${TESTVOL}
exit 1
fi
}
while true; do
DD_RUN_GOOD=$RUN_TIMES
while (( ${DD_RUN_GOOD} != 0 )); do
dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}
_check_cmd "dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}"
DD_RUN_GOOD=(${DD_RUN_GOOD}-1)
done
$PROG qgroup show -pcref $TESTVOL
echo "----------- Cleanup ---------- "
rm $TESTVOL/quotatest*
done
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Define the SEQ_LAST macro to replace (u64)-1 in places where said
value triggers a special-case ref search behavior.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace hardcoded numeric values for __merge_refs 'mode' argument
with descriptive constants.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The members have been effectively unused since "Btrfs: rework qgroup
accounting" (fcebe4562d), there's no substitute for
assert_qgroups_uptodate so it's removed as well.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name is misleading and the local variable serves no purpose.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the global radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, because readahead is optional and not on any
critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the per-device radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, same as an allocation above anyway, but also
because readahead is optional and not on any critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Code cleanup.
The code block is for !(*flags & MS_RDONLY). We don't need
to check it again.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We also don't bother to flush free space cache while with free space
tree.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>