This adds a file called 'radix' in the debugfs directory for the
guest, which when read gives all of the valid leaf PTEs in the
partition-scoped radix tree for a radix guest, in human-readable
format. It is analogous to the existing 'htab' file which dumps
the HPT entries for a HPT guest.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the code for handling hypervisor instruction page faults
passes 0 for the flags indicating the type of fault, which is OK in
the usual case that the page is not mapped in the partition-scoped
page tables. However, there are other causes for hypervisor
instruction page faults, such as not being to update a reference
(R) or change (C) bit. The cause is indicated in bits in HSRR1,
including a bit which indicates that the fault is due to not being
able to write to a page (for example to update an R or C bit).
Not handling these other kinds of faults correctly can lead to a
loop of continual faults without forward progress in the guest.
In order to handle these faults better, this patch constructs a
"DSISR-like" value from the bits which DSISR and SRR1 (for a HISI)
have in common, and passes it to kvmppc_book3s_hv_page_fault() so
that it knows what caused the fault.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This creates an alternative guest entry/exit path which is used for
radix guests on POWER9 systems when we have indep_threads_mode=Y. In
these circumstances there is exactly one vcpu per vcore and there is
no coordination required between vcpus or vcores; the vcpu can enter
the guest without needing to synchronize with anything else.
The new fast path is implemented almost entirely in C in book3s_hv.c
and runs with the MMU on until the guest is entered. On guest exit
we use the existing path until the point where we are committed to
exiting the guest (as distinct from handling an interrupt in the
low-level code and returning to the guest) and we have pulled the
guest context from the XIVE. At that point we check a flag in the
stack frame to see whether we came in via the old path and the new
path; if we came in via the new path then we go back to C code to do
the rest of the process of saving the guest context and restoring the
host context.
The C code is split into separate functions for handling the
OS-accessible state and the hypervisor state, with the idea that the
latter can be replaced by a hypercall when we implement nested
virtualization.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix CONFIG_ALTIVEC=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently kvmppc_handle_exit_hv() is called with the vcore lock held
because it is called within a for_each_runnable_thread loop.
However, we already unlock the vcore within kvmppc_handle_exit_hv()
under certain circumstances, and this is safe because (a) any vcpus
that become runnable and are added to the runnable set by
kvmppc_run_vcpu() have their vcpu->arch.trap == 0 and can't actually
run in the guest (because the vcore state is VCORE_EXITING), and
(b) for_each_runnable_thread is safe against addition or removal
of vcpus from the runnable set.
Therefore, in order to simplify things for following patches, let's
drop the vcore lock in the for_each_runnable_thread loop, so
kvmppc_handle_exit_hv() gets called without the vcore lock held.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This is based on a patch by Suraj Jitindar Singh.
This moves the code in book3s_hv_rmhandlers.S that generates an
external, decrementer or privileged doorbell interrupt just before
entering the guest to C code in book3s_hv_builtin.c. This is to
make future maintenance and modification easier. The algorithm
expressed in the C code is almost identical to the previous
algorithm.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a mode where the vcore scheduling logic in HV KVM limits itself
to scheduling only virtual cores from the same VM on any given physical
core. This is enabled via a new module parameter on the kvm-hv module
called "one_vm_per_core". For this to work on POWER9, it is necessary to
set indep_threads_mode=N. (On POWER8, hardware limitations mean that KVM
is never in independent threads mode, regardless of the indep_threads_mode
setting.)
Thus the settings needed for this to work are:
1. The host is in SMT1 mode.
2. On POWER8, the host is not in 2-way or 4-way static split-core mode.
3. On POWER9, the indep_threads_mode parameter is N.
4. The one_vm_per_core parameter is Y.
With these settings, KVM can run up to 4 vcpus on a core at the same
time on POWER9, or up to 8 vcpus on POWER8 (depending on the guest
threading mode), and will ensure that all of the vcpus belong to the
same VM.
This is intended for use in security-conscious settings where users are
concerned about possible side-channel attacks between threads which could
perhaps enable one VM to attack another VM on the same core, or the host.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- An implementation for the newly added hv_ops->flush() for the OPAL hvc
console driver backends, I forgot to apply this after merging the hvc driver
changes before the merge window.
- Enable all PCI bridges at boot on powernv, to avoid races when multiple
children of a bridge try to enable it simultaneously. This is a workaround
until the PCI core can be enhanced to fix the races.
- A fix to query PowerVM for the correct system topology at boot before
initialising sched domains, seen in some configurations to cause broken
scheduling etc.
- A fix for pte_access_permitted() on "nohash" platforms.
- Two commits to fix SIGBUS when using remap_pfn_range() seen on Power9 due to
a workaround when using the nest MMU (GPUs, accelerators).
- Another fix to the VFIO code used by KVM, the previous fix had some bugs
which caused guests to not start in some configurations.
- A handful of other minor fixes.
Thanks to:
Aneesh Kumar K.V, Benjamin Herrenschmidt, Christophe Leroy, Hari Bathini, Luke
Dashjr, Mahesh Salgaonkar, Nicholas Piggin, Paul Mackerras, Srikar Dronamraju.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAlt//10THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgLUGD/9y/MPrs+V2lNFhxP+l1jO4Ro0v8DPI
vARjqq06WfppgQgSS1dvWfzLaMFbGe8wPRfL0T1xMOXCZg8Ts/HrgxVBVFYcv6/Q
xBaU5bKztg6HKQbwwO+8B/gdTA3hO7yFVux6JGwsGO5Ebl8Q3UDOdbvYX6XTj3H8
rdiicle9LaI7qodC8bxlBo1Be0YKEW0O/ag179sxXzozzvoPIyFpeX6FL1sAft++
XlQS1MHu4hErSM2rbmyoFCm+SmyRt3CD0NTVmNd2cgw5XexPOBFlnsdgpaK1jJFc
CYu1chP83E91ol1/8NAPkcmPWvP6MGyoqOl75RghooY2D1IJ2GtLKoz2Dvc53ay2
ZlIpMyc2CYIa55Mj18tOV/NbGbh0Lf0Ta++BxqxbcCDt5fq0VxHkoDPqBgWh/tdp
Po7oQc7U2VTKKC3wiLr//nSHpgtSTAWtucDt7oT7GdP8+EMxUZ8teBFIfTkwfuD2
plroEmcYuRD3beI4FAG/iCp5POOCsnHLkKVDl7tyQPl3Yvu8hvyLY9gBS9RN4Unt
/z94YFJtz7UD+VP7jDaPiQS26y0WEJfW8ml0tNxMZVBdksZLPIPN0/EU/04V0jWf
GxynzKMhElxC67tK/Eb43EGiLEZAlbEnJxoOtiCnL1MK+OIJPjg6e7o6qlsmaa+Y
zkXVpxLtkq0OoQ==
=1AUa
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- An implementation for the newly added hv_ops->flush() for the OPAL
hvc console driver backends, I forgot to apply this after merging the
hvc driver changes before the merge window.
- Enable all PCI bridges at boot on powernv, to avoid races when
multiple children of a bridge try to enable it simultaneously. This
is a workaround until the PCI core can be enhanced to fix the races.
- A fix to query PowerVM for the correct system topology at boot before
initialising sched domains, seen in some configurations to cause
broken scheduling etc.
- A fix for pte_access_permitted() on "nohash" platforms.
- Two commits to fix SIGBUS when using remap_pfn_range() seen on Power9
due to a workaround when using the nest MMU (GPUs, accelerators).
- Another fix to the VFIO code used by KVM, the previous fix had some
bugs which caused guests to not start in some configurations.
- A handful of other minor fixes.
Thanks to: Aneesh Kumar K.V, Benjamin Herrenschmidt, Christophe Leroy,
Hari Bathini, Luke Dashjr, Mahesh Salgaonkar, Nicholas Piggin, Paul
Mackerras, Srikar Dronamraju.
* tag 'powerpc-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mce: Fix SLB rebolting during MCE recovery path.
KVM: PPC: Book3S: Fix guest DMA when guest partially backed by THP pages
powerpc/mm/radix: Only need the Nest MMU workaround for R -> RW transition
powerpc/mm/books3s: Add new pte bit to mark pte temporarily invalid.
powerpc/nohash: fix pte_access_permitted()
powerpc/topology: Get topology for shared processors at boot
powerpc64/ftrace: Include ftrace.h needed for enable/disable calls
powerpc/powernv/pci: Work around races in PCI bridge enabling
powerpc/fadump: cleanup crash memory ranges support
powerpc/powernv: provide a console flush operation for opal hvc driver
powerpc/traps: Avoid rate limit messages from show unhandled signals
powerpc/64s: Fix PACA_IRQ_HARD_DIS accounting in idle_power4()
this_cpu_disable_ftrace and this_cpu_enable_ftrace are inlines in
ftrace.h Without it included, the build fails.
Fixes: a4bc64d305 ("powerpc64/ftrace: Disable ftrace during kvm entry/exit")
Cc: stable@vger.kernel.org # v4.18+
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Acked-by: Naveen N. Rao <naveen.n.rao at linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
Notable changes:
- A fix for a bug in our page table fragment allocator, where a page table page
could be freed and reallocated for something else while still in use, leading
to memory corruption etc. The fix reuses pt_mm in struct page (x86 only) for
a powerpc only refcount.
- Fixes to our pkey support. Several are user-visible changes, but bring us in
to line with x86 behaviour and/or fix outright bugs. Thanks to Florian Weimer
for reporting many of these.
- A series to improve the hvc driver & related OPAL console code, which have
been seen to cause hardlockups at times. The hvc driver changes in particular
have been in linux-next for ~month.
- Increase our MAX_PHYSMEM_BITS to 128TB when SPARSEMEM_VMEMMAP=y.
- Remove Power8 DD1 and Power9 DD1 support, neither chip should be in use
anywhere other than as a paper weight.
- An optimised memcmp implementation using Power7-or-later VMX instructions
- Support for barrier_nospec on some NXP CPUs.
- Support for flushing the count cache on context switch on some IBM CPUs
(controlled by firmware), as a Spectre v2 mitigation.
- A series to enhance the information we print on unhandled signals to bring it
into line with other arches, including showing the offending VMA and dumping
the instructions around the fault.
Thanks to:
Aaro Koskinen, Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Alexey
Spirkov, Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar,
Arnd Bergmann, Bartosz Golaszewski, Benjamin Herrenschmidt, Bharat Bhushan,
Bjoern Noetel, Boqun Feng, Breno Leitao, Bryant G. Ly, Camelia Groza,
Christophe Leroy, Christoph Hellwig, Cyril Bur, Dan Carpenter, Daniel Klamt,
Darren Stevens, Dave Young, David Gibson, Diana Craciun, Finn Thain, Florian
Weimer, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven, Geoff Levand,
Guenter Roeck, Gustavo Romero, Haren Myneni, Hari Bathini, Joel Stanley,
Jonathan Neuschäfer, Kees Cook, Madhavan Srinivasan, Mahesh Salgaonkar, Markus
Elfring, Mathieu Malaterre, Mauro S. M. Rodrigues, Michael Hanselmann, Michael
Neuling, Michael Schmitz, Mukesh Ojha, Murilo Opsfelder Araujo, Nicholas
Piggin, Parth Y Shah, Paul Mackerras, Paul Menzel, Ram Pai, Randy Dunlap,
Rashmica Gupta, Reza Arbab, Rodrigo R. Galvao, Russell Currey, Sam Bobroff,
Scott Wood, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stan Johnson,
Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain, Vasant Hegde, Venkat Rao
B, zhong jiang.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAlt2O6cTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgC7hD/4+cj796Df7GsVsIMxzQm7SS9dklIdO
JuKj2Nr5HRzTH59jWlXukLG9mfTNCFgFJB4gEpK1ArDOTcHTCI9RRsLZTZ/kum66
7Pd+7T40dLYXB5uecuUs0vMXa2fI3syKh1VLzACSXv3Dh9BBIKQBwW/aD2eww4YI
1fS5LnXZ2PSxfr6KNAC6ogZnuaiD0sHXOYrtGHq+S/TFC7+Z6ySa6+AnPS+hPVoo
/rHDE1Khr66aj7uk+PP2IgUrCFj6Sbj6hTVlS/iAuwbMjUl9ty6712PmvX9x6wMZ
13hJQI+g6Ci+lqLKqmqVUpXGSr6y4NJGPS/Hko4IivBTJApI+qV/tF2H9nxU+6X0
0RqzsMHPHy13n2torA1gC7ttzOuXPI4hTvm6JWMSsfmfjTxLANJng3Dq3ejh6Bqw
76EMowpDLexwpy7/glPpqNdsP4ySf2Qm8yq3mR7qpL4m3zJVRGs11x+s5DW8NKBL
Fl5SqZvd01abH+sHwv6NLaLkEtayUyohxvyqu2RU3zu5M5vi7DhqstybTPjKPGu0
icSPh7b2y10WpOUpC6lxpdi8Me8qH47mVc/trZ+SpgBrsuEmtJhGKszEnzRCOqos
o2IhYHQv3lQv86kpaAFQlg/RO+Lv+Lo5qbJ209V+hfU5nYzXpEulZs4dx1fbA+ze
fK8GEh+u0L4uJg==
=PzRz
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- A fix for a bug in our page table fragment allocator, where a page
table page could be freed and reallocated for something else while
still in use, leading to memory corruption etc. The fix reuses
pt_mm in struct page (x86 only) for a powerpc only refcount.
- Fixes to our pkey support. Several are user-visible changes, but
bring us in to line with x86 behaviour and/or fix outright bugs.
Thanks to Florian Weimer for reporting many of these.
- A series to improve the hvc driver & related OPAL console code,
which have been seen to cause hardlockups at times. The hvc driver
changes in particular have been in linux-next for ~month.
- Increase our MAX_PHYSMEM_BITS to 128TB when SPARSEMEM_VMEMMAP=y.
- Remove Power8 DD1 and Power9 DD1 support, neither chip should be in
use anywhere other than as a paper weight.
- An optimised memcmp implementation using Power7-or-later VMX
instructions
- Support for barrier_nospec on some NXP CPUs.
- Support for flushing the count cache on context switch on some IBM
CPUs (controlled by firmware), as a Spectre v2 mitigation.
- A series to enhance the information we print on unhandled signals
to bring it into line with other arches, including showing the
offending VMA and dumping the instructions around the fault.
Thanks to: Aaro Koskinen, Akshay Adiga, Alastair D'Silva, Alexey
Kardashevskiy, Alexey Spirkov, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Bartosz Golaszewski,
Benjamin Herrenschmidt, Bharat Bhushan, Bjoern Noetel, Boqun Feng,
Breno Leitao, Bryant G. Ly, Camelia Groza, Christophe Leroy, Christoph
Hellwig, Cyril Bur, Dan Carpenter, Daniel Klamt, Darren Stevens, Dave
Young, David Gibson, Diana Craciun, Finn Thain, Florian Weimer,
Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven, Geoff Levand,
Guenter Roeck, Gustavo Romero, Haren Myneni, Hari Bathini, Joel
Stanley, Jonathan Neuschäfer, Kees Cook, Madhavan Srinivasan, Mahesh
Salgaonkar, Markus Elfring, Mathieu Malaterre, Mauro S. M. Rodrigues,
Michael Hanselmann, Michael Neuling, Michael Schmitz, Mukesh Ojha,
Murilo Opsfelder Araujo, Nicholas Piggin, Parth Y Shah, Paul
Mackerras, Paul Menzel, Ram Pai, Randy Dunlap, Rashmica Gupta, Reza
Arbab, Rodrigo R. Galvao, Russell Currey, Sam Bobroff, Scott Wood,
Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stan Johnson, Thiago
Jung Bauermann, Tyrel Datwyler, Vaibhav Jain, Vasant Hegde, Venkat
Rao, zhong jiang"
* tag 'powerpc-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (234 commits)
powerpc/mm/book3s/radix: Add mapping statistics
powerpc/uaccess: Enable get_user(u64, *p) on 32-bit
powerpc/mm/hash: Remove unnecessary do { } while(0) loop
powerpc/64s: move machine check SLB flushing to mm/slb.c
powerpc/powernv/idle: Fix build error
powerpc/mm/tlbflush: update the mmu_gather page size while iterating address range
powerpc/mm: remove warning about ‘type’ being set
powerpc/32: Include setup.h header file to fix warnings
powerpc: Move `path` variable inside DEBUG_PROM
powerpc/powermac: Make some functions static
powerpc/powermac: Remove variable x that's never read
cxl: remove a dead branch
powerpc/powermac: Add missing include of header pmac.h
powerpc/kexec: Use common error handling code in setup_new_fdt()
powerpc/xmon: Add address lookup for percpu symbols
powerpc/mm: remove huge_pte_offset_and_shift() prototype
powerpc/lib: Use patch_site to patch copy_32 functions once cache is enabled
powerpc/pseries: Fix endianness while restoring of r3 in MCE handler.
powerpc/fadump: merge adjacent memory ranges to reduce PT_LOAD segements
powerpc/fadump: handle crash memory ranges array index overflow
...
asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 1e175d2 ("KVM: PPC: Book3S HV: Pack VCORE IDs to access full
VCPU ID space", 2018-07-25) added code that uses kvm->arch.emul_smt_mode
before any VCPUs are created. However, userspace can change
kvm->arch.emul_smt_mode at any time up until the first VCPU is created.
Hence it is (theoretically) possible for the check in
kvmppc_core_vcpu_create_hv() to race with another userspace thread
changing kvm->arch.emul_smt_mode.
This fixes it by moving the test that uses kvm->arch.emul_smt_mode into
the block where kvm->lock is held.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It is not currently possible to create the full number of possible
VCPUs (KVM_MAX_VCPUS) on Power9 with KVM-HV when the guest uses fewer
threads per core than its core stride (or "VSMT mode"). This is
because the VCORE ID and XIVE offsets grow beyond KVM_MAX_VCPUS
even though the VCPU ID is less than KVM_MAX_VCPU_ID.
To address this, "pack" the VCORE ID and XIVE offsets by using
knowledge of the way the VCPU IDs will be used when there are fewer
guest threads per core than the core stride. The primary thread of
each core will always be used first. Then, if the guest uses more than
one thread per core, these secondary threads will sequentially follow
the primary in each core.
So, the only way an ID above KVM_MAX_VCPUS can be seen, is if the
VCPUs are being spaced apart, so at least half of each core is empty,
and IDs between KVM_MAX_VCPUS and (KVM_MAX_VCPUS * 2) can be mapped
into the second half of each core (4..7, in an 8-thread core).
Similarly, if IDs above KVM_MAX_VCPUS * 2 are seen, at least 3/4 of
each core is being left empty, and we can map down into the second and
third quarters of each core (2, 3 and 5, 6 in an 8-thread core).
Lastly, if IDs above KVM_MAX_VCPUS * 4 are seen, only the primary
threads are being used and 7/8 of the core is empty, allowing use of
the 1, 5, 3 and 7 thread slots.
(Strides less than 8 are handled similarly.)
This allows the VCORE ID or offset to be calculated quickly from the
VCPU ID or XIVE server numbers, without access to the VCPU structure.
[paulus@ozlabs.org - tidied up comment a little, changed some WARN_ONCE
to pr_devel, wrapped line, fixed id check.]
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The constants are 64bit but not explicitly declared UL resulting
in sparse warnings. Fix this by declaring the constants UL.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The call to of_find_compatible_node() is returning a pointer with
incremented refcount so it must be explicitly decremented after the
last use. As here it is only being used for checking of node presence
but the result is not actually used in the success path it can be
dropped immediately.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Fixes: commit f725758b89 ("KVM: PPC: Book3S HV: Use OPAL XICS emulation on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 DD1 was never a product. It is no longer supported by upstream
firmware, and it is not effectively supported in Linux due to lack of
testing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Remove arch_make_huge_pte() entirely]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- Additional struct_size() conversions (Matthew, Kees)
- Explicitly reported overflow fixes (Silvio, Kees)
- Add missing kvcalloc() function (Kees)
- Treewide conversions of allocators to use either 2-factor argument
variant when available, or array_size() and array3_size() as needed (Kees)
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsgVtMWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJhsJEACLYe2EbwLFJz7emOT1KUGK5R1b
oVxJog0893WyMqgk9XBlA2lvTBRBYzR3tzsadfYo87L3VOBzazUv0YZaweJb65sF
bAvxW3nY06brhKKwTRed1PrMa1iG9R63WISnNAuZAq7+79mN6YgW4G6YSAEF9lW7
oPJoPw93YxcI8JcG+dA8BC9w7pJFKooZH4gvLUSUNl5XKr8Ru5YnWcV8F+8M4vZI
EJtXFmdlmxAledUPxTSCIojO8m/tNOjYTreBJt9K1DXKY6UcgAdhk75TRLEsp38P
fPvMigYQpBDnYz2pi9ourTgvZLkffK1OBZ46PPt8BgUZVf70D6CBg10vK47KO6N2
zreloxkMTrz5XohyjfNjYFRkyyuwV2sSVrRJqF4dpyJ4NJQRjvyywxIP4Myifwlb
ONipCM1EjvQjaEUbdcqKgvlooMdhcyxfshqJWjHzXB6BL22uPzq5jHXXugz8/ol8
tOSM2FuJ2sBLQso+szhisxtMd11PihzIZK9BfxEG3du+/hlI+2XgN7hnmlXuA2k3
BUW6BSDhab41HNd6pp50bDJnL0uKPWyFC6hqSNZw+GOIb46jfFcQqnCB3VZGCwj3
LH53Be1XlUrttc/NrtkvVhm4bdxtfsp4F7nsPFNDuHvYNkalAVoC3An0BzOibtkh
AtfvEeaPHaOyD8/h2Q==
=zUUp
-----END PGP SIGNATURE-----
Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull more overflow updates from Kees Cook:
"The rest of the overflow changes for v4.18-rc1.
This includes the explicit overflow fixes from Silvio, further
struct_size() conversions from Matthew, and a bug fix from Dan.
But the bulk of it is the treewide conversions to use either the
2-factor argument allocators (e.g. kmalloc(a * b, ...) into
kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a *
b) into vmalloc(array_size(a, b)).
Coccinelle was fighting me on several fronts, so I've done a bunch of
manual whitespace updates in the patches as well.
Summary:
- Error path bug fix for overflow tests (Dan)
- Additional struct_size() conversions (Matthew, Kees)
- Explicitly reported overflow fixes (Silvio, Kees)
- Add missing kvcalloc() function (Kees)
- Treewide conversions of allocators to use either 2-factor argument
variant when available, or array_size() and array3_size() as needed
(Kees)"
* tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits)
treewide: Use array_size in f2fs_kvzalloc()
treewide: Use array_size() in f2fs_kzalloc()
treewide: Use array_size() in f2fs_kmalloc()
treewide: Use array_size() in sock_kmalloc()
treewide: Use array_size() in kvzalloc_node()
treewide: Use array_size() in vzalloc_node()
treewide: Use array_size() in vzalloc()
treewide: Use array_size() in vmalloc()
treewide: devm_kzalloc() -> devm_kcalloc()
treewide: devm_kmalloc() -> devm_kmalloc_array()
treewide: kvzalloc() -> kvcalloc()
treewide: kvmalloc() -> kvmalloc_array()
treewide: kzalloc_node() -> kcalloc_node()
treewide: kzalloc() -> kcalloc()
treewide: kmalloc() -> kmalloc_array()
mm: Introduce kvcalloc()
video: uvesafb: Fix integer overflow in allocation
UBIFS: Fix potential integer overflow in allocation
leds: Use struct_size() in allocation
Convert intel uncore to struct_size
...
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
regions for vGIC redistributor
* s390: cleanups for nested, clock handling, crypto, storage keys and
control register bits
* x86: many bugfixes, implement more Hyper-V super powers,
implement lapic_timer_advance_ns even when the LAPIC timer
is emulated using the processor's VMX preemption timer. Two
security-related bugfixes at the top of the branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
+5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
=H5zI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small update for KVM:
ARM:
- lazy context-switching of FPSIMD registers on arm64
- "split" regions for vGIC redistributor
s390:
- cleanups for nested
- clock handling
- crypto
- storage keys
- control register bits
x86:
- many bugfixes
- implement more Hyper-V super powers
- implement lapic_timer_advance_ns even when the LAPIC timer is
emulated using the processor's VMX preemption timer.
- two security-related bugfixes at the top of the branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
kvm: fix typo in flag name
kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
KVM: x86: introduce linear_{read,write}_system
kvm: nVMX: Enforce cpl=0 for VMX instructions
kvm: nVMX: Add support for "VMWRITE to any supported field"
kvm: nVMX: Restrict VMX capability MSR changes
KVM: VMX: Optimize tscdeadline timer latency
KVM: docs: nVMX: Remove known limitations as they do not exist now
KVM: docs: mmu: KVM support exposing SLAT to guests
kvm: no need to check return value of debugfs_create functions
kvm: Make VM ioctl do valloc for some archs
kvm: Change return type to vm_fault_t
KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
KVM: introduce kvm_make_vcpus_request_mask() API
KVM: x86: hyperv: do rep check for each hypercall separately
...
Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live
patching again.
- Add support for patching barrier_nospec in copy_from_user() and syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre.
- Several series optimising various parts of the 32-bit code from Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"),
which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and
a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and
fs/proc/task_mmu.c, which cleans up some details around pkey support. It was
ack'ed/reviewed by Ingo & Dave and has been in next for several weeks.
Thanks to:
Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave
Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren
Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf,
Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu
Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi
Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher
Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith,
Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang,
Yisheng Xie, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJbGQKBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBq
TRAAioK7rz5xYMkxaM3Ng3ybobEeNAwQqOolz98xvmnB9SfDWNuc99vf8cGu0/fQ
zc8AKZ5RcnwipOjyGlxW9oa1ZhVq0xtYnQPiYLEKMdLQmh5D+C7+KpvAd1UElweg
ub40/xDySWfMujfuMSF9JDCWPIXyojt4Xg5nJKIVRrAm/3YMe/+i5Am7NWHuMCEb
aQmZtlYW5Mz81XY0968hjpUO6eKFRmsaM7yFAhGTXx6+oLRpGj1PZB4AwdRIKS2L
Ak7q/VgxtE4W+s3a0GK2s+eXIhGKeFuX9AVnx3nti+8/K1OqrqhDcLMUC/9JpCpv
EvOtO7dxPnZujHjdu4Eai/xNoo4h6zRy7bWqve9LoBM40CP5jljKzu1lwqqb5yO0
jC7/aXhgiSIxxcRJLjoI/TYpZPu40MifrkydmczykdPyPCnMIWEJDcj4KsRL/9Y8
9SSbJzRNC/SgQNTbUYPZFFi6G0QaMmlcbCb628k8QT+Gn3Xkdf/ZtxzqEyoF4Irq
46kFBsiSSK4Bu0rVlcUtJQLgdqytWULO6NKEYnD67laxYcgQd8pGFQ8SjZhRZLgU
q5LA3HIWhoAI4M0wZhOnKXO6JfiQ1UbO8gUJLsWsfF0Fk5KAcdm+4kb4jbI1H4Qk
Vol9WNRZwEllyaiqScZN9RuVVuH0GPOZeEH1dtWK+uWi0lM=
=ZlBf
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
live patching again.
- Add support for patching barrier_nospec in copy_from_user() and
syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu
Malaterre.
- Several series optimising various parts of the 32-bit code from
Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K"
("GEFanuc,C2K"), which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by
Steve, and a fix to our powernv cpuidle driver. Then there's a series
touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
been in next for several weeks.
Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"
* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
cpuidle: powernv: Fix promotion from snooze if next state disabled
powerpc: fix build failure by disabling attribute-alias warning in pci_32
ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
powerpc/pkeys: Detach execute_only key on !PROT_EXEC
powerpc/powernv: copy/paste - Mask SO bit in CR
powerpc: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove support for Marvell mv64x60 i2c controller
powerpc/boot: Remove support for Marvell MPSC serial controller
powerpc/embedded6xx: Remove C2K board support
powerpc/lib: optimise PPC32 memcmp
powerpc/lib: optimise 32 bits __clear_user()
powerpc/time: inline arch_vtime_task_switch()
powerpc/Makefile: set -mcpu=860 flag for the 8xx
powerpc: Implement csum_ipv6_magic in assembly
powerpc/32: Optimise __csum_partial()
powerpc/lib: Adjust .balign inside string functions for PPC32
...
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
This cleans up the error handling a lot, as this code will never get
hit.
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim KrÄmář" <rkrcmar@redhat.com>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: kvm-ppc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: kvm@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The radix guest code can has fewer restrictions about what context it
can run in, so move this flushing out of assembly and have it use the
Linux TLB flush implementations introduced previously.
This allows powerpc:tlbie trace events to be used.
This changes the tlbiel sequence to only execute RIC=2 flush once on
the first set flushed, then RIC=0 for the rest of the sets. The end
result of the flush should be unchanged. This matches the local PID
flush pattern that was introduced in a5998fcb92 ("powerpc/mm/radix:
Optimise tlbiel flush all case").
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch moves nip/ctr/lr/xer registers from scattered places in
kvm_vcpu_arch to pt_regs structure.
cr register is "unsigned long" in pt_regs and u32 in vcpu->arch.
It will need more consideration and may move in later patches.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Although Linux doesn't use PURR and SPURR ((Scaled) Processor
Utilization of Resources Register), other OSes depend on them.
On POWER8 they count at a rate depending on whether the VCPU is
idle or running, the activity of the VCPU, and the value in the
RWMR (Region-Weighting Mode Register). Hardware expects the
hypervisor to update the RWMR when a core is dispatched to reflect
the number of online VCPUs in the vcore.
This adds code to maintain a count in the vcore struct indicating
how many VCPUs are online. In kvmppc_run_core we use that count
to set the RWMR register on POWER8. If the core is split because
of a static or dynamic micro-threading mode, we use the value for
8 threads. The RWMR value is not relevant when the host is
executing because Linux does not use the PURR or SPURR register,
so we don't bother saving and restoring the host value.
For the sake of old userspace which does not set the KVM_REG_PPC_ONLINE
register, we set online to 1 if it was 0 at the time of a KVM_RUN
ioctl.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a new KVM_REG_PPC_ONLINE register which userspace can set
to 0 or 1 via the GET/SET_ONE_REG interface to indicate whether it
considers the VCPU to be offline (0), that is, not currently running,
or online (1). This will be used in a later patch to configure the
register which controls PURR and SPURR accumulation.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HV KVM guest entry/exit code adds the timebase offset
from the vcore struct to the timebase on guest entry, and subtracts
it on guest exit. Which is fine, except that it is possible for
userspace to change the offset using the SET_ONE_REG interface while
the vcore is running, as there is only one timebase offset per vcore
but potentially multiple VCPUs in the vcore. If that were to happen,
KVM would subtract a different offset on guest exit from that which
it had added on guest entry, leading to the timebase being out of sync
between cores in the host, which then leads to bad things happening
such as hangs and spurious watchdog timeouts.
To fix this, we add a new field 'tb_offset_applied' to the vcore struct
which stores the offset that is currently applied to the timebase.
This value is set from the vcore tb_offset field on guest entry, and
is what is subtracted from the timebase on guest exit. Since it is
zero when the timebase offset is not applied, we can simplify the
logic in kvmhv_start_timing and kvmhv_accumulate_time.
In addition, we had secondary threads reading the timebase while
running concurrently with code on the primary thread which would
eventually add or subtract the timebase offset from the timebase.
This occurred while saving or restoring the DEC register value on
the secondary threads. Although no specific incorrect behaviour has
been observed, this is a race which should be fixed. To fix it, we
move the DEC saving code to just before we call kvmhv_commence_exit,
and the DEC restoring code to after the point where we have waited
for the primary thread to switch the MMU context and add the timebase
offset. That way we are sure that the timebase contains the guest
timebase value in both cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
During guest entry/exit, we switch over to/from the guest MMU context
and we cannot take exceptions in the hypervisor code.
Since ftrace may be enabled and since it can result in us taking a trap,
disable ftrace by setting paca->ftrace_enabled to zero. There are two
paths through which we enter/exit a guest:
1. If we are the vcore runner, then we enter the guest via
__kvmppc_vcore_entry() and we disable ftrace around this. This is always
the case for Power9, and for the primary thread on Power8.
2. If we are a secondary thread in Power8, then we would be in nap due
to SMT being disabled. We are woken up by an IPI to enter the guest. In
this scenario, we enter the guest through kvm_start_guest(). We disable
ftrace at this point. In this scenario, ftrace would only get re-enabled
on the secondary thread when SMT is re-enabled (via start_secondary()).
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016 and no one
noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q Syndrome.
- A big series to make the allocation of our pacas (per cpu area), kernel page
tables, and per-cpu stacks NUMA aware when using the Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to:
Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy, Alistair Popple, Andy
Shevchenko, Aneesh Kumar K.V, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Christophe Leroy, Christophe Lombard, Cyril Bur, Daniel Axtens,
Dave Young, Finn Thain, Frederic Barrat, Gustavo Romero, Horia Geantă,
Jonathan Neuschäfer, Kees Cook, Larry Finger, Laurent Dufour, Laurent Vivier,
Logan Gunthorpe, Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus
Elfring, Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de
Oliveira, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher Boessenkool,
Simon Guo, Simon Horman, Stewart Smith, Sukadev Bhattiprolu, Suraj Jitindar
Singh, Thiago Jung Bauermann, Vaibhav Jain, Vaidyanathan Srinivasan, Vasant
Hegde, Wei Yongjun.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJayKxDExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYAr
JQ/6A9Xs4zHDn9OeT9esEIxciETqUlrP0Wp64c4JVC7EkG1E7xRDZ4Xb4m8R2nNt
9sPhtNO1yCtEk6kFQtPNB0N8v6pud4I6+aMcYnn+tP8mJRYQ4x9bYaF3Hw98IKmE
Kd6TglmsUQvh2GpwPiF93KpzzWu1HB2kZzzqJcAMTMh7C79Qz00BjrTJltzXB2jx
tJ+B4lVy8BeU8G5nDAzJEEwb5Ypkn8O40rS/lpAwVTYOBJ8Rbyq8Fj82FeREK9YO
4EGaEKPkC/FdzX7OJV3v2/nldCd8pzV471fAoGuBUhJiJBMBoBybcTHIdDex7LlL
zMLV1mUtGo8iolRPhL8iCH+GGifZz2WzstYCozz7hgIraWtc/frq9rZp6q0LdH/K
trk7UbPGlVb92ecWZVpZyEcsMzKrCgZqnAe9wRNh1uEKScEdzd/bmRaMhENUObRh
Hili6AVvmSKExpy7k2sZP/oUMaeC15/xz8Lk7l8a/iCkYhNmPYh5iSXM5+UKpcRT
FYOcO0o3DwXsN46Whow3nJ7TqAsDy9/ecPUG71JQi3ZrHnRrm8jxkn8MCG5pZ1Fi
KvKDxlg6RiJo3DF9/fSOpJUokvMwqBS5dJo4eh5eiDy94aBTqmBKFecvPxQm7a0L
l3uXCF/6JuXEvMukFjGBO4RiYhw8i+B2uKsh81XUh7HKrgE=
=HAB1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016
and no one noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory
on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on
Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs
files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q
Syndrome.
- A big series to make the allocation of our pacas (per cpu area),
kernel page tables, and per-cpu stacks NUMA aware when using the
Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to: Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy,
Alistair Popple, Andy Shevchenko, Aneesh Kumar K.V, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Cyril Bur, Daniel Axtens, Dave Young, Finn Thain, Frederic
Barrat, Gustavo Romero, Horia Geantă, Jonathan Neuschäfer, Kees Cook,
Larry Finger, Laurent Dufour, Laurent Vivier, Logan Gunthorpe,
Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus Elfring,
Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de Oliveira,
Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher
Boessenkool, Simon Guo, Simon Horman, Stewart Smith, Sukadev
Bhattiprolu, Suraj Jitindar Singh, Thiago Jung Bauermann, Vaibhav
Jain, Vaidyanathan Srinivasan, Vasant Hegde, Wei Yongjun"
* tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (207 commits)
powerpc/64s/idle: Fix restore of AMOR on POWER9 after deep sleep
powerpc/64s: Fix POWER9 DD2.2 and above in cputable features
powerpc/64s: Fix pkey support in dt_cpu_ftrs, add CPU_FTR_PKEY bit
powerpc/64s: Fix dt_cpu_ftrs to have restore_cpu clear unwanted LPCR bits
Revert "powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead"
powerpc: iomap.c: introduce io{read|write}64_{lo_hi|hi_lo}
powerpc: io.h: move iomap.h include so that it can use readq/writeq defs
cxl: Fix possible deadlock when processing page faults from cxllib
powerpc/hw_breakpoint: Only disable hw breakpoint if cpu supports it
powerpc/mm/radix: Update command line parsing for disable_radix
powerpc/mm/radix: Parse disable_radix commandline correctly.
powerpc/mm/hugetlb: initialize the pagetable cache correctly for hugetlb
powerpc/mm/radix: Update pte fragment count from 16 to 256 on radix
powerpc/mm/keys: Update documentation and remove unnecessary check
powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead
powerpc/64s/idle: Consolidate power9_offline_stop()/power9_idle_stop()
powerpc/powernv: Always stop secondaries before reboot/shutdown
powerpc: hard disable irqs in smp_send_stop loop
powerpc: use NMI IPI for smp_send_stop
powerpc/powernv: Fix SMT4 forcing idle code
...
arch/powerpc/kvm/book3s_hv.c: In function ‘kvmppc_h_set_mode’:
arch/powerpc/kvm/book3s_hv.c:745:8: error: implicit declaration of function ‘ppc_breakpoint_available’
if (!ppc_breakpoint_available())
^~~~~~~~~~~~~~~~~~~~~~~~
Fixes: 398e712c00 ("KVM: PPC: Book3S HV: Return error from h_set_mode(SET_DAWR) on POWER9")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
We no longer allocate lppacas in an array, so this patch removes the
1kB static alignment for the structure, and enforces the PAPR
alignment requirements at allocation time. We can not reduce the 1kB
allocation size however, due to existing KVM hypervisors.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change the paca array into an array of pointers to pacas. Allocate
pacas individually.
This allows flexibility in where the PACAs are allocated. Future work
will allocate them node-local. Platforms that don't have address limits
on PACAs would be able to defer PACA allocations until later in boot
rather than allocate all possible ones up-front then freeing unused.
This is slightly more overhead (one additional indirection) for cross
CPU paca references, but those aren't too common.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Return H_P2 on a h_set_mode(SET_DAWR) on POWER9 where the DAWR is
disabled.
Current Linux guests ignore this error, so they will silently not get
the DAWR (sigh). The same error code is being used by POWERVM in this
case.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Since commit fb1522e099 ("KVM: update to new mmu_notifier semantic
v2", 2017-08-31), the MMU notifier code in KVM no longer calls the
kvm_unmap_hva callback. This removes the PPC implementations of
kvm_unmap_hva().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Since commit 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing
for signals on guest entry"), if CONFIG_VIRT_CPU_ACCOUNTING_GEN is set, the
guest time is not accounted to guest time and user time, but instead to
system time.
This is because guest_enter()/guest_exit() are called while interrupts
are disabled and the tick counter cannot be updated between them.
To fix that, move guest_exit() after local_irq_enable(), and as
guest_enter() is called with IRQ disabled, call guest_enter_irqoff()
instead.
Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The current code for initializing the VRMA (virtual real memory area)
for HPT guests requires the page size of the backing memory to be one
of 4kB, 64kB or 16MB. With a radix host we have the possibility that
the backing memory page size can be 2MB or 1GB. In these cases, if the
guest switches to HPT mode, KVM will not initialize the VRMA and the
guest will fail to run.
In fact it is not necessary that the VRMA page size is the same as the
backing memory page size; any VRMA page size less than or equal to the
backing memory page size is acceptable. Therefore we now choose the
largest page size out of the set {4k, 64k, 16M} which is not larger
than the backing memory page size.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Running with CONFIG_DEBUG_ATOMIC_SLEEP reveals that HV KVM tries to
read guest memory, in order to emulate guest instructions, while
preempt is disabled and a vcore lock is held. This occurs in
kvmppc_handle_exit_hv(), called from post_guest_process(), when
emulating guest doorbell instructions on POWER9 systems, and also
when checking whether we have hit a hypervisor breakpoint.
Reading guest memory can cause a page fault and thus cause the
task to sleep, so we need to avoid reading guest memory while
holding a spinlock or when preempt is disabled.
To fix this, we move the preempt_enable() in kvmppc_run_core() to
before the loop that calls post_guest_process() for each vcore that
has just run, and we drop and re-take the vcore lock around the calls
to kvmppc_emulate_debug_inst() and kvmppc_emulate_doorbell_instr().
Dropping the lock is safe with respect to the iteration over the
runnable vcpus in post_guest_process(); for_each_runnable_thread
is actually safe to use locklessly. It is possible for a vcpu
to become runnable and add itself to the runnable_threads array
(code near the beginning of kvmppc_run_vcpu()) and then get included
in the iteration in post_guest_process despite the fact that it
has not just run. This is benign because vcpu->arch.trap and
vcpu->arch.ceded will be zero.
Cc: stable@vger.kernel.org # v4.13+
Fixes: 579006944e ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Symbolic macros are unintuitive and hard to read, whereas octal constants
are much easier to interpret. Replace macros for the basic permission
flags (user/group/other read/write/execute) with numeric constants
instead, across the whole powerpc tree.
Introducing a significant number of changes across the tree for no runtime
benefit isn't exactly desirable, but so long as these macros are still
used in the tree people will keep sending patches that add them. Not only
are they hard to parse at a glance, there are multiple ways of coming to
the same value (as you can see with 0444 and 0644 in this patch) which
hurts readability.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The prodded flag is only cleared at the beginning of H_CEDE,
so every time we have an escalation, we will cause the *next*
H_CEDE to return immediately.
Instead use a dedicated "irq_pending" flag to indicate that
a guest interrupt is pending for the VCPU. We don't reuse the
existing exception bitmap so as to avoid expensive atomic ops.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 chip versions starting with "Nimbus" v2.2 can support running
with some threads of a core in HPT mode and others in radix mode.
This means that we don't have to prohibit independent-threads mode
when running a HPT guest on a radix host, and we don't have to do any
of the synchronization between threads that was introduced in commit
c01015091a ("KVM: PPC: Book3S HV: Run HPT guests on POWER9 radix
hosts", 2017-10-19).
Rather than using up another CPU feature bit, we just do an
explicit test on the PVR (processor version register) at module
startup time to determine whether we have to take steps to avoid
having some threads in HPT mode and some in radix mode (so-called
"mixed mode"). We test for "Nimbus" (indicated by 0 or 1 in the top
nibble of the lower 16 bits) v2.2 or later, or "Cumulus" (indicated by
2 or 3 in that nibble) v1.1 or later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a register identifier for use with the one_reg interface
to allow the decrementer expiry time to be read and written by
userspace. The decrementer expiry time is in guest timebase units
and is equal to the sum of the decrementer and the guest timebase.
(The expiry time is used rather than the decrementer value itself
because the expiry time is not constantly changing, though the
decrementer value is, while the guest vcpu is not running.)
Without this, a guest vcpu migrated to a new host will see its
decrementer set to some random value. On POWER8 and earlier, the
decrementer is 32 bits wide and counts down at 512MHz, so the
guest vcpu will potentially see no decrementer interrupts for up
to about 4 seconds, which will lead to a stall. With POWER9, the
decrementer is now 56 bits side, so the stall can be much longer
(up to 2.23 years) and more noticeable.
To help work around the problem in cases where userspace has not been
updated to migrate the decrementer expiry time, we now set the
default decrementer expiry at vcpu creation time to the current time
rather than the maximum possible value. This should mean an
immediate decrementer interrupt when a migrated vcpu starts
running. In cases where the decrementer is 32 bits wide and more
than 4 seconds elapse between the creation of the vcpu and when it
first runs, the decrementer would have wrapped around to positive
values and there may still be a stall - but this is no worse than
the current situation. In the large-decrementer case, we are sure
to get an immediate decrementer interrupt (assuming the time from
vcpu creation to first run is less than 2.23 years) and we thus
avoid a very long stall.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This corrects the test that determines whether a vcpu that has just
become able to run in the guest (e.g. it has just finished handling
a hypercall or hypervisor page fault) and whose virtual core is
already running somewhere as a "piggybacked" vcore can start
immediately or not. (A piggybacked vcore is one which is executing
along with another vcore as a result of dynamic micro-threading.)
Previously the test tried to lock the piggybacked vcore using
spin_trylock, which would always fail because the vcore was already
locked, and so the vcpu would have to wait until its vcore exited
the guest before it could enter.
In fact the vcpu can enter if its vcore is in VCORE_PIGGYBACK state
and not already exiting (or exited) the guest, so the test in
VCORE_PIGGYBACK state is basically the same as for VCORE_RUNNING
state.
Coverity detected this as a double unlock issue, which it isn't
because the spin_trylock would always fail. This will fix the
apparent double unlock as well.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This removes a statement that has no effect. It should have been
removed in commit 898b25b202 ("KVM: PPC: Book3S HV: Simplify dynamic
micro-threading code", 2017-06-22) along with the loop over the
piggy-backed virtual cores.
This issue was reported by Coverity.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes two errors that prevent a guest using the HPT MMU from
successfully migrating to a POWER9 host in radix MMU mode, or resizing
its HPT when running on a radix host.
The first bug was that commit 8dc6cca556 ("KVM: PPC: Book3S HV:
Don't rely on host's page size information", 2017-09-11) missed two
uses of hpte_base_page_size(), one in the HPT rehashing code and
one in kvm_htab_write() (which is used on the destination side in
migrating a HPT guest). Instead we use kvmppc_hpte_base_page_shift().
Having the shift count means that we can use left and right shifts
instead of multiplication and division in a few places.
Along the way, this adds a check in kvm_htab_write() to ensure that the
page size encoding in the incoming HPTEs is recognized, and if not
return an EINVAL error to userspace.
The second bug was that kvm_htab_write was performing some but not all
of the functions of kvmhv_setup_mmu(), resulting in the destination VM
being left in radix mode as far as the hardware is concerned. The
simplest fix for now is make kvm_htab_write() call
kvmppc_setup_partition_table() like kvmppc_hv_setup_htab_rma() does.
In future it would be better to refactor the code more extensively
to remove the duplication.
Fixes: 8dc6cca556 ("KVM: PPC: Book3S HV: Don't rely on host's page size information")
Fixes: 7a84084c60 ("KVM: PPC: Book3S HV: Set partition table rather than SDR1 on POWER9")
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs in our
implementation and to bring the semantics exactly into line with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a true NMI
(ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors can be
reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM to notify
the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on some Power9
processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on some
Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a CONFIG), we
believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting for long
running operations performed by OPAL firmware, and changes to the
powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are using
transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on Power9.
- Improvements to the VAS facility used to access coprocessors on Power9, and
related improvements to the way the NX crypto driver handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew Donnellan, Aneesh
Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin Herrenschmidt, Breno Leitao,
Christophe Leroy, Christophe Lombard, Cyril Bur, Frederic Barrat, Gautham R.
Shenoy, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo Romero, Haren
Myneni, Joel Stanley, Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami
Hiramatsu, Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia Franco de
Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee, Shriya, Stephen
Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, William A. Kennington III.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDXGuAAoJEFHr6jzI4aWAEqwP/0TA35KFAK6wqfkCf67z4q+O
I+5piI4eDV4jdCakfoIN1JfjhQRULNePSoCHTccan30mu/bm30p69xtOLL2/h5xH
Mhz/eDBAOo0lrT20nyZfYMW3FnM66wnNf++qJ0O+8L052r4WOB02J0k1uM1ST01D
5Lb5mUoxRLRzCgKRYAYWJifn+IFPUB9NMsvMTym94krAFlIjIzMEQXhDoln+jJMr
QmY5f1BTA/fLfXobn0zwoc/C1oa2PUtxd+rxbwGrLoZ6G843mMqUi90SMr5ybhXp
RzepnBTj4by3vOsnk/X1mANyaZfLsunp75FwnjHdPzKrAS/TuPp8D/iSxxE/PzEq
cLwJFBnFXSgQMefDErXxhHSDz2dAg5r14rsTpDcq2Ko8TPV4rPsuSfmbd9Txekb0
yWHsjoJUBBMl2QcWqIHl+AlV8j1RklF6solcTBcGnH1CZJMfa05VKXV7xGEvOHa0
RJ+/xPyR9KjoB/SUp++9Vmx/M6SwQYFOJlr3Zpg9LNtR8WpoPYu1E6eO+u1Hhzny
eJqaNstH+i+VdY9eqszkAsEBh8o9M/+b+7Wx7TetvU+v368CbXtgFYs9qy2oZjPF
t9sY/BHaHZ8eZ7I00an77a0fVV5B1PVASUtIz5CqkwGpMvX6Z6W2K/XUUFI61kuu
E06HS6Ht8UPJAzrAPUMl
=Rq81
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
This rearranges the code in kvmppc_run_vcpu() and kvmppc_run_vcpu_hv()
to be neater and clearer. Deeply indented code in kvmppc_run_vcpu()
is moved out to a helper function, kvmhv_setup_mmu(). In
kvmppc_vcpu_run_hv(), make use of the existing variable 'kvm' in
place of 'vcpu->kvm'.
No functional change.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing
implementation", 2016-12-20) added code that tries to exclude any use
or update of the hashed page table (HPT) while the HPT resizing code
is iterating through all the entries in the HPT. It does this by
taking the kvm->lock mutex, clearing the kvm->arch.hpte_setup_done
flag and then sending an IPI to all CPUs in the host. The idea is
that any VCPU task that tries to enter the guest will see that the
hpte_setup_done flag is clear and therefore call kvmppc_hv_setup_htab_rma,
which also takes the kvm->lock mutex and will therefore block until
we release kvm->lock.
However, any VCPU that is already in the guest, or is handling a
hypervisor page fault or hypercall, can re-enter the guest without
rechecking the hpte_setup_done flag. The IPI will cause a guest exit
of any VCPUs that are currently in the guest, but does not prevent
those VCPU tasks from immediately re-entering the guest.
The result is that after resize_hpt_rehash_hpte() has made a HPTE
absent, a hypervisor page fault can occur and make that HPTE present
again. This includes updating the rmap array for the guest real page,
meaning that we now have a pointer in the rmap array which connects
with pointers in the old rev array but not the new rev array. In
fact, if the HPT is being reduced in size, the pointer in the rmap
array could point outside the bounds of the new rev array. If that
happens, we can get a host crash later on such as this one:
[91652.628516] Unable to handle kernel paging request for data at address 0xd0000000157fb10c
[91652.628668] Faulting instruction address: 0xc0000000000e2640
[91652.628736] Oops: Kernel access of bad area, sig: 11 [#1]
[91652.628789] LE SMP NR_CPUS=1024 NUMA PowerNV
[91652.628847] Modules linked in: binfmt_misc vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack libcrc32c iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables ses enclosure scsi_transport_sas i2c_opal ipmi_powernv ipmi_devintf i2c_core ipmi_msghandler powernv_op_panel nfsd auth_rpcgss oid_registry nfs_acl lockd grace sunrpc kvm_hv kvm_pr kvm scsi_dh_alua dm_service_time dm_multipath tg3 ptp pps_core [last unloaded: stap_552b612747aec2da355051e464fa72a1_14259]
[91652.629566] CPU: 136 PID: 41315 Comm: CPU 21/KVM Tainted: G O 4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le #1
[91652.629684] task: c0000007a419e400 task.stack: c0000000028d8000
[91652.629750] NIP: c0000000000e2640 LR: d00000000c36e498 CTR: c0000000000e25f0
[91652.629829] REGS: c0000000028db5d0 TRAP: 0300 Tainted: G O (4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le)
[91652.629932] MSR: 900000010280b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 44022422 XER: 00000000
[91652.630034] CFAR: d00000000c373f84 DAR: d0000000157fb10c DSISR: 40000000 SOFTE: 1
[91652.630034] GPR00: d00000000c36e498 c0000000028db850 c000000001403900 c0000007b7960000
[91652.630034] GPR04: d0000000117fb100 d000000007ab00d8 000000000033bb10 0000000000000000
[91652.630034] GPR08: fffffffffffffe7f 801001810073bb10 d00000000e440000 d00000000c373f70
[91652.630034] GPR12: c0000000000e25f0 c00000000fdb9400 f000000003b24680 0000000000000000
[91652.630034] GPR16: 00000000000004fb 00007ff7081a0000 00000000000ec91a 000000000033bb10
[91652.630034] GPR20: 0000000000010000 00000000001b1190 0000000000000001 0000000000010000
[91652.630034] GPR24: c0000007b7ab8038 d0000000117fb100 0000000ec91a1190 c000001e6a000000
[91652.630034] GPR28: 00000000033bb100 000000000073bb10 c0000007b7960000 d0000000157fb100
[91652.630735] NIP [c0000000000e2640] kvmppc_add_revmap_chain+0x50/0x120
[91652.630806] LR [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.630884] Call Trace:
[91652.630913] [c0000000028db850] [c0000000028db8b0] 0xc0000000028db8b0 (unreliable)
[91652.630996] [c0000000028db8b0] [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.631091] [c0000000028db9e0] [d00000000c36a078] kvmppc_vcpu_run_hv+0xdf8/0x1300 [kvm_hv]
[91652.631179] [c0000000028dbb30] [d00000000c2248c4] kvmppc_vcpu_run+0x34/0x50 [kvm]
[91652.631266] [c0000000028dbb50] [d00000000c220d54] kvm_arch_vcpu_ioctl_run+0x114/0x2a0 [kvm]
[91652.631351] [c0000000028dbbd0] [d00000000c2139d8] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[91652.631433] [c0000000028dbd40] [c0000000003832e0] do_vfs_ioctl+0xd0/0x8c0
[91652.631501] [c0000000028dbde0] [c000000000383ba4] SyS_ioctl+0xd4/0x130
[91652.631569] [c0000000028dbe30] [c00000000000b8e0] system_call+0x58/0x6c
[91652.631635] Instruction dump:
[91652.631676] fba1ffe8 fbc1fff0 fbe1fff8 f8010010 f821ffa1 2fa70000 793d0020 e9432110
[91652.631814] 7bbf26e4 7c7e1b78 7feafa14 409e0094 <807f000c> 786326e4 7c6a1a14 93a40008
[91652.631959] ---[ end trace ac85ba6db72e5b2e ]---
To fix this, we tighten up the way that the hpte_setup_done flag is
checked to ensure that it does provide the guarantee that the resizing
code needs. In kvmppc_run_core(), we check the hpte_setup_done flag
after disabling interrupts and refuse to enter the guest if it is
clear (for a HPT guest). The code that checks hpte_setup_done and
calls kvmppc_hv_setup_htab_rma() is moved from kvmppc_vcpu_run_hv()
to a point inside the main loop in kvmppc_run_vcpu(), ensuring that
we don't just spin endlessly calling kvmppc_run_core() while
hpte_setup_done is clear, but instead have a chance to block on the
kvm->lock mutex.
Finally we also check hpte_setup_done inside the region in
kvmppc_book3s_hv_page_fault() where the HPTE is locked and we are about
to update the HPTE, and bail out if it is clear. If another CPU is
inside kvm_vm_ioctl_resize_hpt_commit) and has cleared hpte_setup_done,
then we know that either we are looking at a HPTE
that resize_hpt_rehash_hpte() has not yet processed, which is OK,
or else we will see hpte_setup_done clear and refuse to update it,
because of the full barrier formed by the unlock of the HPTE in
resize_hpt_rehash_hpte() combined with the locking of the HPTE
in kvmppc_book3s_hv_page_fault().
Fixes: 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation")
Cc: stable@vger.kernel.org # v4.10+
Reported-by: Satheesh Rajendran <satheera@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If the host takes a system reset interrupt while a guest is running,
the CPU must exit the guest before processing the host exception
handler.
After this patch, taking a sysrq+x with a CPU running in a guest
gives a trace like this:
cpu 0x27: Vector: 100 (System Reset) at [c000000fdf5776f0]
pc: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv]
lr: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv]
sp: c000000fdf577850
msr: 9000000002803033
current = 0xc000000fdf4b1e00
paca = 0xc00000000fd4d680 softe: 3 irq_happened: 0x01
pid = 6608, comm = qemu-system-ppc
Linux version 4.14.0-rc7-01489-g47e1893a404a-dirty #26 SMP
[c000000fdf577a00] c008000010159dd4 kvmppc_vcpu_run_hv+0x3dc/0x12d0 [kvm_hv]
[c000000fdf577b30] c0080000100a537c kvmppc_vcpu_run+0x44/0x60 [kvm]
[c000000fdf577b60] c0080000100a1ae0 kvm_arch_vcpu_ioctl_run+0x118/0x310 [kvm]
[c000000fdf577c00] c008000010093e98 kvm_vcpu_ioctl+0x530/0x7c0 [kvm]
[c000000fdf577d50] c000000000357bf8 do_vfs_ioctl+0xd8/0x8c0
[c000000fdf577df0] c000000000358448 SyS_ioctl+0x68/0x100
[c000000fdf577e30] c00000000000b220 system_call+0x58/0x6c
--- Exception: c01 (System Call) at 00007fff76868df0
SP (7fff7069baf0) is in userspace
Fixes: e36d0a2ed5 ("powerpc/powernv: Implement NMI IPI with OPAL_SIGNAL_SYSTEM_RESET")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch removes the restriction that a radix host can only run
radix guests, allowing us to run HPT (hashed page table) guests as
well. This is useful because it provides a way to run old guest
kernels that know about POWER8 but not POWER9.
Unfortunately, POWER9 currently has a restriction that all threads
in a given code must either all be in HPT mode, or all in radix mode.
This means that when entering a HPT guest, we have to obtain control
of all 4 threads in the core and get them to switch their LPIDR and
LPCR registers, even if they are not going to run a guest. On guest
exit we also have to get all threads to switch LPIDR and LPCR back
to host values.
To make this feasible, we require that KVM not be in the "independent
threads" mode, and that the CPU cores be in single-threaded mode from
the host kernel's perspective (only thread 0 online; threads 1, 2 and
3 offline). That allows us to use the same code as on POWER8 for
obtaining control of the secondary threads.
To manage the LPCR/LPIDR changes required, we extend the kvm_split_info
struct to contain the information needed by the secondary threads.
All threads perform a barrier synchronization (where all threads wait
for every other thread to reach the synchronization point) on guest
entry, both before and after loading LPCR and LPIDR. On guest exit,
they all once again perform a barrier synchronization both before
and after loading host values into LPCR and LPIDR.
Finally, it is also currently necessary to flush the entire TLB every
time we enter a HPT guest on a radix host. We do this on thread 0
with a loop of tlbiel instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch allows for a mode on POWER9 hosts where we control all the
threads of a core, much as we do on POWER8. The mode is controlled by
a module parameter on the kvm_hv module, called "indep_threads_mode".
The normal mode on POWER9 is the "independent threads" mode, with
indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any
desired SMT mode) and each thread independently enters and exits from
KVM guests without reference to what other threads in the core are
doing.
If indep_threads_mode is set to N at the point when a VM is started,
KVM will expect every core that the guest runs on to be in single
threaded mode (that is, threads 1, 2 and 3 offline), and will set the
flag that prevents secondary threads from coming online. We can still
use all four threads; the code that implements dynamic micro-threading
on POWER8 will become active in over-commit situations and will allow
up to three other VCPUs to be run on the secondary threads of the core
whenever a VCPU is run.
The reason for wanting this mode is that this will allow us to run HPT
guests on a radix host on a POWER9 machine that does not support
"mixed mode", that is, having some threads in a core be in HPT mode
while other threads are in radix mode. It will also make it possible
to implement a "strict threads" mode in future, if desired.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This sets up the machinery for switching a guest between HPT (hashed
page table) and radix MMU modes, so that in future we can run a HPT
guest on a radix host on POWER9 machines.
* The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or
radix mode, on a radix host.
* The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9
with HV KVM on a radix host.
* The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a
radix host.
* The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the
guest to HPT mode and allocate a HPT.
* For simplicity, we now allocate the rmap array for each memslot,
even on a radix host, since it will be needed if the guest switches
to HPT mode.
* Since we cannot yet run a HPT guest on a radix host, the KVM_RUN
ioctl will return an EINVAL error in that case.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HPT code in HV KVM maintains a dirty bit per guest page
in the rmap array, whether or not dirty page tracking has been enabled
for the memory slot. In contrast, the radix code maintains a dirty
bit per guest page in memslot->dirty_bitmap, and only does so when
dirty page tracking has been enabled.
This changes the HPT code to maintain the dirty bits in the memslot
dirty_bitmap like radix does. This results in slightly less code
overall, and will mean that we do not lose the dirty bits when
transitioning between HPT and radix mode in future.
There is one minor change to behaviour as a result. With HPT, when
dirty tracking was enabled for a memslot, we would previously clear
all the dirty bits at that point (both in the HPT entries and in the
rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately
following would show no pages as dirty (assuming no vcpus have run
in the meantime). With this change, the dirty bits on HPT entries
are not cleared at the point where dirty tracking is enabled, so
KVM_GET_DIRTY_LOG would show as dirty any guest pages that are
resident in the HPT and dirty. This is consistent with what happens
on radix.
This also fixes a bug in the mark_pages_dirty() function for radix
(in the sense that the function no longer exists). In the case where
a large page of 64 normal pages or more is marked dirty, the
addressing of the dirty bitmap was incorrect and could write past
the end of the bitmap. Fortunately this case was never hit in
practice because a 2MB large page is only 32 x 64kB pages, and we
don't support backing the guest with 1GB huge pages at this point.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This renames the kvm->arch.hpte_setup_done field to mmu_ready because
we will want to use it for radix guests too -- both for setting things
up before vcpu execution, and for excluding vcpus from executing while
MMU-related things get changed, such as in future switching the MMU
from radix to HPT mode or vice-versa.
This also moves the call to kvmppc_setup_partition_table() that was
done in kvmppc_hv_setup_htab_rma() for HPT guests, and the setting
of mmu_ready, into the caller in kvmppc_vcpu_run_hv().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This removes the dependence of KVM on the mmu_psize_defs array (which
stores information about hardware support for various page sizes) and
the things derived from it, chiefly hpte_page_sizes[], hpte_page_size(),
hpte_actual_page_size() and get_sllp_encoding(). We also no longer
rely on the mmu_slb_size variable or the MMU_FTR_1T_SEGMENTS feature
bit.
The reason for doing this is so we can support a HPT guest on a radix
host. In a radix host, the mmu_psize_defs array contains information
about page sizes supported by the MMU in radix mode rather than the
page sizes supported by the MMU in HPT mode. Similarly, mmu_slb_size
and the MMU_FTR_1T_SEGMENTS bit are not set.
Instead we hard-code knowledge of the behaviour of the HPT MMU in the
POWER7, POWER8 and POWER9 processors (which are the only processors
supported by HV KVM) - specifically the encoding of the LP fields in
the HPT and SLB entries, and the fact that they have 32 SLB entries
and support 1TB segments.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get the
commit that reverts the patch "KVM: PPC: Book3S HV: POWER9 does not
require secondary thread management". This is needed for subsequent
patches which will be applied on this branch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This reverts commit 94a04bc25a.
In order to run HPT guests on a radix POWER9 host, we will have to run
the host in single-threaded mode, because POWER9 processors do not
currently support running some threads of a core in HPT mode while
others are in radix mode ("mixed mode").
That means that we will need the same mechanisms that are used on
POWER8 to make the secondary threads available to KVM, which were
disabled on POWER9 by commit 94a04bc25a.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Use ARRAY_SIZE macro, rather than explicitly coding some variant of it
yourself.
Found with: find -type f -name "*.c" -o -name "*.h" | xargs perl -p -i -e
's/\bsizeof\s*\(\s*(\w+)\s*\)\s*\ /\s*sizeof\s*\(\s*\1\s*\[\s*0\s*\]\s*\)
/ARRAY_SIZE(\1)/g' and manual check/verification.
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Particularly because kvmppc_fast_vcpu_kick_hv() is a callback,
ensure that we properly serialize wq active checks in order to
avoid potentially missing a wakeup due to racing with the waiter
side.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 468808bd35 ("KVM: PPC: Book3S HV: Set process table for HPT
guests on POWER9", 2017-01-30) added a call to kvmppc_update_lpcr()
which doesn't hold the kvm->lock mutex around the call, as required.
This adds the lock/unlock pair, and for good measure, includes
the kvmppc_setup_partition_table() call in the locked region, since
it is altering global state of the VM.
This error appears not to have any fatal consequences for the host;
the consequences would be that the VCPUs could end up running with
different LPCR values, or an update to the LPCR value by userspace
using the one_reg interface could get overwritten, or the update
done by kvmhv_configure_mmu() could get overwritten.
Cc: stable@vger.kernel.org # v4.10+
Fixes: 468808bd35 ("KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the 'ppc-kvm' topic branch from the powerpc tree in
order to bring in some fixes which touch both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds information about storage keys to the struct returned by
the KVM_PPC_GET_SMMU_INFO ioctl. The new fields replace a pad field,
which was zeroed by previous kernel versions. Thus userspace that
knows about the new fields will see zeroes when running on an older
kernel, indicating that storage keys are not supported. The size of
the structure has not changed.
The number of keys is hard-coded for the CPUs supported by HV KVM,
which is just POWER7, POWER8 and POWER9.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
KVM currently validates the size of the VPA registered by the client
against sizeof(struct lppaca), however we align (and therefore size)
that struct to 1kB to avoid crossing a 4kB boundary in the client.
PAPR calls for sizes >= 640 bytes to be accepted. Hard code this with
a comment.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 CPUs have independent MMU contexts per thread, so KVM does not
need to quiesce secondary threads, so the hwthread_req/hwthread_state
protocol does not have to be used. So patch it away on POWER9, and patch
away the branch from the Linux idle wakeup to kvm_start_guest that is
never used.
Add a warning and error out of kvmppc_grab_hwthread in case it is ever
called on POWER9.
This avoids a hwsync in the idle wakeup path on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Use WARN(...) instead of WARN_ON()/pr_err(...)]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
At present, interrupts are hard-disabled fairly late in the guest
entry path, in the assembly code. Since we check for pending signals
for the vCPU(s) task(s) earlier in the guest entry path, it is
possible for a signal to be delivered before we enter the guest but
not be noticed until after we exit the guest for some other reason.
Similarly, it is possible for the scheduler to request a reschedule
while we are in the guest entry path, and we won't notice until after
we have run the guest, potentially for a whole timeslice.
Furthermore, with a radix guest on POWER9, we can take the interrupt
with the MMU on. In this case we end up leaving interrupts
hard-disabled after the guest exit, and they are likely to stay
hard-disabled until we exit to userspace or context-switch to
another process. This was masking the fact that we were also not
setting the RI (recoverable interrupt) bit in the MSR, meaning
that if we had taken an interrupt, it would have crashed the host
kernel with an unrecoverable interrupt message.
To close these races, we need to check for signals and reschedule
requests after hard-disabling interrupts, and then keep interrupts
hard-disabled until we enter the guest. If there is a signal or a
reschedule request from another CPU, it will send an IPI, which will
cause a guest exit.
This puts the interrupt disabling before we call kvmppc_start_thread()
for all the secondary threads of this core that are going to run vCPUs.
The reason for that is that once we have started the secondary threads
there is no easy way to back out without going through at least part
of the guest entry path. However, kvmppc_start_thread() includes some
code for radix guests which needs to call smp_call_function(), which
must be called with interrupts enabled. To solve this problem, this
patch moves that code into a separate function that is called earlier.
When the guest exit is caused by an external interrupt, a hypervisor
doorbell or a hypervisor maintenance interrupt, we now handle these
using the replay facility. __kvmppc_vcore_entry() now returns the
trap number that caused the exit on this thread, and instead of the
assembly code jumping to the handler entry, we return to C code with
interrupts still hard-disabled and set the irq_happened flag in the
PACA, so that when we do local_irq_enable() the appropriate handler
gets called.
With all this, we now have the interrupt soft-enable flag clear while
we are in the guest. This is useful because code in the real-mode
hypercall handlers that checks whether interrupts are enabled will
now see that they are disabled, which is correct, since interrupts
are hard-disabled in the real-mode code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Since commit b009031f74 ("KVM: PPC: Book3S HV: Take out virtual
core piggybacking code", 2016-09-15), we only have at most one
vcore per subcore. Previously, the fact that there might be more
than one vcore per subcore meant that we had the notion of a
"master vcore", which was the vcore that controlled thread 0 of
the subcore. We also needed a list per subcore in the core_info
struct to record which vcores belonged to each subcore. Now that
there can only be one vcore in the subcore, we can replace the
list with a simple pointer and get rid of the notion of the
master vcore (and in fact treat every vcore as a master vcore).
We can also get rid of the subcore_vm[] field in the core_info
struct since it is never read.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Enhance KVM to cause a guest exit with KVM_EXIT_NMI
exit reason upon a machine check exception (MCE) in
the guest address space if the KVM_CAP_PPC_FWNMI
capability is enabled (instead of delivering a 0x200
interrupt to guest). This enables QEMU to build error
log and deliver machine check exception to guest via
guest registered machine check handler.
This approach simplifies the delivery of machine
check exception to guest OS compared to the earlier
approach of KVM directly invoking 0x200 guest interrupt
vector.
This design/approach is based on the feedback for the
QEMU patches to handle machine check exception. Details
of earlier approach of handling machine check exception
in QEMU and related discussions can be found at:
https://lists.nongnu.org/archive/html/qemu-devel/2014-11/msg00813.html
Note:
This patch now directly invokes machine_check_print_event_info()
from kvmppc_handle_exit_hv() to print the event to host console
at the time of guest exit before the exception is passed on to the
guest. Hence, the host-side handling which was performed earlier
via machine_check_fwnmi is removed.
The reasons for this approach is (i) it is not possible
to distinguish whether the exception occurred in the
guest or the host from the pt_regs passed on the
machine_check_exception(). Hence machine_check_exception()
calls panic, instead of passing on the exception to
the guest, if the machine check exception is not
recoverable. (ii) the approach introduced in this
patch gives opportunity to the host kernel to perform
actions in virtual mode before passing on the exception
to the guest. This approach does not require complex
tweaks to machine_check_fwnmi and friends.
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On a POWER9 system, it is possible for an interrupt to become pending
for a VCPU when that VCPU is about to cede (execute a H_CEDE hypercall)
and has already disabled interrupts, or in the H_CEDE processing up
to the point where the XIVE context is pulled from the hardware. In
such a case, the H_CEDE should not sleep, but should return immediately
to the guest. However, the conditions tested in kvmppc_vcpu_woken()
don't include the condition that a XIVE interrupt is pending, so the
VCPU could sleep until the next decrementer interrupt.
To fix this, we add a new xive_interrupt_pending() helper which looks
in the XIVE context that was pulled from the hardware to see if the
priority of any pending interrupt is higher (numerically lower than)
the CPU priority. If so then kvmppc_vcpu_woken() will return true.
If the XIVE context has never been used, then both the pipr and the
cppr fields will be zero and the test will indicate that no interrupt
is pending.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9, we no longer have the restriction that we had on POWER8
where all threads in a core have to be in the same partition, so
the CPU threads are now independent. However, we still want to be
able to run guests with a virtual SMT topology, if only to allow
migration of guests from POWER8 systems to POWER9.
A guest that has a virtual SMT mode greater than 1 will expect to
be able to use the doorbell facility; it will expect the msgsndp
and msgclrp instructions to work appropriately and to be able to read
sensible values from the TIR (thread identification register) and
DPDES (directed privileged doorbell exception status) special-purpose
registers. However, since each CPU thread is a separate sub-processor
in POWER9, these instructions and registers can only be used within
a single CPU thread.
In order for these instructions to appear to act correctly according
to the guest's virtual SMT mode, we have to trap and emulate them.
We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR
register. The emulation is triggered by the hypervisor facility
unavailable interrupt that occurs when the guest uses them.
To cause a doorbell interrupt to occur within the guest, we set the
DPDES register to 1. If the guest has interrupts enabled, the CPU
will generate a doorbell interrupt and clear the DPDES register in
hardware. The DPDES hardware register for the guest is saved in the
vcpu->arch.vcore->dpdes field. Since this gets written by the guest
exit code, other VCPUs wishing to cause a doorbell interrupt don't
write that field directly, but instead set a vcpu->arch.doorbell_request
flag. This is consumed and set to 0 by the guest entry code, which
then sets DPDES to 1.
Emulating reads of the DPDES register is somewhat involved, because
it requires reading the doorbell pending interrupt status of all of the
VCPU threads in the virtual core, and if any of those VCPUs are
running, their doorbell status is only up-to-date in the hardware
DPDES registers of the CPUs where they are running. In order to get
a reasonable approximation of the current doorbell status, we send
those CPUs an IPI, causing an exit from the guest which will update
the vcpu->arch.vcore->dpdes field. We then use that value in
constructing the emulated DPDES register value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace to set the desired virtual SMT (simultaneous
multithreading) mode for a VM, that is, the number of VCPUs that
get assigned to each virtual core. Previously, the virtual SMT mode
was fixed to the number of threads per subcore, and if userspace
wanted to have fewer vcpus per vcore, then it would achieve that by
using a sparse CPU numbering. This had the disadvantage that the
vcpu numbers can get quite large, particularly for SMT1 guests on
a POWER8 with 8 threads per core. With this patch, userspace can
set its desired virtual SMT mode and then use contiguous vcpu
numbering.
On POWER8, where the threading mode is "strict", the virtual SMT mode
must be less than or equal to the number of threads per subcore. On
POWER9, which implements a "loose" threading mode, the virtual SMT
mode can be any power of 2 between 1 and 8, even though there is
effectively one thread per subcore, since the threads are independent
and can all be in different partitions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to allow us to use a different value for the HFSCR
(Hypervisor Facilities Status and Control Register) when running the
guest from that which applies in the host. The reason for doing this
is to allow us to trap the msgsndp instruction and related operations
in future so that they can be virtualized. We also save the value of
HFSCR when a hypervisor facility unavailable interrupt occurs, because
the high byte of HFSCR indicates which facility the guest attempted to
access.
We save and restore the host value on guest entry/exit because some
bits of it affect host userspace execution.
We only do all this on POWER9, not on POWER8, because we are not
intending to virtualize any of the facilities controlled by HFSCR on
POWER8. In particular, the HFSCR bit that controls execution of
msgsndp and related operations does not exist on POWER8. The HFSCR
doesn't exist at all on POWER7.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It is possible, through a narrow race condition, for a VCPU to exit
the guest with a H_CEDE hypercall while it has a doorbell interrupt
pending. In this case, the H_CEDE should return immediately, but in
fact it puts the VCPU to sleep until some other interrupt becomes
pending or a prod is received (via another VCPU doing H_PROD).
This fixes it by checking the DPDES (Directed Privileged Doorbell
Exception Status) bit for the thread along with the other interrupt
pending bits.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace (e.g. QEMU) to enable large decrementer mode for
the guest when running on a POWER9 host, by setting the LPCR_LD bit in
the guest LPCR value. With this, the guest exit code saves 64 bits of
the guest DEC value on exit. Other places that use the guest DEC
value check the LPCR_LD bit in the guest LPCR value, and if it is set,
omit the 32-bit sign extension that would otherwise be done.
This doesn't change the DEC emulation used by PR KVM because PR KVM
is not supported on POWER9 yet.
This is partly based on an earlier patch by Oliver O'Halloran.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 DD1 has an erratum where writing to the TBU40 register, which
is used to apply an offset to the timebase, can cause the timebase to
lose counts. This results in the timebase on some CPUs getting out of
sync with other CPUs, which then results in misbehaviour of the
timekeeping code.
To work around the problem, we make KVM ignore the timebase offset for
all guests on POWER9 DD1 machines. This means that live migration
cannot be supported on POWER9 DD1 machines.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If userspace attempts to call the KVM_RUN ioctl when it has hardware
transactional memory (HTM) enabled, the values that it has put in the
HTM-related SPRs TFHAR, TFIAR and TEXASR will get overwritten by
guest values. To fix this, we detect this condition and save those
SPR values in the thread struct, and disable HTM for the task. If
userspace goes to access those SPRs or the HTM facility in future,
a TM-unavailable interrupt will occur and the handler will reload
those SPRs and re-enable HTM.
If userspace has started a transaction and suspended it, we would
currently lose the transactional state in the guest entry path and
would almost certainly get a "TM Bad Thing" interrupt, which would
cause the host to crash. To avoid this, we detect this case and
return from the KVM_RUN ioctl with an EINVAL error, with the KVM
exit reason set to KVM_EXIT_FAIL_ENTRY.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This restores several special-purpose registers (SPRs) to sane values
on guest exit that were missed before.
TAR and VRSAVE are readable and writable by userspace, and we need to
save and restore them to prevent the guest from potentially affecting
userspace execution (not that TAR or VRSAVE are used by any known
program that run uses the KVM_RUN ioctl). We save/restore these
in kvmppc_vcpu_run_hv() rather than on every guest entry/exit.
FSCR affects userspace execution in that it can prohibit access to
certain facilities by userspace. We restore it to the normal value
for the task on exit from the KVM_RUN ioctl.
IAMR is normally 0, and is restored to 0 on guest exit. However,
with a radix host on POWER9, it is set to a value that prevents the
kernel from executing user-accessible memory. On POWER9, we save
IAMR on guest entry and restore it on guest exit to the saved value
rather than 0. On POWER8 we continue to set it to 0 on guest exit.
PSPB is normally 0. We restore it to 0 on guest exit to prevent
userspace taking advantage of the guest having set it non-zero
(which would allow userspace to set its SMT priority to high).
UAMOR is normally 0. We restore it to 0 on guest exit to prevent
the AMR from being used as a covert channel between userspace
processes, since the AMR is not context-switched at present.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to save the values of three SPRs (special-purpose
registers) used by userspace to control event-based branches (EBBs),
which are essentially interrupts that get delivered directly to
userspace. These registers are loaded up with guest values when
entering the guest, and their values are saved when exiting the
guest, but we were not saving the host values and restoring them
before going back to userspace.
On POWER8 this would only affect userspace programs which explicitly
request the use of EBBs and also use the KVM_RUN ioctl, since the
only source of EBBs on POWER8 is the PMU, and there is an explicit
enable bit in the PMU registers (and those PMU registers do get
properly context-switched between host and guest). On POWER9 there
is provision for externally-generated EBBs, and these are not subject
to the control in the PMU registers.
Since these registers only affect userspace, we can save them when
we first come in from userspace and restore them before returning to
userspace, rather than saving/restoring the host values on every
guest entry/exit. Similarly, we don't need to worry about their
values on offline secondary threads since they execute in the context
of the idle task, which never executes in userspace.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmppc_alloc_host_rm_ops() holds get_online_cpus() while invoking
cpuhp_setup_state_nocalls().
cpuhp_setup_state_nocalls() invokes get_online_cpus() as well. This is
correct, but prevents the conversion of the hotplug locking to a percpu
rwsem.
Use cpuhp_setup_state_nocalls_cpuslocked() to avoid the nested
call. Convert *_online_cpus() to the new interfaces while at it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kvm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: kvm-ppc@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Alexander Graf <agraf@suse.com>
Link: http://lkml.kernel.org/r/20170524081547.809616236@linutronix.de
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With CONFIG_DEBUG_PREEMPT, get_paca() produces the following warning
in kvmppc_book3s_init_hv() since it calls debug_smp_processor_id().
There is no real issue with the xics_phys field.
If paca->kvm_hstate.xics_phys is non-zero on one cpu, it will be
non-zero on them all. Therefore this is not fixing any actual
problem, just the warning.
[ 138.521188] BUG: using smp_processor_id() in preemptible [00000000] code: modprobe/5596
[ 138.521308] caller is .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521404] CPU: 5 PID: 5596 Comm: modprobe Not tainted 4.11.0-rc3-00022-gc7e790c #1
[ 138.521509] Call Trace:
[ 138.521563] [c0000007d018b810] [c0000000023eef10] .dump_stack+0xe4/0x150 (unreliable)
[ 138.521694] [c0000007d018b8a0] [c000000001f6ec04] .check_preemption_disabled+0x134/0x150
[ 138.521829] [c0000007d018b940] [d00000000a010274] .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521963] [c0000007d018ba00] [c00000000191d5cc] .do_one_initcall+0x5c/0x1c0
[ 138.522082] [c0000007d018bad0] [c0000000023e9494] .do_init_module+0x84/0x240
[ 138.522201] [c0000007d018bb70] [c000000001aade18] .load_module+0x1f68/0x2a10
[ 138.522319] [c0000007d018bd20] [c000000001aaeb30] .SyS_finit_module+0xc0/0xf0
[ 138.522439] [c0000007d018be30] [c00000000191baec] system_call+0x38/0xfc
Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We traditionally have linux/ before asm/
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds a not yet working outline of the HPT resizing PAPR
extension. Specifically it adds the necessary ioctl() functions,
their basic steps, the work function which will handle preparation for
the resize, and synchronization between these, the guest page fault
path and guest HPT update path.
The actual guts of the implementation isn't here yet, so for now the
calls will always fail.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The KVM_PPC_ALLOCATE_HTAB ioctl() is used to set the size of hashed page
table (HPT) that userspace expects a guest VM to have, and is also used to
clear that HPT when necessary (e.g. guest reboot).
At present, once the ioctl() is called for the first time, the HPT size can
never be changed thereafter - it will be cleared but always sized as from
the first call.
With upcoming HPT resize implementation, we're going to need to allow
userspace to resize the HPT at reset (to change it back to the default size
if the guest changed it).
So, we need to allow this ioctl() to change the HPT size.
This patch also updates Documentation/virtual/kvm/api.txt to reflect
the new behaviour. In fact the documentation was already slightly
incorrect since 572abd5 "KVM: PPC: Book3S HV: Don't fall back to
smaller HPT size in allocation ioctl"
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the powerpc kvm_arch structure contains a number of variables
tracking the state of the guest's hashed page table (HPT) in KVM HV. This
patch gathers them all together into a single kvm_hpt_info substructure.
This makes life more convenient for the upcoming HPT resizing
implementation.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the POWER9 radix MMU host and guest support, which
was put into a topic branch because it touches both powerpc and
KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a few last pieces of the support for radix guests:
* Implement the backends for the KVM_PPC_CONFIGURE_V3_MMU and
KVM_PPC_GET_RMMU_INFO ioctls for radix guests
* On POWER9, allow secondary threads to be on/off-lined while guests
are running.
* Set up LPCR and the partition table entry for radix guests.
* Don't allocate the rmap array in the kvm_memory_slot structure
on radix.
* Don't try to initialize the HPT for radix guests, since they don't
have an HPT.
* Take out the code that prevents the HV KVM module from
initializing on radix hosts.
At this stage, we only support radix guests if the host is running
in radix mode, and only support HPT guests if the host is running in
HPT mode. Thus a guest cannot switch from one mode to the other,
which enables some simplifications.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With radix, the guest can do TLB invalidations itself using the tlbie
(global) and tlbiel (local) TLB invalidation instructions. Linux guests
use local TLB invalidations for translations that have only ever been
accessed on one vcpu. However, that doesn't mean that the translations
have only been accessed on one physical cpu (pcpu) since vcpus can move
around from one pcpu to another. Thus a tlbiel might leave behind stale
TLB entries on a pcpu where the vcpu previously ran, and if that task
then moves back to that previous pcpu, it could see those stale TLB
entries and thus access memory incorrectly. The usual symptom of this
is random segfaults in userspace programs in the guest.
To cope with this, we detect when a vcpu is about to start executing on
a thread in a core that is a different core from the last time it
executed. If that is the case, then we mark the core as needing a
TLB flush and then send an interrupt to any thread in the core that is
currently running a vcpu from the same guest. This will get those vcpus
out of the guest, and the first one to re-enter the guest will do the
TLB flush. The reason for interrupting the vcpus executing on the old
core is to cope with the following scenario:
CPU 0 CPU 1 CPU 4
(core 0) (core 0) (core 1)
VCPU 0 runs task X VCPU 1 runs
core 0 TLB gets
entries from task X
VCPU 0 moves to CPU 4
VCPU 0 runs task X
Unmap pages of task X
tlbiel
(still VCPU 1) task X moves to VCPU 1
task X runs
task X sees stale TLB
entries
That is, as soon as the VCPU starts executing on the new core, it
could unmap and tlbiel some page table entries, and then the task
could migrate to one of the VCPUs running on the old core and
potentially see stale TLB entries.
Since the TLB is shared between all the threads in a core, we only
use the bit of kvm->arch.need_tlb_flush corresponding to the first
thread in the core. To ensure that we don't have a window where we
can miss a flush, this moves the clearing of the bit from before the
actual flush to after it. This way, two threads might both do the
flush, but we prevent the situation where one thread can enter the
guest before the flush is finished.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to keep track of dirty pages when requested (that is,
when memslot->dirty_bitmap is non-NULL) for radix guests. We use the
dirty bits in the PTEs in the second-level (partition-scoped) page
tables, together with a bitmap of pages that were dirty when their
PTE was invalidated (e.g., when the page was paged out). This bitmap
is stored in the first half of the memslot->dirty_bitmap area, and
kvm_vm_ioctl_get_dirty_log_hv() now uses the second half for the
bitmap that gets returned to userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds the code to construct the second-level ("partition-scoped" in
architecturese) page tables for guests using the radix MMU. Apart from
the PGD level, which is allocated when the guest is created, the rest
of the tree is all constructed in response to hypervisor page faults.
As well as hypervisor page faults for missing pages, we also get faults
for reference/change (RC) bits needing to be set, as well as various
other error conditions. For now, we only set the R or C bit in the
guest page table if the same bit is set in the host PTE for the
backing page.
This code can take advantage of the guest being backed with either
transparent or ordinary 2MB huge pages, and insert 2MB page entries
into the guest page tables. There is no support for 1GB huge pages
yet.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds the implementation of the KVM_PPC_CONFIGURE_V3_MMU ioctl
for HPT guests on POWER9. With this, we can return 1 for the
KVM_CAP_PPC_MMU_HASH_V3 capability.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds two capabilities and two ioctls to allow userspace to
find out about and configure the POWER9 MMU in a guest. The two
capabilities tell userspace whether KVM can support a guest using
the radix MMU, or using the hashed page table (HPT) MMU with a
process table and segment tables. (Note that the MMUs in the
POWER9 processor cores do not use the process and segment tables
when in HPT mode, but the nest MMU does).
The KVM_PPC_CONFIGURE_V3_MMU ioctl allows userspace to specify
whether a guest will use the radix MMU or the HPT MMU, and to
specify the size and location (in guest space) of the process
table.
The KVM_PPC_GET_RMMU_INFO ioctl gives userspace information about
the radix MMU. It returns a list of supported radix tree geometries
(base page size and number of bits indexed at each level of the
radix tree) and the encoding used to specify the various page
sizes for the TLB invalidate entry instruction.
Initially, both capabilities return 0 and the ioctls return -EINVAL,
until the necessary infrastructure for them to operate correctly
is added.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The H_PROD hypercall is supposed to wake up an idle vcpu. We have
an implementation, but because Linux doesn't use it except when
doing cpu hotplug, it was never tested properly. AIX does use it,
and reported it broken. It turns out we were waking the wrong
vcpu (the one doing H_PROD, not the target of the prod) and we
weren't handling the case where the target needs an IPI to wake
it. Fix it by using the existing kvmppc_fast_vcpu_kick_hv()
function, which is intended for this kind of thing, and by using
the target vcpu not the current vcpu.
We were also not looking at the prodded flag when checking whether a
ceded vcpu should wake up, so this adds checks for the prodded flag
alongside the checks for pending exceptions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If the target vcpu for kvmppc_fast_vcpu_kick_hv() is not running on
any CPU, then we will have vcpu->arch.thread_cpu == -1, and as it
happens, kvmppc_fast_vcpu_kick_hv will call kvmppc_ipi_thread with
-1 as the cpu argument. Although this is not meaningful, in the past,
before commit 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs
to other cores on POWER9", 2016-11-18), it was harmless because CPU
-1 is not in the same core as any real CPU thread. On a POWER9,
however, we don't do the "same core" check, so we were trying to
do a msgsnd to thread -1, which is invalid. To avoid this, we add
a check to see that vcpu->arch.thread_cpu is >= 0 before calling
kvmppc_ipi_thread() with it. Since vcpu->arch.thread_vcpu can change
asynchronously, we use READ_ONCE to ensure that the value we check is
the same value that we use as the argument to kvmppc_ipi_thread().
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
ktime_set(S,N) was required for the timespec storage type and is still
useful for situations where a Seconds and Nanoseconds part of a time value
needs to be converted. For anything where the Seconds argument is 0, this
is pointless and can be replaced with a simple assignment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86: userspace can now hide nested VMX features from guests; nested
VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
PPC: support for KVM guests on POWER9; improved support for interrupt
polling; optimizations and cleanups.
s390: two small optimizations, more stuff is in flight and will be
in 4.11.
ARM: support for the GICv3 ITS on 32bit platforms.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
D0j4tRSyGFIdx6lukZm7HmiSHZ0=
=mkoB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
Install the callbacks via the state machine.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: kvm-ppc@vger.kernel.org
Cc: Paul Mackerras <paulus@samba.org>
Cc: rt@linutronix.de
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Link: http://lkml.kernel.org/r/20161126231350.10321-18-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix comment block to match kernel comment style.
Fix print format from signed to unsigned.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvm module parameter halt_poll_ns defines the global maximum halt
polling interval and can be dynamically changed by writing to the
/sys/module/kvm/parameters/halt_poll_ns sysfs file. However in kvm-hv
this module parameter value is only ever checked when we grow the current
polling interval for the given vcore. This means that if we decrease the
halt_poll_ns value below the current polling interval we won't see any
effect unless we try to grow the polling interval above the new max at some
point or it happens to be shrunk below the halt_poll_ns value.
Update the halt polling code so that we always check for a new module param
value of halt_poll_ns and set the current halt polling interval to it if
it's currently greater than the new max. This means that it's redundant to
also perform this check in the grow_halt_poll_ns() function now.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The previous patch exported the variables which back the module parameters
of the generic kvm module. Now use these variables in the kvm-hv module
so that any change to the generic module parameters will also have the
same effect for the kvm-hv module. This removes the duplication of the
kvm module parameters which was redundant and should reduce confusion when
tuning them.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The function kvmppc_set_arch_compat() is used to determine the value of the
processor compatibility register (PCR) for a guest running in a given
compatibility mode. There is currently no support for v3.00 of the ISA.
Add support for v3.00 of the ISA which adds an ISA v2.07 compatilibity mode
to the PCR.
We also add a check to ensure the processor we are running on is capable of
emulating the chosen processor (for example a POWER7 cannot emulate a
POWER8, similarly with a POWER8 and a POWER9).
Based on work by: Paul Mackerras <paulus@ozlabs.org>
[paulus@ozlabs.org - moved dummy PCR_ARCH_300 definition here; set
guest_pcr_bit when arch_compat == 0, added comment.]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With POWER9, each CPU thread has its own MMU context and can be
in the host or a guest independently of the other threads; there is
still however a restriction that all threads must use the same type
of address translation, either radix tree or hashed page table (HPT).
Since we only support HPT guests on a HPT host at this point, we
can treat the threads as being independent, and avoid all of the
work of coordinating the CPU threads. To make this simpler, we
introduce a new threads_per_vcore() function that returns 1 on
POWER9 and threads_per_subcore on POWER7/8, and use that instead
of threads_per_subcore or threads_per_core in various places.
This also changes the value of the KVM_CAP_PPC_SMT capability on
POWER9 systems from 4 to 1, so that userspace will not try to
create VMs with multiple vcpus per vcore. (If userspace did create
a VM that thought it was in an SMT mode, the VM might try to use
the msgsndp instruction, which will not work as expected. In
future it may be possible to trap and emulate msgsndp in order to
allow VMs to think they are in an SMT mode, if only for the purpose
of allowing migration from POWER8 systems.)
With all this, we can now run guests on POWER9 as long as the host
is running with HPT translation. Since userspace currently has no
way to request radix tree translation for the guest, the guest has
no choice but to use HPT translation.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The new XIVE interrupt controller on POWER9 can direct external
interrupts to the hypervisor or the guest. The interrupts directed to
the hypervisor are controlled by an LPCR bit called LPCR_HVICE, and
come in as a "hypervisor virtualization interrupt". This sets the
LPCR bit so that hypervisor virtualization interrupts can occur while
we are in the guest. We then also need to cope with exiting the guest
because of a hypervisor virtualization interrupt.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 includes a new interrupt controller, called XIVE, which is
quite different from the XICS interrupt controller on POWER7 and
POWER8 machines. KVM-HV accesses the XICS directly in several places
in order to send and clear IPIs and handle interrupts from PCI
devices being passed through to the guest.
In order to make the transition to XIVE easier, OPAL firmware will
include an emulation of XICS on top of XIVE. Access to the emulated
XICS is via OPAL calls. The one complication is that the EOI
(end-of-interrupt) function can now return a value indicating that
another interrupt is pending; in this case, the XIVE will not signal
an interrupt in hardware to the CPU, and software is supposed to
acknowledge the new interrupt without waiting for another interrupt
to be delivered in hardware.
This adapts KVM-HV to use the OPAL calls on machines where there is
no XICS hardware. When there is no XICS, we look for a device-tree
node with "ibm,opal-intc" in its compatible property, which is how
OPAL indicates that it provides XICS emulation.
In order to handle the EOI return value, kvmppc_read_intr() has
become kvmppc_read_one_intr(), with a boolean variable passed by
reference which can be set by the EOI functions to indicate that
another interrupt is pending. The new kvmppc_read_intr() keeps
calling kvmppc_read_one_intr() until there are no more interrupts
to process. The return value from kvmppc_read_intr() is the
largest non-zero value of the returns from kvmppc_read_one_intr().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9, the msgsnd instruction is able to send interrupts to
other cores, as well as other threads on the local core. Since
msgsnd is generally simpler and faster than sending an IPI via the
XICS, we use msgsnd for all IPIs sent by KVM on POWER9.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 adds new capabilities to the tlbie (TLB invalidate entry)
and tlbiel (local tlbie) instructions. Both instructions get a
set of new parameters (RIC, PRS and R) which appear as bits in the
instruction word. The tlbiel instruction now has a second register
operand, which contains a PID and/or LPID value if needed, and
should otherwise contain 0.
This adapts KVM-HV's usage of tlbie and tlbiel to work on POWER9
as well as older processors. Since we only handle HPT guests so
far, we need RIC=0 PRS=0 R=0, which ends up with the same instruction
word as on previous processors, so we don't need to conditionally
execute different instructions depending on the processor.
The local flush on first entry to a guest in book3s_hv_rmhandlers.S
is a loop which depends on the number of TLB sets. Rather than
using feature sections to set the number of iterations based on
which CPU we're on, we now work out this number at VM creation time
and store it in the kvm_arch struct. That will make it possible to
get the number from the device tree in future, which will help with
compatibility with future processors.
Since mmu_partition_table_set_entry() does a global flush of the
whole LPID, we don't need to do the TLB flush on first entry to the
guest on each processor. Therefore we don't set all bits in the
tlb_need_flush bitmap on VM startup on POWER9.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to handle two new guest-accessible special-purpose
registers on POWER9: TIDR (thread ID register) and PSSCR (processor
stop status and control register). They are context-switched
between host and guest, and the guest values can be read and set
via the one_reg interface.
The PSSCR contains some fields which are guest-accessible and some
which are only accessible in hypervisor mode. We only allow the
guest-accessible fields to be read or set by userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9, the SDR1 register (hashed page table base address) is no
longer used, and instead the hardware reads the HPT base address
and size from the partition table. The partition table entry also
contains the bits that specify the page size for the VRMA mapping,
which were previously in the LPCR. The VPM0 bit of the LPCR is
now reserved; the processor now always uses the VRMA (virtual
real-mode area) mechanism for guest real-mode accesses in HPT mode,
and the RMO (real-mode offset) mechanism has been dropped.
When entering or exiting the guest, we now only have to set the
LPIDR (logical partition ID register), not the SDR1 register.
There is also no requirement now to transition via a reserved
LPID value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When switching from/to a guest that has a transaction in progress,
we need to save/restore the checkpointed register state. Although
XER is part of the CPU state that gets checkpointed, the code that
does this saving and restoring doesn't save/restore XER.
This fixes it by saving and restoring the XER. To allow userspace
to read/write the checkpointed XER value, we also add a new ONE_REG
specifier.
The visible effect of this bug is that the guest may see its XER
value being corrupted when it uses transactions.
Fixes: e4e3812150 ("KVM: PPC: Book3S HV: Add transactional memory support")
Fixes: 0a8eccefcb ("KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit")
Cc: stable@vger.kernel.org # v3.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This keeps a per vcpu cache for recently page faulted MMIO entries.
On a page fault, if the entry exists in the cache, we can avoid some
time-consuming paths, for example, looking up HPT, locking HPTE twice
and searching mmio gfn from memslots, then directly call
kvmppc_hv_emulate_mmio().
In current implenment, we limit the size of cache to four. We think
it's enough to cover the high-frequency MMIO HPTEs in most case.
For example, considering the case of using virtio device, for virtio
legacy devices, one HPTE could handle notifications from up to
1024 (64K page / 64 byte Port IO register) devices, so one cache entry
is enough; for virtio modern devices, we always need one HPTE to handle
notification for each device because modern device would use a 8M MMIO
register to notify host instead of Port IO register, typically the
system's configuration should not exceed four virtio devices per
vcpu, four cache entry is also enough in this case. Of course, if needed,
we could also modify the macro to a module parameter in the future.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Using list_move_tail() instead of list_del() + list_add_tail().
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This takes out the code that arranges to run two (or more) virtual
cores on a single subcore when possible, that is, when both vcores
are from the same VM, the VM is configured with one CPU thread per
virtual core, and all the per-subcore registers have the same value
in each vcore. Since the VTB (virtual timebase) is a per-subcore
register, and will almost always differ between vcores, this code
is disabled on POWER8 machines, meaning that it is only usable on
POWER7 machines (which don't have VTB). Given the tiny number of
POWER7 machines which have firmware that allows them to run HV KVM,
the benefit of simplifying the code outweighs the loss of this
feature on POWER7 machines.
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER8 has one virtual timebase (VTB) register per subcore, not one
per CPU thread. The HV KVM code currently treats VTB as a per-thread
register, which can lead to spurious soft lockup messages from guests
which use the VTB as the time source for the soft lockup detector.
(CPUs before POWER8 did not have the VTB register.)
For HV KVM, this fixes the problem by making only the primary thread
in each virtual core save and restore the VTB value. With this,
the VTB state becomes part of the kvmppc_vcore structure. This
also means that "piggybacking" of multiple virtual cores onto one
subcore is not possible on POWER8, because then the virtual cores
would share a single VTB register.
PR KVM emulates a VTB register, which is per-vcpu because PR KVM
has no notion of CPU threads or SMT. For PR KVM we move the VTB
state into the kvmppc_vcpu_book3s struct.
Cc: stable@vger.kernel.org # v3.14+
Reported-by: Thomas Huth <thuth@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a guest has a PCI pass-through device with an interrupt, it
will direct the interrupt to a particular guest VCPU. In fact the
physical interrupt might arrive on any CPU, and then get
delivered to the target VCPU in the emulated XICS (guest interrupt
controller), and eventually delivered to the target VCPU.
Now that we have code to handle device interrupts in real mode
without exiting to the host kernel, there is an advantage to having
the device interrupt arrive on the same sub(core) as the target
VCPU is running on. In this situation, the interrupt can be
delivered to the target VCPU without any exit to the host kernel
(using a hypervisor doorbell interrupt between threads if
necessary).
This patch aims to get passed-through device interrupts arriving
on the correct core by setting the interrupt server in the real
hardware XICS for the interrupt to the first thread in the (sub)core
where its target VCPU is running. We do this in the real-mode H_EOI
code because the H_EOI handler already needs to look at the
emulated ICS state for the interrupt (whereas the H_XIRR handler
doesn't), and we know we are running in the target VCPU context
at that point.
We set the server CPU in hardware using an OPAL call, regardless of
what the IRQ affinity mask for the interrupt says, and without
updating the affinity mask. This amounts to saying that when an
interrupt is passed through to a guest, as a matter of policy we
allow the guest's affinity for the interrupt to override the host's.
This is inspired by an earlier patch from Suresh Warrier, although
none of this code came from that earlier patch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add a module parameter kvm_irq_bypass for kvm_hv.ko to
disable IRQ bypass for passthrough interrupts. The default
value of this tunable is 1 - that is enable the feature.
Since the tunable is used by built-in kernel code, we use
the module_param_cb macro to achieve this.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
In existing real mode ICP code, when updating the virtual ICP
state, if there is a required action that cannot be completely
handled in real mode, as for instance, a VCPU needs to be woken
up, flags are set in the ICP to indicate the required action.
This is checked when returning from hypercalls to decide whether
the call needs switch back to the host where the action can be
performed in virtual mode. Note that if h_ipi_redirect is enabled,
real mode code will first try to message a free host CPU to
complete this job instead of returning the host to do it ourselves.
Currently, the real mode PCI passthrough interrupt handling code
checks if any of these flags are set and simply returns to the host.
This is not good enough as the trap value (0x500) is treated as an
external interrupt by the host code. It is only when the trap value
is a hypercall that the host code searches for and acts on unfinished
work by calling kvmppc_xics_rm_complete.
This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD
which is returned by KVM if there is unfinished business to be
completed in host virtual mode after handling a PCI passthrough
interrupt. The host checks for this special interrupt condition
and calls into the kvmppc_xics_rm_complete, which is made an
exported function for this reason.
[paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, KVM switches back to the host to handle any external
interrupt (when the interrupt is received while running in the
guest). This patch updates real-mode KVM to check if an interrupt
is generated by a passthrough adapter that is owned by this guest.
If so, the real mode KVM will directly inject the corresponding
virtual interrupt to the guest VCPU's ICS and also EOI the interrupt
in hardware. In short, the interrupt is handled entirely in real
mode in the guest context without switching back to the host.
In some rare cases, the interrupt cannot be completely handled in
real mode, for instance, a VCPU that is sleeping needs to be woken
up. In this case, KVM simply switches back to the host with trap
reason set to 0x500. This works, but it is clearly not very efficient.
A following patch will distinguish this case and handle it
correctly in the host. Note that we can use the existing
check_too_hard() routine even though we are not in a hypercall to
determine if there is unfinished business that needs to be
completed in host virtual mode.
The patch assumes that the mapping between hardware interrupt IRQ
and virtual IRQ to be injected to the guest already exists for the
PCI passthrough interrupts that need to be handled in real mode.
If the mapping does not exist, KVM falls back to the default
existing behavior.
The KVM real mode code reads mappings from the mapped array in the
passthrough IRQ map without taking any lock. We carefully order the
loads and stores of the fields in the kvmppc_irq_map data structure
using memory barriers to avoid an inconsistent mapping being seen by
the reader. Thus, although it is possible to miss a map entry, it is
not possible to read a stale value.
[paulus@ozlabs.org - get irq_chip from irq_map rather than pimap,
pulled out powernv eoi change into a separate patch, made
kvmppc_read_intr get the vcpu from the paca rather than being
passed in, rewrote the logic at the end of kvmppc_read_intr to
avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S
since we were always restoring SRR0/1 anyway, get rid of the cached
array (just use the mapped array), removed the kick_all_cpus_sync()
call, clear saved_xirr PACA field when we handle the interrupt in
real mode, fix compilation with CONFIG_KVM_XICS=n.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add the irq_bypass_add_producer and irq_bypass_del_producer
functions. These functions get called whenever a GSI is being
defined for a guest. They create/remove the mapping between
host real IRQ numbers and the guest GSI.
Add the following helper functions to manage the
passthrough IRQ map.
kvmppc_set_passthru_irq()
Creates a mapping in the passthrough IRQ map that maps a host
IRQ to a guest GSI. It allocates the structure (one per guest VM)
the first time it is called.
kvmppc_clr_passthru_irq()
Removes the passthrough IRQ map entry given a guest GSI.
The passthrough IRQ map structure is not freed even when the
number of mapped entries goes to zero. It is only freed when
the VM is destroyed.
[paulus@ozlabs.org - modified to use is_pnv_opal_msi() rather than
requiring all passed-through interrupts to use the same irq_chip;
changed deletion so it zeroes out the r_hwirq field rather than
copying the last entry down and decrementing the number of entries.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch introduces an IRQ mapping structure, the
kvmppc_passthru_irqmap structure that is to be used
to map the real hardware IRQ in the host with the virtual
hardware IRQ (gsi) that is injected into a guest by KVM for
passthrough adapters.
Currently, we assume a separate IRQ mapping structure for
each guest. Each kvmppc_passthru_irqmap has a mapping arrays,
containing all defined real<->virtual IRQs.
[paulus@ozlabs.org - removed irq_chip field from struct
kvmppc_passthru_irqmap; changed parameter for
kvmppc_get_passthru_irqmap from struct kvm_vcpu * to struct
kvm *, removed small cached array.]
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
vcpu stats are used to collect information about a vcpu which can be viewed
in the debugfs. For example halt_attempted_poll and halt_successful_poll
are used to keep track of the number of times the vcpu attempts to and
successfully polls. These stats are currently not used on powerpc.
Implement incrementation of the halt_attempted_poll and
halt_successful_poll vcpu stats for powerpc. Since these stats are summed
over all the vcpus for all running guests it doesn't matter which vcpu
they are attributed to, thus we choose the current runner vcpu of the
vcore.
Also add new vcpu stats: halt_poll_success_ns, halt_poll_fail_ns and
halt_wait_ns to be used to accumulate the total time spend polling
successfully, polling unsuccessfully and waiting respectively, and
halt_successful_wait to accumulate the number of times the vcpu waits.
Given that halt_poll_success_ns, halt_poll_fail_ns and halt_wait_ns are
expressed in nanoseconds it is necessary to represent these as 64-bit
quantities, otherwise they would overflow after only about 4 seconds.
Given that the total time spend either polling or waiting will be known and
the number of times that each was done, it will be possible to determine
the average poll and wait times. This will give the ability to tune the kvm
module parameters based on the calculated average wait and poll times.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch introduces new halt polling functionality into the kvm_hv kernel
module. When a vcore is idle it will poll for some period of time before
scheduling itself out.
When all of the runnable vcpus on a vcore have ceded (and thus the vcore is
idle) we schedule ourselves out to allow something else to run. In the
event that we need to wake up very quickly (for example an interrupt
arrives), we are required to wait until we get scheduled again.
Implement halt polling so that when a vcore is idle, and before scheduling
ourselves, we poll for vcpus in the runnable_threads list which have
pending exceptions or which leave the ceded state. If we poll successfully
then we can get back into the guest very quickly without ever scheduling
ourselves, otherwise we schedule ourselves out as before.
There exists generic halt_polling code in virt/kvm_main.c, however on
powerpc the polling conditions are different to the generic case. It would
be nice if we could just implement an arch specific kvm_check_block()
function, but there is still other arch specific things which need to be
done for kvm_hv (for example manipulating vcore states) which means that a
separate implementation is the best option.
Testing of this patch with a TCP round robin test between two guests with
virtio network interfaces has found a decrease in round trip time of ~15us
on average. A performance gain is only seen when going out of and
back into the guest often and quickly, otherwise there is no net benefit
from the polling. The polling interval is adjusted such that when we are
often scheduled out for long periods of time it is reduced, and when we
often poll successfully it is increased. The rate at which the polling
interval increases or decreases, and the maximum polling interval, can
be set through module parameters.
Based on the implementation in the generic kvm module by Wanpeng Li and
Paolo Bonzini, and on direction from Paul Mackerras.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The struct kvmppc_vcore is a structure used to store various information
about a virtual core for a kvm guest. The runnable_threads element of the
struct provides a list of all of the currently runnable vcpus on the core
(those in the KVMPPC_VCPU_RUNNABLE state). The previous implementation of
this list was a linked_list. The next patch requires that the list be able
to be iterated over without holding the vcore lock.
Reimplement the runnable_threads list in the kvmppc_vcore struct as an
array. Implement function to iterate over valid entries in the array and
update access sites accordingly.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use the functions from context_tracking.h directly.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest is assigned to a core it converts the host Timebase (TB)
into guest TB by adding guest timebase offset before entering into
guest. During guest exit it restores the guest TB to host TB. This means
under certain conditions (Guest migration) host TB and guest TB can differ.
When we get an HMI for TB related issues the opal HMI handler would
try fixing errors and restore the correct host TB value. With no guest
running, we don't have any issues. But with guest running on the core
we run into TB corruption issues.
If we get an HMI while in the guest, the current HMI handler invokes opal
hmi handler before forcing guest to exit. The guest exit path subtracts
the guest TB offset from the current TB value which may have already
been restored with host value by opal hmi handler. This leads to incorrect
host and guest TB values.
With split-core, things become more complex. With split-core, TB also gets
split and each subcore gets its own TB register. When a hmi handler fixes
a TB error and restores the TB value, it affects all the TB values of
sibling subcores on the same core. On TB errors all the thread in the core
gets HMI. With existing code, the individual threads call opal hmi handle
independently which can easily throw TB out of sync if we have guest
running on subcores. Hence we will need to co-ordinate with all the
threads before making opal hmi handler call followed by TB resync.
This patch introduces a sibling subcore state structure (shared by all
threads in the core) in paca which holds information about whether sibling
subcores are in Guest mode or host mode. An array in_guest[] of size
MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore.
The subcore id is used as index into in_guest[] array. Only primary
thread entering/exiting the guest is responsible to set/unset its
designated array element.
On TB error, we get HMI interrupt on every thread on the core. Upon HMI,
this patch will now force guest to vacate the core/subcore. Primary
thread from each subcore will then turn off its respective bit
from the above bitmap during the guest exit path just after the
guest->host partition switch is complete.
All other threads that have just exited the guest OR were already in host
will wait until all other subcores clears their respective bit.
Once all the subcores turn off their respective bit, all threads will
will make call to opal hmi handler.
It is not necessary that opal hmi handler would resync the TB value for
every HMI interrupts. It would do so only for the HMI caused due to
TB errors. For rest, it would not touch TB value. Hence to make things
simpler, primary thread would call TB resync explicitly once for each
core immediately after opal hmi handler instead of subtracting guest
offset from TB. TB resync call will restore the TB with host value.
Thus we can be sure about the TB state.
One of the primary threads exiting the guest will take up the
responsibility of calling TB resync. It will use one of the top bits
(bit 63) from subcore state flags bitmap to make the decision. The first
primary thread (among the subcores) that is able to set the bit will
have to call the TB resync. Rest all other threads will wait until TB
resync is complete. Once TB resync is complete all threads will then
proceed.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Highlights:
- Support for Power ISA 3.0 (Power9) Radix Tree MMU from Aneesh Kumar K.V
- Live patching support for ppc64le (also merged via livepatching.git)
Various cleanups & minor fixes from:
- Aaro Koskinen, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Chris Smart, Daniel Axtens, Frederic Barrat, Gavin Shan, Ian Munsie, Lennart
Sorensen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring, Michael
Ellerman, Oliver O'Halloran, Paul Gortmaker, Paul Mackerras, Rashmica Gupta,
Russell Currey, Suraj Jitindar Singh, Thiago Jung Bauermann, Valentin
Rothberg, Vipin K Parashar.
General:
- Update LMB associativity index during DLPAR add/remove from Nathan Fontenot
- Fix branching to OOL handlers in relocatable kernel from Hari Bathini
- Add support for userspace Power9 copy/paste from Chris Smart
- Always use STRICT_MM_TYPECHECKS from Michael Ellerman
- Add mask of possible MMU features from Michael Ellerman
PCI:
- Enable pass through of NVLink to guests from Alexey Kardashevskiy
- Cleanups in preparation for powernv PCI hotplug from Gavin Shan
- Don't report error in eeh_pe_reset_and_recover() from Gavin Shan
- Restore initial state in eeh_pe_reset_and_recover() from Gavin Shan
- Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell" from Guilherme G. Piccoli
- Remove the dependency on EEH struct in DDW mechanism from Guilherme G. Piccoli
selftests:
- Test cp_abort during context switch from Chris Smart
- Add several tests for transactional memory support from Rashmica Gupta
perf:
- Add support for sampling interrupt register state from Anju T
- Add support for unwinding perf-stackdump from Chandan Kumar
cxl:
- Configure the PSL for two CAPI ports on POWER8NVL from Philippe Bergheaud
- Allow initialization on timebase sync failures from Frederic Barrat
- Increase timeout for detection of AFU mmio hang from Frederic Barrat
- Handle num_of_processes larger than can fit in the SPA from Ian Munsie
- Ensure PSL interrupt is configured for contexts with no AFU IRQs from Ian Munsie
- Add kernel API to allow a context to operate with relocate disabled from Ian Munsie
- Check periodically the coherent platform function's state from Christophe Lombard
Freescale:
- Updates from Scott: "Contains 86xx fixes, minor device tree fixes, an erratum
workaround, and a kconfig dependency fix."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXPsGzAAoJEFHr6jzI4aWAVoAP/iKdrDe0eYHlVAE9SqnbsiZs
lgDxdsC8P3fsmP1G9o/HkKhC82zHl/La8Ztz8dtqa+LkSzbfliWP1ztJsI7GsBFo
tyCKzWnX9Rwvd3meHu/o/SQ29TNLm/PbPyyRqpj5QPbJ8XCXkAXR7ZZZqjvcMsJW
/AgIr7Cgf53tl9oZzzl/c7CnNHhMq+NBdA71vhWtUx+T97wfJEGyKW6HhZyHDbEU
iAki7fu77ZpEqC/Fh9swf0dCGBJ+a132NoMVo0AdV7EQLznUYlQpQEqa+1PyHZOP
/ArOzf2mDg6m3PfCo1eiB07v8PnVZ3llEUbVAJNg3GUxbE4SHrqq/kwm0iElm3p/
DvFxerCwdX9vmskJX4wDs+pSZRabXYj9XVMptsgFzA4joWrqqb7mBHqaort88YcY
YSljEt1bHyXmiJ+dBya40qARsWUkCVN7ZgEzdxckq0KI3w7g2tqpqIbO2lClWT6t
B3GpqQ4jp34+d1M14FB91fIGK7tMvOhSInE0Mv9+tPvRsepXqiiU/SwdAtRlr3m2
zs/K+4FYcVjJ3Rmpgc+tI38PbZxHe212I35YN6L1LP+4ZfAtzz0NyKdooTIBtkbO
19pX4WbBjKq8zK+YutrySncBIrbnI6VjW51vtRhgVKZliPFO/6zKagyU6FbxM+E5
udQES+t3F/9gvtxgxtDe
=YvyQ
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Support for Power ISA 3.0 (Power9) Radix Tree MMU from Aneesh Kumar K.V
- Live patching support for ppc64le (also merged via livepatching.git)
Various cleanups & minor fixes from:
- Aaro Koskinen, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Chris Smart, Daniel Axtens, Frederic Barrat, Gavin Shan, Ian Munsie,
Lennart Sorensen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring,
Michael Ellerman, Oliver O'Halloran, Paul Gortmaker, Paul Mackerras,
Rashmica Gupta, Russell Currey, Suraj Jitindar Singh, Thiago Jung
Bauermann, Valentin Rothberg, Vipin K Parashar.
General:
- Update LMB associativity index during DLPAR add/remove from Nathan
Fontenot
- Fix branching to OOL handlers in relocatable kernel from Hari Bathini
- Add support for userspace Power9 copy/paste from Chris Smart
- Always use STRICT_MM_TYPECHECKS from Michael Ellerman
- Add mask of possible MMU features from Michael Ellerman
PCI:
- Enable pass through of NVLink to guests from Alexey Kardashevskiy
- Cleanups in preparation for powernv PCI hotplug from Gavin Shan
- Don't report error in eeh_pe_reset_and_recover() from Gavin Shan
- Restore initial state in eeh_pe_reset_and_recover() from Gavin Shan
- Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell"
from Guilherme G Piccoli
- Remove the dependency on EEH struct in DDW mechanism from Guilherme
G Piccoli
selftests:
- Test cp_abort during context switch from Chris Smart
- Add several tests for transactional memory support from Rashmica
Gupta
perf:
- Add support for sampling interrupt register state from Anju T
- Add support for unwinding perf-stackdump from Chandan Kumar
cxl:
- Configure the PSL for two CAPI ports on POWER8NVL from Philippe
Bergheaud
- Allow initialization on timebase sync failures from Frederic Barrat
- Increase timeout for detection of AFU mmio hang from Frederic
Barrat
- Handle num_of_processes larger than can fit in the SPA from Ian
Munsie
- Ensure PSL interrupt is configured for contexts with no AFU IRQs
from Ian Munsie
- Add kernel API to allow a context to operate with relocate disabled
from Ian Munsie
- Check periodically the coherent platform function's state from
Christophe Lombard
Freescale:
- Updates from Scott: "Contains 86xx fixes, minor device tree fixes,
an erratum workaround, and a kconfig dependency fix."
* tag 'powerpc-4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (192 commits)
powerpc/86xx: Fix PCI interrupt map definition
powerpc/86xx: Move pci1 definition to the include file
powerpc/fsl: Fix build of the dtb embedded kernel images
powerpc/fsl: Fix rcpm compatible string
powerpc/fsl: Remove FSL_SOC dependency from FSL_LBC
powerpc/fsl-pci: Add a workaround for PCI 5 errata
powerpc/fsl: Fix SPI compatible on t208xrdb and t1040rdb
powerpc/powernv/npu: Add PE to PHB's list
powerpc/powernv: Fix insufficient memory allocation
powerpc/iommu: Remove the dependency on EEH struct in DDW mechanism
Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell"
powerpc/eeh: Drop unnecessary label in eeh_pe_change_owner()
powerpc/eeh: Ignore handlers in eeh_pe_reset_and_recover()
powerpc/eeh: Restore initial state in eeh_pe_reset_and_recover()
powerpc/eeh: Don't report error in eeh_pe_reset_and_recover()
Revert "powerpc/powernv: Exclude root bus in pnv_pci_reset_secondary_bus()"
powerpc/powernv/npu: Enable NVLink pass through
powerpc/powernv/npu: Rework TCE Kill handling
powerpc/powernv/npu: Add set/unset window helpers
powerpc/powernv/ioda2: Export debug helper pe_level_printk()
...
When CONFIG_KVM_XICS is enabled, CPU_UP_PREPARE and other macros for
CPU states in linux/cpu.h are needed by arch/powerpc/kvm/book3s_hv.c.
Otherwise, build error as below is seen:
gwshan@gwshan:~/sandbox/l$ make arch/powerpc/kvm/book3s_hv.o
:
CC arch/powerpc/kvm/book3s_hv.o
arch/powerpc/kvm/book3s_hv.c: In function ‘kvmppc_cpu_notify’:
arch/powerpc/kvm/book3s_hv.c:3072:7: error: ‘CPU_UP_PREPARE’ \
undeclared (first use in this function)
This fixes the issue introduced by commit <6f3bb80944> ("KVM: PPC:
Book3S HV: kvmppc_host_rm_ops - handle offlining CPUs").
Fixes: 6f3bb80944
Cc: stable@vger.kernel.org # v4.6
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
PowerISA 3.0 adds a parition table indexed by LPID. Parition table
allows us to specify the MMU model that will be used for guest and host
translation.
This patch adds support with SLB based hash model (UPRT = 0). What is
required with this model is to support the new hash page table entry
format and also setup partition table such that we use hash table for
address translation.
We don't have segment table support yet.
In order to make sure we don't load KVM module on Power9 (since we don't
have kvm support yet) this patch also disables KVM on Power9.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Redirecting the wakeup of a VCPU from the H_IPI hypercall to
a core running in the host is usually a good idea, most workloads
seemed to benefit. However, in one heavily interrupt-driven SMT1
workload, some regression was observed. This patch adds a kvm_hv
module parameter called h_ipi_redirect to control this feature.
The default value for this tunable is 1 - that is enable the feature.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch adds the support for the kick VCPU operation for
kvmppc_host_rm_ops. The kvmppc_xics_ipi_action() function
provides the function to be invoked for a host side operation
when poked by the real mode KVM. This is initiated by KVM by
sending an IPI to any free host core.
KVM real mode must set the rm_action to XICS_RM_KICK_VCPU and
rm_data to point to the VCPU to be woken up before sending the IPI.
Note that we have allocated one kvmppc_host_rm_core structure
per core. The above values need to be set in the structure
corresponding to the core to which the IPI will be sent.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The kvmppc_host_rm_ops structure keeps track of which cores are
are in the host by maintaining a bitmask of active/runnable
online CPUs that have not entered the guest. This patch adds
support to manage the bitmask when a CPU is offlined or onlined
in the host.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Update the core host state in kvmppc_host_rm_ops whenever
the primary thread of the core enters the guest or returns
back.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch defines the data structures to support the setting up
of host side operations while running in real mode in the guest,
and also the functions to allocate and free it.
The operations are for now limited to virtual XICS operations.
Currently, we have only defined one operation in the data
structure:
- Wake up a VCPU sleeping in the host when it
receives a virtual interrupt
The operations are assigned at the core level because PowerKVM
requires that the host run in SMT off mode. For each core,
we will need to manage its state atomically - where the state
is defined by:
1. Is the core running in the host?
2. Is there a Real Mode (RM) operation pending on the host?
Currently, core state is only managed at the whole-core level
even when the system is in split-core mode. This just limits
the number of free or "available" cores in the host to perform
any host-side operations.
The kvmppc_host_rm_core.rm_data allows any data to be passed by
KVM in real mode to the host core along with the operation to
be performed.
The kvmppc_host_rm_ops structure is allocated the very first time
a guest VM is started. Initial core state is also set - all online
cores are in the host. This structure is never deleted, not even
when there are no active guests. However, it needs to be freed
when the module is unloaded because the kvmppc_host_rm_ops_hv
can contain function pointers to kvm-hv.ko functions for the
different supported host operations.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The problem:
On -rt, an emulated LAPIC timer instances has the following path:
1) hard interrupt
2) ksoftirqd is scheduled
3) ksoftirqd wakes up vcpu thread
4) vcpu thread is scheduled
This extra context switch introduces unnecessary latency in the
LAPIC path for a KVM guest.
The solution:
Allow waking up vcpu thread from hardirq context,
thus avoiding the need for ksoftirqd to be scheduled.
Normal waitqueues make use of spinlocks, which on -RT
are sleepable locks. Therefore, waking up a waitqueue
waiter involves locking a sleeping lock, which
is not allowed from hard interrupt context.
cyclictest command line:
This patch reduces the average latency in my tests from 14us to 11us.
Daniel writes:
Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency
benchmark on mainline. The test was run 1000 times on
tip/sched/core 4.4.0-rc8-01134-g0905f04:
./x86-run x86/tscdeadline_latency.flat -cpu host
with idle=poll.
The test seems not to deliver really stable numbers though most of
them are smaller. Paolo write:
"Anything above ~10000 cycles means that the host went to C1 or
lower---the number means more or less nothing in that case.
The mean shows an improvement indeed."
Before:
min max mean std
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 5162.596000 2019270.084000 5824.491541 20681.645558
std 75.431231 622607.723969 89.575700 6492.272062
min 4466.000000 23928.000000 5537.926500 585.864966
25% 5163.000000 1613252.750000 5790.132275 16683.745433
50% 5175.000000 2281919.000000 5834.654000 23151.990026
75% 5190.000000 2382865.750000 5861.412950 24148.206168
max 5228.000000 4175158.000000 6254.827300 46481.048691
After
min max mean std
count 1000.000000 1000.00000 1000.000000 1000.000000
mean 5143.511000 2076886.10300 5813.312474 21207.357565
std 77.668322 610413.09583 86.541500 6331.915127
min 4427.000000 25103.00000 5529.756600 559.187707
25% 5148.000000 1691272.75000 5784.889825 17473.518244
50% 5160.000000 2308328.50000 5832.025000 23464.837068
75% 5172.000000 2393037.75000 5853.177675 24223.969976
max 5222.000000 3922458.00000 6186.720500 42520.379830
[Patch was originaly based on the swait implementation found in the -rt
tree. Daniel ported it to mainline's version and gathered the
benchmark numbers for tscdeadline_latency test.]
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This adds real and virtual mode handlers for the H_PUT_TCE_INDIRECT and
H_STUFF_TCE hypercalls for user space emulated devices such as IBMVIO
devices or emulated PCI. These calls allow adding multiple entries
(up to 512) into the TCE table in one call which saves time on
transition between kernel and user space.
The current implementation of kvmppc_h_stuff_tce() allows it to be
executed in both real and virtual modes so there is one helper.
The kvmppc_rm_h_put_tce_indirect() needs to translate the guest address
to the host address and since the translation is different, there are
2 helpers - one for each mode.
This implements the KVM_CAP_PPC_MULTITCE capability. When present,
the kernel will try handling H_PUT_TCE_INDIRECT and H_STUFF_TCE if these
are enabled by the userspace via KVM_CAP_PPC_ENABLE_HCALL.
If they can not be handled by the kernel, they are passed on to
the user space. The user space still has to have an implementation
for these.
Both HV and PR-syle KVM are supported.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>