mm/*.c files use symbolic and octal styles for permissions.
Using octal and not symbolic permissions is preferred by many as more
readable.
https://lkml.org/lkml/2016/8/2/1945
Prefer the direct use of octal for permissions.
Done using
$ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c
and some typing.
Before: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
44
After: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
86
Miscellanea:
o Whitespace neatening around these conversions.
Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem/tmpfs uses pseudo vma to allocate page with correct NUMA policy.
The pseudo vma doesn't have vm_page_prot set. We are going to encode
encryption KeyID in vm_page_prot. Having garbage there causes problems.
Zero out all unused fields in the pseudo vma.
Link: http://lkml.kernel.org/r/20180531135602.20321-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
See commit 1c8f422059 ("mm: change return type to vm_fault_t")
vmf_error() is the newly introduce inline function in 4.17-rc6.
Link: http://lkml.kernel.org/r/20180521202410.GA17912@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tmpfs uses the helper d_find_alias() to find a dentry from a decoded
inode, but d_find_alias() skips unhashed dentries, so unlinked files
cannot be decoded from a file handle.
This can be reproduced using xfstests test program open_by_handle:
$ open_by handle -c /tmp/testdir
$ open_by_handle -dk /tmp/testdir
open_by_handle(/tmp/testdir/file000000) returned 116 incorrectly on an unlinked open file!
To fix this, if d_find_alias() can't find a hashed alias, call
d_find_any_alias() to return an unhashed one.
Link: http://lkml.kernel.org/r/CAOQ4uxg+qSLP0KwdW+h1tcPqOCQd+_pGZVXiePQB1TXCMBMctQ@mail.gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: NeilBrown <neilb@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since tmpfs THP was supported in 4.8, hugetlbfs is not the only
filesystem with huge page support anymore. tmpfs can use huge page via
THP when mounting by "huge=" mount option.
When applications use huge page on hugetlbfs, it just need check the
filesystem magic number, but it is not enough for tmpfs. Make
stat.st_blksize return huge page size if it is mounted by appropriate
"huge=" option to give applications a hint to optimize the behavior with
THP.
Some applications may not do wisely with THP. For example, QEMU may
mmap file on non huge page aligned hint address with MAP_FIXED, which
results in no pages are PMD mapped even though THP is used. Some
applications may mmap file with non huge page aligned offset. Both
behaviors make THP pointless.
statfs.f_bsize still returns 4KB for tmpfs since THP could be split, and
it also may fallback to 4KB page silently if there is not enough huge
page. Furthermore, different f_bsize makes max_blocks and free_blocks
calculation harder but without too much benefit. Returning huge page
size via stat.st_blksize sounds good enough.
Since PUD size huge page for THP has not been supported, now it just
returns HPAGE_PMD_SIZE.
Hugh said:
: Sorry, I have no enthusiasm for this patch; but do I feel strongly
: enough to override you and everyone else to NAK it? No, I don't feel
: that strongly, maybe st_blksize isn't worth arguing over.
:
: We did look at struct stat when designing huge tmpfs, to see if there
: were any fields that should be adjusted for it; but concluded none.
: Yes, it would sometimes be nice to have a quickly accessible indicator
: for when tmpfs has been mounted huge (scanning /proc/mounts for options
: can be tiresome, agreed); but since tmpfs tries to supply huge (or not)
: pages transparently, no difference seemed right.
:
: So, because st_blksize is a not very useful field of struct stat, with
: "size" in the name, we're going to put HPAGE_PMD_SIZE in there instead
: of PAGE_SIZE, if the tmpfs was mounted with one of the huge "huge"
: options (force or always, okay; within_size or advise, not so much).
: Though HPAGE_PMD_SIZE is no more its "preferred I/O size" or "blocksize
: for file system I/O" than PAGE_SIZE was.
:
: Which we can expect to speed up some applications and disadvantage
: others, depending on how they interpret st_blksize: just like if we
: changed it in the same way on non-huge tmpfs. (Did I actually try
: changing st_blksize early on, and find it broke something? If so, I've
: now forgotten what, and a search through commit messages didn't find
: it; but I guess we'll find out soon enough.)
:
: If there were an mstat() syscall, returning a field "preferred
: alignment", then we could certainly agree to put HPAGE_PMD_SIZE in
: there; but in stat()'s st_blksize? And what happens when (in future)
: mm maps this or that hard-disk filesystem's blocks with a pmd mapping -
: should that filesystem then advertise a bigger st_blksize, despite the
: same disk layout as before? What happens with DAX?
:
: And this change is not going to help the QEMU suboptimality that
: brought you here (or does QEMU align mmaps according to st_blksize?).
: QEMU ought to work well with kernels without this change, and kernels
: with this change; and I hope it can easily deal with both by avoiding
: that use of MAP_FIXED which prevented the kernel's intended alignment.
[akpm@linux-foundation.org: remove unneeded `else']
Link: http://lkml.kernel.org/r/1524665633-83806-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the addition of memfd hugetlbfs support, we now have the situation
where memfd depends on TMPFS -or- HUGETLBFS. Previously, memfd was only
supported on tmpfs, so it made sense that the code resided in shmem.c.
In the current code, memfd is only functional if TMPFS is defined. If
HUGETLFS is defined and TMPFS is not defined, then memfd functionality
will not be available for hugetlbfs. This does not cause BUGs, just a
lack of potentially desired functionality.
Code is restructured in the following way:
- include/linux/memfd.h is a new file containing memfd specific
definitions previously contained in shmem_fs.h.
- mm/memfd.c is a new file containing memfd specific code previously
contained in shmem.c.
- memfd specific code is removed from shmem_fs.h and shmem.c.
- A new config option MEMFD_CREATE is added that is defined if TMPFS
or HUGETLBFS is defined.
No functional changes are made to the code: restructuring only.
Link: http://lkml.kernel.org/r/20180415182119.4517-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marc-Andr Lureau <marcandre.lureau@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for memfd code restructure, update comments, definitions
and function names dealing with file sealing to indicate that tmpfs and
hugetlbfs are the supported filesystems. Also, change file pointer
checks in memfd_file_seals_ptr to use defined interfaces instead of
directly referencing file_operation structs.
Link: http://lkml.kernel.org/r/20180415182119.4517-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marc-Andr Lureau <marcandre.lureau@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "restructure memfd code", v4.
This patch (of 3):
In preparation for memfd code restucture, clean up sparse warnings.
Most changes required adding __rcu annotations. The routine
find_swap_entry was modified to properly deference radix tree entries.
Link: http://lkml.kernel.org/r/20180415182119.4517-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Marc-Andr Lureau <marcandre.lureau@gmail.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, memcontrol: Implement memory.swap.events", v2.
This patchset implements memory.swap.events which contains max and fail
events so that userland can monitor and respond to swap running out.
This patch (of 2):
get_swap_page() is always followed by mem_cgroup_try_charge_swap().
This patch moves mem_cgroup_try_charge_swap() into get_swap_page() and
makes get_swap_page() call the function even after swap allocation
failure.
This simplifies the callers and consolidates memcg related logic and
will ease adding swap related memcg events.
Link: http://lkml.kernel.org/r/20180416230934.GH1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes do_swap_page() not need to be aware of two different
swap readahead algorithms. Just unify cluster-based and vma-based
readahead function call.
Link: http://lkml.kernel.org/r/1509520520-32367-3-git-send-email-minchan@kernel.org
Link: http://lkml.kernel.org/r/20180220085249.151400-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_unused_huge_shrink() gets called from reclaim path. Waiting for
page lock may lead to deadlock there.
There was a bug report that may be attributed to this:
http://lkml.kernel.org/r/alpine.LRH.2.11.1801242349220.30642@mail.ewheeler.net
Replace lock_page() with trylock_page() and skip the page if we failed
to lock it. We will get to the page on the next scan.
We can test for the PageTransHuge() outside the page lock as we only
need protection against splitting the page under us. Holding pin oni
the page is enough for this.
Link: http://lkml.kernel.org/r/20180316210830.43738-1-kirill.shutemov@linux.intel.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Eric Wheeler <linux-mm@lists.ewheeler.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adapt add_seals()/get_seals() to work with hugetbfs-backed memory.
Teach memfd_create() to allow sealing operations on MFD_HUGETLB.
Link: http://lkml.kernel.org/r/20171107122800.25517-6-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Those functions are called for memfd files, backed by shmem or hugetlb
(the next patches will handle hugetlb).
Link: http://lkml.kernel.org/r/20171107122800.25517-3-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memfd: add sealing to hugetlb-backed memory", v3.
Recently, Mike Kravetz added hugetlbfs support to memfd. However, he
didn't add sealing support. One of the reasons to use memfd is to have
shared memory sealing when doing IPC or sharing memory with another
process with some extra safety. qemu uses shared memory & hugetables
with vhost-user (used by dpdk), so it is reasonable to use memfd now
instead for convenience and security reasons.
This patch (of 9):
The functions are called through shmem_fcntl() only. And no danger in
removing the EXPORTs as the routines only work with shmem file structs.
Link: http://lkml.kernel.org/r/20171107122800.25517-2-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following warning by removing the unused variable:
mm/shmem.c:3205:27: warning: variable 'info' set but not used [-Wunused-but-set-variable]
Link: http://lkml.kernel.org/r/1510774029-30652-1-git-send-email-clabbe@baylibre.com
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaCm8RAAoJEAx081l5xIa+zX0QAJSm31kCG3vdw2CNiRx25L3q
3hcsEOgAjVJ9FQVGKFWjzb8TK35tSqtNx5kWIj0VGaIfBE5Bdg5SLLgKKUYas8rY
4LaphqICq2uxu2BNa2tpiar/sHhAnuozwQ4czpVWXzlaISnb9yYzRl7gMuyUVGkx
+Gih5VUhLmQC0HsRTLJ3vaZQoUsLAl2gAjKcWa1bx57j2S+iKOPfsLaq7VYo+y1I
Njc+iSGqMhJzRLXVkxL2lQKaslp7R38Bbh5K4Kvyjkm4Aq7zErOF6irpOXKMcrGl
mwnr89vf1G9thjikrBaXpKnuvdbWYveoN/ORMlTdCfxkFnChHLnm3bd7NJ49RXDN
Hv/Iq9YYjmZ9GTatxnx7lWtmXnZXC5he1yn1JAuz/yt7/0b/Wx+Mu/wEpBXYNFTd
1AZdD586i+AmPo3yDkqH9nBu8JC0W0AnS9VZma4LVvZOP2UfJmj5Im1CLHItbGDN
FnUCkwyD/lJUUk+WgT+w/GOMJgmFHDiFFl4tFtYVVjrUirpCFVguSKG9xuv6tT8P
8iRsoP7RrcmDN9ojN2SEHwcpsAv3HnKkDv+9+GIbWnrGsSbCPq8Qm+JDSvf4h22I
K5lwNpJrcpSKI+q10L7w2xliTBwb98sJkWGA/rssomrdBOWteGZAyqFRYAVgQ+mJ
x/nJurIqQYh2KQN9+uLG
=xVV2
-----END PGP SIGNATURE-----
Merge tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
"This is the main drm pull request for v4.15.
Core:
- Atomic object lifetime fixes
- Atomic iterator improvements
- Sparse/smatch fixes
- Legacy kms ioctls to be interruptible
- EDID override improvements
- fb/gem helper cleanups
- Simple outreachy patches
- Documentation improvements
- Fix dma-buf rcu races
- DRM mode object leasing for improving VR use cases.
- vgaarb improvements for non-x86 platforms.
New driver:
- tve200: Faraday Technology TVE200 block.
This "TV Encoder" encodes a ITU-T BT.656 stream and can be found in
the StorLink SL3516 (later Cortina Systems CS3516) as well as the
Grain Media GM8180.
New bridges:
- SiI9234 support
New panels:
- S6E63J0X03, OTM8009A, Seiko 43WVF1G, 7" rpi touch panel, Toshiba
LT089AC19000, Innolux AT043TN24
i915:
- Remove Coffeelake from alpha support
- Cannonlake workarounds
- Infoframe refactoring for DisplayPort
- VBT updates
- DisplayPort vswing/emph/buffer translation refactoring
- CCS fixes
- Restore GPU clock boost on missed vblanks
- Scatter list updates for userptr allocations
- Gen9+ transition watermarks
- Display IPC (Isochronous Priority Control)
- Private PAT management
- GVT: improved error handling and pci config sanitizing
- Execlist refactoring
- Transparent Huge Page support
- User defined priorities support
- HuC/GuC firmware refactoring
- DP MST fixes
- eDP power sequencing fixes
- Use RCU instead of stop_machine
- PSR state tracking support
- Eviction fixes
- BDW DP aux channel timeout fixes
- LSPCON fixes
- Cannonlake PLL fixes
amdgpu:
- Per VM BO support
- Powerplay cleanups
- CI powerplay support
- PASID mgr for kfd
- SR-IOV fixes
- initial GPU reset for vega10
- Prime mmap support
- TTM updates
- Clock query interface for Raven
- Fence to handle ioctl
- UVD encode ring support on Polaris
- Transparent huge page DMA support
- Compute LRU pipe tweaks
- BO flag to allow buffers to opt out of implicit sync
- CTX priority setting API
- VRAM lost infrastructure plumbing
qxl:
- fix flicker since atomic rework
amdkfd:
- Further improvements from internal AMD tree
- Usermode events
- Drop radeon support
nouveau:
- Pascal temperature sensor support
- Improved BAR2 handling
- MMU rework to support Pascal MMU
exynos:
- Improved HDMI/mixer support
- HDMI audio interface support
tegra:
- Prep work for tegra186
- Cleanup/fixes
msm:
- Preemption support for a5xx
- Display fixes for 8x96 (snapdragon 820)
- Async cursor plane fixes
- FW loading rework
- GPU debugging improvements
vc4:
- Prep for DSI panels
- fix T-format tiling scanout
- New madvise ioctl
Rockchip:
- LVDS support
omapdrm:
- omap4 HDMI CEC support
etnaviv:
- GPU performance counters groundwork
sun4i:
- refactor driver load + TCON backend
- HDMI improvements
- A31 support
- Misc fixes
udl:
- Probe/EDID read fixes.
tilcdc:
- Misc fixes.
pl111:
- Support more variants
adv7511:
- Improve EDID handling.
- HDMI CEC support
sii8620:
- Add remote control support"
* tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux: (1480 commits)
drm/rockchip: analogix_dp: Use mutex rather than spinlock
drm/mode_object: fix documentation for object lookups.
drm/i915: Reorder context-close to avoid calling i915_vma_close() under RCU
drm/i915: Move init_clock_gating() back to where it was
drm/i915: Prune the reservation shared fence array
drm/i915: Idle the GPU before shinking everything
drm/i915: Lock llist_del_first() vs llist_del_all()
drm/i915: Calculate ironlake intermediate watermarks correctly, v2.
drm/i915: Disable lazy PPGTT page table optimization for vGPU
drm/i915/execlists: Remove the priority "optimisation"
drm/i915: Filter out spurious execlists context-switch interrupts
drm/amdgpu: use irq-safe lock for kiq->ring_lock
drm/amdgpu: bypass lru touch for KIQ ring submission
drm/amdgpu: Potential uninitialized variable in amdgpu_vm_update_directories()
drm/amdgpu: potential uninitialized variable in amdgpu_vce_ring_parse_cs()
drm/amd/powerplay: initialize a variable before using it
drm/amd/powerplay: suppress KASAN out of bounds warning in vega10_populate_all_memory_levels
drm/amd/amdgpu: fix evicted VRAM bo adjudgement condition
drm/vblank: Tune drm_crtc_accurate_vblank_count() WARN down to a debug
drm/rockchip: add CONFIG_OF dependency for lvds
...
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
Link: http://lkml.kernel.org/r/20171020191058.GA24427@embeddedor.com
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_inode_cachep was created with SLAB_PANIC flag and
shmem_init_inodecache() never returns non-zero, so convert this
function to return void.
Link: http://lkml.kernel.org/r/20170909124542.GA35224@bogon.didichuxing.com
Signed-off-by: weiping zhang <zhangweiping@didichuxing.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot. As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During truncation, the mapping has already been checked for shmem and
dax so it's known that workingset_update_node is required.
This patch avoids the checks on mapping for each page being truncated.
In all other cases, a lookup helper is used to determine if
workingset_update_node() needs to be called. The one danger is that the
API is slightly harder to use as calling workingset_update_node directly
without checking for dax or shmem mappings could lead to surprises.
However, the API rarely needs to be used and hopefully the comment is
enough to give people the hint.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
oneirq-v1r1 pickhelper-v1r1
Min Time 141.00 ( 0.00%) 140.00 ( 0.71%)
1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%)
Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%)
Max Time 230.00 ( 0.00%) 205.00 ( 10.87%)
Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%)
Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%)
Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%)
Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%)
Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%)
Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%)
Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%)
Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%)
Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%)
As you'd expect, the gain is marginal but it can be detected. The
differences in bonnie are all within the noise which is not surprising
given the impact on the microbenchmark.
radix_tree_update_node_t is a callback for some radix operations that
optionally passes in a private field. The only user of the callback is
workingset_update_node and as it no longer requires a mapping, the
private field is removed.
Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are planning to use our own tmpfs mnt in i915 in place of the
shm_mnt, such that we can control the mount options, in particular
huge=, which we require to support huge-gtt-pages. So rather than roll
our own version of __shmem_file_setup, it would be preferred if we could
just give shmem our mnt, and let it do the rest.
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-mm@kvack.org
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20171006145041.21673-2-matthew.auld@intel.com
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20171006221833.32439-1-chris@chris-wilson.co.uk
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The swap readahead is an important mechanism to reduce the swap in
latency. Although pure sequential memory access pattern isn't very
popular for anonymous memory, the space locality is still considered
valid.
In the original swap readahead implementation, the consecutive blocks in
swap device are readahead based on the global space locality estimation.
But the consecutive blocks in swap device just reflect the order of page
reclaiming, don't necessarily reflect the access pattern in virtual
memory. And the different tasks in the system may have different access
patterns, which makes the global space locality estimation incorrect.
In this patch, when page fault occurs, the virtual pages near the fault
address will be readahead instead of the swap slots near the fault swap
slot in swap device. This avoid to readahead the unrelated swap slots.
At the same time, the swap readahead is changed to work on per-VMA from
globally. So that the different access patterns of the different VMAs
could be distinguished, and the different readahead policy could be
applied accordingly. The original core readahead detection and scaling
algorithm is reused, because it is an effect algorithm to detect the
space locality.
The test and result is as follow,
Common test condition
=====================
Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device:
NVMe disk
Micro-benchmark with combined access pattern
============================================
vm-scalability, sequential swap test case, 4 processes to eat 50G
virtual memory space, repeat the sequential memory writing until 300
seconds. The first round writing will trigger swap out, the following
rounds will trigger sequential swap in and out.
At the same time, run vm-scalability random swap test case in
background, 8 processes to eat 30G virtual memory space, repeat the
random memory write until 300 seconds. This will trigger random swap-in
in the background.
This is a combined workload with sequential and random memory accessing
at the same time. The result (for sequential workload) is as follow,
Base Optimized
---- ---------
throughput 345413 KB/s 414029 KB/s (+19.9%)
latency.average 97.14 us 61.06 us (-37.1%)
latency.50th 2 us 1 us
latency.60th 2 us 1 us
latency.70th 98 us 2 us
latency.80th 160 us 2 us
latency.90th 260 us 217 us
latency.95th 346 us 369 us
latency.99th 1.34 ms 1.09 ms
ra_hit% 52.69% 99.98%
The original swap readahead algorithm is confused by the background
random access workload, so readahead hit rate is lower. The VMA-base
readahead algorithm works much better.
Linpack
=======
The test memory size is bigger than RAM to trigger swapping.
Base Optimized
---- ---------
elapsed_time 393.49 s 329.88 s (-16.2%)
ra_hit% 86.21% 98.82%
The score of base and optimized kernel hasn't visible changes. But the
elapsed time reduced and readahead hit rate improved, so the optimized
kernel runs better for startup and tear down stages. And the absolute
value of readahead hit rate is high, shows that the space locality is
still valid in some practical workloads.
Link: http://lkml.kernel.org/r/20170807054038.1843-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch came out of discussions in this e-mail thread:
http://lkml.kernel.org/r/1499357846-7481-1-git-send-email-mike.kravetz%40oracle.com
The Oracle JVM team is developing a new garbage collection model. This
new model requires multiple mappings of the same anonymous memory. One
straight forward way to accomplish this is with memfd_create. They can
use the returned fd to create multiple mappings of the same memory.
The JVM today has an option to use (static hugetlb) huge pages. If this
option is specified, they would like to use the same garbage collection
model requiring multiple mappings to the same memory. Using hugetlbfs,
it is possible to explicitly mount a filesystem and specify file paths
in order to get an fd that can be used for multiple mappings. However,
this introduces additional system admin work and coordination.
Ideally they would like to get a hugetlbfs fd without requiring explicit
mounting of a filesystem. Today, mmap and shmget can make use of
hugetlbfs without explicitly mounting a filesystem. The patch adds this
functionality to memfd_create.
Add a new flag MFD_HUGETLB to memfd_create() that will specify the file
to be created resides in the hugetlbfs filesystem. This is the generic
hugetlbfs filesystem not associated with any specific mount point. As
with other system calls that request hugetlbfs backed pages, there is
the ability to encode huge page size in the flag arguments.
hugetlbfs does not support sealing operations, therefore specifying
MFD_ALLOW_SEALING with MFD_HUGETLB will result in EINVAL.
Of course, the memfd_man page would need updating if this type of
functionality moves forward.
Link: http://lkml.kernel.org/r/1502149672-7759-2-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_mfill_zeropage_pte is the low level routine that implements the
userfaultfd UFFDIO_ZEROPAGE command. Since for shmem mappings zero
pages are always allocated and accounted, the new method is a slight
extension of the existing shmem_mcopy_atomic_pte.
Link: http://lkml.kernel.org/r/1497939652-16528-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shmem_acct_block and the update of used_blocks are following one
another in all the places they are used. Combine these two into a
helper function.
Link: http://lkml.kernel.org/r/1497939652-16528-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "userfaultfd: enable zeropage support for shmem".
These patches enable support for UFFDIO_ZEROPAGE for shared memory.
The first two patches are not strictly related to userfaultfd, they are
just minor refactoring to reduce amount of code duplication.
This patch (of 7):
Currently we update inode and shmem_inode_info before verifying that
used_blocks will not exceed max_blocks. In case it will, we undo the
update. Let's switch the order and move the verification of the blocks
count before the inode and shmem_inode_info update.
Link: http://lkml.kernel.org/r/1497939652-16528-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/sys/kernel/mm/transparent_hugepage/shmem_enabled controls if we want
to allocate huge pages when allocate pages for private in-kernel shmem
mount.
Unfortunately, as Dan noticed, I've screwed it up and the only way to
make kernel allocate huge page for the mount is to use "force" there.
All other values will be effectively ignored.
Link: http://lkml.kernel.org/r/20170822144254.66431-1-kirill.shutemov@linux.intel.com
Fixes: 5a6e75f811 ("shmem: prepare huge= mount option and sysfs knob")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We saw many list corruption warnings on shmem shrinklist:
WARNING: CPU: 18 PID: 177 at lib/list_debug.c:59 __list_del_entry+0x9e/0xc0
list_del corruption. prev->next should be ffff9ae5694b82d8, but was ffff9ae5699ba960
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 18 PID: 177 Comm: kswapd1 Not tainted 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_del_entry+0x9e/0xc0
shmem_unused_huge_shrink+0xfa/0x2e0
shmem_unused_huge_scan+0x20/0x30
super_cache_scan+0x193/0x1a0
shrink_slab.part.41+0x1e3/0x3f0
shrink_slab+0x29/0x30
shrink_node+0xf9/0x2f0
kswapd+0x2d8/0x6c0
kthread+0xd7/0xf0
ret_from_fork+0x22/0x30
WARNING: CPU: 23 PID: 639 at lib/list_debug.c:33 __list_add+0x89/0xb0
list_add corruption. prev->next should be next (ffff9ae5699ba960), but was ffff9ae5694b82d8. (prev=ffff9ae5694b82d8).
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 23 PID: 639 Comm: systemd-udevd Tainted: G W 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_add+0x89/0xb0
shmem_setattr+0x204/0x230
notify_change+0x2ef/0x440
do_truncate+0x5d/0x90
path_openat+0x331/0x1190
do_filp_open+0x7e/0xe0
do_sys_open+0x123/0x200
SyS_open+0x1e/0x20
do_syscall_64+0x61/0x170
entry_SYSCALL64_slow_path+0x25/0x25
The problem is that shmem_unused_huge_shrink() moves entries from the
global sbinfo->shrinklist to its local lists and then releases the
spinlock. However, a parallel shmem_setattr() could access one of these
entries directly and add it back to the global shrinklist if it is
removed, with the spinlock held.
The logic itself looks solid since an entry could be either in a local
list or the global list, otherwise it is removed from one of them by
list_del_init(). So probably the race condition is that, one CPU is in
the middle of INIT_LIST_HEAD() but the other CPU calls list_empty()
which returns true too early then the following list_add_tail() sees a
corrupted entry.
list_empty_careful() is designed to fix this situation.
[akpm@linux-foundation.org: add comments]
Link: http://lkml.kernel.org/r/20170803054630.18775-1-xiyou.wangcong@gmail.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PR_SET_THP_DISABLE has a rather subtle semantic. It doesn't affect any
existing mapping because it only updated mm->def_flags which is a
template for new mappings.
The mappings created after prctl(PR_SET_THP_DISABLE) have VM_NOHUGEPAGE
flag set. This can be quite surprising for all those applications which
do not do prctl(); fork() & exec() and want to control their own THP
behavior.
Another usecase when the immediate semantic of the prctl might be useful
is a combination of pre- and post-copy migration of containers with
CRIU. In this case CRIU populates a part of a memory region with data
that was saved during the pre-copy stage. Afterwards, the region is
registered with userfaultfd and CRIU expects to get page faults for the
parts of the region that were not yet populated. However, khugepaged
collapses the pages and the expected page faults do not occur.
In more general case, the prctl(PR_SET_THP_DISABLE) could be used as a
temporary mechanism for enabling/disabling THP process wide.
Implementation wise, a new MMF_DISABLE_THP flag is added. This flag is
tested when decision whether to use huge pages is taken either during
page fault of at the time of THP collapse.
It should be noted, that the new implementation makes PR_SET_THP_DISABLE
master override to any per-VMA setting, which was not the case
previously.
Fixes: a0715cc226 ("mm, thp: add VM_INIT_DEF_MASK and PRCTL_THP_DISABLE")
Link: http://lkml.kernel.org/r/1496415802-30944-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.
These values are exposed using the memory.stats interface of cgroup v2.
The meaning of each value is the same as for global counters, available
using /proc/vmstat.
Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().
Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, get_swap_page takes struct page and allocates swap space according
to page size(ie, normal or THP) so it would be more cleaner to introduce
put_swap_page which is a counter function of get_swap_page. Then, it
calls right swap slot free function depending on page's size.
[ying.huang@intel.com: minor cleanup and fix]
Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP swap: Delay splitting THP during swapping out", v11.
This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.
Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine. Because the
performance of the storage device improved faster than that of single
logical CPU. And it seems that the trend will not change in the near
future. On the other hand, the THP becomes more and more popular
because of increased memory size. So it becomes necessary to optimize
THP swap performance.
The advantages of the THP swap support include:
- Batch the swap operations for the THP to reduce lock
acquiring/releasing, including allocating/freeing the swap space,
adding/deleting to/from the swap cache, and writing/reading the swap
space, etc. This will help improve the performance of the THP swap.
- The THP swap space read/write will be 2M sequential IO. It is
particularly helpful for the swap read, which are usually 4k random
IO. This will improve the performance of the THP swap too.
- It will help the memory fragmentation, especially when the THP is
heavily used by the applications. The 2M continuous pages will be
free up after THP swapping out.
- It will improve the THP utilization on the system with the swap
turned on. Because the speed for khugepaged to collapse the normal
pages into the THP is quite slow. After the THP is split during the
swapping out, it will take quite long time for the normal pages to
collapse back into the THP after being swapped in. The high THP
utilization helps the efficiency of the page based memory management
too.
There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device. To deal with that, the THP swap in should be turned
on only when necessary. For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.
This patchset is the first step for the THP swap support. The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.
As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache. This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.
With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes. The test is done on a Xeon E5 v3 system. The swap
device used is a RAM simulated PMEM (persistent memory) device. To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.
This patch (of 5):
In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache. This
will batch the corresponding operation, thus improve THP swap out
throughput.
This is the first step for the THP swap optimization. The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.
In this patch, one swap cluster is used to hold the contents of each THP
swapped out. So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512). For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture. In effect, this will enlarge swap cluster size by 2
times on x86_64. Which may make it harder to find a free cluster when
the swap space becomes fragmented. So that, this may reduce the
continuous swap space allocation and sequential write in theory. The
performance test in 0day shows no regressions caused by this.
In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.
The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.
The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP. A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster. The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead. This works good enough for normal cases. If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary. For example, this could be caused by big size
difference among multiple swap devices.
The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be
enhanced in the future with multi-order radix tree. But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.
The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out. The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP. So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.
The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.
[ying.huang@intel.com: fix two issues in THP optimize patch]
Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Add the SYSTEM_SCHEDULING bootup state to move various scheduler
debug checks earlier into the bootup. This turns silent and
sporadically deadly bugs into nice, deterministic splats. Fix some
of the splats that triggered. (Thomas Gleixner)
- A round of restructuring and refactoring of the load-balancing and
topology code (Peter Zijlstra)
- Another round of consolidating ~20 of incremental scheduler code
history: this time in terms of wait-queue nomenclature. (I didn't
get much feedback on these renaming patches, and we can still
easily change any names I might have misplaced, so if anyone hates
a new name, please holler and I'll fix it.) (Ingo Molnar)
- sched/numa improvements, fixes and updates (Rik van Riel)
- Another round of x86/tsc scheduler clock code improvements, in hope
of making it more robust (Peter Zijlstra)
- Improve NOHZ behavior (Frederic Weisbecker)
- Deadline scheduler improvements and fixes (Luca Abeni, Daniel
Bristot de Oliveira)
- Simplify and optimize the topology setup code (Lauro Ramos
Venancio)
- Debloat and decouple scheduler code some more (Nicolas Pitre)
- Simplify code by making better use of llist primitives (Byungchul
Park)
- ... plus other fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
sched/cputime: Refactor the cputime_adjust() code
sched/debug: Expose the number of RT/DL tasks that can migrate
sched/numa: Hide numa_wake_affine() from UP build
sched/fair: Remove effective_load()
sched/numa: Implement NUMA node level wake_affine()
sched/fair: Simplify wake_affine() for the single socket case
sched/numa: Override part of migrate_degrades_locality() when idle balancing
sched/rt: Move RT related code from sched/core.c to sched/rt.c
sched/deadline: Move DL related code from sched/core.c to sched/deadline.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
sched/fair: Spare idle load balancing on nohz_full CPUs
nohz: Move idle balancer registration to the idle path
sched/loadavg: Generalize "_idle" naming to "_nohz"
sched/core: Drop the unused try_get_task_struct() helper function
sched/fair: WARN() and refuse to set buddy when !se->on_rq
sched/debug: Fix SCHED_WARN_ON() to return a value on !CONFIG_SCHED_DEBUG as well
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
sched/wait: Move bit_wait_table[] and related functionality from sched/core.c to sched/wait_bit.c
sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
sched/wait: Re-adjust macro line continuation backslashes in <linux/wait.h>
...
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.
Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.
To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:
struct wait_queue_head::task_list => ::head
struct wait_queue_entry::task_list => ::entry
For example, this code:
rqw->wait.task_list.next != &wait->task_list
... is was pretty unclear (to me) what it's doing, while now it's written this way:
rqw->wait.head.next != &wait->entry
... which makes it pretty clear that we are iterating a list until we see the head.
Other examples are:
list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
list_for_each_entry(wq, &fence->wait.task_list, task_list) {
... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:
list_for_each_entry_safe(pos, next, &x->head, entry) {
list_for_each_entry(wq, &fence->wait.head, entry) {
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is used by overlayfs to encode intrasystem unique file handles.
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running my likely/unlikely profiler, I discovered that the test in
shmem_write_begin() that tests for info->seals as unlikely, is always
incorrect. This is because shmem_get_inode() sets info->seals to have
F_SEAL_SEAL set by default, and it is unlikely to be cleared when
shmem_write_begin() is called. Thus, the if statement is very likely.
But as the if statement block only cares about F_SEAL_WRITE and
F_SEAL_GROW, change the test to only test those two bits.
Link: http://lkml.kernel.org/r/20170203105656.7aec6237@gandalf.local.home
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the atomic copy_user fails because of a real dangling userland
pointer, we won't go back into the shmem method, so when the method
returns it must not leave anything charged up, except the page itself.
Link: http://lkml.kernel.org/r/20161216144821.5183-37-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the non atomic version of __SetPageUptodate while the page is still
private and not visible to lookup operations. Using the non atomic
version after the page is already visible to lookups is unsafe as there
would be concurrent lock_page operation modifying the page->flags while
it runs.
This solves a lockup in find_lock_entry with the userfaultfd_shmem
selftest.
userfaultfd_shm D14296 691 1 0x00000004
Call Trace:
schedule+0x3d/0x90
schedule_timeout+0x228/0x420
io_schedule_timeout+0xa4/0x110
__lock_page+0x12d/0x170
find_lock_entry+0xa4/0x190
shmem_getpage_gfp+0xb9/0xc30
shmem_fault+0x70/0x1c0
__do_fault+0x21/0x150
handle_mm_fault+0xec9/0x1490
__do_page_fault+0x20d/0x520
trace_do_page_fault+0x61/0x270
do_async_page_fault+0x19/0x80
async_page_fault+0x25/0x30
Link: http://lkml.kernel.org/r/20170116180408.12184-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A VM_BUG_ON triggered on the shmem selftest.
Link: http://lkml.kernel.org/r/20161216144821.5183-36-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When processing a page fault in shared memory area for not present page,
check the VMA determine if faults are to be handled by userfaultfd. If
so, delegate the page fault to handle_userfault.
Link: http://lkml.kernel.org/r/20161216144821.5183-33-aarcange@redhat.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It resolves this build error:
All errors (new ones prefixed by >>):
mm/shmem.c: In function 'shmem_mcopy_atomic_pte':
>> mm/shmem.c:2228:2: error: implicit declaration of function 'update_mmu_cache' [-Werror=implicit-function-declaration]
update_mmu_cache(dst_vma, dst_addr, dst_pte);
microblaze may have to be also updated to define it in asm/pgtable.h
like the other archs, then this header inclusion can be removed.
Link: http://lkml.kernel.org/r/20161216144821.5183-31-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently userfault relies on vma_is_anonymous and vma_is_hugetlb to
ensure compatibility of a VMA with userfault. Introduction of
vma_is_shmem allows detection if tmpfs backed VMAs, so that they may be
used with userfaultfd. Current implementation presumes usage of
vma_is_shmem only by slow path routines in userfaultfd, therefore the
vma_is_shmem is not made inline to leave the few remaining free bits in
vm_flags.
Link: http://lkml.kernel.org/r/20161216144821.5183-30-aarcange@redhat.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_mcopy_atomic_pte is the low level routine that implements the
userfaultfd UFFDIO_COPY command. It is based on the existing
mcopy_atomic_pte routine with modifications for shared memory pages.
Link: http://lkml.kernel.org/r/20161216144821.5183-29-aarcange@redhat.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of shmem_mapping() are interested in whether the mapping is swap
backed - except for uprobes, which is interested in whether it should
use shmem_read_mapping_page(). All these callers are better served by a
shmem_mapping() which checks for shmem_aops, than the current version
which goes through several indirections to find where the inode lives -
and has the surprising effect that a private mmap of /dev/zero satisfies
both vma_is_anonymous() and shmem_mapping(), when that device node is on
devtmpfs. I don't think anything in the tree suffers from that
surprise, but it caught me out, and is better fixed.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052148530.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers
This rather complicated function can be better implemented as an
iterator. It has only one caller, so move the functionality to the only
place that needs it. Update the test suite to follow the same pattern.
Link: http://lkml.kernel.org/r/1480369871-5271-56-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes several interlinked problems with the iterators in the
presence of multiorder entries.
1. radix_tree_iter_next() would only advance by one slot, which would
result in the iterators returning the same entry more than once if
there were sibling entries.
2. radix_tree_next_slot() could return an internal pointer instead of
a user pointer if a tagged multiorder entry was immediately followed by
an entry of lower order.
3. radix_tree_next_slot() expanded to a lot more code than it used to
when multiorder support was compiled in. And I wasn't comfortable with
entry_to_node() being in a header file.
Fixing radix_tree_iter_next() for the presence of sibling entries
necessarily involves examining the contents of the radix tree, so we now
need to pass 'slot' to radix_tree_iter_next(), and we need to change the
calling convention so it is called *before* dropping the lock which
protects the tree. Also rename it to radix_tree_iter_resume(), as some
people thought it was necessary to call radix_tree_iter_next() each time
around the loop.
radix_tree_next_slot() becomes closer to how it looked before multiorder
support was introduced. It only checks to see if the next entry in the
chunk is a sibling entry or a pointer to a node; this should be rare
enough that handling this case out of line is not a performance impact
(and such impact is amortised by the fact that the entry we just
processed was a multiorder entry). Also, radix_tree_next_slot() used to
force a new chunk lookup for untagged entries, which is more expensive
than the out of line sibling entry skipping.
Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Support handing __radix_tree_replace() a callback that gets invoked for
all leaf nodes that change or get freed as a result of the slot
replacement, to assist users tracking nodes with node->private_list.
This prepares for putting page cache shadow entries into the radix tree
root again and drastically simplifying the shadow tracking.
Link: http://lkml.kernel.org/r/20161117193134.GD23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The way the page cache is sneaking shadow entries of evicted pages into
the radix tree past the node entry accounting and tracking them manually
in the upper bits of node->count is fraught with problems.
These shadow entries are marked in the tree as exceptional entries,
which are a native concept to the radix tree. Maintain an explicit
counter of exceptional entries in the radix tree node. Subsequent
patches will switch shadow entry tracking over to that counter.
DAX and shmem are the other users of exceptional entries. Since slot
replacements that change the entry type from regular to exceptional must
now be accounted, introduce a __radix_tree_replace() function that does
replacement and accounting, and switch DAX and shmem over.
The increase in radix tree node size is temporary. A followup patch
switches the shadow tracking to this new scheme and we'll no longer need
the upper bits in node->count and shrink that back to one byte.
Link: http://lkml.kernel.org/r/20161117192945.GA23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compiling shmem.c with SHMEM and TRANSAPRENT_HUGE_PAGECACHE enabled
raises warnings on two unused functions when CONFIG_TMPFS and
CONFIG_SYSFS are both disabled:
mm/shmem.c:390:20: warning: `shmem_format_huge' defined but not used [-Wunused-function]
static const char *shmem_format_huge(int huge)
^~~~~~~~~~~~~~~~~
mm/shmem.c:373:12: warning: `shmem_parse_huge' defined but not used [-Wunused-function]
static int shmem_parse_huge(const char *str)
^~~~~~~~~~~~~~~~
A conditional compilation on tmpfs or sysfs removes the warnings.
Link: http://lkml.kernel.org/r/20161118055749.11313-1-jeremy.lefaure@lse.epita.fr
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After enabling -Wmaybe-uninitialized warnings, we get a false-postive
warning for shmem:
mm/shmem.c: In function `shmem_getpage_gfp':
include/linux/spinlock.h:332:21: error: `info' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This can be easily avoided, since the correct 'info' pointer is known at
the time we first enter the function, so we can simply move the
initialization up. Moving it before the first label avoids the warning
and lets us remove two later initializations.
Note that the function is so hard to read that it not only confuses the
compiler, but also most readers and without this patch it could\ easily
break if one of the 'goto's changed.
Link: https://www.spinics.net/lists/kernel/msg2368133.html
Link: http://lkml.kernel.org/r/20161024205725.786455-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If .readlink == NULL implies generic_readlink().
Generated by:
to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The shmem hole punching with fallocate(FALLOC_FL_PUNCH_HOLE) does not
want to race with generating new pages by faulting them in.
However, the wait-queue used to delay the page faulting has a serious
problem: the wait queue head (in shmem_fallocate()) is allocated on the
stack, and the code expects that "wake_up_all()" will make sure that all
the queue entries are gone before the stack frame is de-allocated.
And that is not at all necessarily the case.
Yes, a normal wake-up sequence will remove the wait-queue entry that
caused the wakeup (see "autoremove_wake_function()"), but the key
wording there is "that caused the wakeup". When there are multiple
possible wakeup sources, the wait queue entry may well stay around.
And _particularly_ in a page fault path, we may be faulting in new pages
from user space while we also have other things going on, and there may
well be other pending wakeups.
So despite the "wake_up_all()", it's not at all guaranteed that all list
entries are removed from the wait queue head on the stack.
Fix this by introducing a new wakeup function that removes the list
entry unconditionally, even if the target process had already woken up
for other reasons. Use that "synchronous" function to set up the
waiters in shmem_fault().
This problem has never been seen in the wild afaik, but Dave Jones has
reported it on and off while running trinity. We thought we fixed the
stack corruption with the blk-mq rq_list locking fix (commit
7fe311302f7d: "blk-mq: update hardware and software queues for sleeping
alloc"), but it turns out there was _another_ stack corruptor hiding
in the trinity runs.
Vegard Nossum (also running trinity) was able to trigger this one fairly
consistently, and made us look once again at the shmem code due to the
faults often being in that area.
Reported-and-tested-by: Vegard Nossum <vegard.nossum@oracle.com>.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If shmem_alloc_page() does not set PageLocked and PageSwapBacked, then
shmem_replace_page() needs to do so for itself. Without this, it puts
newpage on the wrong lru, re-unlocks the unlocked newpage, and system
descends into "Bad page" reports and freeze; or if CONFIG_DEBUG_VM=y, it
hits an earlier VM_BUG_ON_PAGE(!PageLocked), depending on config.
But shmem_replace_page() is not a common path: it's only called when
swapin (or swapoff) finds the page was already read into an unsuitable
zone: usually all zones are suitable, but gem objects for a few drm
devices (gma500, omapdrm, crestline, broadwater) require zone DMA32 if
there's more than 4GB of ram.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1611062003510.11253@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [4.8.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
Pull vfs xattr updates from Al Viro:
"xattr stuff from Andreas
This completes the switch to xattr_handler ->get()/->set() from
->getxattr/->setxattr/->removexattr"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Remove {get,set,remove}xattr inode operations
xattr: Stop calling {get,set,remove}xattr inode operations
vfs: Check for the IOP_XATTR flag in listxattr
xattr: Add __vfs_{get,set,remove}xattr helpers
libfs: Use IOP_XATTR flag for empty directory handling
vfs: Use IOP_XATTR flag for bad-inode handling
vfs: Add IOP_XATTR inode operations flag
vfs: Move xattr_resolve_name to the front of fs/xattr.c
ecryptfs: Switch to generic xattr handlers
sockfs: Get rid of getxattr iop
sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
kernfs: Switch to generic xattr handlers
hfs: Switch to generic xattr handlers
jffs2: Remove jffs2_{get,set,remove}xattr macros
xattr: Remove unnecessary NULL attribute name check
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
Merge updates from Andrew Morton:
- fsnotify updates
- ocfs2 updates
- all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (127 commits)
console: don't prefer first registered if DT specifies stdout-path
cred: simpler, 1D supplementary groups
CREDITS: update Pavel's information, add GPG key, remove snail mail address
mailmap: add Johan Hovold
.gitattributes: set git diff driver for C source code files
uprobes: remove function declarations from arch/{mips,s390}
spelling.txt: "modeled" is spelt correctly
nmi_backtrace: generate one-line reports for idle cpus
arch/tile: adopt the new nmi_backtrace framework
nmi_backtrace: do a local dump_stack() instead of a self-NMI
nmi_backtrace: add more trigger_*_cpu_backtrace() methods
min/max: remove sparse warnings when they're nested
Documentation/filesystems/proc.txt: add more description for maps/smaps
mm, proc: fix region lost in /proc/self/smaps
proc: fix timerslack_ns CAP_SYS_NICE check when adjusting self
proc: add LSM hook checks to /proc/<tid>/timerslack_ns
proc: relax /proc/<tid>/timerslack_ns capability requirements
meminfo: break apart a very long seq_printf with #ifdefs
seq/proc: modify seq_put_decimal_[u]ll to take a const char *, not char
proc: faster /proc/*/status
...
These inode operations are no longer used; remove them.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Every other dentry_operations instance is const, and this one might as
well be.
Link: http://lkml.kernel.org/r/1473890528-7009-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Under swapping load on huge tmpfs, /proc/meminfo's Committed_AS grows
bigger and bigger: just a cosmetic issue for most users, but disabling
for those who run without overcommit (/proc/sys/vm/overcommit_memory 2).
shmem_uncharge() was forgetting to unaccount __vm_enough_memory's
charge, and shmem_charge() was forgetting it on the filesystem-full
error path.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_get_unmapped_area() checks SHMEM_SB(sb)->huge incorrectly, which
leads to a reversed effect of "huge=" mount option.
Fix the check in shmem_get_unmapped_area().
Note, the default value of SHMEM_SB(sb)->huge remains as
SHMEM_HUGE_NEVER. User will need to specify "huge=" option to enable
huge page mappings.
Reported-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
The newly introduced shmem_huge_enabled() function has two definitions,
but neither of them is visible if CONFIG_SYSFS is disabled, leading to a
build error:
mm/khugepaged.o: In function `khugepaged':
khugepaged.c:(.text.khugepaged+0x3ca): undefined reference to `shmem_huge_enabled'
This changes the #ifdef guards around the definition to match those that
are used in the header file.
Fixes: e496cf3d78 ("thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE")
Link: http://lkml.kernel.org/r/20160809123638.1357593-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If CONFIG_TRANSPARENT_HUGE_PAGECACHE=n, HPAGE_PMD_NR evaluates to
BUILD_BUG_ON(), and may cause (e.g. with gcc 4.12):
mm/built-in.o: In function `shmem_alloc_hugepage':
shmem.c:(.text+0x17570): undefined reference to `__compiletime_assert_1365'
To fix this, move the assignment to hindex after the check for huge
pages support.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone. This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted. Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.
[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Even if user asked to allocate huge pages always (huge=always), we
should be able to free up some memory by splitting pages which are
partly byound i_size if memory presure comes or once we hit limit on
filesystem size (-o size=).
In order to do this we maintain per-superblock list of inodes, which
potentially have huge pages on the border of file size.
Per-fs shrinker can reclaim memory by splitting such pages.
If we hit -ENOSPC during shmem_getpage_gfp(), we try to split a page to
free up space on the filesystem and retry allocation if it succeed.
Link: http://lkml.kernel.org/r/1466021202-61880-37-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For file mappings, we don't deposit page tables on THP allocation
because it's not strictly required to implement split_huge_pmd(): we can
just clear pmd and let following page faults to reconstruct the page
table.
But Power makes use of deposited page table to address MMU quirk.
Let's hide THP page cache, including huge tmpfs, under separate config
option, so it can be forbidden on Power.
We can revert the patch later once solution for Power found.
Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch extends khugepaged to support collapse of tmpfs/shmem pages.
We share fair amount of infrastructure with anon-THP collapse.
Few design points:
- First we are looking for VMA which can be suitable for mapping huge
page;
- If the VMA maps shmem file, the rest scan/collapse operations
operates on page cache, not on page tables as in anon VMA case.
- khugepaged_scan_shmem() finds a range which is suitable for huge
page. The scan is lockless and shouldn't disturb system too much.
- once the candidate for collapse is found, collapse_shmem() attempts
to create a huge page:
+ scan over radix tree, making the range point to new huge page;
+ new huge page is not-uptodate, locked and freezed (refcount
is 0), so nobody can touch them until we say so.
+ we swap in pages during the scan. khugepaged_scan_shmem()
filters out ranges with more than khugepaged_max_ptes_swap
swapped out pages. It's HPAGE_PMD_NR/8 by default.
+ old pages are isolated, unmapped and put to local list in case
to be restored back if collapse failed.
- if collapse succeed, we retract pte page tables from VMAs where huge
pages mapping is possible. The huge page will be mapped as PMD on
next minor fault into the range.
Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are going to need to call shmem_charge() under tree_lock to get
accoutning right on collapse of small tmpfs pages into a huge one.
The problem is that tree_lock is irq-safe and lockdep is not happy, that
we take irq-unsafe lock under irq-safe[1].
Let's convert the lock to irq-safe.
[1] https://gist.github.com/kiryl/80c0149e03ed35dfaf26628b8e03cdbc
Link: http://lkml.kernel.org/r/1466021202-61880-34-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's wire up existing madvise() hugepage hints for file mappings.
MADV_HUGEPAGE advise shmem to allocate huge page on page fault in the
VMA. It only has effect if the filesystem is mounted with huge=advise
or huge=within_size.
MADV_NOHUGEPAGE prevents hugepage from being allocated on page fault in
the VMA. It doesn't prevent a huge page from being allocated by other
means, i.e. page fault into different mapping or write(2) into file.
Link: http://lkml.kernel.org/r/1466021202-61880-31-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's basic implementation of huge pages support for shmem/tmpfs.
It's all pretty streight-forward:
- shmem_getpage() allcoates huge page if it can and try to inserd into
radix tree with shmem_add_to_page_cache();
- shmem_add_to_page_cache() puts the page onto radix-tree if there's
space for it;
- shmem_undo_range() removes huge pages, if it fully within range.
Partial truncate of huge pages zero out this part of THP.
This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
behaviour. As we don't really create hole in this case,
lseek(SEEK_HOLE) may have inconsistent results depending what
pages happened to be allocated.
- no need to change shmem_fault: core-mm will map an compound page as
huge if VMA is suitable;
Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a shmem_get_unmapped_area method in file_operations, called at
mmap time to decide the mapping address. It could be conditional on
CONFIG_TRANSPARENT_HUGEPAGE, but save #ifdefs in other places by making
it unconditional.
shmem_get_unmapped_area() first calls the usual mm->get_unmapped_area
(which we treat as a black box, highly dependent on architecture and
config and executable layout). Lots of conditions, and in most cases it
just goes with the address that chose; but when our huge stars are
rightly aligned, yet that did not provide a suitable address, go back to
ask for a larger arena, within which to align the mapping suitably.
There have to be some direct calls to shmem_get_unmapped_area(), not via
the file_operations: because of the way shmem_zero_setup() is called to
create a shmem object late in the mmap sequence, when MAP_SHARED is
requested with MAP_ANONYMOUS or /dev/zero. Though this only matters
when /proc/sys/vm/shmem_huge has been set.
Link: http://lkml.kernel.org/r/1466021202-61880-29-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds new mount option "huge=". It can have following values:
- "always":
Attempt to allocate huge pages every time we need a new page;
- "never":
Do not allocate huge pages;
- "within_size":
Only allocate huge page if it will be fully within i_size.
Also respect fadvise()/madvise() hints;
- "advise:
Only allocate huge pages if requested with fadvise()/madvise();
Default is "never" for now.
"mount -o remount,huge= /mountpoint" works fine after mount: remounting
huge=never will not attempt to break up huge pages at all, just stop
more from being allocated.
No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which
is the appropriate option to protect those who don't want the new bloat,
and with which we shall share some pmd code.
Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is
invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it
explicit).
Allow enabling THP only if the machine has_transparent_hugepage().
But what about Shmem with no user-visible mount? SysV SHM, memfds,
shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM
objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob
/sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with
huge on those.
And allow shmem_enabled two further values:
- "deny":
For use in emergencies, to force the huge option off from
all mounts;
- "force":
Force the huge option on for all - very useful for testing;
Based on patch by Hugh Dickins.
Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The well-spotted fallocate undo fix is good in most cases, but not when
fallocate failed on the very first page. index 0 then passes lend -1
to shmem_undo_range(), and that has two bad effects: (a) that it will
undo every fallocation throughout the file, unrestricted by the current
range; but more importantly (b) it can cause the undo to hang, because
lend -1 is treated as truncation, which makes it keep on retrying until
every page has gone, but those already fully instantiated will never go
away. Big thank you to xfstests generic/269 which demonstrates this.
Fixes: b9b4bb26af ("tmpfs: don't undo fallocate past its last page")
Cc: stable@vger.kernel.org
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When fallocate is interrupted it will undo a range that extends one byte
past its range of allocated pages. This can corrupt an in-use page by
zeroing out its first byte. Instead, undo using the inclusive byte
range.
Fixes: 1635f6a741 ("tmpfs: undo fallocation on failure")
Link: http://lkml.kernel.org/r/1462713387-16724-1-git-send-email-anthony.romano@coreos.com
Signed-off-by: Anthony Romano <anthony.romano@coreos.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Brandon Philips <brandon@ifup.co>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Although shmem_fault() has been careful to count a major fault to vm_mm,
shmem_getpage_gfp() has been careless in charging a remote access fault
to current->mm owner's memcg instead of to vma->vm_mm owner's memcg:
that is inconsistent with all the mem_cgroup charging on remote access
faults in mm/memory.c.
Fix it by passing fault_mm along with fault_type to
shmem_get_page_gfp(); but in that case, now knowing the right mm, it's
better for it to handle the PGMAJFAULT updates itself.
And let's keep this clutter out of most callers' way: change the common
shmem_getpage() wrapper to hide fault_mm and fault_type as well as gfp.
Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make a few cleanups in mm/shmem.c, before going on to complicate it.
shmem_alloc_page() will become more complicated: we can't afford to to
have that complication duplicated between a CONFIG_NUMA version and a
!CONFIG_NUMA version, so rearrange the #ifdef'ery there to yield a
single shmem_swapin() and a single shmem_alloc_page().
Yes, it's a shame to inflict the horrid pseudo-vma on non-NUMA
configurations, but eliminating it is a larger cleanup: I have an
alloc_pages_mpol() patchset not yet ready - mpol handling is subtle and
bug-prone, and changed yet again since my last version.
Move __SetPageLocked, __SetPageSwapBacked from shmem_getpage_gfp() to
shmem_alloc_page(): that SwapBacked flag will be useful in future, to
help to distinguish different cases appropriately.
And the SGP_DIRTY variant of SGP_CACHE is hard to understand and of
little use (IIRC it dates back to when shmem_getpage() returned the page
unlocked): kill it and do the necessary in shmem_file_read_iter().
But an arm64 build then complained that info may be uninitialized (where
shmem_getpage_gfp() deletes a freshly alloced page beyond eof), and
advancing to an "sgp <= SGP_CACHE" test jogged it back to reality.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
v3.16 commit 07a4278843 ("mm: shmem: avoid atomic operation during
shmem_getpage_gfp") rightly replaced one instance of SetPageSwapBacked
by __SetPageSwapBacked, pointing out that the newly allocated page is
not yet visible to other users (except speculative get_page_unless_zero-
ers, who may not update page flags before their further checks).
That was part of a series in which Mel was focused on tmpfs profiles:
but almost all SetPageSwapBacked uses can be so optimized, with the same
justification.
Remove ClearPageSwapBacked from __read_swap_cache_async() error path:
it's not an error to free a page with PG_swapbacked set.
Follow a convention of __SetPageLocked, __SetPageSwapBacked instead of
doing it differently in different places; but that's for tidiness - if
the ordering actually mattered, we should not be using the __variants.
There's probably scope for further __SetPageFlags in other places, but
SwapBacked is the one I'm interested in at the moment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We'll need to verify that there's neither a hashed nor in-lookup
dentry with desired parent/name before adding to in-lookup set.
One possible solution would be to hold the parent's ->d_lock through
both checks, but while the in-lookup set is relatively small at any
time, dcache is not. And holding the parent's ->d_lock through
something like __d_lookup_rcu() would suck too badly.
So we leave the parent's ->d_lock alone, which means that we watch
out for the following scenario:
* we verify that there's no hashed match
* existing in-lookup match gets hashed by another process
* we verify that there's no in-lookup matches and decide
that everything's fine.
Solution: per-directory kinda-sorta seqlock, bumped around the times
we hash something that used to be in-lookup or move (and hash)
something in place of in-lookup. Then the above would turn into
* read the counter
* do dcache lookup
* if no matches found, check for in-lookup matches
* if there had been none of those either, check if the
counter has changed; repeat if it has.
The "kinda-sorta" part is due to the fact that we don't have much spare
space in inode. There is a spare word (shared with i_bdev/i_cdev/i_pipe),
so the counter part is not a problem, but spinlock is a different story.
We could use the parent's ->d_lock, and it would be less painful in
terms of contention, for __d_add() it would be rather inconvenient to
grab; we could do that (using lock_parent()), but...
Fortunately, we can get serialization on the counter itself, and it
might be a good idea in general; we can use cmpxchg() in a loop to
get from even to odd and smp_store_release() from odd to even.
This commit adds the counter and updating logics; the readers will be
added in the next commit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem likes to occasionally drop the lock, schedule, then reacqire the
lock and continue with the iteration from the last place it left off.
This is currently done with a pretty ugly goto. Introduce
radix_tree_iter_next() and use it throughout shmem.c.
[koct9i@gmail.com: fix bug in radix_tree_iter_next() for tagged iteration]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>