This is done by default in the raw NAND core (nand_base.c) but was
missing in the SPI-NAND core. Without these two lines the ecc_strength
and ecc_step_size values are not exported to the user through sysfs.
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Cc: stable@vger.kernel.org
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Currently when marking a block, we use spinand_erase_op() to erase
the block before writing the marker to the OOB area. Doing so without
waiting for the operation to finish can lead to the marking failing
silently and no bad block marker being written to the flash.
In fact we don't need to do an erase at all before writing the BBM.
The ECC is disabled for raw accesses to the OOB data and we don't
need to work around any issues with chips reporting ECC errors as it
is known to be the case for raw NAND.
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Cc: stable@vger.kernel.org
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200218100432.32433-4-frieder.schrempf@kontron.de
When writing the bad block marker to the OOB area the access mode
should be set to MTD_OPS_RAW as it is done for reading the marker.
Currently this only works because req.mode is initialized to
MTD_OPS_PLACE_OOB (0) and spinand_write_to_cache_op() checks for
req.mode != MTD_OPS_AUTO_OOB.
Fix this by explicitly setting req.mode to MTD_OPS_RAW.
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200218100432.32433-3-frieder.schrempf@kontron.de
For reading and writing the bad block markers, spinand->oobbuf is
currently used as a buffer for the marker bytes. During the
underlying read and write operations to actually get/set the content
of the OOB area, the content of spinand->oobbuf is reused and changed
by accessing it through spinand->oobbuf and/or spinand->databuf.
This is a flaw in the original design of the SPI NAND core and at the
latest from 13c15e07ee ("mtd: spinand: Handle the case where
PROGRAM LOAD does not reset the cache") on, it results in not having
the bad block marker written at all, as the spinand->oobbuf is
cleared to 0xff after setting the marker bytes to zero.
To fix it, we now just store the two bytes for the marker on the
stack and let the read/write operations copy it from/to the page
buffer later.
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Cc: stable@vger.kernel.org
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200218100432.32433-2-frieder.schrempf@kontron.de
Currently there are 3 different variants of read_id implementation:
1. opcode only. Found in GD5FxGQ4xF.
2. opcode + 1 addr byte. Found in GD5GxGQ4xA/E
3. opcode + 1 dummy byte. Found in other currently supported chips.
Original implementation was for variant 1 and let detect function
of chips with variant 2 and 3 to ignore the first byte. This isn't
robust:
1. For chips of variant 2, if SPI master doesn't keep MOSI low
during read, chip will get a random id offset, and the entire id
buffer will shift by that offset, causing detect failure.
2. For chips of variant 1, if it happens to get a devid that equals
to manufacture id of variant 2 or 3 chips, it'll get incorrectly
detected.
This patch reworks detect procedure to address problems above. New
logic do detection for all variants separatedly, in 1-2-3 order.
Since all current detect methods do exactly the same id matching
procedure, unify them into core.c and remove detect method from
manufacture_ops.
Tested on GD5F1GQ4UAYIG and W25N01GVZEIG.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200208074439.146296-1-gch981213@gmail.com
In case of the last page containing bitflips (ret > 0),
spinand_mtd_read() will return that number of bitflips for the last
page while it should instead return max_bitflips like it does when the
last page read returns with 0.
Signed-off-by: Weixiong Liao <liaoweixiong@allwinnertech.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Cc: stable@vger.kernel.org
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
We just have to use nanddev_mtd_max_bad_blocks().
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Make use of the spi-mem direct mapping API to let advanced controllers
optimize read/write operations when they support direct mapping.
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Cc: Stefan Roese <sr@denx.de>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Stefan Roese <sr@denx.de>
The manufacturer specific initialization has already been done when
block unlocking takes place, and if anything goes wrong during this
procedure we should call spinand_manufacturer_cleanup().
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Acked-by: Miquel Raynal <miquel.raynal@bootlin.com>
Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
the cache content to 0xFF (depends on vendor implementation), so we
must fill the page cache entirely even if we only want to program the
data portion of the page, otherwise we might corrupt the BBM or user
data previously programmed in OOB area.
Fixes: 7529df4652 ("mtd: nand: Add core infrastructure to support SPI NANDs")
Reported-by: Stefan Roese <sr@denx.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Tested-by: Stefan Roese <sr@denx.de>
Reviewed-by: Stefan Roese <sr@denx.de>
Acked-by: Miquel Raynal <miquel.raynal@bootlin.com>
Add minimal support for the MX35LF1GE4AB SPI NAND chip.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Add support for the W25M02GV chip.
Signed-off-by: Frieder Schrempf <frieder.schrempf@exceet.de>
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Add a basic driver for Micron SPI NANDs. Only one device is supported
right now, but the driver will be extended to support more devices
afterwards.
Signed-off-by: Peter Pan <peterpandong@micron.com>
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Add a SPI NAND framework based on the generic NAND framework and the
spi-mem infrastructure.
In its current state, this framework supports the following features:
- single/dual/quad IO modes
- on-die ECC
Signed-off-by: Peter Pan <peterpandong@micron.com>
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>