Commit Graph

730 Commits

Author SHA1 Message Date
Linus Torvalds f5364c150a Merge branch 'stacking-fixes' (vfs stacking fixes from Jann)
Merge filesystem stacking fixes from Jann Horn.

* emailed patches from Jann Horn <jannh@google.com>:
  sched: panic on corrupted stack end
  ecryptfs: forbid opening files without mmap handler
  proc: prevent stacking filesystems on top
2016-06-10 12:10:02 -07:00
Jann Horn 29d6455178 sched: panic on corrupted stack end
Until now, hitting this BUG_ON caused a recursive oops (because oops
handling involves do_exit(), which calls into the scheduler, which in
turn raises an oops), which caused stuff below the stack to be
overwritten until a panic happened (e.g.  via an oops in interrupt
context, caused by the overwritten CPU index in the thread_info).

Just panic directly.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-10 12:09:43 -07:00
Josh Poimboeuf 4698f88c06 sched/debug: Fix 'schedstats=enable' cmdline option
The 'schedstats=enable' option doesn't work, and also produces the
following warning during boot:

  WARNING: CPU: 0 PID: 0 at /home/jpoimboe/git/linux/kernel/jump_label.c:61 static_key_slow_inc+0x8c/0xa0
  static_key_slow_inc used before call to jump_label_init
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 4.7.0-rc1+ #25
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.8.1-20150318_183358- 04/01/2014
   0000000000000086 3ae3475a4bea95d4 ffffffff81e03da8 ffffffff8143fc83
   ffffffff81e03df8 0000000000000000 ffffffff81e03de8 ffffffff810b1ffb
   0000003d00000096 ffffffff823514d0 ffff88007ff197c8 0000000000000000
  Call Trace:
   [<ffffffff8143fc83>] dump_stack+0x85/0xc2
   [<ffffffff810b1ffb>] __warn+0xcb/0xf0
   [<ffffffff810b207f>] warn_slowpath_fmt+0x5f/0x80
   [<ffffffff811e9c0c>] static_key_slow_inc+0x8c/0xa0
   [<ffffffff810e07c6>] static_key_enable+0x16/0x40
   [<ffffffff8216d633>] setup_schedstats+0x29/0x94
   [<ffffffff82148a05>] unknown_bootoption+0x89/0x191
   [<ffffffff810d8617>] parse_args+0x297/0x4b0
   [<ffffffff82148d61>] start_kernel+0x1d8/0x4a9
   [<ffffffff8214897c>] ? set_init_arg+0x55/0x55
   [<ffffffff82148120>] ? early_idt_handler_array+0x120/0x120
   [<ffffffff821482db>] x86_64_start_reservations+0x2f/0x31
   [<ffffffff82148427>] x86_64_start_kernel+0x14a/0x16d

The problem is that it tries to update the 'sched_schedstats' static key
before jump labels have been initialized.

Changing jump_label_init() to be called earlier before
parse_early_param() wouldn't fix it: it would still fail trying to
poke_text() because mm isn't yet initialized.

Instead, just create a temporary '__sched_schedstats' variable which can
be copied to the static key later during sched_init() after jump labels
have been initialized.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: cb2517653f ("sched/debug: Make schedstats a runtime tunable that is disabled by default")
Link: http://lkml.kernel.org/r/453775fe3433bed65731a583e228ccea806d18cd.1465322027.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-08 14:33:05 +02:00
Peter Zijlstra b7e7ade34e sched/core: Fix remote wakeups
Commit:

  b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")

... introduced a bug: Mike Galbraith found that it introduced a
performance regression, while Paul E. McKenney reported lost
wakeups and bisected it to this commit.

The reason is that I mis-read ttwu_queue() such that I assumed any
wakeup that got a remote queue must have had the task migrated.

Since this is not so; we need to transfer this information between
queueing the wakeup and actually doing the wakeup. Use a new
task_struct::sched_flag for this, we already write to
sched_contributes_to_load in the wakeup path so this is a hot and
modified cacheline.

Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Segall <bsegall@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Fixes: b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")
Link: http://lkml.kernel.org/r/20160523091907.GD15728@worktop.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-25 08:35:18 +02:00
Thomas Gleixner 50605ffbda sched/core: Provide a tsk_nr_cpus_allowed() helper
tsk_nr_cpus_allowed() is an accessor for task->nr_cpus_allowed which allows
us to change the representation of ->nr_cpus_allowed if required.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1462969411-17735-2-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:55:36 +02:00
Wanpeng Li 444969223c sched/nohz: Fix affine unpinned timers mess
The following commit:

  9642d18eee ("nohz: Affine unpinned timers to housekeepers")'

intended to affine unpinned timers to housekeepers:

  unpinned timers(full dynaticks, idle)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(full dynaticks, busy)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(houserkeepers, idle)    =>   nearest busy housekeepers(otherwise, fallback to itself)

However, the !idle_cpu(i) && is_housekeeping_cpu(cpu) check modified the
intention to:

  unpinned timers(full dynaticks, idle)   =>   any housekeepers(no mattter cpu topology)
  unpinned timers(full dynaticks, busy)   =>   any housekeepers(no mattter cpu topology)
  unpinned timers(housekeepers, idle)     =>   any busy cpus(otherwise, fallback to any housekeepers)

This patch fixes it by checking if there are busy housekeepers nearby,
otherwise falls to any housekeepers/itself. After the patch:

  unpinned timers(full dynaticks, idle)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(full dynaticks, busy)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(housekeepers, idle)     =>   nearest busy housekeepers(otherwise, fallback to itself)

Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Fixed the changelog. ]
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 'commit 9642d18eee ("nohz: Affine unpinned timers to housekeepers")'
Link: http://lkml.kernel.org/r/1462344334-8303-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:55:32 +02:00
Peter Zijlstra 59efa0bac9 sched/core: Kill sched_class::task_waking to clean up the migration logic
With sched_class::task_waking being called only when we do
set_task_cpu(), we can make sched_class::migrate_task_rq() do the work
and eliminate sched_class::task_waking entirely.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:55:31 +02:00
Peter Zijlstra b5179ac70d sched/fair: Prepare to fix fairness problems on migration
Mike reported that our recent attempt to fix migration problems:

  3a47d5124a ("sched/fair: Fix fairness issue on migration")

broke interactivity and the signal starve test. We reverted that
commit and now let's try it again more carefully, with some other
underlying problems fixed first.

One problem is that I assumed ENQUEUE_WAKING was only set when we do a
cross-cpu wakeup (migration), which isn't true. This means we now
destroy the vruntime history of tasks and wakeup-preemption suffers.

Cure this by making my assumption true, only call
sched_class::task_waking() when we do a cross-cpu wakeup. This avoids
the indirect call in the case we do a local wakeup.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Fixes: 3a47d5124a ("sched/fair: Fix fairness issue on migration")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:55:31 +02:00
Ingo Molnar 4eb8676517 Merge branch 'smp/hotplug' into sched/core, to resolve conflicts
Conflicts:
	kernel/sched/core.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:51:36 +02:00
Davidlohr Bueso 58fe9c4621 sched/core: Fix comment typo in wake_q_add()
... the comment clearly refers to wake_up_q(), and not
wake_up_list().

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Link: http://lkml.kernel.org/r/1462766290-28664-1-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-09 08:39:52 +02:00
Muhammad Falak R Wani 8c5e95548d sched/core: Remove unused variable
Remove unused variable 'ret', and directly return 0.

Signed-off-by: Muhammad Falak R Wani <falakreyaz@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1462441879-10092-1-git-send-email-falakreyaz@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-09 08:39:52 +02:00
Thomas Gleixner e5ef27d0f5 sched: Make hrtick_notifier an explicit call
No need for an extra notifier. We don't need to handle all these states. It's
sufficient to kill the timer when the cpu dies.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.770528462@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:26 +02:00
Thomas Gleixner 20a5c8cc74 sched/fair: Make ilb_notifier an explicit call
No need for an extra notifier.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.693720241@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:26 +02:00
Thomas Gleixner f2785ddb53 sched/hotplug: Move migration CPU_DYING to sched_cpu_dying()
Remove the hotplug notifier and make it an explicit state.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.502222097@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:25 +02:00
Thomas Gleixner 7d97669933 sched/migration: Move CPU_ONLINE into scheduler state
The alleged requirement that the migration notifier has a lower priority than
perf is completely undocumented and there is no indication at all that this is
true. perf does not even handle the CPU_ONLINE notification and perf really
has nothing to do with migration.

Move the CPU_ONLINE code into the sched_activate_cpu() state callback.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.421743581@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:25 +02:00
Thomas Gleixner e9cd8fa4fc sched/migration: Move calc_load_migrate() into CPU_DYING
It really does not matter when we fold the load for the outgoing cpu. It's
almost dead anyway, so there is no harm if we fail to fold the few
microseconds which are required for going fully away.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.328739226@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:25 +02:00
Thomas Gleixner 94baf7a5d8 sched/migration: Move prepare transition to SCHED_STARTING state
We can piggy pack that on the SCHED_STARTING state. It's not required before
the cpu actually comes online. Name the function proper as it has nothing to
do with migration.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.248226511@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:24 +02:00
Peter Zijlstra b2454caa89 sched/hotplug: Move sync_rcu to be with set_cpu_active(false)
The sync_rcu stuff is specificically for clearing bits in the active
mask, such that everybody will observe the bit cleared and will not
consider the cleared CPU for load-balancing etc.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.169219710@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:24 +02:00
Thomas Gleixner 40190a78f8 sched/hotplug: Convert cpu_[in]active notifiers to state machine
Now that we reduced everything into single notifiers, it's simple to move them
into the hotplug state machine space.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:24 +02:00
Thomas Gleixner c6d2c7475c sched: Move sched_domains_numa_masks_clear() to DOWN_PREPARE
This is the last operation on the cpu before vanishing. No point in calling
that on CPU_DEAD.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:23 +02:00
Thomas Gleixner 135fb3e197 sched: Consolidate the notifier maze
We can maintain the ordering of the scheduler cpu hotplug functionality nicely
in one notifer. Get rid of the maze.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:23 +02:00
Thomas Gleixner e26fbffd32 sched: Allow hotplug notifiers to be setup early
Prevent the SMP scheduler related notifiers to be executed before the smp
scheduler is initialized and install them early.

This is a preparatory change for further consolidation of the hotplug notifier
maze.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:23 +02:00
Thomas Gleixner 9cf7243d5d sched: Make set_cpu_rq_start_time() a built in hotplug state
Start distangling the maze of hotplug notifiers in the scheduler.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:23 +02:00
Peter Zijlstra (Intel) e9d867a67f sched: Allow per-cpu kernel threads to run on online && !active
In order to enable symmetric hotplug, we must mirror the online &&
!active state of cpu-down on the cpu-up side.

However, to retain sanity, limit this state to per-cpu kthreads.

Aside from the change to set_cpus_allowed_ptr(), which allow moving
the per-cpu kthreads on, the other critical piece is the cpu selection
for pinned tasks in select_task_rq(). This avoids dropping into
select_fallback_rq().

select_fallback_rq() cannot be allowed to select !active cpus because
its used to migrate user tasks away. And we do not want to move user
tasks onto cpus that are in transition.

Requested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160301152303.GV6356@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:22 +02:00
Peter Zijlstra e7904a28f5 locking/lockdep, sched/core: Implement a better lock pinning scheme
The problem with the existing lock pinning is that each pin is of
value 1; this mean you can simply unpin if you know its pinned,
without having any extra information.

This scheme generates a random (16 bit) cookie for each pin and
requires this same cookie to unpin. This means you have to keep the
cookie in context.

No objsize difference for !LOCKDEP kernels.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:59 +02:00
Peter Zijlstra eb58075149 sched/core: Introduce 'struct rq_flags'
In order to be able to pass around more than just the IRQ flags in the
future, add a rq_flags structure.

No difference in code generation for the x86_64-defconfig build I
tested.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:59 +02:00
Peter Zijlstra 3e71a462dd sched/core: Move task_rq_lock() out of line
Its a rather large function, inline doesn't seems to make much sense:

 $ size defconfig-build/kernel/sched/core.o{.orig,}
    text    data     bss     dec     hex filename
   56533   21037    2320   79890   13812 defconfig-build/kernel/sched/core.o.orig
   55733   21037    2320   79090   134f2 defconfig-build/kernel/sched/core.o

The 'perf bench sched messaging' micro-benchmark shows a visible improvement
of 4-5%:

  $ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $i ; done
  $ perf stat --null --repeat 25 -- perf bench sched messaging -g 40 -l 5000

  pre:
       4.582798193 seconds time elapsed          ( +-  1.41% )
       4.733374877 seconds time elapsed          ( +-  2.10% )
       4.560955136 seconds time elapsed          ( +-  1.43% )
       4.631062303 seconds time elapsed          ( +-  1.40% )

  post:
       4.364765213 seconds time elapsed          ( +-  0.91% )
       4.454442734 seconds time elapsed          ( +-  1.18% )
       4.448893817 seconds time elapsed          ( +-  1.41% )
       4.424346872 seconds time elapsed          ( +-  0.97% )

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:58 +02:00
Ingo Molnar 64b7aad579 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:01:49 +02:00
Andy Lutomirski f98db6013c sched/core: Add switch_mm_irqs_off() and use it in the scheduler
By default, this is the same thing as switch_mm().

x86 will override it as an optimization.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/df401df47bdd6be3e389c6f1e3f5310d70e81b2c.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 11:44:19 +02:00
Peter Zijlstra 2548d546d4 nohz/full, sched/rt: Fix missed tick-reenabling bug in sched_can_stop_tick()
Chris Metcalf reported a that sched_can_stop_tick() sometimes fails to
re-enable the tick.

His observed problem is that rq->cfs.nr_running can be 1 even though
there are multiple runnable CFS tasks. This happens in the cgroup
case, in which case cfs.nr_running is the number of runnable entities
for that level.

If there is a single runnable cgroup (which can have an arbitrary
number of runnable child entries itself) rq->cfs.nr_running will be 1.

However, looking at that function I think there's more problems with it.

It seems to assume that if there's FIFO tasks, those will run. This is
incorrect. The FIFO task can have a lower prio than an RR task, in which
case the RR task will run.

So the whole fifo_nr_running test seems misplaced, it should go after
the rr_nr_running tests. That is, only if !rr_nr_running, can we use
fifo_nr_running like this.

Reported-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Link: http://lkml.kernel.org/r/20160421160315.GK24771@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 10:28:55 +02:00
Xunlei Pang fec148c000 sched/deadline: Fix a bug in dl_overflow()
I got a minus(very big) dl_b->total_bw during my deadline tests.

    # grep dl /proc/sched_debug
    dl_rq[0]:
    .dl_nr_running                 : 0
    .dl_bw->bw                     : 996147
    .dl_bw->total_bw               : -222297900

Something unusual must have happened.

After some digging, I finally noticed that when changing a deadline
task to normal(cfs), and changing it back to deadline immediately,
after it died, we will got the wrong dl_bw->total_bw.

The root cause is in dl_overflow(), it has:
    if (new_bw == p->dl.dl_bw)
	return 0;

1) When a deadline task is changed to !deadline task, it will start
   dl timer in switched_from_dl(), and retain previous deadline parameter
   till the timer expires.

2) If we change it back to deadline with the same bandwidth parameter
   before the timer expires, as it keeps the old bandwidth although it
   is not a deadline task. dl_overflow() simply returns success without
   updating the right data, and got the wrong dl_bw->total_bw.

The solution is simple, if @p is not deadline, don't return.

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460636368-1993-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23 14:20:43 +02:00
Frederic Weisbecker 9fd81dd5ce sched/fair: Optimize !CONFIG_NO_HZ_COMMON CPU load updates
Some code in CPU load update only concern NO_HZ configs but it is
built on all configurations. When NO_HZ isn't built, that code is harmless
but just happens to take some useless ressources in CPU and memory:

1) one useless field in struct rq
2) jiffies record on every tick that is never used (cpu_load_update_periodic)
3) decay_load_missed is called two times on every tick to eventually
   return immediately with no action taken. And that function is dead
   code.

For pure optimization purposes, lets conditionally build the NO_HZ
related code.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23 14:20:42 +02:00
Frederic Weisbecker cee1afce30 sched/fair: Gather CPU load functions under a more conventional namespace
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.

Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:

	update_cpu_load_*() -> cpu_load_update_*()

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23 14:20:41 +02:00
Rabin Vincent fb90a6e93c sched/debug: Don't dump sched debug info in SysRq-W
sysrq_sched_debug_show() can dump a lot of information.  Don't print out
all that if we're just trying to get a list of blocked tasks (SysRq-W).
The information is still accessible with SysRq-T.

Signed-off-by: Rabin Vincent <rabinv@axis.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459777322-30902-1-git-send-email-rabin.vincent@axis.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-13 11:23:21 +02:00
Yuyang Du 2b8c41daba sched/fair: Initiate a new task's util avg to a bounded value
A new task's util_avg is set to full utilization of a CPU (100% time
running). This accelerates a new task's utilization ramp-up, useful to
boost its execution in early time. However, it may result in
(insanely) high utilization for a transient time period when a flood
of tasks are spawned. Importantly, it violates the "fundamentally
bounded" CPU utilization, and its side effect is negative if we don't
take any measure to bound it.

This patch proposes an algorithm to address this issue. It has
two methods to approach a sensible initial util_avg:

(1) An expected (or average) util_avg based on its cfs_rq's util_avg:

  util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight

(2) A trajectory of how successive new tasks' util develops, which
gives 1/2 of the left utilization budget to a new task such that
the additional util is noticeably large (when overall util is low) or
unnoticeably small (when overall util is high enough). In the meantime,
the aggregate utilization is well bounded:

  util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n

where n denotes the nth task.

If util_avg is larger than util_avg_cap, then the effective util is
clamped to the util_avg_cap.

Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-31 10:49:46 +02:00
Steven Rostedt 47252cfbac sched/core: Add preempt checks in preempt_schedule() code
While testing the tracer preemptoff, I hit this strange trace:

   <...>-259     0...1    0us : schedule <-worker_thread
   <...>-259     0d..1    0us : rcu_note_context_switch <-__schedule
   <...>-259     0d..1    0us : rcu_sched_qs <-rcu_note_context_switch
   <...>-259     0d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
   <...>-259     0d..1    0us : _raw_spin_lock <-__schedule
   <...>-259     0d..1    0us : preempt_count_add <-_raw_spin_lock
   <...>-259     0d..2    0us : do_raw_spin_lock <-_raw_spin_lock
   <...>-259     0d..2    1us : deactivate_task <-__schedule
   <...>-259     0d..2    1us : update_rq_clock.part.84 <-deactivate_task
   <...>-259     0d..2    1us : dequeue_task_fair <-deactivate_task
   <...>-259     0d..2    1us : dequeue_entity <-dequeue_task_fair
   <...>-259     0d..2    1us : update_curr <-dequeue_entity
   <...>-259     0d..2    1us : update_min_vruntime <-update_curr
   <...>-259     0d..2    1us : cpuacct_charge <-update_curr
   <...>-259     0d..2    1us : __rcu_read_lock <-cpuacct_charge
   <...>-259     0d..2    1us : __rcu_read_unlock <-cpuacct_charge
   <...>-259     0d..2    1us : clear_buddies <-dequeue_entity
   <...>-259     0d..2    1us : account_entity_dequeue <-dequeue_entity
   <...>-259     0d..2    2us : update_min_vruntime <-dequeue_entity
   <...>-259     0d..2    2us : update_cfs_shares <-dequeue_entity
   <...>-259     0d..2    2us : hrtick_update <-dequeue_task_fair
   <...>-259     0d..2    2us : wq_worker_sleeping <-__schedule
   <...>-259     0d..2    2us : kthread_data <-wq_worker_sleeping
   <...>-259     0d..2    2us : pick_next_task_fair <-__schedule
   <...>-259     0d..2    2us : check_cfs_rq_runtime <-pick_next_task_fair
   <...>-259     0d..2    2us : pick_next_entity <-pick_next_task_fair
   <...>-259     0d..2    2us : clear_buddies <-pick_next_entity
   <...>-259     0d..2    2us : pick_next_entity <-pick_next_task_fair
   <...>-259     0d..2    2us : clear_buddies <-pick_next_entity
   <...>-259     0d..2    2us : set_next_entity <-pick_next_task_fair
   <...>-259     0d..2    3us : put_prev_entity <-pick_next_task_fair
   <...>-259     0d..2    3us : check_cfs_rq_runtime <-put_prev_entity
   <...>-259     0d..2    3us : set_next_entity <-pick_next_task_fair
gnome-sh-1031    0d..2    3us : finish_task_switch <-__schedule
gnome-sh-1031    0d..2    3us : _raw_spin_unlock_irq <-finish_task_switch
gnome-sh-1031    0d..2    3us : do_raw_spin_unlock <-_raw_spin_unlock_irq
gnome-sh-1031    0...2    3us!: preempt_count_sub <-_raw_spin_unlock_irq
gnome-sh-1031    0...1  582us : do_raw_spin_lock <-_raw_spin_lock
gnome-sh-1031    0...1  583us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031    0...1  583us : do_raw_spin_unlock <-_raw_spin_unlock
gnome-sh-1031    0...1  583us : preempt_count_sub <-_raw_spin_unlock
gnome-sh-1031    0...1  584us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031    0...1  584us+: trace_preempt_on <-drm_gem_object_lookup
gnome-sh-1031    0...1  603us : <stack trace>
 => preempt_count_sub
 => _raw_spin_unlock
 => drm_gem_object_lookup
 => i915_gem_madvise_ioctl
 => drm_ioctl
 => do_vfs_ioctl
 => SyS_ioctl
 => entry_SYSCALL_64_fastpath

As I'm tracing preemption disabled, it seemed incorrect that the trace
would go across a schedule and report not being in the scheduler.
Looking into this I discovered the problem.

schedule() calls preempt_disable() but the preempt_schedule() calls
preempt_enable_notrace(). What happened above was that the gnome-shell
task was preempted on another CPU, migrated over to the idle cpu. The
tracer stared with idle calling schedule(), which called
preempt_disable(), but then gnome-shell finished, and it enabled
preemption with preempt_enable_notrace() that does stop the trace, even
though preemption was enabled.

The purpose of the preempt_disable_notrace() in the preempt_schedule()
is to prevent function tracing from going into an infinite loop.
Because function tracing can trace the preempt_enable/disable() calls
that are traced. The problem with function tracing is:

  NEED_RESCHED set
  preempt_schedule()
    preempt_disable()
      preempt_count_inc()
        function trace (before incrementing preempt count)
          preempt_disable_notrace()
          preempt_enable_notrace()
            sees NEED_RESCHED set
               preempt_schedule() (repeat)

Now by breaking out the preempt off/on tracing into their own code:
preempt_disable_check() and preempt_enable_check(), we can add these to
the preempt_schedule() code. As preemption would then be disabled, even
if they were to be traced by the function tracer, the disabled
preemption would prevent the recursion.

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160321112339.6dc78ad6@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-31 10:49:45 +02:00
Frederic Weisbecker 5529578a27 locking/atomic, sched: Unexport fetch_or()
This patch functionally reverts:

  5fd7a09cfb ("atomic: Export fetch_or()")

During the merge Linus observed that the generic version of fetch_or()
was messy:

  " This makes the ugly "fetch_or()" macro that the scheduler used
    internally a new generic helper, and does a bad job at it. "

  e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Now that we have introduced atomic_fetch_or(), fetch_or() is only used
by the scheduler in order to deal with thread_info flags which type
can vary across architectures.

Lets confine fetch_or() back to the scheduler so that we encourage
future users to use the more robust and well typed atomic_t version
instead.

While at it, fetch_or() gets robustified, pasting improvements from a
previous patch by Ingo Molnar that avoids needless expression
re-evaluations in the loop.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-29 11:52:11 +02:00
Linus Torvalds be53f58fa0 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a
  cputime fix and two cpuacct cleanups"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/cpuacct: Simplify the cpuacct code
  sched/cpuacct: Rename parameter in cpuusage_write() for readability
  sched/fair: Add comments to explain select_idle_sibling()
  sched/fair: Fix fairness issue on migration
  sched/cgroup: Fix/cleanup cgroup teardown/init
  sched/cputime: Fix steal time accounting vs. CPU hotplug
2016-03-24 09:42:50 -07:00
Peter Zijlstra 2f5177f0fd sched/cgroup: Fix/cleanup cgroup teardown/init
The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:

  2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")

caused it to explode.

The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.

The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.

Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().

And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.

Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-21 10:49:23 +01:00
Ingo Molnar 42e405f7b1 Merge branch 'linus' into sched/urgent, to pick up dependencies
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-21 10:47:40 +01:00
Linus Torvalds 26660a4046 Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull 'objtool' stack frame validation from Ingo Molnar:
 "This tree adds a new kernel build-time object file validation feature
  (ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
  It was written by and is maintained by Josh Poimboeuf.

  The motivation: there's a category of hard to find kernel bugs, most
  of them in assembly code (but also occasionally in C code), that
  degrades the quality of kernel stack dumps/backtraces.  These bugs are
  hard to detect at the source code level.  Such bugs result in
  incorrect/incomplete backtraces most of time - but can also in some
  rare cases result in crashes or other undefined behavior.

  The build time correctness checking is done via the new 'objtool'
  user-space utility that was written for this purpose and which is
  hosted in the kernel repository in tools/objtool/.  The tool's (very
  simple) UI and source code design is shaped after Git and perf and
  shares quite a bit of infrastructure with tools/perf (which tooling
  infrastructure sharing effort got merged via perf and is already
  upstream).  Objtool follows the well-known kernel coding style.

  Objtool does not try to check .c or .S files, it instead analyzes the
  resulting .o generated machine code from first principles: it decodes
  the instruction stream and interprets it.  (Right now objtool supports
  the x86-64 architecture.)

  From tools/objtool/Documentation/stack-validation.txt:

   "The kernel CONFIG_STACK_VALIDATION option enables a host tool named
    objtool which runs at compile time.  It has a "check" subcommand
    which analyzes every .o file and ensures the validity of its stack
    metadata.  It enforces a set of rules on asm code and C inline
    assembly code so that stack traces can be reliable.

    Currently it only checks frame pointer usage, but there are plans to
    add CFI validation for C files and CFI generation for asm files.

    For each function, it recursively follows all possible code paths
    and validates the correct frame pointer state at each instruction.

    It also follows code paths involving special sections, like
    .altinstructions, __jump_table, and __ex_table, which can add
    alternative execution paths to a given instruction (or set of
    instructions).  Similarly, it knows how to follow switch statements,
    for which gcc sometimes uses jump tables."

  When this new kernel option is enabled (it's disabled by default), the
  tool, if it finds any suspicious assembly code pattern, outputs
  warnings in compiler warning format:

    warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
    warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
    warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
    warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer

  ... so that scripts that pick up compiler warnings will notice them.
  All known warnings triggered by the tool are fixed by the tree, most
  of the commits in fact prepare the kernel to be warning-free.  Most of
  them are bugfixes or cleanups that stand on their own, but there are
  also some annotations of 'special' stack frames for justified cases
  such entries to JIT-ed code (BPF) or really special boot time code.

  There are two other long-term motivations behind this tool as well:

   - To improve the quality and reliability of kernel stack frames, so
     that they can be used for optimized live patching.

   - To create independent infrastructure to check the correctness of
     CFI stack frames at build time.  CFI debuginfo is notoriously
     unreliable and we cannot use it in the kernel as-is without extra
     checking done both on the kernel side and on the build side.

  The quality of kernel stack frames matters to debuggability as well,
  so IMO we can merge this without having to consider the live patching
  or CFI debuginfo angle"

* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  objtool: Only print one warning per function
  objtool: Add several performance improvements
  tools: Copy hashtable.h into tools directory
  objtool: Fix false positive warnings for functions with multiple switch statements
  objtool: Rename some variables and functions
  objtool: Remove superflous INIT_LIST_HEAD
  objtool: Add helper macros for traversing instructions
  objtool: Fix false positive warnings related to sibling calls
  objtool: Compile with debugging symbols
  objtool: Detect infinite recursion
  objtool: Prevent infinite recursion in noreturn detection
  objtool: Detect and warn if libelf is missing and don't break the build
  tools: Support relative directory path for 'O='
  objtool: Support CROSS_COMPILE
  x86/asm/decoder: Use explicitly signed chars
  objtool: Enable stack metadata validation on 64-bit x86
  objtool: Add CONFIG_STACK_VALIDATION option
  objtool: Add tool to perform compile-time stack metadata validation
  x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
  sched: Always inline context_switch()
  ...
2016-03-20 18:23:21 -07:00
Linus Torvalds 6b5f04b6cf Merge branch 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "cgroup changes for v4.6-rc1.  No userland visible behavior changes in
  this pull request.  I'll send out a separate pull request for the
  addition of cgroup namespace support.

   - The biggest change is the revamping of cgroup core task migration
     and controller handling logic.  There are quite a few places where
     controllers and tasks are manipulated.  Previously, many of those
     places implemented custom operations for each specific use case
     assuming specific starting conditions.  While this worked, it makes
     the code fragile and difficult to follow.

     The bulk of this pull request restructures these operations so that
     most related operations are performed through common helpers which
     implement recursive (subtrees are always processed consistently)
     and idempotent (they make cgroup hierarchy converge to the target
     state rather than performing operations assuming specific starting
     conditions).  This makes the code a lot easier to understand,
     verify and extend.

   - Implicit controller support is added.  This is primarily for using
     perf_event on the v2 hierarchy so that perf can match cgroup v2
     path without requiring the user to do anything special.  The kernel
     portion of perf_event changes is acked but userland changes are
     still pending review.

   - cgroup_no_v1= boot parameter added to ease testing cgroup v2 in
     certain environments.

   - There is a regression introduced during v4.4 devel cycle where
     attempts to migrate zombie tasks can mess up internal object
     management.  This was fixed earlier this week and included in this
     pull request w/ stable cc'd.

   - Misc non-critical fixes and improvements"

* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (44 commits)
  cgroup: avoid false positive gcc-6 warning
  cgroup: ignore css_sets associated with dead cgroups during migration
  Documentation: cgroup v2: Trivial heading correction.
  cgroup: implement cgroup_subsys->implicit_on_dfl
  cgroup: use css_set->mg_dst_cgrp for the migration target cgroup
  cgroup: make cgroup[_taskset]_migrate() take cgroup_root instead of cgroup
  cgroup: move migration destination verification out of cgroup_migrate_prepare_dst()
  cgroup: fix incorrect destination cgroup in cgroup_update_dfl_csses()
  cgroup: Trivial correction to reflect controller.
  cgroup: remove stale item in cgroup-v1 document INDEX file.
  cgroup: update css iteration in cgroup_update_dfl_csses()
  cgroup: allocate 2x cgrp_cset_links when setting up a new root
  cgroup: make cgroup_calc_subtree_ss_mask() take @this_ss_mask
  cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends
  cgroup: use cgroup_apply_enable_control() in cgroup creation path
  cgroup: combine cgroup_mutex locking and offline css draining
  cgroup: factor out cgroup_{apply|finalize}_control() from cgroup_subtree_control_write()
  cgroup: introduce cgroup_{save|propagate|restore}_control()
  cgroup: make cgroup_drain_offline() and cgroup_apply_control_{disable|enable}() recursive
  cgroup: factor out cgroup_apply_control_enable() from cgroup_subtree_control_write()
  ...
2016-03-18 20:25:49 -07:00
Linus Torvalds ef504fa591 Merge branch 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
 "Three trivial workqueue changes"

* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: Fix comment for work_on_cpu()
  sched/core: Get rid of 'cpu' argument in wq_worker_sleeping()
  workqueue: Replace usage of init_name with dev_set_name()
2016-03-18 20:05:39 -07:00
Linus Torvalds 710d60cbf1 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu hotplug updates from Thomas Gleixner:
 "This is the first part of the ongoing cpu hotplug rework:

   - Initial implementation of the state machine

   - Runs all online and prepare down callbacks on the plugged cpu and
     not on some random processor

   - Replaces busy loop waiting with completions

   - Adds tracepoints so the states can be followed"

More detailed commentary on this work from an earlier email:
 "What's wrong with the current cpu hotplug infrastructure?

   - Asymmetry

     The hotplug notifier mechanism is asymmetric versus the bringup and
     teardown.  This is mostly caused by the notifier mechanism.

   - Largely undocumented dependencies

     While some notifiers use explicitely defined notifier priorities,
     we have quite some notifiers which use numerical priorities to
     express dependencies without any documentation why.

   - Control processor driven

     Most of the bringup/teardown of a cpu is driven by a control
     processor.  While it is understandable, that preperatory steps,
     like idle thread creation, memory allocation for and initialization
     of essential facilities needs to be done before a cpu can boot,
     there is no reason why everything else must run on a control
     processor.  Before this patch series, bringup looks like this:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu

       bring the rest up

   - All or nothing approach

     There is no way to do partial bringups.  That's something which is
     really desired because we waste e.g.  at boot substantial amount of
     time just busy waiting that the cpu comes to life.  That's stupid
     as we could very well do preparatory steps and the initial IPI for
     other cpus and then go back and do the necessary low level
     synchronization with the freshly booted cpu.

   - Minimal debuggability

     Due to the notifier based design, it's impossible to switch between
     two stages of the bringup/teardown back and forth in order to test
     the correctness.  So in many hotplug notifiers the cancel
     mechanisms are either not existant or completely untested.

   - Notifier [un]registering is tedious

     To [un]register notifiers we need to protect against hotplug at
     every callsite.  There is no mechanism that bringup/teardown
     callbacks are issued on the online cpus, so every caller needs to
     do it itself.  That also includes error rollback.

  What's the new design?

     The base of the new design is a symmetric state machine, where both
     the control processor and the booting/dying cpu execute a well
     defined set of states.  Each state is symmetric in the end, except
     for some well defined exceptions, and the bringup/teardown can be
     stopped and reversed at almost all states.

     So the bringup of a cpu will look like this in the future:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu

                                       bring itself up

     The synchronization step does not require the control cpu to wait.
     That mechanism can be done asynchronously via a worker or some
     other mechanism.

     The teardown can be made very similar, so that the dying cpu cleans
     up and brings itself down.  Cleanups which need to be done after
     the cpu is gone, can be scheduled asynchronously as well.

  There is a long way to this, as we need to refactor the notion when a
  cpu is available.  Today we set the cpu online right after it comes
  out of the low level bringup, which is not really correct.

  The proper mechanism is to set it to available, i.e. cpu local
  threads, like softirqd, hotplug thread etc. can be scheduled on that
  cpu, and once it finished all booting steps, it's set to online, so
  general workloads can be scheduled on it.  The reverse happens on
  teardown.  First thing to do is to forbid scheduling of general
  workloads, then teardown all the per cpu resources and finally shut it
  off completely.

  This patch series implements the basic infrastructure for this at the
  core level.  This includes the following:

   - Basic state machine implementation with well defined states, so
     ordering and prioritization can be expressed.

   - Interfaces to [un]register state callbacks

     This invokes the bringup/teardown callback on all online cpus with
     the proper protection in place and [un]installs the callbacks in
     the state machine array.

     For callbacks which have no particular ordering requirement we have
     a dynamic state space, so that drivers don't have to register an
     explicit hotplug state.

     If a callback fails, the code automatically does a rollback to the
     previous state.

   - Sysfs interface to drive the state machine to a particular step.

     This is only partially functional today.  Full functionality and
     therefor testability will be achieved once we converted all
     existing hotplug notifiers over to the new scheme.

   - Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
     processor:

       Control CPU                     Booting CPU

       do preparatory steps
       kick cpu into life

                                       do low level init

       sync with booting cpu           sync with control cpu
       wait for boot
                                       bring itself up

                                       Signal completion to control cpu

     In a previous step of this work we've done a full tree mechanical
     conversion of all hotplug notifiers to the new scheme.  The balance
     is a net removal of about 4000 lines of code.

     This is not included in this series, as we decided to take a
     different approach.  Instead of mechanically converting everything
     over, we will do a proper overhaul of the usage sites one by one so
     they nicely fit into the symmetric callback scheme.

     I decided to do that after I looked at the ugliness of some of the
     converted sites and figured out that their hotplug mechanism is
     completely buggered anyway.  So there is no point to do a
     mechanical conversion first as we need to go through the usage
     sites one by one again in order to achieve a full symmetric and
     testable behaviour"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  cpu/hotplug: Document states better
  cpu/hotplug: Fix smpboot thread ordering
  cpu/hotplug: Remove redundant state check
  cpu/hotplug: Plug death reporting race
  rcu: Make CPU_DYING_IDLE an explicit call
  cpu/hotplug: Make wait for dead cpu completion based
  cpu/hotplug: Let upcoming cpu bring itself fully up
  arch/hotplug: Call into idle with a proper state
  cpu/hotplug: Move online calls to hotplugged cpu
  cpu/hotplug: Create hotplug threads
  cpu/hotplug: Split out the state walk into functions
  cpu/hotplug: Unpark smpboot threads from the state machine
  cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
  cpu/hotplug: Implement setup/removal interface
  cpu/hotplug: Make target state writeable
  cpu/hotplug: Add sysfs state interface
  cpu/hotplug: Hand in target state to _cpu_up/down
  cpu/hotplug: Convert the hotplugged cpu work to a state machine
  cpu/hotplug: Convert to a state machine for the control processor
  cpu/hotplug: Add tracepoints
  ...
2016-03-15 13:50:29 -07:00
Linus Torvalds e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull NOHZ updates from Ingo Molnar:
 "NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors
  the NOHZ 'can the tick be stopped?' infrastructure and related code to
  be data driven, and harmonizes the naming and handling of all the
  various properties"

[ This makes the ugly "fetch_or()" macro that the scheduler used
  internally a new generic helper, and does a bad job at it.

  I'm pulling it, but I've asked Ingo and Frederic to get this
  fixed up ]

* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched-clock: Migrate to use new tick dependency mask model
  posix-cpu-timers: Migrate to use new tick dependency mask model
  sched: Migrate sched to use new tick dependency mask model
  sched: Account rr tasks
  perf: Migrate perf to use new tick dependency mask model
  nohz: Use enum code for tick stop failure tracing message
  nohz: New tick dependency mask
  nohz: Implement wide kick on top of irq work
  atomic: Export fetch_or()
2016-03-14 19:44:38 -07:00
Linus Torvalds d4e796152a Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle are:

   - Make schedstats a runtime tunable (disabled by default) and
     optimize it via static keys.

     As most distributions enable CONFIG_SCHEDSTATS=y due to its
     instrumentation value, this is a nice performance enhancement.
     (Mel Gorman)

   - Implement 'simple waitqueues' (swait): these are just pure
     waitqueues without any of the more complex features of full-blown
     waitqueues (callbacks, wake flags, wake keys, etc.).  Simple
     waitqueues have less memory overhead and are faster.

     Use simple waitqueues in the RCU code (in 4 different places) and
     for handling KVM vCPU wakeups.

     (Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
     Marcelo Tosatti)

   - sched/numa enhancements (Rik van Riel)

   - NOHZ performance enhancements (Rik van Riel)

   - Various sched/deadline enhancements (Steven Rostedt)

   - Various fixes (Peter Zijlstra)

   - ... and a number of other fixes, cleanups and smaller enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
  sched/cputime: Fix steal_account_process_tick() to always return jiffies
  sched/deadline: Remove dl_new from struct sched_dl_entity
  Revert "kbuild: Add option to turn incompatible pointer check into error"
  sched/deadline: Remove superfluous call to switched_to_dl()
  sched/debug: Fix preempt_disable_ip recording for preempt_disable()
  sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
  time, acct: Drop irq save & restore from __acct_update_integrals()
  acct, time: Change indentation in __acct_update_integrals()
  sched, time: Remove non-power-of-two divides from __acct_update_integrals()
  sched/rt: Kick RT bandwidth timer immediately on start up
  sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
  sched/debug: Move sched_domain_sysctl to debug.c
  sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
  sched/rt: Fix PI handling vs. sched_setscheduler()
  sched/core: Remove duplicated sched_group_set_shares() prototype
  sched/fair: Consolidate nohz CPU load update code
  sched/fair: Avoid using decay_load_missed() with a negative value
  sched/deadline: Always calculate end of period on sched_yield()
  sched/cgroup: Fix cgroup entity load tracking tear-down
  rcu: Use simple wait queues where possible in rcutree
  ...
2016-03-14 19:14:06 -07:00
Mark Rutland e1b77c9298 sched/kasan: remove stale KASAN poison after hotplug
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.

In the case of CPU hotplug, CPUs exit the kernel a number of levels deep
in C code.  Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.

When a CPU is subsequently brought back into the kernel via a different
path, depending on stackframe, layout calls to instrumented functions
may hit this stale poison, resulting in (spurious) KASAN splats to the
console.

To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Luca Abeni 72f9f3fdc9 sched/deadline: Remove dl_new from struct sched_dl_entity
The dl_new field of struct sched_dl_entity is currently used to
identify new deadline tasks, so that their deadline and runtime
can be properly initialised.

However, these tasks can be easily identified by checking if
their deadline is smaller than the current time when they switch
to SCHED_DEADLINE. So, dl_new can be removed by introducing this
check in switched_to_dl(); this allows to simplify the
SCHED_DEADLINE code.

Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457350024-7825-2-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-08 12:24:55 +01:00
Thomas Gleixner e9532e69b8 sched/cputime: Fix steal time accounting vs. CPU hotplug
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:

	 u64 steal = paravirt_steal_clock(smp_processor_id());

	 steal -= this_rq()->prev_steal_time;

So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.

Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.

None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.

Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-05 09:17:20 +01:00
Frederic Weisbecker 76d92ac305 sched: Migrate sched to use new tick dependency mask model
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.

Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:

SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO    : Don't need the tick (no round-robin)
SCHED_RR      : Need the tick if more than 1 task of the same priority
                for round robin (simplified with checking if more than
                one SCHED_RR task no matter what priority).
SCHED_NORMAL  : Need the tick if more than 1 task for round-robin.

We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.

Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.

Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-03-02 16:43:41 +01:00