mirror of https://gitee.com/openkylin/linux.git
13736 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Chris Down | 871789d4af |
mm, memcg: rename ambiguously named memory.stat counters and functions
I spent literally an hour trying to work out why an earlier version of my memory.events aggregation code doesn't work properly, only to find out I was calling memcg->events instead of memcg->memory_events, which is fairly confusing. This naming seems in need of reworking, so make it harder to do the wrong thing by using vmevents instead of events, which makes it more clear that these are vm counters rather than memcg-specific counters. There are also a few other inconsistent names in both the percpu and aggregated structs, so these are all cleaned up to be more coherent and easy to understand. This commit contains code cleanup only: there are no logic changes. [akpm@linux-foundation.org: fix it for preceding changes] Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jiri Kosina | 134fca9063 |
mm/mincore.c: make mincore() more conservative
The semantics of what mincore() considers to be resident is not completely clear, but Linux has always (since 2.3.52, which is when mincore() was initially done) treated it as "page is available in page cache". That's potentially a problem, as that [in]directly exposes meta-information about pagecache / memory mapping state even about memory not strictly belonging to the process executing the syscall, opening possibilities for sidechannel attacks. Change the semantics of mincore() so that it only reveals pagecache information for non-anonymous mappings that belog to files that the calling process could (if it tried to) successfully open for writing; otherwise we'd be including shared non-exclusive mappings, which - is the sidechannel - is not the usecase for mincore(), as that's primarily used for data, not (shared) text [jkosina@suse.cz: v2] Link: http://lkml.kernel.org/r/20190312141708.6652-2-vbabka@suse.cz [mhocko@suse.com: restructure can_do_mincore() conditions] Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1903062342020.19912@cbobk.fhfr.pm Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Josh Snyder <joshs@netflix.com> Acked-by: Michal Hocko <mhocko@suse.com> Originally-by: Linus Torvalds <torvalds@linux-foundation.org> Originally-by: Dominique Martinet <asmadeus@codewreck.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Chinner <david@fromorbit.com> Cc: Kevin Easton <kevin@guarana.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Cyril Hrubis <chrubis@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daniel Gruss <daniel@gruss.cc> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dan Williams | 97500a4a54 |
mm: maintain randomization of page free lists
When freeing a page with an order >= shuffle_page_order randomly select the front or back of the list for insertion. While the mm tries to defragment physical pages into huge pages this can tend to make the page allocator more predictable over time. Inject the front-back randomness to preserve the initial randomness established by shuffle_free_memory() when the kernel was booted. The overhead of this manipulation is constrained by only being applied for MAX_ORDER sized pages by default. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dan Williams | b03641af68 |
mm: move buddy list manipulations into helpers
In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dan Williams | e900a918b0 |
mm: shuffle initial free memory to improve memory-side-cache utilization
Patch series "mm: Randomize free memory", v10.
This patch (of 3):
Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache. Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms. In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM. Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].
Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:
It's been a problem in the HPC space:
http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
A kernel module called zonesort is available to try to help:
https://software.intel.com/en-us/articles/xeon-phi-software
and this abandoned patch series proposed that for the kernel:
https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
Dan's patch series doesn't attempt to ensure buffers won't conflict, but
also reduces the chance that the buffers will. This will make performance
more consistent, albeit slower than "optimal" (which is near impossible
to attain in a general-purpose kernel). That's better than forcing
users to deploy remedies like:
"To eliminate this gradual degradation, we have added a Stream
measurement to the Node Health Check that follows each job;
nodes are rebooted whenever their measured memory bandwidth
falls below 300 GB/s."
A replacement for zonesort was merged upstream in commit
|
|
Uladzislau Rezki (Sony) | 4d36e6f804 |
mm/vmalloc.c: convert vmap_lazy_nr to atomic_long_t
vmap_lazy_nr variable has atomic_t type that is 4 bytes integer value on both 32 and 64 bit systems. lazy_max_pages() deals with "unsigned long" that is 8 bytes on 64 bit system, thus vmap_lazy_nr should be 8 bytes on 64 bit as well. Link: http://lkml.kernel.org/r/20190131162452.25879-1-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Joel Fernandes <joelaf@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Uladzislau Rezki (Sony) | 68571be99f |
mm/vmalloc.c: add priority threshold to __purge_vmap_area_lazy()
Commit
|
|
Baruch Siach | 136ac591f0 |
mm: update references to page _refcount
Commit |
|
Linus Torvalds | 318222a35b |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: - a few misc things and hotfixes - ocfs2 - almost all of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (139 commits) kernel/memremap.c: remove the unused device_private_entry_fault() export mm: delete find_get_entries_tag mm/huge_memory.c: make __thp_get_unmapped_area static mm/mprotect.c: fix compilation warning because of unused 'mm' variable mm/page-writeback: introduce tracepoint for wait_on_page_writeback() mm/vmscan: simplify trace_reclaim_flags and trace_shrink_flags mm/Kconfig: update "Memory Model" help text mm/vmscan.c: don't disable irq again when count pgrefill for memcg mm: memblock: make keeping memblock memory opt-in rather than opt-out hugetlbfs: always use address space in inode for resv_map pointer mm/z3fold.c: support page migration mm/z3fold.c: add structure for buddy handles mm/z3fold.c: improve compression by extending search mm/z3fold.c: introduce helper functions mm/page_alloc.c: remove unnecessary parameter in rmqueue_pcplist mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig mm/vmscan.c: simplify shrink_inactive_list() fs/sync.c: sync_file_range(2) may use WB_SYNC_ALL writeback xen/privcmd-buf.c: convert to use vm_map_pages_zero() xen/gntdev.c: convert to use vm_map_pages() ... |
|
Matthew Wilcox (Oracle) | a1b8e6abf3 |
mm: delete find_get_entries_tag
I removed the only user of this and hadn't noticed it was now unused. Link: http://lkml.kernel.org/r/20190430152929.21813-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Bharath Vedartham | b3b07077b0 |
mm/huge_memory.c: make __thp_get_unmapped_area static
__thp_get_unmapped_area is only used in mm/huge_memory.c. Make it static. Tested by building and booting the kernel. Link: http://lkml.kernel.org/r/20190504102353.GA22525@bharath12345-Inspiron-5559 Signed-off-by: Bharath Vedartham <linux.bhar@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 94393c7896 |
mm/mprotect.c: fix compilation warning because of unused 'mm' variable
Since
|
|
Yafang Shao | 19343b5bdd |
mm/page-writeback: introduce tracepoint for wait_on_page_writeback()
Recently there have been some hung tasks on our server due to wait_on_page_writeback(), and we want to know the details of this PG_writeback, i.e. this page is writing back to which device. But it is not so convenient to get the details. I think it would be better to introduce a tracepoint for diagnosing the writeback details. Link: http://lkml.kernel.org/r/1556274402-19018-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | d66d109d3c |
mm/Kconfig: update "Memory Model" help text
The help describing the memory model selection is outdated. It still says that SPARSEMEM is experimental and DISCONTIGMEM is a preferred over SPARSEMEM. Update the help text for the relevant options: * add a generic help for the "Memory Model" prompt * add description for FLATMEM * reduce the description of DISCONTIGMEM and add a deprecation note * prefer SPARSEMEM over DISCONTIGMEM Link: http://lkml.kernel.org/r/1556188531-20728-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yafang Shao | 2fa2690ca6 |
mm/vmscan.c: don't disable irq again when count pgrefill for memcg
We can use __count_memcg_events() directly because this callsite is alreay protected by spin_lock_irq(). Link: http://lkml.kernel.org/r/1556093494-30798-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 350e88bad4 |
mm: memblock: make keeping memblock memory opt-in rather than opt-out
Most architectures do not need the memblock memory after the page allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the arch Kconfig. Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the logic makes it clear which architectures actually use memblock after system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK to the architectures that are still missing that option. Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Kravetz | f27a5136f7 |
hugetlbfs: always use address space in inode for resv_map pointer
Continuing discussion about
|
|
Vitaly Wool | 1f862989b0 |
mm/z3fold.c: support page migration
Now that we are not using page address in handles directly, we can make z3fold pages movable to decrease the memory fragmentation z3fold may create over time. This patch starts advertising non-headless z3fold pages as movable and uses the existing kernel infrastructure to implement moving of such pages per memory management subsystem's request. It thus implements 3 required callbacks for page migration: * isolation callback: z3fold_page_isolate(): try to isolate the page by removing it from all lists. Pages scheduled for some activity and mapped pages will not be isolated. Return true if isolation was successful or false otherwise * migration callback: z3fold_page_migrate(): re-check critical conditions and migrate page contents to the new page provided by the memory subsystem. Returns 0 on success or negative error code otherwise * putback callback: z3fold_page_putback(): put back the page if z3fold_page_migrate() for it failed permanently (i. e. not with -EAGAIN code). [lkp@intel.com: z3fold_page_isolate() can be static] Link: http://lkml.kernel.org/r/20190419130924.GA161478@ivb42 Link: http://lkml.kernel.org/r/20190417103922.31253da5c366c4ebe0419cfc@gmail.com Signed-off-by: Vitaly Wool <vitaly.vul@sony.com> Signed-off-by: kbuild test robot <lkp@intel.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Wool | 7c2b8baa61 |
mm/z3fold.c: add structure for buddy handles
For z3fold to be able to move its pages per request of the memory subsystem, it should not use direct object addresses in handles. Instead, it will create abstract handles (3 per page) which will contain pointers to z3fold objects. Thus, it will be possible to change these pointers when z3fold page is moved. Link: http://lkml.kernel.org/r/20190417103826.484eaf18c1294d682769880f@gmail.com Signed-off-by: Vitaly Wool <vitaly.vul@sony.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Wool | 351618b203 |
mm/z3fold.c: improve compression by extending search
The current z3fold implementation only searches this CPU's page lists for a fitting page to put a new object into. This patch adds quick search for very well fitting pages (i. e. those having exactly the required number of free space) on other CPUs too, before allocating a new page for that object. Link: http://lkml.kernel.org/r/20190417103733.72ae81abe1552397c95a008e@gmail.com Signed-off-by: Vitaly Wool <vitaly.vul@sony.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Wool | 9050cce104 |
mm/z3fold.c: introduce helper functions
Patch series "z3fold: support page migration", v2. This patchset implements page migration support and slightly better buddy search. To implement page migration support, z3fold has to move away from the current scheme of handle encoding. i. e. stop encoding page address in handles. Instead, a small per-page structure is created which will contain actual addresses for z3fold objects, while pointers to fields of that structure will be used as handles. Thus, it will be possible to change the underlying addresses to reflect page migration. To support migration itself, 3 callbacks will be implemented: 1: isolation callback: z3fold_page_isolate(): try to isolate the page by removing it from all lists. Pages scheduled for some activity and mapped pages will not be isolated. Return true if isolation was successful or false otherwise 2: migration callback: z3fold_page_migrate(): re-check critical conditions and migrate page contents to the new page provided by the system. Returns 0 on success or negative error code otherwise 3: putback callback: z3fold_page_putback(): put back the page if z3fold_page_migrate() for it failed permanently (i. e. not with -EAGAIN code). To make sure an isolated page doesn't get freed, its kref is incremented in z3fold_page_isolate() and decremented during post-migration compaction, if migration was successful, or by z3fold_page_putback() in the other case. Since the new handle encoding scheme implies slight memory consumption increase, better buddy search (which decreases memory consumption) is included in this patchset. This patch (of 4): Introduce a separate helper function for object allocation, as well as 2 smaller helpers to add a buddy to the list and to get a pointer to the pool from the z3fold header. No functional changes here. Link: http://lkml.kernel.org/r/20190417103633.a4bb770b5bf0fb7e43ce1666@gmail.com Signed-off-by: Vitaly Wool <vitaly.vul@sony.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yafang Shao | 1c52e6d068 |
mm/page_alloc.c: remove unnecessary parameter in rmqueue_pcplist
Because rmqueue_pcplist() is only called when order is 0, we don't need to use order as a parameter. Link: http://lkml.kernel.org/r/1555591709-11744-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Pankaj Gupta <pagupta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 2c8fc3dcf2 |
mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig
Add 2 new Kconfig variables that are not used by anyone. I check that various make ARCH=somearch allmodconfig do work and do not complain. This new Kconfig needs to be added first so that device drivers that depend on HMM can be updated. Once drivers are updated then I can update the HMM Kconfig to depend on this new Kconfig in a followup patch. This is about solving Kconfig for HMM given that device driver are going through their own tree we want to avoid changing them from the mm tree. So plan is: 1 - Kernel release N add the new Kconfig to mm/Kconfig (this patch) 2 - Kernel release N+1 update driver to depend on new Kconfig ie stop using ARCH_HASH_HMM and start using ARCH_HAS_HMM_MIRROR and ARCH_HAS_HMM_DEVICE (one or the other or both depending on the driver) 3 - Kernel release N+2 remove ARCH_HASH_HMM and do final Kconfig update in mm/Kconfig Link: http://lkml.kernel.org/r/20190417211141.17580-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Leon Romanovsky <leonro@mellanox.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | f46b79120e |
mm/vmscan.c: simplify shrink_inactive_list()
This merges together duplicated patterns of code. Also, replace count_memcg_events() with its irq-careless namesake, because they are already called in interrupts disabled context. Link: http://lkml.kernel.org/r/2ece1df4-2989-bc9b-6172-61e9fdde5bfd@virtuozzo.com Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Baoquan He <bhe@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Souptick Joarder | a667d7456f |
mm: introduce new vm_map_pages() and vm_map_pages_zero() API
Patch series "mm: Use vm_map_pages() and vm_map_pages_zero() API", v5. This patch (of 5): Previouly drivers have their own way of mapping range of kernel pages/memory into user vma and this was done by invoking vm_insert_page() within a loop. As this pattern is common across different drivers, it can be generalized by creating new functions and using them across the drivers. vm_map_pages() is the API which can be used to map kernel memory/pages in drivers which have considered vm_pgoff vm_map_pages_zero() is the API which can be used to map a range of kernel memory/pages in drivers which have not considered vm_pgoff. vm_pgoff is passed as default 0 for those drivers. We _could_ then at a later "fix" these drivers which are using vm_map_pages_zero() to behave according to the normal vm_pgoff offsetting simply by removing the _zero suffix on the function name and if that causes regressions, it gives us an easy way to revert. Tested on Rockchip hardware and display is working, including talking to Lima via prime. Link: http://lkml.kernel.org/r/751cb8a0f4c3e67e95c58a3b072937617f338eea.1552921225.git.jrdr.linux@gmail.com Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Suggested-by: Russell King <linux@armlinux.org.uk> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Heiko Stuebner <heiko@sntech.de> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Sandy Huang <hjc@rock-chips.com> Cc: David Airlie <airlied@linux.ie> Cc: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Pawel Osciak <pawel@osciak.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Bartlomiej Zolnierkiewicz | 62afcd1cb8 |
mm: remove redundant 'default n' from Kconfig-s
'default n' is the default value for any bool or tristate Kconfig
setting so there is no need to write it explicitly.
Also since commit
|
|
Johannes Weiner | 8c7829b04c |
mm: fix false-positive OVERCOMMIT_GUESS failures
With the default overcommit==guess we occasionally run into mmap
rejections despite plenty of memory that would get dropped under
pressure but just isn't accounted reclaimable. One example of this is
dying cgroups pinned by some page cache. A previous case was auxiliary
path name memory associated with dentries; we have since annotated
those allocations to avoid overcommit failures (see
|
|
David Hildenbrand | ac5c942645 |
mm/memory_hotplug: make __remove_pages() and arch_remove_memory() never fail
All callers of arch_remove_memory() ignore errors. And we should really try to remove any errors from the memory removal path. No more errors are reported from __remove_pages(). BUG() in s390x code in case arch_remove_memory() is triggered. We may implement that properly later. WARN in case powerpc code failed to remove the section mapping, which is better than ignoring the error completely right now. Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Stefan Agner <stefan@agner.ch> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Rob Herring <robh@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mike Travis <mike.travis@hpe.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Hildenbrand | 9d1d887d78 |
mm/memory_hotplug: make __remove_section() never fail
Let's just warn in case a section is not valid instead of failing to remove somewhere in the middle of the process, returning an error that will be mostly ignored by callers. Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Hildenbrand | cb7b3a3685 |
mm/memory_hotplug: make unregister_memory_section() never fail
Failing while removing memory is mostly ignored and cannot really be handled. Let's treat errors in unregister_memory_section() in a nice way, warning, but continuing. Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Hildenbrand | d9eb1417c7 |
mm/memory_hotplug: release memory resource after arch_remove_memory()
Patch series "mm/memory_hotplug: Better error handling when removing memory", v1. Error handling when removing memory is somewhat messed up right now. Some errors result in warnings, others are completely ignored. Memory unplug code can essentially not deal with errors properly as of now. remove_memory() will never fail. We have basically two choices: 1. Allow arch_remov_memory() and friends to fail, propagating errors via remove_memory(). Might be problematic (e.g. DIMMs consisting of multiple pieces added/removed separately). 2. Don't allow the functions to fail, handling errors in a nicer way. It seems like most errors that can theoretically happen are really corner cases and mostly theoretical (e.g. "section not valid"). However e.g. aborting removal of sections while all callers simply continue in case of errors is not nice. If we can gurantee that removal of memory always works (and WARN/skip in case of theoretical errors so we can figure out what is going on), we can go ahead and implement better error handling when adding memory. E.g. via add_memory(): arch_add_memory() ret = do_stuff() if (ret) { arch_remove_memory(); goto error; } Handling here that arch_remove_memory() might fail is basically impossible. So I suggest, let's avoid reporting errors while removing memory, warning on theoretical errors instead and continuing instead of aborting. This patch (of 4): __add_pages() doesn't add the memory resource, so __remove_pages() shouldn't remove it. Let's factor it out. Especially as it is a special case for memory used as system memory, added via add_memory() and friends. We now remove the resource after removing the sections instead of doing it the other way around. I don't think this change is problematic. add_memory() register memory resource arch_add_memory() remove_memory arch_remove_memory() release memory resource While at it, explain why we ignore errors and that it only happeny if we remove memory in a different granularity as we added it. [david@redhat.com: fix printk warning] Link: http://lkml.kernel.org/r/20190417120204.6997-1-david@redhat.com Link: http://lkml.kernel.org/r/20190409100148.24703-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Laurent Dufour | 2346a56059 |
mm/filemap.c: fix minor typo
Link: http://lkml.kernel.org/r/20190304155240.19215-1-ldufour@linux.ibm.com Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 940519f0c8 |
mm, memory_hotplug: provide a more generic restrictions for memory hotplug
arch_add_memory, __add_pages take a want_memblock which controls whether the newly added memory should get the sysfs memblock user API (e.g. ZONE_DEVICE users do not want/need this interface). Some callers even want to control where do we allocate the memmap from by configuring altmap. Add a more generic hotplug context for arch_add_memory and __add_pages. struct mhp_restrictions contains flags which contains additional features to be enabled by the memory hotplug (MHP_MEMBLOCK_API currently) and altmap for alternative memmap allocator. This patch shouldn't introduce any functional change. [akpm@linux-foundation.org: build fix] Link: http://lkml.kernel.org/r/20190408082633.2864-3-osalvador@suse.de Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 5557c766ab |
mm, memory_hotplug: cleanup memory offline path
check_pages_isolated_cb currently accounts the whole pfn range as being offlined if test_pages_isolated suceeds on the range. This is based on the assumption that all pages in the range are freed which is currently the case in most cases but it won't be with later changes, as pages marked as vmemmap won't be isolated. Move the offlined pages counting to offline_isolated_pages_cb and rely on __offline_isolated_pages to return the correct value. check_pages_isolated_cb will still do it's primary job and check the pfn range. While we are at it remove check_pages_isolated and offline_isolated_pages and use directly walk_system_ram_range as do in online_pages. Link: http://lkml.kernel.org/r/20190408082633.2864-2-osalvador@suse.de Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Duyck | 0e56acae4b |
mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections
Add yet another iterator, for_each_free_mem_range_in_zone_from, and then use it to support initializing and freeing pages in groups no larger than MAX_ORDER_NR_PAGES. By doing this we can greatly improve the cache locality of the pages while we do several loops over them in the init and freeing process. We are able to tighten the loops further as a result of the "from" iterator as we can perform the initial checks for first_init_pfn in our first call to the iterator, and continue without the need for those checks via the "from" iterator. I have added this functionality in the function called deferred_init_mem_pfn_range_in_zone that primes the iterator and causes us to exit if we encounter any failure. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 1.85s to 1.38s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221231.12227.85836.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: <yi.z.zhang@linux.intel.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David S. Miller <davem@davemloft.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Duyck | 837566e7e0 |
mm: implement new zone specific memblock iterator
Introduce a new iterator for_each_free_mem_pfn_range_in_zone. This iterator will take care of making sure a given memory range provided is in fact contained within a zone. It takes are of all the bounds checking we were doing in deferred_grow_zone, and deferred_init_memmap. In addition it should help to speed up the search a bit by iterating until the end of a range is greater than the start of the zone pfn range, and will exit completely if the start is beyond the end of the zone. Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Duyck | 56ec43d8b0 |
mm: drop meminit_pfn_in_nid as it is redundant
As best as I can tell the meminit_pfn_in_nid call is completely redundant. The deferred memory initialization is already making use of for_each_free_mem_range which in turn will call into __next_mem_range which will only return a memory range if it matches the node ID provided assuming it is not NUMA_NO_NODE. I am operating on the assumption that there are no zones or pgdata_t structures that have a NUMA node of NUMA_NO_NODE associated with them. If that is the case then __next_mem_range will never return a memory range that doesn't match the zone's node ID and as such the check is redundant. So one piece I would like to verify on this is if this works for ia64. Technically it was using a different approach to get the node ID, but it seems to have the node ID also encoded into the memblock. So I am assuming this is okay, but would like to get confirmation on that. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 2.80s to 1.85s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221219.12227.93957.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Huang Shijie | 059d8442ea |
mm/rmap.c: use the pra.mapcount to do the check
We have the pra.mapcount already, and there is no need to call the page_mapped() which may do some complicated computing for compound page. Link: http://lkml.kernel.org/r/20190404054828.2731-1-sjhuang@iluvatar.ai Signed-off-by: Huang Shijie <sjhuang@iluvatar.ai> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Josef Bacik | cfcbfb1382 |
mm/filemap.c: enable error injection at add_to_page_cache()
Recently I messed up the error handling in filemap_fault() because of an unexpected ENOMEM (related to cgroup memory limits) in add_to_page_cache. Enable error injection at this point so I can add a testcase to xfstests to verify I don't mess this up again. [akpm@linux-foundation.org: include linux/error-injection.h] Link: http://lkml.kernel.org/r/20190403152604.14008-1-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | c6d23413f8 |
mm/mmu_notifier: mmu_notifier_range_update_to_read_only() helper
Helper to test if a range is updated to read only (it is still valid to read from the range). This is useful for device driver or anyone who wish to optimize out update when they know that they already have the range map read only. Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 7269f99993 |
mm/mmu_notifier: use correct mmu_notifier events for each invalidation
This updates each existing invalidation to use the correct mmu notifier event that represent what is happening to the CPU page table. See the patch which introduced the events to see the rational behind this. Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 6f4f13e8d9 |
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | dfcd66604c |
mm/mmu_notifier: convert user range->blockable to helper function
Use the mmu_notifier_range_blockable() helper function instead of directly dereferencing the range->blockable field. This is done to make it easier to change the mmu_notifier range field. This patch is the outcome of the following coccinelle patch: %<------------------------------------------------------------------- @@ identifier I1, FN; @@ FN(..., struct mmu_notifier_range *I1, ...) { <... -I1->blockable +mmu_notifier_range_blockable(I1) ...> } ------------------------------------------------------------------->% spatch --in-place --sp-file blockable.spatch --dir . Link: http://lkml.kernel.org/r/20190326164747.24405-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 391aab11e9 |
mm/hmm: convert various hmm_pfn_* to device_entry which is a better name
Convert hmm_pfn_* to device_entry_* as here we are dealing with device driver specific entry format and hmm provide helpers to allow differents components (including HMM) to create/parse device entry. We keep wrapper with the old name so that we can convert driver to use the new API in stages in each device driver tree. This will get remove once all driver are converted. Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 55c0ece82a |
mm/hmm: add a helper function that fault pages and map them to a device
This is a all in one helper that fault pages in a range and map them to a device so that every single device driver do not have to re-implement this common pattern. This is taken from ODP RDMA in preparation of ODP RDMA convertion. It will be use by nouveau and other drivers. [jglisse@redhat.com: Was using wrong field and wrong enum] Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 992de9a8b7 |
mm/hmm: allow to mirror vma of a file on a DAX backed filesystem
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for mirroring mapping of file that are on a DAX block device (ie range of virtual address that is an mmap of a file in a filesystem on a DAX block device). There is no reason to not support such case when mirroring virtual address on a device. Note that unlike GUP code we do not take page reference hence when we back-off we have nothing to undo. [jglisse@redhat.com: move THP and hugetlbfs code path behind #if KCONFIG] Link: http://lkml.kernel.org/r/20190422163741.13029-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-10-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 63d5066f6e |
mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for hugetlbfs mapping (ie range of virtual address that are mmap of a hugetlbfs). [rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages] Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 023a019a9b |
mm/hmm: add default fault flags to avoid the need to pre-fill pfns arrays
The HMM mirror API can be use in two fashions. The first one where the HMM user coalesce multiple page faults into one request and set flags per pfns for of those faults. The second one where the HMM user want to pre-fault a range with specific flags. For the latter one it is a waste to have the user pre-fill the pfn arrays with a default flags value. This patch adds a default flags value allowing user to set them for a range without having to pre-fill the pfn array. Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | a3e0d41c2b |
mm/hmm: improve driver API to work and wait over a range
A common use case for HMM mirror is user trying to mirror a range and before they could program the hardware it get invalidated by some core mm event. Instead of having user re-try right away to mirror the range provide a completion mechanism for them to wait for any active invalidation affecting the range. This also changes how hmm_range_snapshot() and hmm_range_fault() works by not relying on vma so that we can drop the mmap_sem when waiting and lookup the vma again on retry. Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 73231612dc |
mm/hmm: improve and rename hmm_vma_fault() to hmm_range_fault()
Minor optimization around hmm_pte_need_fault(). Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 25f23a0c71 |
mm/hmm: improve and rename hmm_vma_get_pfns() to hmm_range_snapshot()
Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 9f454612f6 |
mm/hmm: do not erase snapshot when a range is invalidated
Users of HMM might be using the snapshot information to do preparatory step like dma mapping pages to a device before checking for invalidation through hmm_vma_range_done() so do not erase that information and assume users will do the right thing. Link: http://lkml.kernel.org/r/20190403193318.16478-4-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 704f3f2cf6 |
mm/hmm: use reference counting for HMM struct
Every time I read the code to check that the HMM structure does not vanish before it should thanks to the many lock protecting its removal i get a headache. Switch to reference counting instead it is much easier to follow and harder to break. This also remove some code that is no longer needed with refcounting. Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jérôme Glisse | 734fb89968 |
mm/hmm: select mmu notifier when selecting HMM
To avoid random config build issue, select mmu notifier when HMM is selected. In any cases when HMM get selected it will be by users that will also wants the mmu notifier. Link: http://lkml.kernel.org/r/20190403193318.16478-2-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Kravetz | 1b426bac66 |
hugetlb: use same fault hash key for shared and private mappings
hugetlb uses a fault mutex hash table to prevent page faults of the same pages concurrently. The key for shared and private mappings is different. Shared keys off address_space and file index. Private keys off mm and virtual address. Consider a private mappings of a populated hugetlbfs file. A fault will map the page from the file and if needed do a COW to map a writable page. Hugetlbfs hole punch uses the fault mutex to prevent mappings of file pages. It uses the address_space file index key. However, private mappings will use a different key and could race with this code to map the file page. This causes problems (BUG) for the page cache remove code as it expects the page to be unmapped. A sample stack is: page dumped because: VM_BUG_ON_PAGE(page_mapped(page)) kernel BUG at mm/filemap.c:169! ... RIP: 0010:unaccount_page_cache_page+0x1b8/0x200 ... Call Trace: __delete_from_page_cache+0x39/0x220 delete_from_page_cache+0x45/0x70 remove_inode_hugepages+0x13c/0x380 ? __add_to_page_cache_locked+0x162/0x380 hugetlbfs_fallocate+0x403/0x540 ? _cond_resched+0x15/0x30 ? __inode_security_revalidate+0x5d/0x70 ? selinux_file_permission+0x100/0x130 vfs_fallocate+0x13f/0x270 ksys_fallocate+0x3c/0x80 __x64_sys_fallocate+0x1a/0x20 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 There seems to be another potential COW issue/race with this approach of different private and shared keys as noted in commit |
|
Mike Kravetz | 0919e1b69a |
hugetlbfs: on restore reserve error path retain subpool reservation
When a huge page is allocated, PagePrivate() is set if the allocation consumed a reservation. When freeing a huge page, PagePrivate is checked. If set, it indicates the reservation should be restored. PagePrivate being set at free huge page time mostly happens on error paths. When huge page reservations are created, a check is made to determine if the mapping is associated with an explicitly mounted filesystem. If so, pages are also reserved within the filesystem. The default action when freeing a huge page is to decrement the usage count in any associated explicitly mounted filesystem. However, if the reservation is to be restored the reservation/use count within the filesystem should not be decrementd. Otherwise, a subsequent page allocation and free for the same mapping location will cause the file filesystem usage to go 'negative'. Filesystem Size Used Avail Use% Mounted on nodev 4.0G -4.0M 4.1G - /opt/hugepool To fix, when freeing a huge page do not adjust filesystem usage if PagePrivate() is set to indicate the reservation should be restored. I did not cc stable as the problem has been around since reserves were added to hugetlbfs and nobody has noticed. Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Baoquan He | 7567cfc5da |
mm/sparse.c: clean up obsolete code comment
The code comment above sparse_add_one_section() is obsolete and incorrect. Clean it up and write a new one. Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Peng Fan | dae966dc8f |
mm/swap.c: __pagevec_lru_add_fn: typo fix
There is no function named munlock_vma_pages(). Correct it to munlock_vma_page(). Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com Signed-off-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Oscar Salvador | 2d0adf7e0d |
mm/hugetlb: get rid of NODEMASK_ALLOC
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by first determining whether it should be allocated on the stack or dynamically, depending on NODES_SHIFT. Right now, it goes the dynamic path whenever the nodemask_t is above 32 bytes. Although we could bump it to a reasonable value, the largest a nodemask_t can get is 128 bytes, so since __nr_hugepages_store_common is called from a rather short stack we can just get rid of the NODEMASK_ALLOC call here. This reduces some code churn and complexity. Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: David Rientjes <rientjes@google.com> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Kravetz | fd875dca7c |
hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
The number of node specific huge pages can be set via a file such as: /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages When a node specific value is specified, the global number of huge pages must also be adjusted. This adjustment is calculated as the specified node specific value + (global value - current node value). If the node specific value provided by the user is large enough, this calculation could overflow an unsigned long leading to a smaller than expected number of huge pages. To fix, check the calculation for overflow. If overflow is detected, use ULONG_MAX as the requested value. This is inline with the user request to allocate as many huge pages as possible. It was also noticed that the above calculation was done outside the hugetlb_lock. Therefore, the values could be inconsistent and result in underflow. To fix, the calculation is moved within the routine set_max_huge_pages() where the lock is held. In addition, the code in __nr_hugepages_store_common() which tries to handle the case of not being able to allocate a node mask would likely result in incorrect behavior. Luckily, it is very unlikely we will ever take this path. If we do, simply return ENOMEM. Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linxu Fang | 299c83dce9 |
mem-hotplug: fix node spanned pages when we have a node with only ZONE_MOVABLE
|
|
Yafang Shao | 3481c37ffa |
mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin template
There are three tracepoints using this template, which are mm_vmscan_direct_reclaim_begin, mm_vmscan_memcg_reclaim_begin, mm_vmscan_memcg_softlimit_reclaim_begin. Regarding mm_vmscan_direct_reclaim_begin, sc.may_writepage is !laptop_mode, that's a static setting, and reclaim_idx is derived from gfp_mask which is already show in this tracepoint. Regarding mm_vmscan_memcg_reclaim_begin, may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1), which are both static value. mm_vmscan_memcg_softlimit_reclaim_begin is the same with mm_vmscan_memcg_reclaim_begin. So we can drop them all. Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | 024eee0e83 |
mm: page_mkclean vs MADV_DONTNEED race
MADV_DONTNEED is handled with mmap_sem taken in read mode. We call page_mkclean without holding mmap_sem. MADV_DONTNEED implies that pages in the region are unmapped and subsequent access to the pages in that range is handled as a new page fault. This implies that if we don't have parallel access to the region when MADV_DONTNEED is run we expect those range to be unallocated. w.r.t page_mkclean() we need to make sure that we don't break the MADV_DONTNEED semantics. MADV_DONTNEED check for pmd_none without holding pmd_lock. This implies we skip the pmd if we temporarily mark pmd none. Avoid doing that while marking the page clean. Keep the sequence same for dax too even though we don't support MADV_DONTNEED for dax mapping The bug was noticed by code review and I didn't observe any failures w.r.t test run. This is similar to commit |
|
John Hubbard | fc1d8e7cca |
mm: introduce put_user_page*(), placeholder versions
A discussion of the overall problem is below. As mentioned in patch 0001, the steps are to fix the problem are: 1) Provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. Overview ======== Some kernel components (file systems, device drivers) need to access memory that is specified via process virtual address. For a long time, the API to achieve that was get_user_pages ("GUP") and its variations. However, GUP has critical limitations that have been overlooked; in particular, GUP does not interact correctly with filesystems in all situations. That means that file-backed memory + GUP is a recipe for potential problems, some of which have already occurred in the field. GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code to get the struct page behind a virtual address and to let storage hardware perform a direct copy to or from that page. This is a short-lived access pattern, and as such, the window for a concurrent writeback of GUP'd page was small enough that there were not (we think) any reported problems. Also, userspace was expected to understand and accept that Direct IO was not synchronized with memory-mapped access to that data, nor with any process address space changes such as munmap(), mremap(), etc. Over the years, more GUP uses have appeared (virtualization, device drivers, RDMA) that can keep the pages they get via GUP for a long period of time (seconds, minutes, hours, days, ...). This long-term pinning makes an underlying design problem more obvious. In fact, there are a number of key problems inherent to GUP: Interactions with file systems ============================== File systems expect to be able to write back data, both to reclaim pages, and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain write access to the file memory pages means that such hardware can dirty the pages, without the filesystem being aware. This can, in some cases (depending on filesystem, filesystem options, block device, block device options, and other variables), lead to data corruption, and also to kernel bugs of the form: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. Long term GUP ============= Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a writeable mapping is created), and the pages are file-backed. That can lead to filesystem corruption. What happens is that when a file-backed page is being written back, it is first mapped read-only in all of the CPU page tables; the file system then assumes that nobody can write to the page, and that the page content is therefore stable. Unfortunately, the GUP callers generally do not monitor changes to the CPU pages tables; they instead assume that the following pattern is safe (it's not): get_user_pages() Hardware can keep a reference to those pages for a very long time, and write to it at any time. Because "hardware" here means "devices that are not a CPU", this activity occurs without any interaction with the kernel's file system code. for each page set_page_dirty put_page() In fact, the GUP documentation even recommends that pattern. Anyway, the file system assumes that the page is stable (nothing is writing to the page), and that is a problem: stable page content is necessary for many filesystem actions during writeback, such as checksum, encryption, RAID striping, etc. Furthermore, filesystem features like COW (copy on write) or snapshot also rely on being able to use a new page for as memory for that memory range inside the file. Corruption during write back is clearly possible here. To solve that, one idea is to identify pages that have active GUP, so that we can use a bounce page to write stable data to the filesystem. The filesystem would work on the bounce page, while any of the active GUP might write to the original page. This would avoid the stable page violation problem, but note that it is only part of the overall solution, because other problems remain. Other filesystem features that need to replace the page with a new one can be inhibited for pages that are GUP-pinned. This will, however, alter and limit some of those filesystem features. The only fix for that would be to require GUP users to monitor and respond to CPU page table updates. Subsystems such as ODP and HMM do this, for example. This aspect of the problem is still under discussion. Direct IO ========= Direct IO can cause corruption, if userspace does Direct-IO that writes to a range of virtual addresses that are mmap'd to a file. The pages written to are file-backed pages that can be under write back, while the Direct IO is taking place. Here, Direct IO races with a write back: it calls GUP before page_mkclean() has replaced the CPU pte with a read-only entry. The race window is pretty small, which is probably why years have gone by before we noticed this problem: Direct IO is generally very quick, and tends to finish up before the filesystem gets around to do anything with the page contents. However, it's still a real problem. The solution is to never let GUP return pages that are under write back, but instead, force GUP to take a write fault on those pages. That way, GUP will properly synchronize with the active write back. This does not change the required GUP behavior, it just avoids that race. Details ======= Introduces put_user_page(), which simply calls put_page(). This provides a way to update all get_user_pages*() callers, so that they call put_user_page(), instead of put_page(). Also introduces put_user_pages(), and a few dirty/locked variations, as a replacement for release_pages(), and also as a replacement for open-coded loops that release multiple pages. These may be used for subsequent performance improvements, via batching of pages to be released. This is the first step of fixing a problem (also described in [1] and [2]) with interactions between get_user_pages ("gup") and filesystems. Problem description: let's start with a bug report. Below, is what happens sometimes, under memory pressure, when a driver pins some pages via gup, and then marks those pages dirty, and releases them. Note that the gup documentation actually recommends that pattern. The problem is that the filesystem may do a writeback while the pages were gup-pinned, and then the filesystem believes that the pages are clean. So, when the driver later marks the pages as dirty, that conflicts with the filesystem's page tracking and results in a BUG(), like this one that I experienced: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. The steps are to fix it are: 1) (This patch): provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()" [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()" Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs] Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Christoph Lameter <cl@linux.com> Tested-by: Ira Weiny <ira.weiny@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexandre Ghiti | 4eb0716e86 |
hugetlb: allow to free gigantic pages regardless of the configuration
On systems without CONTIG_ALLOC activated but that support gigantic pages, boottime reserved gigantic pages can not be freed at all. This patch simply enables the possibility to hand back those pages to memory allocator. Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: David S. Miller <davem@davemloft.net> [sparc] Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexandre Ghiti | 8df995f6bd |
mm: simplify MEMORY_ISOLATION && COMPACTION || CMA into CONTIG_ALLOC
This condition allows to define alloc_contig_range, so simplify it into a more accurate naming. Link: http://lkml.kernel.org/r/20190327063626.18421-4-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yue Hu | 1df3a33907 |
mm/cma.c: fix crash on CMA allocation if bitmap allocation fails
|
|
Johannes Weiner | 113b7dfd82 |
mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks, group them together. Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 21d89d151b |
mm: memcontrol: push down mem_cgroup_nr_lru_pages()
mem_cgroup_nr_lru_pages() is just a convenience wrapper around memcg_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct memcg_page_state() call(s). Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 2b487e59f0 |
mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 22796c844f |
mm: memcontrol: replace node summing with memcg_page_state()
Instead of adding up the node counters, use memcg_page_state() to get the memcg state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 1a61ab8038 |
mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the node state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yafang Shao | 132bb8cfc9 |
mm/vmscan: add tracepoints for node reclaim
The page alloc fast path it may perform node reclaim, which may cause a latency spike. We should add tracepoint for this event, and also measure the latency it causes. So bellow two tracepoints are introduced, mm_vmscan_node_reclaim_begin mm_vmscan_node_reclaim_end Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <shaoyafang@didiglobal.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Anshuman Khandual | 5e65af19e8 |
mm/page_isolation.c: remove redundant pfn_valid_within() in __first_valid_page()
pfn_valid_within() calls pfn_valid() when CONFIG_HOLES_IN_ZONE making it redundant for both definitions (w/wo CONFIG_MEMORY_HOTPLUG) of the helper pfn_to_online_page() which either calls pfn_valid() or pfn_valid_within(). pfn_valid_within() being 1 when !CONFIG_HOLES_IN_ZONE is irrelevant either way. This does not change functionality. Link: http://lkml.kernel.org/r/1553141595-26907-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yue Hu | 2b59e01a3a |
mm/cma.c: fix the bitmap status to show failed allocation reason
Currently one bit in cma bitmap represents number of pages rather than one page, cma->count means cma size in pages. So to find available pages via find_next_zero_bit()/find_next_bit() we should use cma size not in pages but in bits although current free pages number is correct due to zero value of order_per_bit. Once order_per_bit is changed the bitmap status will be incorrect. The size input in cma_debug_show_areas() is not correct. It will affect the available pages at some position to debug the failure issue. This is an example with order_per_bit = 1 Before this change: [ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages After this change: [ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages Obviously the bitmap status before is incorrect. Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | dd7ef7bd14 |
mm/compaction.c: fix an undefined behaviour
In a low-memory situation, cc->fast_search_fail can keep increasing as it
is unable to find an available page to isolate in
fast_isolate_freepages(). As the result, it could trigger an error below,
so just compare with the maximum bits can be shifted first.
UBSAN: Undefined behaviour in mm/compaction.c:1160:30
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 131 PID: 1308 Comm: kcompactd1 Kdump: loaded Tainted: G
W L 5.0.0+ #17
Call trace:
dump_backtrace+0x0/0x450
show_stack+0x20/0x2c
dump_stack+0xc8/0x14c
__ubsan_handle_shift_out_of_bounds+0x7e8/0x8c4
compaction_alloc+0x2344/0x2484
unmap_and_move+0xdc/0x1dbc
migrate_pages+0x274/0x1310
compact_zone+0x26ec/0x43bc
kcompactd+0x15b8/0x1a24
kthread+0x374/0x390
ret_from_fork+0x10/0x18
[akpm@linux-foundation.org: code cleanup]
Link: http://lkml.kernel.org/r/20190320203338.53367-1-cai@lca.pw
Fixes:
|
|
Baoquan He | d3ba3ae197 |
mm/memory_hotplug.c: fix the wrong usage of N_HIGH_MEMORY
In node_states_check_changes_online(), N_HIGH_MEMORY is used to substitute
ZONE_HIGHMEM directly. This is not right. N_HIGH_MEMORY is to mark the
memory state of node. Here zone index is checked, which should be
compared with 'ZONE_HIGHMEM' accordingly.
Replace it with ZONE_HIGHMEM.
This is a code cleanup - no known runtime effects.
Link: http://lkml.kernel.org/r/20190320080732.14933-1-bhe@redhat.com
Fixes:
|
|
Oscar Salvador | 39186cbe65 |
mm,memory_hotplug: drop redundant hugepage_migration_supported check
has_unmovable_pages() already checks whether the hugetlb page supports migration, so all non-migratable hugetlb pages should have been caught there. Let us drop the check from scan_movable_pages() as is redundant. Link: http://lkml.kernel.org/r/20190320152658.10855-3-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Oscar Salvador | 10eeadf304 |
mm,memory_hotplug: unlock 1GB-hugetlb on x86_64
On x86_64, 1GB-hugetlb pages could never be offlined due to the fact that hugepage_migration_supported() returned false for PUD_SHIFT. So whenever we wanted to offline a memblock containing a gigantic hugetlb page, we never got beyond has_unmovable_pages() check. This changed with [1], where now we also return true for PUD_SHIFT. After that patch, the check in has_unmovable_pages() and scan_movable_pages() returned true, but we still had a final barrier in do_migrate_range(): if (compound_order(head) > PFN_SECTION_SHIFT) { ret = -EBUSY; break; } This is not really nice, and we do not really need it. It is perfectly possible to migrate a gigantic page as long as another node has a spare gigantic page for us. In alloc_huge_page_nodemask(), we calculate the __real__ number of free pages, and if any, we try to dequeue one from another node. This all works fine when we do have another node with a spare gigantic page, but if that is not the case, alloc_huge_page_nodemask() ends up calling alloc_migrate_huge_page() which bails out if the wanted page is gigantic. That is mainly because finding a 1GB (or even 16GB on powerpc) contiguous memory is quite unlikely when the system has been running for a while. In that situation, we will keep looping forever because scan_movable_pages() will give us the same page and we will fail again because there is no node where we can dequeue a gigantic page from. This is not nice, and it has been raised that we might want to treat -ENOMEM as a fatal error in do_migrate_range(), but this has to be checked further. Anyway, I would tend say that this is the administrator's job, to make sure that the system can keep up with the memory to be offlined, so that would mean that if we want to use gigantic pages, make sure that the other nodes have at least enough gigantic pages to keep up in case we need to offline memory. Just for the sake of completeness, this is one of the tests done: # echo 1 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages # echo 1 > /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 (hugetlb1gb is a program that maps 1GB region using MAP_HUGE_1GB) # numactl -m 1 ./hugetlb1gb # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 0 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 # offline node1 memory # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 0 [1] https://lore.kernel.org/patchwork/patch/998796/ Link: http://lkml.kernel.org/r/20190320152658.10855-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ira Weiny | 7af75561e1 |
mm/gup: add FOLL_LONGTERM capability to GUP fast
DAX pages were previously unprotected from longterm pins when users called get_user_pages_fast(). Use the new FOLL_LONGTERM flag to check for DEVMAP pages and fall back to regular GUP processing if a DEVMAP page is encountered. [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-5-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ira Weiny | 73b0140bf0 |
mm/gup: change GUP fast to use flags rather than a write 'bool'
To facilitate additional options to get_user_pages_fast() change the singular write parameter to be gup_flags. This patch does not change any functionality. New functionality will follow in subsequent patches. Some of the get_user_pages_fast() call sites were unchanged because they already passed FOLL_WRITE or 0 for the write parameter. NOTE: It was suggested to change the ordering of the get_user_pages_fast() arguments to ensure that callers were converted. This breaks the current GUP call site convention of having the returned pages be the final parameter. So the suggestion was rejected. Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Mike Marshall <hubcap@omnibond.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ira Weiny | b798bec474 |
mm/gup: change write parameter to flags in fast walk
In order to support more options in the GUP fast walk, change the write parameter to flags throughout the call stack. This patch does not change functionality and passes FOLL_WRITE where write was previously used. Link: http://lkml.kernel.org/r/20190328084422.29911-3-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-3-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ira Weiny | 932f4a630a |
mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERM
Pach series "Add FOLL_LONGTERM to GUP fast and use it". HFI1, qib, and mthca, use get_user_pages_fast() due to its performance advantages. These pages can be held for a significant time. But get_user_pages_fast() does not protect against mapping FS DAX pages. Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which retains the performance while also adding the FS DAX checks. XDP has also shown interest in using this functionality.[1] In addition we change get_user_pages() to use the new FOLL_LONGTERM flag and remove the specialized get_user_pages_longterm call. [1] https://lkml.org/lkml/2019/3/19/939 "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Secondly, it depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an aside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. This patch (of 7): This patch starts a series which aims to support FOLL_LONGTERM in get_user_pages_fast(). Some callers who would like to do a longterm (user controlled pin) of pages with the fast variant of GUP for performance purposes. Rather than have a separate get_user_pages_longterm() call, introduce FOLL_LONGTERM and change the longterm callers to use it. This patch does not change any functionality. In the short term "longterm" or user controlled pins are unsafe for Filesystems and FS DAX in particular has been blocked. However, callers of get_user_pages_fast() were not "protected". FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it requires vmas to determine if DAX is in use. NOTE: In merging with the CMA changes we opt to change the get_user_pages() call in check_and_migrate_cma_pages() to a call of __get_user_pages_locked() on the newly migrated pages. This makes the code read better in that we are calling __get_user_pages_locked() on the pages before and after a potential migration. As a side affect some of the interfaces are cleaned up but this is not the primary purpose of the series. In review[1] it was asked: <quote> > This I don't get - if you do lock down long term mappings performance > of the actual get_user_pages call shouldn't matter to start with. > > What do I miss? A couple of points. First "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Second, It depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an asside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. </quote> [1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965 [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | a222f34158 |
mm: generalize putback scan functions
This combines two similar functions move_active_pages_to_lru() and putback_inactive_pages() into single move_pages_to_lru(). This remove duplicate code and makes object file size smaller. Before: text data bss dec hex filename 57082 4732 128 61942 f1f6 mm/vmscan.o After: text data bss dec hex filename 55112 4600 128 59840 e9c0 mm/vmscan.o Note, that now we are checking for !page_evictable() coming from shrink_active_list(), which shouldn't change any behavior since that path works with evictable pages only. Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | f372d89e5d |
mm: remove pages_to_free argument of move_active_pages_to_lru()
We may use input argument list as output argument too. This makes the function more similar to putback_inactive_pages(). Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | 9851ac1359 |
mm: move nr_deactivate accounting to shrink_active_list()
We know which LRU is not active. [chris@chrisdown.name: fix build on !CONFIG_MEMCG] Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | 886cf1901d |
mm: move recent_rotated pages calculation to shrink_inactive_list()
Patch series "mm: Generalize putback functions"] putback_inactive_pages() and move_active_pages_to_lru() are almost similar, so this patchset merges them ina single function. This patch (of 4): The patch moves the calculation from putback_inactive_pages() to shrink_inactive_list(). This makes putback_inactive_pages() looking more similar to move_active_pages_to_lru(). To do that, we account activated pages in reclaim_stat::nr_activate. Since a page may change its LRU type from anon to file cache inside shrink_page_list() (see ClearPageSwapBacked()), we have to account pages for the both types. So, nr_activate becomes an array. Previously we used nr_activate to account PGACTIVATE events, but now we account them into pgactivate variable (since they are about number of pages in general, not about sum of hpage_nr_pages). Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 63931eb975 |
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits it to return only the number of pages requested. That makes it incompatible with __GFP_COMP, because compound pages cannot be split. As shown by [1] things may silently work until the requested size (possibly depending on user) stops being power of two. Then for CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without CONFIG_DEBUG_VM, consequences are unclear. There are several options here, none of them great: 1) Don't do the splitting when __GFP_COMP is passed, and return the whole compound page. However if caller then returns it via free_pages_exact(), that will be unexpected and the freeing actions there will be wrong. 2) Warn and remove __GFP_COMP from the flags. But the caller may have really wanted it, so things may break later somewhere. 3) Warn and return NULL. However NULL may be unexpected, especially for small sizes. This patch picks option 2, because as Michal Hocko put it: "callers wanted it" is much less probable than "caller is simply confused and more gfp flags is surely better than fewer". [1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matthew Wilcox | 5fd4ca2d84 |
mm: page cache: store only head pages in i_pages
Transparent Huge Pages are currently stored in i_pages as pointers to consecutive subpages. This patch changes that to storing consecutive pointers to the head page in preparation for storing huge pages more efficiently in i_pages. Large parts of this are "inspired" by Kirill's patch https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/ [willy@infradead.org: fix swapcache pages] Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org [kirill@shutemov.name: hugetlb stores pages in page cache differently] Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1 Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Acked-by: Jan Kara <jack@suse.cz> Reviewed-by: Kirill Shutemov <kirill@shutemov.name> Reviewed-and-tested-by: Song Liu <songliubraving@fb.com> Tested-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Tested-by: Qian Cai <cai@lca.pw> Cc: Hugh Dickins <hughd@google.com> Cc: Song Liu <liu.song.a23@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yue Hu | f0fd50504a |
mm/cma_debug.c: fix the break condition in cma_maxchunk_get()
If not find zero bit in find_next_zero_bit(), it will return the size parameter passed in, so the start bit should be compared with bitmap_maxno rather than cma->count. Although getting maxchunk is working fine due to zero value of order_per_bit currently, the operation will be stuck if order_per_bit is set as non-zero. Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joe Perches <joe@perches.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Safonov <d.safonov@partner.samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | 745e10146c |
mm/slab.c: fix an infinite loop in leaks_show()
"cat /proc/slab_allocators" could hang forever on SMP machines with
kmemleak or object debugging enabled due to other CPUs running do_drain()
will keep making kmemleak_object or debug_objects_cache dirty and unable
to escape the first loop in leaks_show(),
do {
set_store_user_clean(cachep);
drain_cpu_caches(cachep);
...
} while (!is_store_user_clean(cachep));
For example,
do_drain
slabs_destroy
slab_destroy
kmem_cache_free
__cache_free
___cache_free
kmemleak_free_recursive
delete_object_full
__delete_object
put_object
free_object_rcu
kmem_cache_free
cache_free_debugcheck --> dirty kmemleak_object
One approach is to check cachep->name and skip both kmemleak_object and
debug_objects_cache in leaks_show(). The other is to set store_user_clean
after drain_cpu_caches() which leaves a small window between
drain_cpu_caches() and set_store_user_clean() where per-CPU caches could
be dirty again lead to slightly wrong information has been stored but
could also speed up things significantly which sounds like a good
compromise. For example,
# cat /proc/slab_allocators
0m42.778s # 1st approach
0m0.737s # 2nd approach
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw
Fixes:
|
|
Liu Xiang | 632b2ef0c7 |
mm/slub.c: update the comment about slab frozen
Now frozen slab can only be on the per cpu partial list. Link: http://lkml.kernel.org/r/1554022325-11305-1-git-send-email-liu.xiang6@zte.com.cn Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Li RongQing | 517f9f1ee5 |
mm/slab.c: remove unneed check in cpuup_canceled
nc is a member of percpu allocation memory, and cannot be NULL. Link: http://lkml.kernel.org/r/1553159353-5056-1-git-send-email-lirongqing@baidu.com Signed-off-by: Li RongQing <lirongqing@baidu.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Liu Xiang | a4d3f8916c |
slub: remove useless kmem_cache_debug() before remove_full()
When CONFIG_SLUB_DEBUG is not enabled, remove_full() is empty. While CONFIG_SLUB_DEBUG is enabled, remove_full() can check s->flags by itself. So kmem_cache_debug() is useless and can be removed. Link: http://lkml.kernel.org/r/1552577313-2830-1-git-send-email-liu.xiang6@zte.com.cn Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tobin C. Harding | 16cb0ec75b |
slab: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We have a list in the page structure (slab_list) that can be used for this purpose. Doing so makes the code cleaner since we are not overloading the lru list. Use the slab_list instead of the lru list for maintaining lists of slabs. Link: http://lkml.kernel.org/r/20190402230545.2929-7-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tobin C. Harding | 916ac05278 |
slub: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We have a list in the page structure (slab_list) that can be used for this purpose. Doing so makes the code cleaner since we are not overloading the lru list. Use the slab_list instead of the lru list for maintaining lists of slabs. Link: http://lkml.kernel.org/r/20190402230545.2929-6-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tobin C. Harding | 6dfd1b653c |
slub: add comments to endif pre-processor macros
SLUB allocator makes heavy use of ifdef/endif pre-processor macros. The pairing of these statements is at times hard to follow e.g. if the pair are further than a screen apart or if there are nested pairs. We can reduce cognitive load by adding a comment to the endif statement of form #ifdef CONFIG_FOO ... #endif /* CONFIG_FOO */ Add comments to endif pre-processor macros if ifdef/endif pair is not immediately apparent. Link: http://lkml.kernel.org/r/20190402230545.2929-5-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tobin C. Harding | adab7b6818 |
slob: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We
have a list_head in the page structure (slab_list) that can be used for
this purpose. Doing so makes the code cleaner since we are not
overloading the lru list.
The slab_list is part of a union within the page struct (included here
stripped down):
union {
struct { /* Page cache and anonymous pages */
struct list_head lru;
...
};
struct {
dma_addr_t dma_addr;
};
struct { /* slab, slob and slub */
union {
struct list_head slab_list;
struct { /* Partial pages */
struct page *next;
int pages; /* Nr of pages left */
int pobjects; /* Approximate count */
};
};
...
Here we see that slab_list and lru are the same bits. We can verify that
this change is safe to do by examining the object file produced from
slob.c before and after this patch is applied.
Steps taken to verify:
1. checkout current tip of Linus' tree
commit
|
|
Tobin C. Harding | 130e8e09e2 |
slob: respect list_head abstraction layer
Currently we reach inside the list_head. This is a violation of the layer of abstraction provided by the list_head. It makes the code fragile. More importantly it makes the code wicked hard to understand. The code reaches into the list_head structure to counteract the fact that the list _may_ have been changed during slob_page_alloc(). Instead of this we can add a return parameter to slob_page_alloc() to signal that the list was modified (list_del() called with page->lru to remove page from the freelist). This code is concerned with an optimisation that counters the tendency for first fit allocation algorithm to fragment memory into many small chunks at the front of the memory pool. Since the page is only removed from the list when an allocation uses _all_ the remaining memory in the page then in this special case fragmentation does not occur and we therefore do not need the optimisation. Add a return parameter to slob_page_alloc() to signal that the allocation used up the whole page and that the page was removed from the free list. After calling slob_page_alloc() check the return value just added and only attempt optimisation if the page is still on the list. Use list_head API instead of reaching into the list_head structure to check if sp is at the front of the list. Link: http://lkml.kernel.org/r/20190402230545.2929-3-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kai Shen | 2bf753e64b |
mm/hugetlb.c: don't put_page in lock of hugetlb_lock
spinlock recursion happened when do LTP test:
#!/bin/bash
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
The dtor returned by get_compound_page_dtor in __put_compound_page may be
the function of free_huge_page which will lock the hugetlb_lock, so don't
put_page in lock of hugetlb_lock.
BUG: spinlock recursion on CPU#0, hugemmap05/1079
lock: hugetlb_lock+0x0/0x18, .magic: dead4ead, .owner: hugemmap05/1079, .owner_cpu: 0
Call trace:
dump_backtrace+0x0/0x198
show_stack+0x24/0x30
dump_stack+0xa4/0xcc
spin_dump+0x84/0xa8
do_raw_spin_lock+0xd0/0x108
_raw_spin_lock+0x20/0x30
free_huge_page+0x9c/0x260
__put_compound_page+0x44/0x50
__put_page+0x2c/0x60
alloc_surplus_huge_page.constprop.19+0xf0/0x140
hugetlb_acct_memory+0x104/0x378
hugetlb_reserve_pages+0xe0/0x250
hugetlbfs_file_mmap+0xc0/0x140
mmap_region+0x3e8/0x5b0
do_mmap+0x280/0x460
vm_mmap_pgoff+0xf4/0x128
ksys_mmap_pgoff+0xb4/0x258
__arm64_sys_mmap+0x34/0x48
el0_svc_common+0x78/0x130
el0_svc_handler+0x38/0x78
el0_svc+0x8/0xc
Link: http://lkml.kernel.org/r/b8ade452-2d6b-0372-32c2-703644032b47@huawei.com
Fixes:
|
|
Dan Williams | fce86ff580 |
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses
Starting with |
|
Linus Torvalds | 3aff5fac54 |
Merge branch 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou: - scan hint update which helps address performance issues with heavily fragmented blocks - lockdep fix when freeing an allocation causes balance work to be scheduled * 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu: percpu: remove spurious lock dependency between percpu and sched percpu: use chunk scan_hint to skip some scanning percpu: convert chunk hints to be based on pcpu_block_md percpu: make pcpu_block_md generic percpu: use block scan_hint to only scan forward percpu: remember largest area skipped during allocation percpu: add block level scan_hint percpu: set PCPU_BITMAP_BLOCK_SIZE to PAGE_SIZE percpu: relegate chunks unusable when failing small allocations percpu: manage chunks based on contig_bits instead of free_bytes percpu: introduce helper to determine if two regions overlap percpu: do not search past bitmap when allocating an area percpu: update free path with correct new free region |
|
Dave Hansen | 5a28fc94c9 |
x86/mpx, mm/core: Fix recursive munmap() corruption
This is a bit of a mess, to put it mildly. But, it's a bug that only seems to have showed up in 4.20 but wasn't noticed until now, because nobody uses MPX. MPX has the arch_unmap() hook inside of munmap() because MPX uses bounds tables that protect other areas of memory. When memory is unmapped, there is also a need to unmap the MPX bounds tables. Barring this, unused bounds tables can eat 80% of the address space. But, the recursive do_munmap() that gets called vi arch_unmap() wreaks havoc with __do_munmap()'s state. It can result in freeing populated page tables, accessing bogus VMA state, double-freed VMAs and more. See the "long story" further below for the gory details. To fix this, call arch_unmap() before __do_unmap() has a chance to do anything meaningful. Also, remove the 'vma' argument and force the MPX code to do its own, independent VMA lookup. == UML / unicore32 impact == Remove unused 'vma' argument to arch_unmap(). No functional change. I compile tested this on UML but not unicore32. == powerpc impact == powerpc uses arch_unmap() well to watch for munmap() on the VDSO and zeroes out 'current->mm->context.vdso_base'. Moving arch_unmap() makes this happen earlier in __do_munmap(). But, 'vdso_base' seems to only be used in perf and in the signal delivery that happens near the return to userspace. I can not find any likely impact to powerpc, other than the zeroing happening a little earlier. powerpc does not use the 'vma' argument and is unaffected by its removal. I compile-tested a 64-bit powerpc defconfig. == x86 impact == For the common success case this is functionally identical to what was there before. For the munmap() failure case, it's possible that some MPX tables will be zapped for memory that continues to be in use. But, this is an extraordinarily unlikely scenario and the harm would be that MPX provides no protection since the bounds table got reset (zeroed). I can't imagine anyone doing this: ptr = mmap(); // use ptr ret = munmap(ptr); if (ret) // oh, there was an error, I'll // keep using ptr. Because if you're doing munmap(), you are *done* with the memory. There's probably no good data in there _anyway_. This passes the original reproducer from Richard Biener as well as the existing mpx selftests/. The long story: munmap() has a couple of pieces: 1. Find the affected VMA(s) 2. Split the start/end one(s) if neceesary 3. Pull the VMAs out of the rbtree 4. Actually zap the memory via unmap_region(), including freeing page tables (or queueing them to be freed). 5. Fix up some of the accounting (like fput()) and actually free the VMA itself. This specific ordering was actually introduced by: |
|
John Sperbeck | 198790d9a3 |
percpu: remove spurious lock dependency between percpu and sched
In free_percpu() we sometimes call pcpu_schedule_balance_work() to queue a work item (which does a wakeup) while holding pcpu_lock. This creates an unnecessary lock dependency between pcpu_lock and the scheduler's pi_lock. There are other places where we call pcpu_schedule_balance_work() without hold pcpu_lock, and this case doesn't need to be different. Moving the call outside the lock prevents the following lockdep splat when running tools/testing/selftests/bpf/{test_maps,test_progs} in sequence with lockdep enabled: ====================================================== WARNING: possible circular locking dependency detected 5.1.0-dbg-DEV #1 Not tainted ------------------------------------------------------ kworker/23:255/18872 is trying to acquire lock: 000000000bc79290 (&(&pool->lock)->rlock){-.-.}, at: __queue_work+0xb2/0x520 but task is already holding lock: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (pcpu_lock){..-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 pcpu_alloc+0xfa/0x780 __alloc_percpu_gfp+0x12/0x20 alloc_htab_elem+0x184/0x2b0 __htab_percpu_map_update_elem+0x252/0x290 bpf_percpu_hash_update+0x7c/0x130 __do_sys_bpf+0x1912/0x1be0 __x64_sys_bpf+0x1a/0x20 do_syscall_64+0x59/0x400 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #3 (&htab->buckets[i].lock){....}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 htab_map_update_elem+0x1af/0x3a0 -> #2 (&rq->lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 task_fork_fair+0x37/0x160 sched_fork+0x211/0x310 copy_process.part.43+0x7b1/0x2160 _do_fork+0xda/0x6b0 kernel_thread+0x29/0x30 rest_init+0x22/0x260 arch_call_rest_init+0xe/0x10 start_kernel+0x4fd/0x520 x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0x6f/0x72 secondary_startup_64+0xa4/0xb0 -> #1 (&p->pi_lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 try_to_wake_up+0x41/0x600 wake_up_process+0x15/0x20 create_worker+0x16b/0x1e0 workqueue_init+0x279/0x2ee kernel_init_freeable+0xf7/0x288 kernel_init+0xf/0x180 ret_from_fork+0x24/0x30 -> #0 (&(&pool->lock)->rlock){-.-.}: __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 other info that might help us debug this: Chain exists of: &(&pool->lock)->rlock --> &htab->buckets[i].lock --> pcpu_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcpu_lock); lock(&htab->buckets[i].lock); lock(pcpu_lock); lock(&(&pool->lock)->rlock); *** DEADLOCK *** 3 locks held by kworker/23:255/18872: #0: 00000000b36a6e16 ((wq_completion)events){+.+.}, at: process_one_work+0x17a/0x580 #1: 00000000dfd966f0 ((work_completion)(&map->work)){+.+.}, at: process_one_work+0x17a/0x580 #2: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 stack backtrace: CPU: 23 PID: 18872 Comm: kworker/23:255 Not tainted 5.1.0-dbg-DEV #1 Hardware name: ... Workqueue: events bpf_map_free_deferred Call Trace: dump_stack+0x67/0x95 print_circular_bug.isra.38+0x1c6/0x220 check_prev_add.constprop.50+0x9f6/0xd20 __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 Signed-off-by: John Sperbeck <jsperbeck@google.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> |
|
Linus Torvalds | 168e153d5e |
Merge branch 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs inode freeing updates from Al Viro: "Introduction of separate method for RCU-delayed part of ->destroy_inode() (if any). Pretty much as posted, except that destroy_inode() stashes ->free_inode into the victim (anon-unioned with ->i_fops) before scheduling i_callback() and the last two patches (sockfs conversion and folding struct socket_wq into struct socket) are excluded - that pair should go through netdev once davem reopens his tree" * 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (58 commits) orangefs: make use of ->free_inode() shmem: make use of ->free_inode() hugetlb: make use of ->free_inode() overlayfs: make use of ->free_inode() jfs: switch to ->free_inode() fuse: switch to ->free_inode() ext4: make use of ->free_inode() ecryptfs: make use of ->free_inode() ceph: use ->free_inode() btrfs: use ->free_inode() afs: switch to use of ->free_inode() dax: make use of ->free_inode() ntfs: switch to ->free_inode() securityfs: switch to ->free_inode() apparmor: switch to ->free_inode() rpcpipe: switch to ->free_inode() bpf: switch to ->free_inode() mqueue: switch to ->free_inode() ufs: switch to ->free_inode() coda: switch to ->free_inode() ... |
|
Linus Torvalds | 0968621917 |
Printk changes for 5.2
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0 m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55 Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10 c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY= =WZfC -----END PGP SIGNATURE----- Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk Pull printk updates from Petr Mladek: - Allow state reset of printk_once() calls. - Prevent crashes when dereferencing invalid pointers in vsprintf(). Only the first byte is checked for simplicity. - Make vsprintf warnings consistent and inlined. - Treewide conversion of obsolete %pf, %pF to %ps, %pF printf modifiers. - Some clean up of vsprintf and test_printf code. * tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: lib/vsprintf: Make function pointer_string static vsprintf: Limit the length of inlined error messages vsprintf: Avoid confusion between invalid address and value vsprintf: Prevent crash when dereferencing invalid pointers vsprintf: Consolidate handling of unknown pointer specifiers vsprintf: Factor out %pO handler as kobject_string() vsprintf: Factor out %pV handler as va_format() vsprintf: Factor out %p[iI] handler as ip_addr_string() vsprintf: Do not check address of well-known strings vsprintf: Consistent %pK handling for kptr_restrict == 0 vsprintf: Shuffle restricted_pointer() printk: Tie printk_once / printk_deferred_once into .data.once for reset treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively lib/test_printf: Switch to bitmap_zalloc() |
|
Linus Torvalds | c620f7bd0b |
arm64 updates for 5.2
Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzMFGgACgkQt6xw3ITB YzTicAf/TX1h1+ecbx4WJAa4qeiOCPoNpG9efldQumqJhKL44MR5bkhuShna5mwE ptm5qUXkZCxLTjzssZKnbdbgwa3t+emW8Of3D91IfI9akiZbMoDx5FGgcNbqjazb RLrhOFHwgontA38yppZN+DrL+sXbvif/CVELdHahkEx6KepSGaS2lmPXRmz/W56v 4yIRy/zxc3Dhjgfm3wKh72nBwoZdLiIc4mchd5pthNlR9E2idrYkQegG1C+gA00r o8uZRVOWgoh7H+QJE+xLUc8PaNCg8xqRRXOuZYg9GOz6hh7zSWhm+f1nRz9S2tIR gIgsCHNqoO2I3E1uJpAQXDGtt2kFhA== =ulpJ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) Documentation: Add ARM64 to kernel-parameters.rst arm64/speculation: Support 'mitigations=' cmdline option arm64: ssbs: Don't treat CPUs with SSBS as unaffected by SSB arm64: enable generic CPU vulnerabilites support arm64: add sysfs vulnerability show for speculative store bypass arm64: Fix size of __early_cpu_boot_status clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters clocksource/arm_arch_timer: Remove use of workaround static key clocksource/arm_arch_timer: Drop use of static key in arch_timer_reg_read_stable clocksource/arm_arch_timer: Direcly assign set_next_event workaround arm64: Use arch_timer_read_counter instead of arch_counter_get_cntvct watchdog/sbsa: Use arch_timer_read_counter instead of arch_counter_get_cntvct ARM: vdso: Remove dependency with the arch_timer driver internals arm64: Apply ARM64_ERRATUM_1188873 to Neoverse-N1 arm64: Add part number for Neoverse N1 arm64: Make ARM64_ERRATUM_1188873 depend on COMPAT arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32 arm64: mm: Remove pte_unmap_nested() arm64: Fix compiler warning from pte_unmap() with -Wunused-but-set-variable arm64: compat: Reduce address limit for 64K pages ... |
|
Linus Torvalds | 0bc40e549a |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar: "The changes in here are: - text_poke() fixes and an extensive set of executability lockdowns, to (hopefully) eliminate the last residual circumstances under which we are using W|X mappings even temporarily on x86 kernels. This required a broad range of surgery in text patching facilities, module loading, trampoline handling and other bits. - tweak page fault messages to be more informative and more structured. - remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the default. - reduce KASLR granularity on 5-level paging kernels from 512 GB to 1 GB. - misc other changes and updates" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/mm: Initialize PGD cache during mm initialization x86/alternatives: Add comment about module removal races x86/kprobes: Use vmalloc special flag x86/ftrace: Use vmalloc special flag bpf: Use vmalloc special flag modules: Use vmalloc special flag mm/vmalloc: Add flag for freeing of special permsissions mm/hibernation: Make hibernation handle unmapped pages x86/mm/cpa: Add set_direct_map_*() functions x86/alternatives: Remove the return value of text_poke_*() x86/jump-label: Remove support for custom text poker x86/modules: Avoid breaking W^X while loading modules x86/kprobes: Set instruction page as executable x86/ftrace: Set trampoline pages as executable x86/kgdb: Avoid redundant comparison of patched code x86/alternatives: Use temporary mm for text poking x86/alternatives: Initialize temporary mm for patching fork: Provide a function for copying init_mm uprobes: Initialize uprobes earlier x86/mm: Save debug registers when loading a temporary mm ... |
|
Linus Torvalds | 8f14772703 |
Merge branch 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq updates from Ingo Molnar: "Here are the main changes in this tree: - Introduce x86-64 IRQ/exception/debug stack guard pages to detect stack overflows immediately and deterministically. - Clean up over a decade worth of cruft accumulated. The outcome of this should be more clear-cut faults/crashes when any of the low level x86 CPU stacks overflow, instead of silent memory corruption and sporadic failures much later on" * 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) x86/irq: Fix outdated comments x86/irq/64: Remove stack overflow debug code x86/irq/64: Remap the IRQ stack with guard pages x86/irq/64: Split the IRQ stack into its own pages x86/irq/64: Init hardirq_stack_ptr during CPU hotplug x86/irq/32: Handle irq stack allocation failure proper x86/irq/32: Invoke irq_ctx_init() from init_IRQ() x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr x86/irq/32: Make irq stack a character array x86/irq/32: Define IRQ_STACK_SIZE x86/dumpstack/64: Speedup in_exception_stack() x86/exceptions: Split debug IST stack x86/exceptions: Enable IST guard pages x86/exceptions: Disconnect IST index and stack order x86/cpu: Remove orig_ist array x86/cpu: Prepare TSS.IST setup for guard pages x86/dumpstack/64: Use cpu_entry_area instead of orig_ist x86/irq/64: Use cpu entry area instead of orig_ist x86/traps: Use cpu_entry_area instead of orig_ist ... |
|
Linus Torvalds | 2c6a392cdd |
Merge branch 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull stack trace updates from Ingo Molnar: "So Thomas looked at the stacktrace code recently and noticed a few weirdnesses, and we all know how such stories of crummy kernel code meeting German engineering perfection end: a 45-patch series to clean it all up! :-) Here's the changes in Thomas's words: 'Struct stack_trace is a sinkhole for input and output parameters which is largely pointless for most usage sites. In fact if embedded into other data structures it creates indirections and extra storage overhead for no benefit. Looking at all usage sites makes it clear that they just require an interface which is based on a storage array. That array is either on stack, global or embedded into some other data structure. Some of the stack depot usage sites are outright wrong, but fortunately the wrongness just causes more stack being used for nothing and does not have functional impact. Another oddity is the inconsistent termination of the stack trace with ULONG_MAX. It's pointless as the number of entries is what determines the length of the stored trace. In fact quite some call sites remove the ULONG_MAX marker afterwards with or without nasty comments about it. Not all architectures do that and those which do, do it inconsistenly either conditional on nr_entries == 0 or unconditionally. The following series cleans that up by: 1) Removing the ULONG_MAX termination in the architecture code 2) Removing the ULONG_MAX fixups at the call sites 3) Providing plain storage array based interfaces for stacktrace and stackdepot. 4) Cleaning up the mess at the callsites including some related cleanups. 5) Removing the struct stack_trace based interfaces This is not changing the struct stack_trace interfaces at the architecture level, but it removes the exposure to the generic code'" * 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) x86/stacktrace: Use common infrastructure stacktrace: Provide common infrastructure lib/stackdepot: Remove obsolete functions stacktrace: Remove obsolete functions livepatch: Simplify stack trace retrieval tracing: Remove the last struct stack_trace usage tracing: Simplify stack trace retrieval tracing: Make ftrace_trace_userstack() static and conditional tracing: Use percpu stack trace buffer more intelligently tracing: Simplify stacktrace retrieval in histograms lockdep: Simplify stack trace handling lockdep: Remove save argument from check_prev_add() lockdep: Remove unused trace argument from print_circular_bug() drm: Simplify stacktrace handling dm persistent data: Simplify stack trace handling dm bufio: Simplify stack trace retrieval btrfs: ref-verify: Simplify stack trace retrieval dma/debug: Simplify stracktrace retrieval fault-inject: Simplify stacktrace retrieval mm/page_owner: Simplify stack trace handling ... |
|
Linus Torvalds | 6ec62961e6 |
Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar: "This is a series from Peter Zijlstra that adds x86 build-time uaccess validation of SMAP to objtool, which will detect and warn about the following uaccess API usage bugs and weirdnesses: - call to %s() with UACCESS enabled - return with UACCESS enabled - return with UACCESS disabled from a UACCESS-safe function - recursive UACCESS enable - redundant UACCESS disable - UACCESS-safe disables UACCESS As it turns out not leaking uaccess permissions outside the intended uaccess functionality is hard when the interfaces are complex and when such bugs are mostly dormant. As a bonus we now also check the DF flag. We had at least one high-profile bug in that area in the early days of Linux, and the checking is fairly simple. The checks performed and warnings emitted are: - call to %s() with DF set - return with DF set - return with modified stack frame - recursive STD - redundant CLD It's all x86-only for now, but later on this can also be used for PAN on ARM and objtool is fairly cross-platform in principle. While all warnings emitted by this new checking facility that got reported to us were fixed, there might be GCC version dependent warnings that were not reported yet - which we'll address, should they trigger. The warnings are non-fatal build warnings" * 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation sched/x86_64: Don't save flags on context switch objtool: Add Direction Flag validation objtool: Add UACCESS validation objtool: Fix sibling call detection objtool: Rewrite alt->skip_orig objtool: Add --backtrace support objtool: Rewrite add_ignores() objtool: Handle function aliases objtool: Set insn->func for alternatives x86/uaccess, kcov: Disable stack protector x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP x86/uaccess, ubsan: Fix UBSAN vs. SMAP x86/uaccess, kasan: Fix KASAN vs SMAP x86/smap: Ditch __stringify() x86/uaccess: Introduce user_access_{save,restore}() x86/uaccess, signal: Fix AC=1 bloat x86/uaccess: Always inline user_access_begin() x86/uaccess, xen: Suppress SMAP warnings ... |
|
Linus Torvalds | 171c2bcbcb |
Merge branch 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull unified TLB flushing from Ingo Molnar: "This contains the generic mmu_gather feature from Peter Zijlstra, which is an all-arch unification of TLB flushing APIs, via the following (broad) steps: - enhance the <asm-generic/tlb.h> APIs to cover more arch details - convert most TLB flushing arch implementations to the generic <asm-generic/tlb.h> APIs. - remove leftovers of per arch implementations After this series every single architecture makes use of the unified TLB flushing APIs" * 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: mm/resource: Use resource_overlaps() to simplify region_intersects() ia64/tlb: Eradicate tlb_migrate_finish() callback asm-generic/tlb: Remove tlb_table_flush() asm-generic/tlb: Remove tlb_flush_mmu_free() asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER asm-generic/tlb: Remove arch_tlb*_mmu() s390/tlb: Convert to generic mmu_gather asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y arch/tlb: Clean up simple architectures um/tlb: Convert to generic mmu_gather sh/tlb: Convert SH to generic mmu_gather ia64/tlb: Convert to generic mmu_gather arm/tlb: Convert to generic mmu_gather asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE asm-generic/tlb, ia64: Conditionally provide tlb_migrate_finish() asm-generic/tlb: Provide generic tlb_flush() based on flush_tlb_mm() asm-generic/tlb, arch: Provide generic tlb_flush() based on flush_tlb_range() asm-generic/tlb, arch: Provide generic VIPT cache flush asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE asm-generic/tlb: Provide a comment |
|
Al Viro | 74b1da5645 |
shmem: make use of ->free_inode()
same situation as for hugetlbfs Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
|
Rick Edgecombe | 868b104d73 |
mm/vmalloc: Add flag for freeing of special permsissions
Add a new flag VM_FLUSH_RESET_PERMS, for enabling vfree operations to immediately clear executable TLB entries before freeing pages, and handle resetting permissions on the directmap. This flag is useful for any kind of memory with elevated permissions, or where there can be related permissions changes on the directmap. Today this is RO+X and RO memory. Although this enables directly vfreeing non-writeable memory now, non-writable memory cannot be freed in an interrupt because the allocation itself is used as a node on deferred free list. So when RO memory needs to be freed in an interrupt the code doing the vfree needs to have its own work queue, as was the case before the deferred vfree list was added to vmalloc. For architectures with set_direct_map_ implementations this whole operation can be done with one TLB flush when centralized like this. For others with directmap permissions, currently only arm64, a backup method using set_memory functions is used to reset the directmap. When arm64 adds set_direct_map_ functions, this backup can be removed. When the TLB is flushed to both remove TLB entries for the vmalloc range mapping and the direct map permissions, the lazy purge operation could be done to try to save a TLB flush later. However today vm_unmap_aliases could flush a TLB range that does not include the directmap. So a helper is added with extra parameters that can allow both the vmalloc address and the direct mapping to be flushed during this operation. The behavior of the normal vm_unmap_aliases function is unchanged. Suggested-by: Dave Hansen <dave.hansen@intel.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Suggested-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-17-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Rick Edgecombe | d633269286 |
mm/hibernation: Make hibernation handle unmapped pages
Make hibernate handle unmapped pages on the direct map when CONFIG_ARCH_HAS_SET_ALIAS=y is set. These functions allow for setting pages to invalid configurations, so now hibernate should check if the pages have valid mappings and handle if they are unmapped when doing a hibernate save operation. Previously this checking was already done when CONFIG_DEBUG_PAGEALLOC=y was configured. It does not appear to have a big hibernating performance impact. The speed of the saving operation before this change was measured as 819.02 MB/s, and after was measured at 813.32 MB/s. Before: [ 4.670938] PM: Wrote 171996 kbytes in 0.21 seconds (819.02 MB/s) After: [ 4.504714] PM: Wrote 178932 kbytes in 0.22 seconds (813.32 MB/s) Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-16-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Thomas Gleixner | af52bf6b92 |
mm/page_owner: Simplify stack trace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de |
|
Thomas Gleixner | 880e049c9c |
mm/kasan: Simplify stacktrace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.963261479@linutronix.de |
|
Thomas Gleixner | 07984aad1c |
mm/kmemleak: Simplify stacktrace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.863716911@linutronix.de |
|
Thomas Gleixner | 7971679994 |
mm/slub: Simplify stack trace retrieval
Replace the indirection through struct stack_trace with an invocation of the storage array based interface. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: linux-mm@kvack.org Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.771410441@linutronix.de |
|
Andrey Ryabinin | 8118b82eb7 |
mm/page_alloc.c: fix never set ALLOC_NOFRAGMENT flag
Commit |
|
Andrey Ryabinin | 8139ad043d |
mm/page_alloc.c: avoid potential NULL pointer dereference
ac.preferred_zoneref->zone passed to alloc_flags_nofragment() can be NULL.
'zone' pointer unconditionally derefernced in alloc_flags_nofragment().
Bail out on NULL zone to avoid potential crash. Currently we don't see
any crashes only because alloc_flags_nofragment() has another bug which
allows compiler to optimize away all accesses to 'zone'.
Link: http://lkml.kernel.org/r/20190423120806.3503-1-aryabinin@virtuozzo.com
Fixes:
|
|
Mel Gorman | ee8ab0eeb4 |
mm, page_alloc: always use a captured page regardless of compaction result
During the development of commit |
|
Mel Gorman | 24512228b7 |
mm: do not boost watermarks to avoid fragmentation for the DISCONTIG memory model
Mikulas Patocka reported that commit |
|
David Hildenbrand | 89c02e69fc |
mm/memory_hotplug.c: drop memory device reference after find_memory_block()
Right now we are using find_memory_block() to get the node id for the
pfn range to online. We are missing to drop a reference to the memory
block device. While the device still gets unregistered via
device_unregister(), resulting in no user visible problem, the device is
never released via device_release(), resulting in a memory leak. Fix
that by properly using a put_device().
Link: http://lkml.kernel.org/r/20190411110955.1430-1-david@redhat.com
Fixes:
|
|
Linus Torvalds | 4c3f49ae13 |
Merge branch 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu fixlet from Dennis Zhou: "This stops printing the base address of percpu memory on initialization" * 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu: percpu: stop printing kernel addresses |
|
Andrea Arcangeli | 04f5866e41 |
coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes:
|
|
Arnd Bergmann | dce5b0bdee |
mm/kmemleak.c: fix unused-function warning
The only references outside of the #ifdef have been removed, so now we
get a warning in non-SMP configurations:
mm/kmemleak.c:1404:13: error: unused function 'scan_large_block' [-Werror,-Wunused-function]
Add a new #ifdef around it.
Link: http://lkml.kernel.org/r/20190416123148.3502045-1-arnd@arndb.de
Fixes:
|
|
Johannes Weiner | 3b991208b8 |
mm: fix inactive list balancing between NUMA nodes and cgroups
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed. But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only. The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux. This behavioral
difference is unexpected and undesirable.
When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.
But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes:
|
|
Qian Cai | 1a9f219157 |
mm/hotplug: treat CMA pages as unmovable
has_unmovable_pages() is used by allocating CMA and gigantic pages as well as the memory hotplug. The later doesn't know how to offline CMA pool properly now, but if an unused (free) CMA page is encountered, then has_unmovable_pages() happily considers it as a free memory and propagates this up the call chain. Memory offlining code then frees the page without a proper CMA tear down which leads to an accounting issues. Moreover if the same memory range is onlined again then the memory never gets back to the CMA pool. State after memory offline: # grep cma /proc/vmstat nr_free_cma 205824 # cat /sys/kernel/debug/cma/cma-kvm_cma/count 209920 Also, kmemleak still think those memory address are reserved below but have already been used by the buddy allocator after onlining. This patch fixes the situation by treating CMA pageblocks as unmovable except when has_unmovable_pages() is called as part of CMA allocation. Offlined Pages 4096 kmemleak: Cannot insert 0xc000201f7d040008 into the object search tree (overlaps existing) Call Trace: dump_stack+0xb0/0xf4 (unreliable) create_object+0x344/0x380 __kmalloc_node+0x3ec/0x860 kvmalloc_node+0x58/0x110 seq_read+0x41c/0x620 __vfs_read+0x3c/0x70 vfs_read+0xbc/0x1a0 ksys_read+0x7c/0x140 system_call+0x5c/0x70 kmemleak: Kernel memory leak detector disabled kmemleak: Object 0xc000201cc8000000 (size 13757317120): kmemleak: comm "swapper/0", pid 0, jiffies 4294937297 kmemleak: min_count = -1 kmemleak: count = 0 kmemleak: flags = 0x5 kmemleak: checksum = 0 kmemleak: backtrace: cma_declare_contiguous+0x2a4/0x3b0 kvm_cma_reserve+0x11c/0x134 setup_arch+0x300/0x3f8 start_kernel+0x9c/0x6e8 start_here_common+0x1c/0x4b0 kmemleak: Automatic memory scanning thread ended [cai@lca.pw: use is_migrate_cma_page() and update commit log] Link: http://lkml.kernel.org/r/20190416170510.20048-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190413002623.8967-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Konstantin Khlebnikov | e8277b3b52 |
mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n
Commit |
|
Hugh Dickins | af53d3e9e0 |
mm: swapoff: shmem_unuse() stop eviction without igrab()
The igrab() in shmem_unuse() looks good, but we forgot that it gives no protection against concurrent unmounting: a point made by Konstantin Khlebnikov eight years ago, and then fixed in 2.6.39 by |
|
Hugh Dickins | 64165b1aff |
mm: swapoff: take notice of completion sooner
The old try_to_unuse() implementation was driven by find_next_to_unuse(),
which terminated as soon as all the swap had been freed.
Add inuse_pages checks now (alongside signal_pending()) to stop scanning
mms and swap_map once finished.
The same ought to be done in shmem_unuse() too, but never was before,
and needs a different interface: so leave it as is for now.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081258200.1523@eggly.anvils
Fixes:
|
|
Hugh Dickins | dd862deb15 |
mm: swapoff: remove too limiting SWAP_UNUSE_MAX_TRIES
SWAP_UNUSE_MAX_TRIES 3 appeared to work well in earlier testing, but
further testing has proved it to be a source of unnecessary swapoff
EBUSY failures (which can then be followed by unmount EBUSY failures).
When mmget_not_zero() or shmem's igrab() fails, there is an mm exiting
or inode being evicted, freeing up swap independent of try_to_unuse().
Those typically completed much sooner than the old quadratic swapoff,
but now it's more common that swapoff may need to wait for them.
It's possible to move those cases from init_mm.mmlist and shmem_swaplist
to separate "exiting" swaplists, and try_to_unuse() then wait for those
lists to be emptied; but we've not bothered with that in the past, and
don't want to risk missing some other forgotten case. So just revert to
cycling around until the swap is gone, without any retries limit.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081256170.1523@eggly.anvils
Fixes:
|
|
Hugh Dickins | 8703954654 |
mm: swapoff: shmem_find_swap_entries() filter out other types
Swapfile "type" was passed all the way down to shmem_unuse_inode(), but
then forgotten from shmem_find_swap_entries(): with the result that
removing one swapfile would try to free up all the swap from shmem - no
problem when only one swapfile anyway, but counter-productive when more,
causing swapoff to be unnecessarily OOM-killed when it should succeed.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081254470.1523@eggly.anvils
Fixes:
|
|
Qian Cai | 1a62b18d51 |
slab: store tagged freelist for off-slab slabmgmt
Commit |
|
Qian Cai | 80552f0f7a |
mm/slab: Remove store_stackinfo()
store_stackinfo() does not seem used in actual SLAB debugging. Potentially, it could be added to check_poison_obj() to provide more information but this seems like an overkill due to the declining popularity of SLAB, so just remove it instead. Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: linux-mm <linux-mm@kvack.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: rientjes@google.com Cc: sean.j.christopherson@intel.com Link: https://lkml.kernel.org/r/20190416142258.18694-1-cai@lca.pw |
|
Linus Torvalds | 6b3a707736 |
Merge branch 'page-refs' (page ref overflow)
Merge page ref overflow branch. Jann Horn reported that he can overflow the page ref count with sufficient memory (and a filesystem that is intentionally extremely slow). Admittedly it's not exactly easy. To have more than four billion references to a page requires a minimum of 32GB of kernel memory just for the pointers to the pages, much less any metadata to keep track of those pointers. Jann needed a total of 140GB of memory and a specially crafted filesystem that leaves all reads pending (in order to not ever free the page references and just keep adding more). Still, we have a fairly straightforward way to limit the two obvious user-controllable sources of page references: direct-IO like page references gotten through get_user_pages(), and the splice pipe page duplication. So let's just do that. * branch page-refs: fs: prevent page refcount overflow in pipe_buf_get mm: prevent get_user_pages() from overflowing page refcount mm: add 'try_get_page()' helper function mm: make page ref count overflow check tighter and more explicit |
|
Thomas Gleixner | ead97a49ec |
mm/kasan: Remove the ULONG_MAX stack trace hackery
No architecture terminates the stack trace with ULONG_MAX anymore. Remove the cruft. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Link: https://lkml.kernel.org/r/20190410103644.750219625@linutronix.de |
|
Thomas Gleixner | 4621c9858f |
mm/page_owner: Remove the ULONG_MAX stack trace hackery
No architecture terminates the stack trace with ULONG_MAX anymore. Remove the cruft. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/20190410103644.661974663@linutronix.de |
|
Thomas Gleixner | b8ca7ff773 |
mm/slub: Remove the ULONG_MAX stack trace hackery
No architecture terminates the stack trace with ULONG_MAX anymore. Remove the cruft. While at it remove the pointless loop of clearing the stack array completely. It's sufficient to clear the last entry as the consumers break out on the first zeroed entry anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: linux-mm@kvack.org Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Link: https://lkml.kernel.org/r/20190410103644.574058244@linutronix.de |
|
Linus Torvalds | 8fde12ca79 |
mm: prevent get_user_pages() from overflowing page refcount
If the page refcount wraps around past zero, it will be freed while there are still four billion references to it. One of the possible avenues for an attacker to try to make this happen is by doing direct IO on a page multiple times. This patch makes get_user_pages() refuse to take a new page reference if there are already more than two billion references to the page. Reported-by: Jann Horn <jannh@google.com> Acked-by: Matthew Wilcox <willy@infradead.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Sakari Ailus | d75f773c86 |
treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
%pF and %pf are functionally equivalent to %pS and %ps conversion specifiers. The former are deprecated, therefore switch the current users to use the preferred variant. The changes have been produced by the following command: git grep -l '%p[fF]' | grep -v '^\(tools\|Documentation\)/' | \ while read i; do perl -i -pe 's/%pf/%ps/g; s/%pF/%pS/g;' $i; done And verifying the result. Link: http://lkml.kernel.org/r/20190325193229.23390-1-sakari.ailus@linux.intel.com Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: sparclinux@vger.kernel.org Cc: linux-um@lists.infradead.org Cc: xen-devel@lists.xenproject.org Cc: linux-acpi@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Cc: linux-mmc@vger.kernel.org Cc: linux-nvdimm@lists.01.org Cc: linux-pci@vger.kernel.org Cc: linux-scsi@vger.kernel.org Cc: linux-btrfs@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: linux-mm@kvack.org Cc: ceph-devel@vger.kernel.org Cc: netdev@vger.kernel.org Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com> Acked-by: David Sterba <dsterba@suse.com> (for btrfs) Acked-by: Mike Rapoport <rppt@linux.ibm.com> (for mm/memblock.c) Acked-by: Bjorn Helgaas <bhelgaas@google.com> (for drivers/pci) Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Petr Mladek <pmladek@suse.com> |
|
Torsten Duwe | e2092740b7 |
kasan: Makefile: Replace -pg with CC_FLAGS_FTRACE
In preparation for arm64 supporting ftrace built on other compiler options, let's have Makefiles remove the $(CC_FLAGS_FTRACE) flags, whatever these may be, rather than assuming '-pg'. There should be no functional change as a result of this patch. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Torsten Duwe <duwe@suse.de> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Qian Cai | fcf88917dd |
slab: fix a crash by reading /proc/slab_allocators
The commit |
|
Andrew Morton | e91455217d |
mm/util.c: fix strndup_user() comment
The kerneldoc misdescribes strndup_user()'s return value. Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Timur Tabi <timur@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Greg Thelen | 0b3d6e6f2d |
mm: writeback: use exact memcg dirty counts
Since commit
|
|
Aneesh Kumar K.V | c6f3c5ee40 |
mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()
With some architectures like ppc64, set_pmd_at() cannot cope with a
situation where there is already some (different) valid entry present.
Use pmdp_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PMD entries.
This is similar to commit
|
|
Catalin Marinas | 298a32b132 |
kmemleak: powerpc: skip scanning holes in the .bss section
Commit
|
|
Qian Cai | 5b56d996dd |
mm/compaction.c: abort search if isolation fails
Running LTP oom01 in a tight loop or memory stress testing put the system
in a low-memory situation could triggers random memory corruption like
page flag corruption below due to in fast_isolate_freepages(), if
isolation fails, next_search_order() does not abort the search immediately
could lead to improper accesses.
UBSAN: Undefined behaviour in ./include/linux/mm.h:1195:50
index 7 is out of range for type 'zone [5]'
Call Trace:
dump_stack+0x62/0x9a
ubsan_epilogue+0xd/0x7f
__ubsan_handle_out_of_bounds+0x14d/0x192
__isolate_free_page+0x52c/0x600
compaction_alloc+0x886/0x25f0
unmap_and_move+0x37/0x1e70
migrate_pages+0x2ca/0xb20
compact_zone+0x19cb/0x3620
kcompactd_do_work+0x2df/0x680
kcompactd+0x1d8/0x6c0
kthread+0x32c/0x3f0
ret_from_fork+0x35/0x40
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:3124!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
RIP: 0010:__isolate_free_page+0x464/0x600
RSP: 0000:ffff888b9e1af848 EFLAGS: 00010007
RAX: 0000000030000000 RBX: ffff888c39fcf0f8 RCX: 0000000000000000
RDX: 1ffff111873f9e25 RSI: 0000000000000004 RDI: ffffed1173c35ef6
RBP: ffff888b9e1af898 R08: fffffbfff4fc2461 R09: fffffbfff4fc2460
R10: fffffbfff4fc2460 R11: ffffffffa7e12303 R12: 0000000000000008
R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000007
FS: 0000000000000000(0000) GS:ffff888ba8e80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc7abc00000 CR3: 0000000752416004 CR4: 00000000001606a0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
compaction_alloc+0x886/0x25f0
unmap_and_move+0x37/0x1e70
migrate_pages+0x2ca/0xb20
compact_zone+0x19cb/0x3620
kcompactd_do_work+0x2df/0x680
kcompactd+0x1d8/0x6c0
kthread+0x32c/0x3f0
ret_from_fork+0x35/0x40
Link: http://lkml.kernel.org/r/20190320192648.52499-1-cai@lca.pw
Fixes:
|
|
Mel Gorman | 6b0868c820 |
mm/compaction.c: correct zone boundary handling when resetting pageblock skip hints
Mikhail Gavrilo reported the following bug being triggered in a Fedora kernel based on 5.1-rc1 but it is relevant to a vanilla kernel. kernel: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) kernel: ------------[ cut here ]------------ kernel: kernel BUG at include/linux/mm.h:1021! kernel: invalid opcode: 0000 [#1] SMP NOPTI kernel: CPU: 6 PID: 116 Comm: kswapd0 Tainted: G C 5.1.0-0.rc1.git1.3.fc31.x86_64 #1 kernel: Hardware name: System manufacturer System Product Name/ROG STRIX X470-I GAMING, BIOS 1201 12/07/2018 kernel: RIP: 0010:__reset_isolation_pfn+0x244/0x2b0 kernel: Code: fe 06 e8 0f 8e fc ff 44 0f b6 4c 24 04 48 85 c0 0f 85 dc fe ff ff e9 68 fe ff ff 48 c7 c6 58 b7 2e 8c 4c 89 ff e8 0c 75 00 00 <0f> 0b 48 c7 c6 58 b7 2e 8c e8 fe 74 00 00 0f 0b 48 89 fa 41 b8 01 kernel: RSP: 0018:ffff9e2d03f0fde8 EFLAGS: 00010246 kernel: RAX: 0000000000000034 RBX: 000000000081f380 RCX: ffff8cffbddd6c20 kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffff8cffbddd6c20 kernel: RBP: 0000000000000001 R08: 0000009898b94613 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000100000 kernel: R13: 0000000000100000 R14: 0000000000000001 R15: ffffca7de07ce000 kernel: FS: 0000000000000000(0000) GS:ffff8cffbdc00000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 00007fc1670e9000 CR3: 00000007f5276000 CR4: 00000000003406e0 kernel: Call Trace: kernel: __reset_isolation_suitable+0x62/0x120 kernel: reset_isolation_suitable+0x3b/0x40 kernel: kswapd+0x147/0x540 kernel: ? finish_wait+0x90/0x90 kernel: kthread+0x108/0x140 kernel: ? balance_pgdat+0x560/0x560 kernel: ? kthread_park+0x90/0x90 kernel: ret_from_fork+0x27/0x50 He bisected it down to |
|
Peter Zijlstra | 57b78a62e7 |
x86/uaccess, kasan: Fix KASAN vs SMAP
KASAN inserts extra code for every LOAD/STORE emitted by te compiler. Much of this code is simple and safe to run with AC=1, however the kasan_report() function, called on error, is most certainly not safe to call with AC=1. Therefore wrap kasan_report() in user_access_{save,restore}; which for x86 SMAP, saves/restores EFLAGS and clears AC before calling the real function. Also ensure all the functions are without __fentry__ hook. The function tracer is also not safe. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | 0a8caf211b |
asm-generic/tlb: Remove tlb_table_flush()
There are no external users of this API (nor should there be); remove it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | fa0aafb8ac |
asm-generic/tlb: Remove tlb_flush_mmu_free()
As the comment notes; it is a potentially dangerous operation. Just use tlb_flush_mmu(), that will skip the (double) TLB invalidate if it really isn't needed anyway. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | b3fa8ed4e4 |
asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER
Since all architectures are now using it, it is redundant. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | 1808d65b55 |
asm-generic/tlb: Remove arch_tlb*_mmu()
Now that all architectures are converted to the generic code, remove the arch hooks. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Martin Schwidefsky | 952a31c9e6 |
asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y
Add the Kconfig option HAVE_MMU_GATHER_NO_GATHER to the generic mmu_gather code. If the option is set the mmu_gather will not track individual pages for delayed page free anymore. A platform that enables the option needs to provide its own implementation of the __tlb_remove_page_size() function to free pages. No change in behavior intended. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: aneesh.kumar@linux.vnet.ibm.com Cc: heiko.carstens@de.ibm.com Cc: linux@armlinux.org.uk Cc: npiggin@gmail.com Link: http://lkml.kernel.org/r/20180918125151.31744-2-schwidefsky@de.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | 96bc9567cb |
asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE
Make issuing a TLB invalidate for page-table pages the normal case. The reason is twofold: - too many invalidates is safer than too few, - most architectures use the linux page-tables natively and would thus require this. Make it an opt-out, instead of an opt-in. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Peter Zijlstra | ed6a79352c |
asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
Move the mmu_gather::page_size things into the generic code instead of PowerPC specific bits. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Lars Persson | d2b2c6dd22 |
mm/migrate.c: add missing flush_dcache_page for non-mapped page migrate
Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL and SIGSEGV that could not be traced back to a userspace code bug. They had all the magic signs of an I/D cache coherency issue. Now recently we noticed that the /proc/sys/vm/compact_memory interface was quite efficient at provoking this class of userspace crashes. Studying the code in mm/migrate.c there is a distinction made between migrating a page that is mapped at the instant of migration and one that is not mapped. Our problem turned out to be the non-mapped pages. For the non-mapped page the code performs a copy of the page content and all relevant meta-data of the page without doing the required D-cache maintenance. This leaves dirty data in the D-cache of the CPU and on the 1004K cores this data is not visible to the I-cache. A subsequent page-fault that triggers a mapping of the page will happily serve the process with potentially stale code. What about ARM then, this bug should have seen greater exposure? Well ARM became immune to this flaw back in 2010, see commit |
|
Qian Cai | f5777bc2d9 |
mm/page_isolation.c: fix a wrong flag in set_migratetype_isolate()
Due to has_unmovable_pages() taking an incorrect irqsave flag instead of
the isolation flag in set_migratetype_isolate(), there are issues with
HWPOSION and error reporting where dump_page() is not called when there
is an unmovable page.
Link: http://lkml.kernel.org/r/20190320204941.53731-1-cai@lca.pw
Fixes:
|
|
Qian Cai | c4efe484b5 |
mm/memory_hotplug.c: fix notification in offline error path
When start_isolate_page_range() returned -EBUSY in __offline_pages(), it
calls memory_notify(MEM_CANCEL_OFFLINE, &arg) with an uninitialized
"arg". As the result, it triggers warnings below. Also, it is only
necessary to notify MEM_CANCEL_OFFLINE after MEM_GOING_OFFLINE.
page:ffffea0001200000 count:1 mapcount:0 mapping:0000000000000000
index:0x0
flags: 0x3fffe000001000(reserved)
raw: 003fffe000001000 ffffea0001200008 ffffea0001200008 0000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: unmovable page
WARNING: CPU: 25 PID: 1665 at mm/kasan/common.c:665
kasan_mem_notifier+0x34/0x23b
CPU: 25 PID: 1665 Comm: bash Tainted: G W 5.0.0+ #94
Hardware name: HP ProLiant DL180 Gen9/ProLiant DL180 Gen9, BIOS U20
10/25/2017
RIP: 0010:kasan_mem_notifier+0x34/0x23b
RSP: 0018:ffff8883ec737890 EFLAGS: 00010206
RAX: 0000000000000246 RBX: ff10f0f4435f1000 RCX: f887a7a21af88000
RDX: dffffc0000000000 RSI: 0000000000000020 RDI: ffff8881f221af88
RBP: ffff8883ec737898 R08: ffff888000000000 R09: ffffffffb0bddcd0
R10: ffffed103e857088 R11: ffff8881f42b8443 R12: dffffc0000000000
R13: 00000000fffffff9 R14: dffffc0000000000 R15: 0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000560fbd31d730 CR3: 00000004049c6003 CR4: 00000000001606a0
Call Trace:
notifier_call_chain+0xbf/0x130
__blocking_notifier_call_chain+0x76/0xc0
blocking_notifier_call_chain+0x16/0x20
memory_notify+0x1b/0x20
__offline_pages+0x3e2/0x1210
offline_pages+0x11/0x20
memory_block_action+0x144/0x300
memory_subsys_offline+0xe5/0x170
device_offline+0x13f/0x1e0
state_store+0xeb/0x110
dev_attr_store+0x3f/0x70
sysfs_kf_write+0x104/0x150
kernfs_fop_write+0x25c/0x410
__vfs_write+0x66/0x120
vfs_write+0x15a/0x4f0
ksys_write+0xd2/0x1b0
__x64_sys_write+0x73/0xb0
do_syscall_64+0xeb/0xb78
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f14f75cc3b8
RSP: 002b:00007ffe84d01d68 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007f14f75cc3b8
RDX: 0000000000000008 RSI: 0000563f8e433d70 RDI: 0000000000000001
RBP: 0000563f8e433d70 R08: 000000000000000a R09: 00007ffe84d018f0
R10: 000000000000000a R11: 0000000000000246 R12: 00007f14f789e780
R13: 0000000000000008 R14: 00007f14f7899740 R15: 0000000000000008
Link: http://lkml.kernel.org/r/20190320204255.53571-1-cai@lca.pw
Fixes:
|
|
Oscar Salvador | 5ae2efb1de |
mm/debug.c: fix __dump_page when mapping->host is not set
While debugging something, I added a dump_page() into do_swap_page(),
and I got the splat from below. The issue happens when dereferencing
mapping->host in __dump_page():
...
else if (mapping) {
pr_warn("%ps ", mapping->a_ops);
if (mapping->host->i_dentry.first) {
struct dentry *dentry;
dentry = container_of(mapping->host->i_dentry.first, struct dentry, d_u.d_alias);
pr_warn("name:\"%pd\" ", dentry);
}
}
...
Swap address space does not contain an inode information, and so
mapping->host equals NULL.
Although the dump_page() call was added artificially into
do_swap_page(), I am not sure if we can hit this from any other path, so
it looks worth fixing it. We can easily do that by checking
mapping->host first.
Link: http://lkml.kernel.org/r/20190318072931.29094-1-osalvador@suse.de
Fixes:
|
|
Yang Shi | a7f40cfe3b |
mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified
When MPOL_MF_STRICT was specified and an existing page was already on a node that does not follow the policy, mbind() should return -EIO. But commit |
|
Nicolas Boichat | 6d6ea1e967 |
mm: add support for kmem caches in DMA32 zone
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit
|
|
Qian Cai | 9b7ea46a82 |
mm/hotplug: fix offline undo_isolate_page_range()
Commit |
|
Qian Cai | 44dc1b1fab |
mm/debug.c: add a cast to u64 for atomic64_read()
atomic64_read() on ppc64le returns "long int", so fix the same way as commit |
|
Jan Kara | cae85cb8ad |
mm/memory.c: fix modifying of page protection by insert_pfn()
Aneesh has reported that PPC triggers the following warning when
excercising DAX code:
IP set_pte_at+0x3c/0x190
LR insert_pfn+0x208/0x280
Call Trace:
insert_pfn+0x68/0x280
dax_iomap_pte_fault.isra.7+0x734/0xa40
__xfs_filemap_fault+0x280/0x2d0
do_wp_page+0x48c/0xa40
__handle_mm_fault+0x8d0/0x1fd0
handle_mm_fault+0x140/0x250
__do_page_fault+0x300/0xd60
handle_page_fault+0x18
Now that is WARN_ON in set_pte_at which is
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
The problem is that on some architectures set_pte_at() cannot cope with
a situation where there is already some (different) valid entry present.
Use ptep_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PTE.
Link: http://lkml.kernel.org/r/20190311084537.16029-1-jack@suse.cz
Fixes:
|
|
Qian Cai | c412a769d2 |
kasan: fix variable 'tag' set but not used warning
set_tag() compiles away when CONFIG_KASAN_SW_TAGS=n, so make arch_kasan_set_tag() a static inline function to fix warnings below. mm/kasan/common.c: In function '__kasan_kmalloc': mm/kasan/common.c:475:5: warning: variable 'tag' set but not used [-Wunused-but-set-variable] u8 tag; ^~~ Link: http://lkml.kernel.org/r/20190307185244.54648-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matteo Croce | 00206a69ee |
percpu: stop printing kernel addresses
Since commit |
|
Linus Torvalds | f67e3fb489 |
device-dax for 5.1
* Replace the /sys/class/dax device model with /sys/bus/dax, and include a compat driver so distributions can opt-in to the new ABI. * Allow for an alternative driver for the device-dax address-range * Introduce the 'kmem' driver to hotplug / assign a device-dax address-range to the core-mm. * Arrange for the device-dax target-node to be onlined so that the newly added memory range can be uniquely referenced by numa apis. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6 vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe 2UrXGcIfXxyJ8V9v8v4q =hfa3 -----END PGP SIGNATURE----- Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull device-dax updates from Dan Williams: "New device-dax infrastructure to allow persistent memory and other "reserved" / performance differentiated memories, to be assigned to the core-mm as "System RAM". Some users want to use persistent memory as additional volatile memory. They are willing to cope with potential performance differences, for example between DRAM and 3D Xpoint, and want to use typical Linux memory management apis rather than a userspace memory allocator layered over an mmap() of a dax file. The administration model is to decide how much Persistent Memory (pmem) to use as System RAM, create a device-dax-mode namespace of that size, and then assign it to the core-mm. The rationale for device-dax is that it is a generic memory-mapping driver that can be layered over any "special purpose" memory, not just pmem. On subsequent boots udev rules can be used to restore the memory assignment. One implication of using pmem as RAM is that mlock() no longer keeps data off persistent media. For this reason it is recommended to enable NVDIMM Security (previously merged for 5.0) to encrypt pmem contents at rest. We considered making this recommendation an actively enforced requirement, but in the end decided to leave it as a distribution / administrator policy to allow for emulation and test environments that lack security capable NVDIMMs. Summary: - Replace the /sys/class/dax device model with /sys/bus/dax, and include a compat driver so distributions can opt-in to the new ABI. - Allow for an alternative driver for the device-dax address-range - Introduce the 'kmem' driver to hotplug / assign a device-dax address-range to the core-mm. - Arrange for the device-dax target-node to be onlined so that the newly added memory range can be uniquely referenced by numa apis" NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because we currently have special - and very annoying rules in the kernel about accessing PMEM only with the "MC safe" accessors, because machine checks inside the regular repeat string copy functions can be fatal in some (not described) circumstances. And apparently the PMEM modules can cause that a lot more than regular RAM. The argument is that this happens because PMEM doesn't necessarily get scrubbed at boot like RAM does, but that is planned to be added for the user space tooling. Quoting Dan from another email: "The exposure can be reduced in the volatile-RAM case by scanning for and clearing errors before it is onlined as RAM. The userspace tooling for that can be in place before v5.1-final. There's also runtime notifications of errors via acpi_nfit_uc_error_notify() from background scrubbers on the DIMM devices. With that mechanism the kernel could proactively clear newly discovered poison in the volatile case, but that would be additional development more suitable for v5.2. I understand the concern, and the need to highlight this issue by tapping the brakes on feature development, but I don't see PMEM as RAM making the situation worse when the exposure is also there via DAX in the PMEM case. Volatile-RAM is arguably a safer use case since it's possible to repair pages where the persistent case needs active application coordination" * tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: device-dax: "Hotplug" persistent memory for use like normal RAM mm/resource: Let walk_system_ram_range() search child resources mm/memory-hotplug: Allow memory resources to be children mm/resource: Move HMM pr_debug() deeper into resource code mm/resource: Return real error codes from walk failures device-dax: Add a 'modalias' attribute to DAX 'bus' devices device-dax: Add a 'target_node' attribute device-dax: Auto-bind device after successful new_id acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node device-dax: Add /sys/class/dax backwards compatibility device-dax: Add support for a dax override driver device-dax: Move resource pinning+mapping into the common driver device-dax: Introduce bus + driver model device-dax: Start defining a dax bus model device-dax: Remove multi-resource infrastructure device-dax: Kill dax_region base device-dax: Kill dax_region ida |
|
Linus Torvalds | 8b0f9fa2e0 |
filemap: add a comment about FAULT_FLAG_RETRY_NOWAIT behavior
I thought Josef Bacik's patch to drop the mmap_sem was buggy, because when looking at the error cases, there was one case where we returned VM_FAULT_RETRY without actually dropping the mmap_sem. Josef had to explain to me (using small words) that yes, that's actually what we're supposed to do, and his patch was correct. Which not only convinced me he knew what he was doing and I should stop arguing with him, but also that I should add a comment to the case I was confused about. Patiently-pointed-out-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Josef Bacik | 6b4c9f4469 |
filemap: drop the mmap_sem for all blocking operations
Currently we only drop the mmap_sem if there is contention on the page lock. The idea is that we issue readahead and then go to lock the page while it is under IO and we want to not hold the mmap_sem during the IO. The problem with this is the assumption that the readahead does anything. In the case that the box is under extreme memory or IO pressure we may end up not reading anything at all for readahead, which means we will end up reading in the page under the mmap_sem. Even if the readahead does something, it could get throttled because of io pressure on the system and the process is in a lower priority cgroup. Holding the mmap_sem while doing IO is problematic because it can cause system-wide priority inversions. Consider some large company that does a lot of web traffic. This large company has load balancing logic in it's core web server, cause some engineer thought this was a brilliant plan. This load balancing logic gets statistics from /proc about the system, which trip over processes mmap_sem for various reasons. Now the web server application is in a protected cgroup, but these other processes may not be, and if they are being throttled while their mmap_sem is held we'll stall, and cause this nice death spiral. Instead rework filemap fault path to drop the mmap sem at any point that we may do IO or block for an extended period of time. This includes while issuing readahead, locking the page, or needing to call ->readpage because readahead did not occur. Then once we have a fully uptodate page we can return with VM_FAULT_RETRY and come back again to find our nicely in-cache page that was gotten outside of the mmap_sem. This patch also adds a new helper for locking the page with the mmap_sem dropped. This doesn't make sense currently as generally speaking if the page is already locked it'll have been read in (unless there was an error) before it was unlocked. However a forthcoming patchset will change this with the ability to abort read-ahead bio's if necessary, making it more likely that we could contend for a page lock and still have a not uptodate page. This allows us to deal with this case by grabbing the lock and issuing the IO without the mmap_sem held, and then returning VM_FAULT_RETRY to come back around. [josef@toxicpanda.com: v6] Link: http://lkml.kernel.org/r/20181212152757.10017-1-josef@toxicpanda.com [kirill@shutemov.name: fix race in filemap_fault()] Link: http://lkml.kernel.org/r/20181228235106.okk3oastsnpxusxs@kshutemo-mobl1 [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/20181211173801.29535-4-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Tested-by: syzbot+b437b5a429d680cf2217@syzkaller.appspotmail.com Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Josef Bacik | a75d4c3337 |
filemap: kill page_cache_read usage in filemap_fault
Patch series "drop the mmap_sem when doing IO in the fault path", v6. Now that we have proper isolation in place with cgroups2 we have started going through and fixing the various priority inversions. Most are all gone now, but this one is sort of weird since it's not necessarily a priority inversion that happens within the kernel, but rather because of something userspace does. We have giant applications that we want to protect, and parts of these giant applications do things like watch the system state to determine how healthy the box is for load balancing and such. This involves running 'ps' or other such utilities. These utilities will often walk /proc/<pid>/whatever, and these files can sometimes need to down_read(&task->mmap_sem). Not usually a big deal, but we noticed when we are stress testing that sometimes our protected application has latency spikes trying to get the mmap_sem for tasks that are in lower priority cgroups. This is because any down_write() on a semaphore essentially turns it into a mutex, so even if we currently have it held for reading, any new readers will not be allowed on to keep from starving the writer. This is fine, except a lower priority task could be stuck doing IO because it has been throttled to the point that its IO is taking much longer than normal. But because a higher priority group depends on this completing it is now stuck behind lower priority work. In order to avoid this particular priority inversion we want to use the existing retry mechanism to stop from holding the mmap_sem at all if we are going to do IO. This already exists in the read case sort of, but needed to be extended for more than just grabbing the page lock. With io.latency we throttle at submit_bio() time, so the readahead stuff can block and even page_cache_read can block, so all these paths need to have the mmap_sem dropped. The other big thing is ->page_mkwrite. btrfs is particularly shitty here because we have to reserve space for the dirty page, which can be a very expensive operation. We use the same retry method as the read path, and simply cache the page and verify the page is still setup properly the next pass through ->page_mkwrite(). I've tested these patches with xfstests and there are no regressions. This patch (of 3): If we do not have a page at filemap_fault time we'll do this weird forced page_cache_read thing to populate the page, and then drop it again and loop around and find it. This makes for 2 ways we can read a page in filemap_fault, and it's not really needed. Instead add a FGP_FOR_MMAP flag so that pagecache_get_page() will return a unlocked page that's in pagecache. Then use the normal page locking and readpage logic already in filemap_fault. This simplifies the no page in page cache case significantly. [akpm@linux-foundation.org: fix comment text] [josef@toxicpanda.com: don't unlock null page in FGP_FOR_MMAP case] Link: http://lkml.kernel.org/r/20190312201742.22935-1-josef@toxicpanda.com Link: http://lkml.kernel.org/r/20181211173801.29535-2-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Josef Bacik | 2a1180f1bd |
filemap: pass vm_fault to the mmap ra helpers
All of the arguments to these functions come from the vmf. Cut down on the amount of arguments passed by simply passing in the vmf to these two helpers. Link: http://lkml.kernel.org/r/20181211173801.29535-3-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dennis Zhou | d33d9f3dd9 |
percpu: use chunk scan_hint to skip some scanning
Just like blocks, chunks now maintain a scan_hint. This can be used to skip some scanning by promoting the scan_hint to be the contig_hint. The chunk's scan_hint is primarily updated on the backside and relies on full scanning when a block becomes free or the free region spans across blocks. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | 92c14cab43 |
percpu: convert chunk hints to be based on pcpu_block_md
As mentioned in the last patch, a chunk's hints are no different than a block just responsible for more bits. This converts chunk level hints to use a pcpu_block_md to maintain them. This lets us reuse the same hint helper functions as a block. The left_free and right_free are unused by the chunk's pcpu_block_md. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | 047924c968 |
percpu: make pcpu_block_md generic
In reality, a chunk is just a block covering a larger number of bits. The hints themselves are one in the same. Rather than maintaining the hints separately, first introduce nr_bits to genericize pcpu_block_update() to correctly maintain block->right_free. The next patch will convert chunk hints to be managed as a pcpu_block_md. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | da3afdd5bb |
percpu: use block scan_hint to only scan forward
Blocks now remember the latest scan_hint. This can be used on the allocation path as when a contig_hint is broken, we can promote the scan_hint to the contig_hint and scan forward from there. This works because pcpu_block_refresh_hint() is only called on the allocation path while block free regions are updated manually in pcpu_block_update_hint_free(). Signed-off-by: Dennis Zhou <dennis@kernel.org> |
|
Dennis Zhou | b89462a9c5 |
percpu: remember largest area skipped during allocation
Percpu allocations attempt to do first fit by scanning forward from the first_free of a block. However, fragmentation from allocation requests can cause holes not seen by block hint update functions. To address this, create a local version of bitmap_find_next_zero_area_off() that remembers the largest area skipped over. The caveat is that it only sees regions skipped over due to not fitting, not regions skipped due to alignment. Prior to updating the scan_hint, a scan backwards is done to try and recover free bits skipped due to alignment. While this can cause scanning to miss earlier possible free areas, smaller allocations will eventually fill those holes due to first fit. Signed-off-by: Dennis Zhou <dennis@kernel.org> |
|
Dennis Zhou | 382b88e961 |
percpu: add block level scan_hint
Fragmentation can cause both blocks and chunks to have an early first_firee bit available, but only able to satisfy allocations much later on. This patch introduces a scan_hint to help mitigate some unnecessary scanning. The scan_hint remembers the largest area prior to the contig_hint. If the contig_hint == scan_hint, then scan_hint_start > contig_hint_start. This is necessary for scan_hint discovery when refreshing a block. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | b239f7daf5 |
percpu: set PCPU_BITMAP_BLOCK_SIZE to PAGE_SIZE
Previously, block size was flexible based on the constraint that the GCD(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) > 1. However, this carried the overhead that keeping a floating number of populated free pages required scanning over the free regions of a chunk. Setting the block size to be fixed at PAGE_SIZE lets us know when an empty page becomes used as we will break a full contig_hint of a block. This means we no longer have to scan the whole chunk upon breaking a contig_hint which empty page management piggybacked off. A later patch takes advantage of this to optimize the allocation path by only scanning forward using the scan_hint introduced later too. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | 8744d85942 |
percpu: relegate chunks unusable when failing small allocations
In certain cases, requestors of percpu memory may want specific alignments. However, it is possible to end up in situations where the contig_hint matches, but the alignment does not. This causes excess scanning of chunks that will fail. To prevent this, if a small allocation fails (< 32B), the chunk is moved to the empty list. Once an allocation is freed from that chunk, it is placed back into rotation. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | 3e54097beb |
percpu: manage chunks based on contig_bits instead of free_bytes
When a chunk becomes fragmented, it can end up having a large number of small allocation areas free. The free_bytes sorting of chunks leads to unnecessary checking of chunks that cannot satisfy the allocation. Switch to contig_bits sorting to prevent scanning chunks that may not be able to service the allocation request. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | d9f3a01eeb |
percpu: introduce helper to determine if two regions overlap
While block hints were always accurate, it's possible when spanning across blocks that we miss updating the chunk's contig_hint. Rather than rely on correctness of the boundaries of hints, do a full overlap comparison. A future patch introduces the scan_hint which makes the contig_hint slightly fuzzy as they can at times be smaller than the actual hint. Signed-off-by: Dennis Zhou <dennis@kernel.org> |
|
Dennis Zhou | 8c43004af0 |
percpu: do not search past bitmap when allocating an area
pcpu_find_block_fit() guarantees that a fit is found within PCPU_BITMAP_BLOCK_BITS. Iteration is used to determine the first fit as it compares against the block's contig_hint. This can lead to incorrectly scanning past the end of the bitmap. The behavior was okay given the check after for bit_off >= end and the correctness of the hints from pcpu_find_block_fit(). This patch fixes this by bounding the end offset by the number of bits in a chunk. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Dennis Zhou | 8e5a2b9893 |
percpu: update free path with correct new free region
When updating the chunk's contig_hint on the free path of a hint that does not touch the page boundaries, it was incorrectly using the starting offset of the free region and the block's contig_hint. This could lead to incorrect assumptions about fit given a size and better alignment of the start. Fix this by using (end - start) as this is only called when updating a hint within a block. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Peng Fan <peng.fan@nxp.com> |
|
Linus Torvalds | a667cb7a94 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: - a few misc things - the rest of MM - remove flex_arrays, replace with new simple radix-tree implementation * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits) Drop flex_arrays sctp: convert to genradix proc: commit to genradix generic radix trees selinux: convert to kvmalloc md: convert to kvmalloc openvswitch: convert to kvmalloc of: fix kmemleak crash caused by imbalance in early memory reservation mm: memblock: update comments and kernel-doc memblock: split checks whether a region should be skipped to a helper function memblock: remove memblock_{set,clear}_region_flags memblock: drop memblock_alloc_*_nopanic() variants memblock: memblock_alloc_try_nid: don't panic treewide: add checks for the return value of memblock_alloc*() swiotlb: add checks for the return value of memblock_alloc*() init/main: add checks for the return value of memblock_alloc*() mm/percpu: add checks for the return value of memblock_alloc*() sparc: add checks for the return value of memblock_alloc*() ia64: add checks for the return value of memblock_alloc*() arch: don't memset(0) memory returned by memblock_alloc() ... |
|
Mike Rapoport | a2974133b7 |
mm: memblock: update comments and kernel-doc
* Remove comments mentioning bootmem * Extend "DOC: memblock overview" * Add kernel-doc comments for several more functions [akpm@linux-foundation.org: fix copy-n-paste error] Link: http://lkml.kernel.org/r/1549626347-25461-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | c9a688a3e9 |
memblock: split checks whether a region should be skipped to a helper function
__next_mem_range() and __next_mem_range_rev() duplicate the code that checks whether a region should be skipped because of node or flags incompatibility. Split this code into a helper function. Link: http://lkml.kernel.org/r/1549455025-17706-3-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | fe145124db |
memblock: remove memblock_{set,clear}_region_flags
The memblock API provides dedicated helpers to set or clear a flag on a memory region, e.g. memblock_{mark,clear}_hotplug(). The memblock_{set,clear}_region_flags() functions are used only by the memblock internal function that adjusts the region flags. Drop these functions and use open-coded implementation instead. Link: http://lkml.kernel.org/r/1549455025-17706-2-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 26fb3dae0a |
memblock: drop memblock_alloc_*_nopanic() variants
As all the memblock allocation functions return NULL in case of error rather than panic(), the duplicates with _nopanic suffix can be removed. Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Petr Mladek <pmladek@suse.com> [printk] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | c0dbe825a9 |
memblock: memblock_alloc_try_nid: don't panic
As all the memblock_alloc*() users are now checking the return value and panic() in case of error, the panic() call can be removed from the core memblock allocator, namely memblock_alloc_try_nid(). Link: http://lkml.kernel.org/r/1548057848-15136-21-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 8a7f97b902 |
treewide: add checks for the return value of memblock_alloc*()
Add check for the return value of memblock_alloc*() functions and call panic() in case of error. The panic message repeats the one used by panicing memblock allocators with adjustment of parameters to include only relevant ones. The replacement was mostly automated with semantic patches like the one below with manual massaging of format strings. @@ expression ptr, size, align; @@ ptr = memblock_alloc(size, align); + if (!ptr) + panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align); [anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type] Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org [rppt@linux.ibm.com: fix format strings for panics after memblock_alloc] Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com [rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails] Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx [akpm@linux-foundation.org: fix xtensa printk warning] Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky] Acked-by: Paul Burton <paul.burton@mips.com> [MIPS] Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390] Reviewed-by: Juergen Gross <jgross@suse.com> [Xen] Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | f655f40537 |
mm/percpu: add checks for the return value of memblock_alloc*()
Add panic() calls if memblock_alloc() returns NULL. The panic() format duplicates the one used by memblock itself and in order to avoid explosion with long parameters list replace open coded allocation size calculations with a local variable. Link: http://lkml.kernel.org/r/1548057848-15136-17-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | c366ea89fa |
memblock: make memblock_find_in_range_node() and choose_memblock_flags() static
These functions are not used outside memblock. Make them static. Link: http://lkml.kernel.org/r/1548057848-15136-12-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 92d12f9544 |
memblock: refactor internal allocation functions
Currently, memblock has several internal functions with overlapping functionality. They all call memblock_find_in_range_node() to find free memory and then reserve the allocated range and mark it with kmemleak. However, there is difference in the allocation constraints and in fallback strategies. The allocations returning physical address first attempt to find free memory on the specified node within mirrored memory regions, then retry on the same node without the requirement for memory mirroring and finally fall back to all available memory. The allocations returning virtual address start with clamping the allowed range to memblock.current_limit, attempt to allocate from the specified node from regions with mirroring and with user defined minimal address. If such allocation fails, next attempt is done with node restriction lifted. Next, the allocation is retried with minimal address reset to zero and at last without the requirement for mirrored regions. Let's consolidate various fallbacks handling and make them more consistent for physical and virtual variants. Most of the fallback handling is moved to memblock_alloc_range_nid() and it now handles node and mirror fallbacks. The memblock_alloc_internal() uses memblock_alloc_range_nid() to get a physical address of the allocated range and converts it to virtual address. The fallback for allocation below the specified minimal address remains in memblock_alloc_internal() because memblock_alloc_range_nid() is used by CMA with exact requirement for lower bounds. The memblock_phys_alloc_nid() function is completely dropped as it is not used anywhere outside memblock and its only usage can be replaced by a call to memblock_alloc_range_nid(). [rppt@linux.ibm.com: fix parameter order in memblock_phys_alloc_try_nid()] Link: http://lkml.kernel.org/r/20190203113915.GC8620@rapoport-lnx Link: http://lkml.kernel.org/r/1548057848-15136-11-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 0ba9e6edd4 |
memblock: drop memblock_alloc_base()
The memblock_alloc_base() function tries to allocate a memory up to the limit specified by its max_addr parameter and panics if the allocation fails. Replace its usage with memblock_phys_alloc_range() and make the callers check the return value and panic in case of error. Link: http://lkml.kernel.org/r/1548057848-15136-10-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 42b46aeff2 |
memblock: drop __memblock_alloc_base()
The __memblock_alloc_base() function tries to allocate a memory up to the limit specified by its max_addr parameter. Depending on the value of this parameter, the __memblock_alloc_base() can is replaced with the appropriate memblock_phys_alloc*() variant. Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Rob Herring <robh@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | ecc3e771f4 |
memblock: memblock_phys_alloc(): don't panic
Make the memblock_phys_alloc() function an inline wrapper for memblock_phys_alloc_range() and update the memblock_phys_alloc() callers to check the returned value and panic in case of error. Link: http://lkml.kernel.org/r/1548057848-15136-8-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 337555744e |
memblock: memblock_phys_alloc_try_nid(): don't panic
The memblock_phys_alloc_try_nid() function tries to allocate memory from the requested node and then falls back to allocation from any node in the system. The memblock_alloc_base() fallback used by this function panics if the allocation fails. Replace the memblock_alloc_base() fallback with the direct call to memblock_alloc_range_nid() and update the memblock_phys_alloc_try_nid() callers to check the returned value and panic in case of error. Link: http://lkml.kernel.org/r/1548057848-15136-7-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 8a770c2a83 |
memblock: emphasize that memblock_alloc_range() returns a physical address
Rename memblock_alloc_range() to memblock_phys_alloc_range() to emphasize that it returns a physical address. While on it, remove the 'enum memblock_flags' parameter from this function as its only user anyway sets it to MEMBLOCK_NONE, which is the default for the most of memblock allocations. Link: http://lkml.kernel.org/r/1548057848-15136-6-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 53d818d274 |
memblock: drop memblock_alloc_base_nid()
memblock_alloc_base_nid() is a oneliner wrapper for memblock_alloc_range_nid() without any side effect. Replace it's usage by the direct calls to memblock_alloc_range_nid(). Link: http://lkml.kernel.org/r/1548057848-15136-5-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Souptick Joarder | b57e622e6d |
mm/hmm: convert to use vm_fault_t
Convert to use vm_fault_t type as return type for fault handler. kbuild reported warning during testing of *mm-create-the-new-vm_fault_t-type.patch* available in below link - https://patchwork.kernel.org/patch/10752741/ kernel/memremap.c:46:34: warning: incorrect type in return expression (different base types) kernel/memremap.c:46:34: expected restricted vm_fault_t kernel/memremap.c:46:34: got int This patch has fixed the warnings and also hmm_devmem_fault() is converted to return vm_fault_t to avoid further warnings. [sfr@canb.auug.org.au: drm/nouveau/dmem: update for struct hmm_devmem_ops member change] Link: http://lkml.kernel.org/r/20190220174407.753d94e5@canb.auug.org.au Link: http://lkml.kernel.org/r/20190110145900.GA1317@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | d14d7f14f1 |
xen: fixes and features for 5.1-rc1
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/ cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA= =8Zfa -----END PGP SIGNATURE----- Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen updates from Juergen Gross: "xen fixes and features: - remove fallback code for very old Xen hypervisors - three patches for fixing Xen dom0 boot regressions - an old patch for Xen PCI passthrough which was never applied for unknown reasons - some more minor fixes and cleanup patches" * tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: xen: fix dom0 boot on huge systems xen, cpu_hotplug: Prevent an out of bounds access xen: remove pre-xen3 fallback handlers xen/ACPI: Switch to bitmap_zalloc() x86/xen: dont add memory above max allowed allocation x86: respect memory size limiting via mem= parameter xen/gntdev: Check and release imported dma-bufs on close xen/gntdev: Do not destroy context while dma-bufs are in use xen/pciback: Don't disable PCI_COMMAND on PCI device reset. xen-scsiback: mark expected switch fall-through xen: mark expected switch fall-through |
|
Linus Torvalds | a50243b1dd |
5.1 Merge Window Pull Request
This has been a slightly more active cycle than normal with ongoing core changes and quite a lot of collected driver updates. - Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe - A new data transfer mode for HFI1 giving higher performance - Significant functional and bug fix update to the mlx5 On-Demand-Paging MR feature - A chip hang reset recovery system for hns - Change mm->pinned_vm to an atomic64 - Update bnxt_re to support a new 57500 chip - A sane netlink 'rdma link add' method for creating rxe devices and fixing the various unregistration race conditions in rxe's unregister flow - Allow lookup up objects by an ID over netlink - Various reworking of the core to driver interface: * Drivers should not assume umem SGLs are in PAGE_SIZE chunks * ucontext is accessed via udata not other means * Start to make the core code responsible for object memory allocation * Drivers should convert struct device to struct ib_device via a helper * Drivers have more tools to avoid use after unregister problems -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAlyAJYYACgkQOG33FX4g mxrWwQ/+OyAx4Moru7Aix0C6GWxTJp/wKgw21CS3reZxgLai6x81xNYG/s2wCNjo IccObVd7mvzyqPdxOeyHBsJBbQDqWvoD6O2duH8cqGMgBRgh3CSdUep2zLvPpSAx 2W1SvWYCLDnCuarboFrCA8c4AN3eCZiqD7z9lHyFQGjy3nTUWzk1uBaOP46uaiMv w89N8EMdXJ/iY6ONzihvE05NEYbMA8fuvosKLLNdghRiHIjbMQU8SneY23pvyPDd ZziPu9NcO3Hw9OVbkwtJp47U3KCBgvKHmnixyZKkikjiD+HVoABw2IMwcYwyBZwP Bic/ddONJUvAxMHpKRnQaW7znAiHARk21nDG28UAI7FWXH/wMXgicMp6LRcNKqKF vqXdxHTKJb0QUR4xrYI+eA8ihstss7UUpgSgByuANJ0X729xHiJtlEvPb1DPo1Dz 9CB4OHOVRl5O8sA5Jc6PSusZiKEpvWoyWbdmw0IiwDF5pe922VLl5Nv88ta+sJ38 v2Ll5AgYcluk7F3599Uh9D7gwp5hxW2Ph3bNYyg2j3HP4/dKsL9XvIJPXqEthgCr 3KQS9rOZfI/7URieT+H+Mlf+OWZhXsZilJG7No0fYgIVjgJ00h3SF1/299YIq6Qp 9W7ZXBfVSwLYA2AEVSvGFeZPUxgBwHrSZ62wya4uFeB1jyoodPk= =p12E -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull rdma updates from Jason Gunthorpe: "This has been a slightly more active cycle than normal with ongoing core changes and quite a lot of collected driver updates. - Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe - A new data transfer mode for HFI1 giving higher performance - Significant functional and bug fix update to the mlx5 On-Demand-Paging MR feature - A chip hang reset recovery system for hns - Change mm->pinned_vm to an atomic64 - Update bnxt_re to support a new 57500 chip - A sane netlink 'rdma link add' method for creating rxe devices and fixing the various unregistration race conditions in rxe's unregister flow - Allow lookup up objects by an ID over netlink - Various reworking of the core to driver interface: - drivers should not assume umem SGLs are in PAGE_SIZE chunks - ucontext is accessed via udata not other means - start to make the core code responsible for object memory allocation - drivers should convert struct device to struct ib_device via a helper - drivers have more tools to avoid use after unregister problems" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits) net/mlx5: ODP support for XRC transport is not enabled by default in FW IB/hfi1: Close race condition on user context disable and close RDMA/umem: Revert broken 'off by one' fix RDMA/umem: minor bug fix in error handling path RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp cxgb4: kfree mhp after the debug print IB/rdmavt: Fix concurrency panics in QP post_send and modify to error IB/rdmavt: Fix loopback send with invalidate ordering IB/iser: Fix dma_nents type definition IB/mlx5: Set correct write permissions for implicit ODP MR bnxt_re: Clean cq for kernel consumers only RDMA/uverbs: Don't do double free of allocated PD RDMA: Handle ucontext allocations by IB/core RDMA/core: Fix a WARN() message bnxt_re: fix the regression due to changes in alloc_pbl IB/mlx4: Increase the timeout for CM cache IB/core: Abort page fault handler silently during owning process exit IB/mlx5: Validate correct PD before prefetch MR IB/mlx5: Protect against prefetch of invalid MR RDMA/uverbs: Store PR pointer before it is overwritten ... |
|
Linus Torvalds | f86727f8bd |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm cleanup from Ingo Molnar: "A single GUP cleanup" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: mm/gup: Remove the 'write' parameter from gup_fast_permitted() |
|
Linus Torvalds | 8d521d94da |
Merge branch 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou: "There are 2 minor changes to the percpu allocator this merge window: - for loop condition that could be out of bounds on multi-socket UP - cosmetic removal of pcpu_group_offsets[0] in UP code as it is 0 There has been an interest in having better alignment with percpu allocations. This has caused a performance regression in at least one reported workload. I have a series out which adds scan hints to the allocator as well as some other performance oriented changes. I hope to have this queued for v5.2 soon" * 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu: percpu: km: no need to consider pcpu_group_offsets[0] percpu: use nr_groups as check condition |
|
Oscar Salvador | ea2c3f6f55 |
mm,mremap: bail out earlier in mremap_to under map pressure
When using mremap() syscall in addition to MREMAP_FIXED flag, mremap() calls mremap_to() which does the following: 1) unmaps the destination region where we are going to move the map 2) If the new region is going to be smaller, we unmap the last part of the old region Then, we will eventually call move_vma() to do the actual move. move_vma() checks whether we are at least 4 maps below max_map_count before going further, otherwise it bails out with -ENOMEM. The problem is that we might have already unmapped the vma's in steps 1) and 2), so it is not possible for userspace to figure out the state of the vmas after it gets -ENOMEM, and it gets tricky for userspace to clean up properly on error path. While it is true that we can return -ENOMEM for more reasons (e.g: see may_expand_vm() or move_page_tables()), I think that we can avoid this scenario if we check early in mremap_to() if the operation has high chances to succeed map-wise. Should that not be the case, we can bail out before we even try to unmap anything, so we make sure the vma's are left untouched in case we are likely to be short of maps. The thumb-rule now is to rely on the worst-scenario case we can have. That is when both vma's (old region and new region) are going to be split in 3, so we get two more maps to the ones we already hold (one per each). If current map count + 2 maps still leads us to 4 maps below the threshold, we are going to pass the check in move_vma(). Of course, this is not free, as it might generate false positives when it is true that we are tight map-wise, but the unmap operation can release several vma's leading us to a good state. Another approach was also investigated [1], but it may be too much hassle for what it brings. [1] https://lore.kernel.org/lkml/20190219155320.tkfkwvqk53tfdojt@d104.suse.de/ Link: http://lkml.kernel.org/r/20190226091314.18446-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Cyril Hrubis <chrubis@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | d778015ac9 |
mm/sparse: fix a bad comparison
next_present_section_nr() could only return an unsigned number -1, so
just check it specifically where compilers will convert -1 to unsigned
if needed.
mm/sparse.c: In function 'sparse_init_nid':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:478:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:497:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c: In function 'sparse_init':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:520:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: http://lkml.kernel.org/r/20190228181839.86504-1-cai@lca.pw
Fixes:
|
|
Jan Stancek | fc8efd2ddf |
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
LTP testcase mtest06 [1] can trigger a crash on s390x running 5.0.0-rc8. This is a stress test, where one thread mmaps/writes/munmaps memory area and other thread is trying to read from it: CPU: 0 PID: 2611 Comm: mmap1 Not tainted 5.0.0-rc8+ #51 Hardware name: IBM 2964 N63 400 (z/VM 6.4.0) Krnl PSW : 0404e00180000000 00000000001ac8d8 (__lock_acquire+0x7/0x7a8) Call Trace: ([<0000000000000000>] (null)) [<00000000001adae4>] lock_acquire+0xec/0x258 [<000000000080d1ac>] _raw_spin_lock_bh+0x5c/0x98 [<000000000012a780>] page_table_free+0x48/0x1a8 [<00000000002f6e54>] do_fault+0xdc/0x670 [<00000000002fadae>] __handle_mm_fault+0x416/0x5f0 [<00000000002fb138>] handle_mm_fault+0x1b0/0x320 [<00000000001248cc>] do_dat_exception+0x19c/0x2c8 [<000000000080e5ee>] pgm_check_handler+0x19e/0x200 page_table_free() is called with NULL mm parameter, but because "0" is a valid address on s390 (see S390_lowcore), it keeps going until it eventually crashes in lockdep's lock_acquire. This crash is reproducible at least since 4.14. Problem is that "vmf->vma" used in do_fault() can become stale. Because mmap_sem may be released, other threads can come in, call munmap() and cause "vma" be returned to kmem cache, and get zeroed/re-initialized and re-used: handle_mm_fault | __handle_mm_fault | do_fault | vma = vmf->vma | do_read_fault | __do_fault | vma->vm_ops->fault(vmf); | mmap_sem is released | | | do_munmap() | remove_vma_list() | remove_vma() | vm_area_free() | # vma is released | ... | # same vma is allocated | # from kmem cache | do_mmap() | vm_area_alloc() | memset(vma, 0, ...) | pte_free(vma->vm_mm, ...); | page_table_free | spin_lock_bh(&mm->context.lock);| <crash> | Cache mm_struct to avoid using potentially stale "vma". [1] https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/mem/mtest06/mmap1.c Link: http://lkml.kernel.org/r/5b3fdf19e2a5be460a384b936f5b56e13733f1b8.1551595137.git.jstancek@redhat.com Signed-off-by: Jan Stancek <jstancek@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Acked-by: Rafael Aquini <aquini@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | 70516b936b |
mm/huge_memory.c: fix "orig_pud" set but not used
Commit
|
|
Qian Cai | cd02cf1ace |
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages in the block from kernel, However, it does not map those pages while offlining at the beginning. As the result, it triggers a panic below while onlining on ppc64le as it checks if the pages are mapped before unmapping. However, the imbalance exists for all arches where double-unmappings could happen. Therefore, let kernel map those pages in generic_online_page() before they have being freed into the page allocator for the first time where it will set the page count to one. On the other hand, it works fine during the boot, because at least for IBM POWER8, it does, early_setup early_init_mmu harsh__early_init_mmu htab_initialize [1] htab_bolt_mapping [2] where it effectively map all memblock regions just like kernel_map_linear_page(), so later mem_init() -> memblock_free_all() will unmap them just fine without any imbalance. On other arches without this imbalance checking, it still unmap them once at the most. [1] for_each_memblock(memory, reg) { base = (unsigned long)__va(reg->base); size = reg->size; DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", base, size, prot); BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), prot, mmu_linear_psize, mmu_kernel_ssize)); } [2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815! Oops: Exception in kernel mode, sig: 5 [#1] LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15 NIP: c000000000062670 LR: c00000000006265c CTR: 0000000000000000 REGS: c0000005bf8a75b0 TRAP: 0700 Not tainted (5.0.0-rc7+) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28422842 XER: 00000000 CFAR: c000000000804f44 IRQMASK: 1 NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0 LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0 Call Trace: __kernel_map_pages+0x2cc/0x4f0 free_unref_page_prepare+0x2f0/0x4d0 free_unref_page+0x44/0x90 __online_page_free+0x84/0x110 online_pages_range+0xc0/0x150 walk_system_ram_range+0xc8/0x120 online_pages+0x280/0x5a0 memory_subsys_online+0x1b4/0x270 device_online+0xc0/0xf0 state_store+0xc0/0x180 dev_attr_store+0x3c/0x60 sysfs_kf_write+0x70/0xb0 kernfs_fop_write+0x10c/0x250 __vfs_write+0x48/0x240 vfs_write+0xd8/0x210 ksys_write+0x70/0x120 system_call+0x5c/0x70 Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | 82ede7ee38 |
mm/memcontrol.c: fix bad line in comment
Commit
|
|
Peng Fan | 0d3bd18a5e |
mm/cma.c: cma_declare_contiguous: correct err handling
In case cma_init_reserved_mem failed, need to free the memblock allocated by memblock_reserve or memblock_alloc_range. Quote Catalin's comments: https://lkml.org/lkml/2019/2/26/482 Kmemleak is supposed to work with the memblock_{alloc,free} pair and it ignores the memblock_reserve() as a memblock_alloc() implementation detail. It is, however, tolerant to memblock_free() being called on a sub-range or just a different range from a previous memblock_alloc(). So the original patch looks fine to me. FWIW: Link: http://lkml.kernel.org/r/20190227144631.16708-1-peng.fan@nxp.com Signed-off-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | 0c81585499 |
mm/page_ext.c: fix an imbalance with kmemleak
After offlining a memory block, kmemleak scan will trigger a crash, as it encounters a page ext address that has already been freed during memory offlining. At the beginning in alloc_page_ext(), it calls kmemleak_alloc(), but it does not call kmemleak_free() in free_page_ext(). BUG: unable to handle kernel paging request at ffff888453d00000 PGD 128a01067 P4D 128a01067 PUD 128a04067 PMD 47e09e067 PTE 800ffffbac2ff060 Oops: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI CPU: 1 PID: 1594 Comm: bash Not tainted 5.0.0-rc8+ #15 Hardware name: HP ProLiant DL180 Gen9/ProLiant DL180 Gen9, BIOS U20 10/25/2017 RIP: 0010:scan_block+0xb5/0x290 Code: 85 6e 01 00 00 48 b8 00 00 30 f5 81 88 ff ff 48 39 c3 0f 84 5b 01 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 0f 85 87 01 00 00 <4c> 8b 3b e8 f3 0c fa ff 4c 39 3d 0c 6b 4c 01 0f 87 08 01 00 00 4c RSP: 0018:ffff8881ec57f8e0 EFLAGS: 00010082 RAX: 0000000000000000 RBX: ffff888453d00000 RCX: ffffffffa61e5a54 RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff888453d00000 RBP: ffff8881ec57f920 R08: fffffbfff4ed588d R09: fffffbfff4ed588c R10: fffffbfff4ed588c R11: ffffffffa76ac463 R12: dffffc0000000000 R13: ffff888453d00ff9 R14: ffff8881f80cef48 R15: ffff8881f80cef48 FS: 00007f6c0e3f8740(0000) GS:ffff8881f7680000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff888453d00000 CR3: 00000001c4244003 CR4: 00000000001606a0 Call Trace: scan_gray_list+0x269/0x430 kmemleak_scan+0x5a8/0x10f0 kmemleak_write+0x541/0x6ca full_proxy_write+0xf8/0x190 __vfs_write+0xeb/0x980 vfs_write+0x15a/0x4f0 ksys_write+0xd2/0x1b0 __x64_sys_write+0x73/0xb0 do_syscall_64+0xeb/0xaaa entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f6c0dad73b8 Code: 89 02 48 c7 c0 ff ff ff ff eb b3 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 8d 05 65 63 2d 00 8b 00 85 c0 75 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 41 54 49 89 d4 55 RSP: 002b:00007ffd5b863cb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007f6c0dad73b8 RDX: 0000000000000005 RSI: 000055a9216e1710 RDI: 0000000000000001 RBP: 000055a9216e1710 R08: 000000000000000a R09: 00007ffd5b863840 R10: 000000000000000a R11: 0000000000000246 R12: 00007f6c0dda9780 R13: 0000000000000005 R14: 00007f6c0dda4740 R15: 0000000000000005 Modules linked in: nls_iso8859_1 nls_cp437 vfat fat kvm_intel kvm irqbypass efivars ip_tables x_tables xfs sd_mod ahci libahci igb i2c_algo_bit libata i2c_core dm_mirror dm_region_hash dm_log dm_mod efivarfs CR2: ffff888453d00000 ---[ end trace ccf646c7456717c5 ]--- Kernel panic - not syncing: Fatal exception Shutting down cpus with NMI Kernel Offset: 0x24c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception ]--- Link: http://lkml.kernel.org/r/20190227173147.75650-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrey Ryabinin | 5f438eee8f |
mm/compaction: pass pgdat to too_many_isolated() instead of zone
too_many_isolated() in mm/compaction.c looks only at node state, so it makes more sense to change argument to pgdat instead of zone. Link: http://lkml.kernel.org/r/20190228083329.31892-3-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrey Ryabinin | f4b7e272b5 |
mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer: zone_lru_lock(page_zone(page)) Which is silly, because it unfolds to this: &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock while we can simply do &NODE_DATA(page_to_nid(page))->lru_lock Remove zone_lru_lock() function, since it's only complicate things. Use 'page_pgdat(page)->lru_lock' pattern instead. [aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()] Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrey Ryabinin | a7ca12f9d9 |
mm/workingset: remove unused @mapping argument in workingset_eviction()
workingset_eviction() doesn't use and never did use the @mapping argument. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Gustavo A. R. Silva | 960087445c |
mm/swapfile.c: use struct_size() in kvzalloc()
One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; struct boo entry[]; }; size = sizeof(struct foo) + count * sizeof(struct boo); instance = kvzalloc(size, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kvzalloc(struct_size(instance, entry, count), GFP_KERNEL); Notice that, in this case, variable size is not necessary, hence it is removed. This code was detected with the help of Coccinelle. Link: http://lkml.kernel.org/r/20190221154622.GA19599@embeddedor Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yue Hu | 5a7f1b2f2f |
mm/cma_debug.c: remove static scoped cma_debugfs_root
Currently cma_debugfs_root is static storage. That is unnecessary since it will be only used by next cma_debugfs_add_one(). We can just pass it to following calling to save thisspace. Also remove useless idx parameter. Link: http://lkml.kernel.org/r/20190221040130.8940-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yu Zhao | 5d3ee42f8f |
mm/shmem: make find_get_pages_range() work for huge page
find_get_pages_range() and find_get_pages_range_tag() already correctly increment reference count on head when seeing compound page, but they may still use page index from tail. Page index from tail is always zero, so these functions don't work on huge shmem. This hasn't been a problem because, AFAIK, nobody calls these functions on (huge) shmem. Fix them anyway just in case. Link: http://lkml.kernel.org/r/20190110030838.84446-1-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Christoph Hellwig | afa0011289 |
mm: unexport free_reserved_area
This function is only used by built-in code, which makes perfect sense given the purpose of it. Link: http://lkml.kernel.org/r/20190213174621.29297-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Oscar Salvador | daf3538ad5 |
mm,memory_hotplug: explicitly pass the head to isolate_huge_page
isolate_huge_page() expects we pass the head of hugetlb page to it: bool isolate_huge_page(...) { ... VM_BUG_ON_PAGE(!PageHead(page), page); ... } While I really cannot think of any situation where we end up with a non-head page between hands in do_migrate_range(), let us make sure the code is as sane as possible by explicitly passing the Head. Since we already got the pointer, it does not take us extra effort. Link: http://lkml.kernel.org/r/20190208090604.975-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jan Kara | f900482da5 |
mm/migrate.c: cleanup expected_page_refs()
Andrea has noted that page migration code propagates page_mapping(page) through the whole migration stack down to migrate_page() function so it seems stupid to then use page_mapping(page) in expected_page_refs() instead of passed down 'mapping' argument. I agree so let's make expected_page_refs() more in line with the rest of the migration stack. Link: http://lkml.kernel.org/r/20190207112314.24872-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | a862f68a8b |
docs/core-api/mm: fix return value descriptions in mm/
Many kernel-doc comments in mm/ have the return value descriptions either misformatted or omitted at all which makes kernel-doc script unhappy: $ make V=1 htmldocs ... ./mm/util.c:36: info: Scanning doc for kstrdup ./mm/util.c:41: warning: No description found for return value of 'kstrdup' ./mm/util.c:57: info: Scanning doc for kstrdup_const ./mm/util.c:66: warning: No description found for return value of 'kstrdup_const' ./mm/util.c:75: info: Scanning doc for kstrndup ./mm/util.c:83: warning: No description found for return value of 'kstrndup' ... Fixing the formatting and adding the missing return value descriptions eliminates ~100 such warnings. Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 92eac16819 |
docs/mm: vmalloc: re-indent kernel-doc comemnts
Some kernel-doc comments in mm/vmalloc.c have leading tab in indentation. This leads to excessive indentation in the generated HTML and to the inconsistency of its layout ([1] vs [2]). Besides, multi-line Note: sections are not handled properly with extra indentation. [1] https://www.kernel.org/doc/html/v4.20/core-api/mm-api.html?#c.vm_map_ram [2] https://www.kernel.org/doc/html/v4.20/core-api/mm-api.html?#c.vfree Link: http://lkml.kernel.org/r/1549549644-4903-2-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexey Dobriyan | ce0725f78a |
numa: make "nr_online_nodes" unsigned int
Number of online NUMA nodes can't be negative as well. This doesn't save space as the variable is used only in 32-bit context, but do it anyway for consistency. Link: http://lkml.kernel.org/r/20190201223151.GB15820@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexey Dobriyan | b9726c26dc |
numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative. This saves a few bytes on x86_64: add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238) Function old new delta hv_synic_alloc.cold 88 110 +22 prealloc_shrinker 260 262 +2 bootstrap 249 251 +2 sched_init_numa 1566 1567 +1 show_slab_objects 778 777 -1 s_show 1201 1200 -1 kmem_cache_init 346 345 -1 __alloc_workqueue_key 1146 1145 -1 mem_cgroup_css_alloc 1614 1612 -2 __do_sys_swapon 4702 4699 -3 __list_lru_init 655 651 -4 nic_probe 2379 2374 -5 store_user_store 118 111 -7 red_zone_store 106 99 -7 poison_store 106 99 -7 wq_numa_init 348 338 -10 __kmem_cache_empty 75 65 -10 task_numa_free 186 173 -13 merge_across_nodes_store 351 336 -15 irq_create_affinity_masks 1261 1246 -15 do_numa_crng_init 343 321 -22 task_numa_fault 4760 4737 -23 swapfile_init 179 156 -23 hv_synic_alloc 536 492 -44 apply_wqattrs_prepare 746 695 -51 Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tetsuo Handa | d342a0b386 |
mm,oom: don't kill global init via memory.oom.group
Since setting global init process to some memory cgroup is technically
possible, oom_kill_memcg_member() must check it.
Tasks in /test1 are going to be killed due to memory.oom.group set
Memory cgroup out of memory: Killed process 1 (systemd) total-vm:43400kB, anon-rss:1228kB, file-rss:3992kB, shmem-rss:0kB
oom_reaper: reaped process 1 (systemd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000008b
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main(int argc, char *argv[])
{
static char buffer[10485760];
static int pipe_fd[2] = { EOF, EOF };
unsigned int i;
int fd;
char buf[64] = { };
if (pipe(pipe_fd))
return 1;
if (chdir("/sys/fs/cgroup/"))
return 1;
fd = open("cgroup.subtree_control", O_WRONLY);
write(fd, "+memory", 7);
close(fd);
mkdir("test1", 0755);
fd = open("test1/memory.oom.group", O_WRONLY);
write(fd, "1", 1);
close(fd);
fd = open("test1/cgroup.procs", O_WRONLY);
write(fd, "1", 1);
snprintf(buf, sizeof(buf) - 1, "%d", getpid());
write(fd, buf, strlen(buf));
close(fd);
snprintf(buf, sizeof(buf) - 1, "%lu", sizeof(buffer) * 5);
fd = open("test1/memory.max", O_WRONLY);
write(fd, buf, strlen(buf));
close(fd);
for (i = 0; i < 10; i++)
if (fork() == 0) {
char c;
close(pipe_fd[1]);
read(pipe_fd[0], &c, 1);
memset(buffer, 0, sizeof(buffer));
sleep(3);
_exit(0);
}
close(pipe_fd[0]);
close(pipe_fd[1]);
sleep(3);
return 0;
}
[ 37.052923][ T9185] a.out invoked oom-killer: gfp_mask=0xcc0(GFP_KERNEL), order=0, oom_score_adj=0
[ 37.056169][ T9185] CPU: 4 PID: 9185 Comm: a.out Kdump: loaded Not tainted 5.0.0-rc4-next-20190131 #280
[ 37.059205][ T9185] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 37.062954][ T9185] Call Trace:
[ 37.063976][ T9185] dump_stack+0x67/0x95
[ 37.065263][ T9185] dump_header+0x51/0x570
[ 37.066619][ T9185] ? trace_hardirqs_on+0x3f/0x110
[ 37.068171][ T9185] ? _raw_spin_unlock_irqrestore+0x3d/0x70
[ 37.069967][ T9185] oom_kill_process+0x18d/0x210
[ 37.071515][ T9185] out_of_memory+0x11b/0x380
[ 37.072936][ T9185] mem_cgroup_out_of_memory+0xb6/0xd0
[ 37.074601][ T9185] try_charge+0x790/0x820
[ 37.076021][ T9185] mem_cgroup_try_charge+0x42/0x1d0
[ 37.077629][ T9185] mem_cgroup_try_charge_delay+0x11/0x30
[ 37.079370][ T9185] do_anonymous_page+0x105/0x5e0
[ 37.080939][ T9185] __handle_mm_fault+0x9cb/0x1070
[ 37.082485][ T9185] handle_mm_fault+0x1b2/0x3a0
[ 37.083819][ T9185] ? handle_mm_fault+0x47/0x3a0
[ 37.085181][ T9185] __do_page_fault+0x255/0x4c0
[ 37.086529][ T9185] do_page_fault+0x28/0x260
[ 37.087788][ T9185] ? page_fault+0x8/0x30
[ 37.088978][ T9185] page_fault+0x1e/0x30
[ 37.090142][ T9185] RIP: 0033:0x7f8b183aefe0
[ 37.091433][ T9185] Code: 20 f3 44 0f 7f 44 17 d0 f3 44 0f 7f 47 30 f3 44 0f 7f 44 17 c0 48 01 fa 48 83 e2 c0 48 39 d1 74 a3 66 0f 1f 84 00 00 00 00 00 <66> 44 0f 7f 01 66 44 0f 7f 41 10 66 44 0f 7f 41 20 66 44 0f 7f 41
[ 37.096917][ T9185] RSP: 002b:00007fffc5d329e8 EFLAGS: 00010206
[ 37.098615][ T9185] RAX: 00000000006010e0 RBX: 0000000000000008 RCX: 0000000000c30000
[ 37.100905][ T9185] RDX: 00000000010010c0 RSI: 0000000000000000 RDI: 00000000006010e0
[ 37.103349][ T9185] RBP: 0000000000000000 R08: 00007f8b188f4740 R09: 0000000000000000
[ 37.105797][ T9185] R10: 00007fffc5d32420 R11: 00007f8b183aef40 R12: 0000000000000005
[ 37.108228][ T9185] R13: 0000000000000000 R14: ffffffffffffffff R15: 0000000000000000
[ 37.110840][ T9185] memory: usage 51200kB, limit 51200kB, failcnt 125
[ 37.113045][ T9185] memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0
[ 37.115808][ T9185] kmem: usage 0kB, limit 9007199254740988kB, failcnt 0
[ 37.117660][ T9185] Memory cgroup stats for /test1: cache:0KB rss:49484KB rss_huge:30720KB shmem:0KB mapped_file:0KB dirty:0KB writeback:0KB inactive_anon:0KB active_anon:49700KB inactive_file:0KB active_file:0KB unevictable:0KB
[ 37.123371][ T9185] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,oom_memcg=/test1,task_memcg=/test1,task=a.out,pid=9188,uid=0
[ 37.128158][ T9185] Memory cgroup out of memory: Killed process 9188 (a.out) total-vm:14456kB, anon-rss:10324kB, file-rss:504kB, shmem-rss:0kB
[ 37.132710][ T9185] Tasks in /test1 are going to be killed due to memory.oom.group set
[ 37.132833][ T54] oom_reaper: reaped process 9188 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.135498][ T9185] Memory cgroup out of memory: Killed process 1 (systemd) total-vm:43400kB, anon-rss:1228kB, file-rss:3992kB, shmem-rss:0kB
[ 37.143434][ T9185] Memory cgroup out of memory: Killed process 9182 (a.out) total-vm:14456kB, anon-rss:76kB, file-rss:588kB, shmem-rss:0kB
[ 37.144328][ T54] oom_reaper: reaped process 1 (systemd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.147585][ T9185] Memory cgroup out of memory: Killed process 9183 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB
[ 37.157222][ T9185] Memory cgroup out of memory: Killed process 9184 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:508kB, shmem-rss:0kB
[ 37.157259][ T9185] Memory cgroup out of memory: Killed process 9185 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB
[ 37.157291][ T9185] Memory cgroup out of memory: Killed process 9186 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:508kB, shmem-rss:0kB
[ 37.157306][ T54] oom_reaper: reaped process 9183 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.157328][ T9185] Memory cgroup out of memory: Killed process 9187 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:512kB, shmem-rss:0kB
[ 37.157452][ T9185] Memory cgroup out of memory: Killed process 9189 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB
[ 37.158733][ T9185] Memory cgroup out of memory: Killed process 9190 (a.out) total-vm:14456kB, anon-rss:552kB, file-rss:512kB, shmem-rss:0kB
[ 37.160083][ T54] oom_reaper: reaped process 9186 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.160187][ T54] oom_reaper: reaped process 9189 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.206941][ T54] oom_reaper: reaped process 9185 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.212300][ T9185] Memory cgroup out of memory: Killed process 9191 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:512kB, shmem-rss:0kB
[ 37.212317][ T54] oom_reaper: reaped process 9190 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.218860][ T9185] Memory cgroup out of memory: Killed process 9192 (a.out) total-vm:14456kB, anon-rss:1080kB, file-rss:512kB, shmem-rss:0kB
[ 37.227667][ T54] oom_reaper: reaped process 9192 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[ 37.292323][ T9193] abrt-hook-ccpp (9193) used greatest stack depth: 10480 bytes left
[ 37.351843][ T1] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000008b
[ 37.354833][ T1] CPU: 7 PID: 1 Comm: systemd Kdump: loaded Not tainted 5.0.0-rc4-next-20190131 #280
[ 37.357876][ T1] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 37.361685][ T1] Call Trace:
[ 37.363239][ T1] dump_stack+0x67/0x95
[ 37.365010][ T1] panic+0xfc/0x2b0
[ 37.366853][ T1] do_exit+0xd55/0xd60
[ 37.368595][ T1] do_group_exit+0x47/0xc0
[ 37.370415][ T1] get_signal+0x32a/0x920
[ 37.372449][ T1] ? _raw_spin_unlock_irqrestore+0x3d/0x70
[ 37.374596][ T1] do_signal+0x32/0x6e0
[ 37.376430][ T1] ? exit_to_usermode_loop+0x26/0x9b
[ 37.378418][ T1] ? prepare_exit_to_usermode+0xa8/0xd0
[ 37.380571][ T1] exit_to_usermode_loop+0x3e/0x9b
[ 37.382588][ T1] prepare_exit_to_usermode+0xa8/0xd0
[ 37.384594][ T1] ? page_fault+0x8/0x30
[ 37.386453][ T1] retint_user+0x8/0x18
[ 37.388160][ T1] RIP: 0033:0x7f42c06974a8
[ 37.389922][ T1] Code: Bad RIP value.
[ 37.391788][ T1] RSP: 002b:00007ffc3effd388 EFLAGS: 00010213
[ 37.394075][ T1] RAX: 000000000000000e RBX: 00007ffc3effd390 RCX: 0000000000000000
[ 37.396963][ T1] RDX: 000000000000002a RSI: 00007ffc3effd390 RDI: 0000000000000004
[ 37.399550][ T1] RBP: 00007ffc3effd680 R08: 0000000000000000 R09: 0000000000000000
[ 37.402334][ T1] R10: 00000000ffffffff R11: 0000000000000246 R12: 0000000000000001
[ 37.404890][ T1] R13: ffffffffffffffff R14: 0000000000000884 R15: 000056460b1ac3b0
Link: http://lkml.kernel.org/r/201902010336.x113a4EO027170@www262.sakura.ne.jp
Fixes:
|
|
Daniel Jordan | c10d38cc8d |
mm, swap: bounds check swap_info array accesses to avoid NULL derefs
Dan Carpenter reports a potential NULL dereference in
get_swap_page_of_type:
Smatch complains that the NULL checks on "si" aren't consistent. This
seems like a real bug because we have not ensured that the type is
valid and so "si" can be NULL.
Add the missing check for NULL, taking care to use a read barrier to
ensure CPU1 observes CPU0's updates in the correct order:
CPU0 CPU1
alloc_swap_info() if (type >= nr_swapfiles)
swap_info[type] = p /* handle invalid entry */
smp_wmb() smp_rmb()
++nr_swapfiles p = swap_info[type]
Without smp_rmb, CPU1 might observe CPU0's write to nr_swapfiles before
CPU0's write to swap_info[type] and read NULL from swap_info[type].
Ying Huang noticed other places in swapfile.c don't order these reads
properly. Introduce swap_type_to_swap_info to encourage correct usage.
Use READ_ONCE and WRITE_ONCE to follow the Linux Kernel Memory Model
(see tools/memory-model/Documentation/explanation.txt).
This ordering need not be enforced in places where swap_lock is held
(e.g. si_swapinfo) because swap_lock serializes updates to nr_swapfiles
and the swap_info array.
Link: http://lkml.kernel.org/r/20190131024410.29859-1-daniel.m.jordan@oracle.com
Fixes:
|
|
Kirill Tkhai | 060f005f07 |
mm/vmscan.c: do not allocate duplicate stack variables in shrink_page_list()
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack variables for the statistics twice. This is completely useless, and this just consumes stack much more, then we really need. The patch kills duplicate stack variables from shrink_page_list(), and this reduce stack usage and object file size significantly: Stack usage: Before: vmscan.c:1122:22:shrink_page_list 648 static After: vmscan.c:1122:22:shrink_page_list 616 static Size of vmscan.o: text data bss dec hex filename Before: 56866 4720 128 61714 f112 mm/vmscan.o After: 56770 4720 128 61618 f0b2 mm/vmscan.o Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | 2cee57d1b0 |
mm: ksm: do not block on page lock when searching stable tree
ksmd needs to search the stable tree to look for the suitable KSM page,
but the KSM page might be locked for a while due to i.e. KSM page rmap
walk. Basically it is not a big deal since commit
|
|
Chris Down | 1ff9e6e179 |
mm: memcontrol: expose THP events on a per-memcg basis
Currently THP allocation events data is fairly opaque, since you can only get it system-wide. This patch makes it easier to reason about transparent hugepage behaviour on a per-memcg basis. For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1, which is used for v1's rss_huge [sic]. This is reused here as it's fairly involved to untangle NR_ANON_THPS right now to make it per-memcg, since right now some of this is delegated to rmap before we have any memcg actually assigned to the page. It's a good idea to rework that, but let's leave untangling THP allocation for a future patch. [akpm@linux-foundation.org: fix build] [chris@chrisdown.name: fix memcontrol build when THP is disabled] Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | 2bb0f34fe3 |
mm: vmscan: do not iterate all mem cgroups for global direct reclaim
In current implementation, both kswapd and direct reclaim has to iterate all mem cgroups. It is not a problem before offline mem cgroups could be iterated. But, currently with iterating offline mem cgroups, it could be very time consuming. In our workloads, we saw over 400K mem cgroups accumulated in some cases, only a few hundred are online memcgs. Although kswapd could help out to reduce the number of memcgs, direct reclaim still get hit with iterating a number of offline memcgs in some cases. We experienced the responsiveness problems due to this occassionally. A simple test with pref shows it may take around 220ms to iterate 8K memcgs in direct reclaim: dd 13873 [011] 578.542919: vmscan:mm_vmscan_direct_reclaim_begin dd 13873 [011] 578.758689: vmscan:mm_vmscan_direct_reclaim_end So for 400K, it may take around 11 seconds to iterate all memcgs. Here just break the iteration once it reclaims enough pages as what memcg direct reclaim does. This may hurt the fairness among memcgs. But the cached iterator cookie could help to achieve the fairness more or less. Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joel Fernandes (Google) | ab3948f58f |
mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd
Android uses ashmem for sharing memory regions. We are looking forward to migrating all usecases of ashmem to memfd so that we can possibly remove the ashmem driver in the future from staging while also benefiting from using memfd and contributing to it. Note staging drivers are also not ABI and generally can be removed at anytime. One of the main usecases Android has is the ability to create a region and mmap it as writeable, then add protection against making any "future" writes while keeping the existing already mmap'ed writeable-region active. This allows us to implement a usecase where receivers of the shared memory buffer can get a read-only view, while the sender continues to write to the buffer. See CursorWindow documentation in Android for more details: https://developer.android.com/reference/android/database/CursorWindow This usecase cannot be implemented with the existing F_SEAL_WRITE seal. To support the usecase, this patch adds a new F_SEAL_FUTURE_WRITE seal which prevents any future mmap and write syscalls from succeeding while keeping the existing mmap active. A better way to do F_SEAL_FUTURE_WRITE seal was discussed [1] last week where we don't need to modify core VFS structures to get the same behavior of the seal. This solves several side-effects pointed by Andy. self-tests are provided in later patch to verify the expected semantics. [1] https://lore.kernel.org/lkml/20181111173650.GA256781@google.com/ Thanks a lot to Andy for suggestions to improve code. Link: http://lkml.kernel.org/r/20190112203816.85534-2-joel@joelfernandes.org Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Acked-by: John Stultz <john.stultz@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: J. Bruce Fields <bfields@fieldses.org> Cc: Jeff Layton <jlayton@kernel.org> Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | 9a4e9f3b2d |
mm: update get_user_pages_longterm to migrate pages allocated from CMA region
This patch updates get_user_pages_longterm to migrate pages allocated out of CMA region. This makes sure that we don't keep non-movable pages (due to page reference count) in the CMA area. This will be used by ppc64 in a later patch to avoid pinning pages in the CMA region. ppc64 uses CMA region for allocation of the hardware page table (hash page table) and not able to migrate pages out of CMA region results in page table allocation failures. One case where we hit this easy is when a guest using a VFIO passthrough device. VFIO locks all the guest's memory and if the guest memory is backed by CMA region, it becomes unmovable resulting in fragmenting the CMA and possibly preventing other guests from allocation a large enough hash page table. NOTE: We allocate the new page without using __GFP_THISNODE Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vineeth Remanan Pillai | b56a2d8af9 |
mm: rid swapoff of quadratic complexity
This patch was initially posted by Kelley Nielsen. Reposting the patch with all review comments addressed and with minor modifications and optimizations. Also, folding in the fixes offered by Hugh Dickins and Huang Ying. Tests were rerun and commit message updated with new results. try_to_unuse() is of quadratic complexity, with a lot of wasted effort. It unuses swap entries one by one, potentially iterating over all the page tables for all the processes in the system for each one. This new proposed implementation of try_to_unuse simplifies its complexity to linear. It iterates over the system's mms once, unusing all the affected entries as it walks each set of page tables. It also makes similar changes to shmem_unuse. Improvement swapoff was called on a swap partition containing about 6G of data, in a VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted. Present implementation....about 1200M calls(8min, avg 80% cpu util). Prototype.................about 9.0K calls(3min, avg 5% cpu util). Details In shmem_unuse(), iterate over the shmem_swaplist and, for each shmem_inode_info that contains a swap entry, pass it to shmem_unuse_inode(), along with the swap type. In shmem_unuse_inode(), iterate over its associated xarray, and store the index and value of each swap entry in an array for passing to shmem_swapin_page() outside of the RCU critical section. In try_to_unuse(), instead of iterating over the entries in the type and unusing them one by one, perhaps walking all the page tables for all the processes for each one, iterate over the mmlist, making one pass. Pass each mm to unuse_mm() to begin its page table walk, and during the walk, unuse all the ptes that have backing store in the swap type received by try_to_unuse(). After the walk, check the type for orphaned swap entries with find_next_to_unuse(), and remove them from the swap cache. If find_next_to_unuse() starts over at the beginning of the type, repeat the check of the shmem_swaplist and the walk a maximum of three times. Change unuse_mm() and the intervening walk functions down to unuse_pte_range() to take the type as a parameter, and to iterate over their entire range, calling the next function down on every iteration. In unuse_pte_range(), make a swap entry from each pte in the range using the passed in type. If it has backing store in the type, call swapin_readahead() to retrieve the page and pass it to unuse_pte(). Pass the count of pages_to_unuse down the page table walks in try_to_unuse(), and return from the walk when the desired number of pages has been swapped back in. Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com> Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vineeth Remanan Pillai | c5bf121e43 |
mm: refactor swap-in logic out of shmem_getpage_gfp
swapin logic can be reused independently without rest of the logic in shmem_getpage_gfp. So lets refactor it out as an independent function. Link: http://lkml.kernel.org/r/20190114153129.4852-1-vpillai@digitalocean.com Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kelley Nielsen <kelleynnn@gmail.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | a9e7c39fa9 |
mm/vmscan.c: remove 7th argument of isolate_lru_pages()
We may simply check for sc->may_unmap in isolate_lru_pages() instead of doing that in both of its callers. Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 2e25644e8d |
mm, mempolicy: fix uninit memory access
Syzbot with KMSAN reports (excerpt): ================================================================== BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline] BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384 CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x173/0x1d0 lib/dump_stack.c:113 kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613 __msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295 mpol_rebind_policy mm/mempolicy.c:353 [inline] mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384 update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120 update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline] update_nodemask kernel/cgroup/cpuset.c:1253 [inline] cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728 ... Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline] kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158 kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176 kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777 mpol_new mm/mempolicy.c:276 [inline] do_mbind mm/mempolicy.c:1180 [inline] kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347 __do_sys_mbind mm/mempolicy.c:1354 [inline] As it's difficult to report where exactly the uninit value resides in the mempolicy object, we have to guess a bit. mm/mempolicy.c:353 contains this part of mpol_rebind_policy(): if (!mpol_store_user_nodemask(pol) && nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) "mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't ever see being uninitialized after leaving mpol_new(). So I'll guess it's actually about accessing pol->w.cpuset_mems_allowed on line 354, but still part of statement starting on line 353. For w.cpuset_mems_allowed to be not initialized, and the nodes_equal() reachable for a mempolicy where mpol_set_nodemask() is called in do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy with empty set of nodes, i.e. MPOL_LOCAL equivalent, with MPOL_F_LOCAL flag. Let's exclude such policies from the nodes_equal() check. Note the uninit access should be benign anyway, as rebinding this kind of policy is always a no-op. Therefore no actual need for stable inclusion. Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Yisheng Xie <xieyisheng1@huawei.com> Cc: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tetsuo Handa | 7775face20 |
memcg: killed threads should not invoke memcg OOM killer
If a memory cgroup contains a single process with many threads (including different process group sharing the mm) then it is possible to trigger a race when the oom killer complains that there are no oom elible tasks and complain into the log which is both annoying and confusing because there is no actual problem. The race looks as follows: P1 oom_reaper P2 try_charge try_charge mem_cgroup_out_of_memory mutex_lock(oom_lock) out_of_memory oom_kill_process(P1,P2) wake_oom_reaper mutex_unlock(oom_lock) oom_reap_task mutex_lock(oom_lock) select_bad_process # no victim The problem is more visible with many threads. Fix this by checking for fatal_signal_pending from mem_cgroup_out_of_memory when the oom_lock is already held. The oom bypass is safe because we do the same early in the try_charge path already. The situation migh have changed in the mean time. It should be safe to check for fatal_signal_pending and tsk_is_oom_victim but for a better code readability abstract the current charge bypass condition into should_force_charge and reuse it from that path. " Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mike Rapoport | 23a7052a5d |
mm/page_alloc.c: check return value of memblock_alloc_node_nopanic()
There are two early memory allocations that use memblock_alloc_node_nopanic() and do not check its return value. While this happens very early during boot and chances that the allocation will fail are diminishing, it is still worth to have proper checks for the allocation errors. Link: http://lkml.kernel.org/r/1547734941-944-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | 023bdd0023 |
mm/hugetlb: add prot_modify_start/commit sequence for hugetlb update
Architectures like ppc64 require to do a conditional tlb flush based on the old and new value of pte. Follow the regular pte change protection sequence for hugetlb too. This allows the architectures to override the update sequence. Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | 04a8645304 |
mm: update ptep_modify_prot_commit to take old pte value as arg
Architectures like ppc64 require to do a conditional tlb flush based on the old and new value of pte. Enable that by passing old pte value as the arg. Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | 0cbe3e26ab |
mm: update ptep_modify_prot_start/commit to take vm_area_struct as arg
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit
|
|
Wei Yang | 8bb4e7a2ee |
mm: fix some typos in mm directory
No functional change. Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Changbin Du | 8aa49762db |
mm/page_owner: move config option to mm/Kconfig.debug
Move the PAGE_OWNER option from submenu "Compile-time checks and compiler options" to dedicated submenu "Memory Debugging". Link: http://lkml.kernel.org/r/20190120024254.6270-1-changbin.du@gmail.com Signed-off-by: Changbin Du <changbin.du@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Fan | 43cca0b1c5 |
mm/mmap.c: remove some redundancy in arch_get_unmapped_area_topdown()
The variable 'addr' is redundant in arch_get_unmapped_area_topdown(), just use parameter 'addr0' directly. Then remove the const qualifier of the parameter, and change its name to 'addr'. And in according with other functions, remove the const qualifier of all other no-pointer parameters in function arch_get_unmapped_area_topdown(). Link: http://lkml.kernel.org/r/20190127041112.25599-1-nullptr.cpp@gmail.com Signed-off-by: Yang Fan <nullptr.cpp@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Shakeel Butt | bbbe480297 |
mm, oom: remove 'prefer children over parent' heuristic
Since the start of the git history of Linux, the kernel after selecting the worst process to be oom-killed, prefer to kill its child (if the child does not share mm with the parent). Later it was changed to prefer to kill a child who is worst. If the parent is still the worst then the parent will be killed. This heuristic assumes that the children did less work than their parent and by killing one of them, the work lost will be less. However this is very workload dependent. If there is a workload which can benefit from this heuristic, can use oom_score_adj to prefer children to be killed before the parent. The select_bad_process() has already selected the worst process in the system/memcg. There is no need to recheck the badness of its children and hoping to find a worse candidate. That's a lot of unneeded racy work. Also the heuristic is dangerous because it make fork bomb like workloads to recover much later because we constantly pick and kill processes which are not memory hogs. So, let's remove this whole heuristic. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Greg Kroah-Hartman | d9f7979c92 |
mm: no need to check return value of debugfs_create functions
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. Link: http://lkml.kernel.org/r/20190122152151.16139-14-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matthew Wilcox | 0ee930e6ca |
mm/memory.c: prevent mapping typed pages to userspace
Pages which use page_type must never be mapped to userspace as it would destroy their page type. Add an explicit check for this instead of assuming that kernel drivers always get this right. Link: http://lkml.kernel.org/r/20190129053830.3749-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matthew Wilcox | 2d432cb709 |
mm: prevent mapping slab pages to userspace
It's never appropriate to map a page allocated by SLAB into userspace. A buggy device driver might try this, or an attacker might be able to find a way to make it happen. Christoph said: : Let's just fail the code. Currently this may work with SLUB. But SLAB : and SLOB overlay fields with mapcount. So you would have a corrupted page : struct if you mapped a slab page to user space. Link: http://lkml.kernel.org/r/20190125173827.2658-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Uladzislau Rezki (Sony) | afd07389d3 |
mm/vmalloc.c: fix kernel BUG at mm/vmalloc.c:512!
One of the vmalloc stress test case triggers the kernel BUG(): <snip> [60.562151] ------------[ cut here ]------------ [60.562154] kernel BUG at mm/vmalloc.c:512! [60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI [60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161 [60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390 <snip> it can happen due to big align request resulting in overflowing of calculated address, i.e. it becomes 0 after ALIGN()'s fixup. Fix it by checking if calculated address is within vstart/vend range. Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Joel Fernandes <joelaf@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | 677dc9731b |
mm, memcg: extract memcg maxable seq_file logic to seq_show_memcg_tunable
memcg has a significant number of files exposed to kernfs where their value is either exposed directly or is "max" in the case of PAGE_COUNTER_MAX. This patch makes this generic by providing a single function to do this work. In combination with the previous patch adding mem_cgroup_from_seq, this makes all of the seq_show feeder functions significantly more simple. Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Down | aa9694bb78 |
mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm). There are a bunch of places we go from seq_file to mem_cgroup, which currently requires manually getting the css, then getting the mem_cgroup from the css. It's in enough places now that having mem_cgroup_from_seq makes sense (and also makes the next patch a bit nicer). Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 5e1f0f098b |
mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e332f741a8 |
mm, compaction: be selective about what pageblocks to clear skip hints
Pageblock hints are cleared when compaction restarts or kswapd makes enough progress that it can sleep but it's over-eager in that the bit is cleared for migration sources with no LRU pages and migration targets with no free pages. As pageblock skip hint flushes are relatively rare and out-of-band with respect to kswapd, this patch makes a few more expensive checks to see if it's appropriate to even clear the bit. Every pageblock that is not cleared will avoid 512 pages being scanned unnecessarily on x86-64. The impact is variable with different workloads showing small differences in latency, success rates and scan rates. This is expected as clearing the hints is not that common but doing a small amount of work out-of-band to avoid a large amount of work in-band later is generally a good thing. Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> [cai@lca.pw: no stuck in __reset_isolation_pfn()] Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 4fca9730c5 |
mm, compaction: sample pageblocks for free pages
Once fast searching finishes, there is a possibility that the linear scanner is scanning full blocks found by the fast scanner earlier. This patch uses an adaptive stride to sample pageblocks for free pages. The more consecutive full pageblocks encountered, the larger the stride until a pageblock with free pages is found. The scanners might meet slightly sooner but it is an acceptable risk given that the search of the free lists may still encounter the pages and adjust the cached PFN of the free scanner accordingly. 5.0.0-rc1 5.0.0-rc1 roundrobin-v3r17 samplefree-v3r17 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2752.37 ( 0.00%) 2729.95 ( 0.81%) Amean fault-both-5 4341.69 ( 0.00%) 4397.80 ( -1.29%) Amean fault-both-7 6308.75 ( 0.00%) 6097.61 ( 3.35%) Amean fault-both-12 10241.81 ( 0.00%) 9407.15 ( 8.15%) Amean fault-both-18 13736.09 ( 0.00%) 10857.63 * 20.96%* Amean fault-both-24 16853.95 ( 0.00%) 13323.24 * 20.95%* Amean fault-both-30 15862.61 ( 0.00%) 17345.44 ( -9.35%) Amean fault-both-32 18450.85 ( 0.00%) 16892.00 ( 8.45%) The latency is mildly improved offseting some overhead from earlier patches that are prerequisites for the rest of the series. However, a major impact is on the free scan rate with an 82% reduction. 5.0.0-rc1 5.0.0-rc1 roundrobin-v3r17 samplefree-v3r17 Compaction migrate scanned 21607271 20116887 Compaction free scanned 95336406 16668703 It's also the first time in the series where the number of pages scanned by the migration scanner is greater than the free scanner due to the increased search efficiency. Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | dbe2d4e4f1 |
mm, compaction: round-robin the order while searching the free lists for a target
As compaction proceeds and creates high-order blocks, the free list search gets less efficient as the larger blocks are used as compaction targets. Eventually, the larger blocks will be behind the migration scanner for partially migrated pageblocks and the search fails. This patch round-robins what orders are searched so that larger blocks can be ignored and find smaller blocks that can be used as migration targets. The overall impact was small on 1-socket but it avoids corner cases where the migration/free scanners meet prematurely or situations where many of the pageblocks encountered by the free scanner are almost full instead of being properly packed. Previous testing had indicated that without this patch there were occasional large spikes in the free scanner without this patch. [dan.carpenter@oracle.com: fix static checker warning] Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | d097a6f635 |
mm, compaction: reduce premature advancement of the migration target scanner
The fast isolation of free pages allows the cached PFN of the free scanner to advance faster than necessary depending on the contents of the free list. The key is that fast_isolate_freepages() can update zone->compact_cached_free_pfn via isolate_freepages_block(). When the fast search fails, the linear scan can start from a point that has skipped valid migration targets, particularly pageblocks with just low-order free pages. This can cause the migration source/target scanners to meet prematurely causing a reset. This patch starts by avoiding an update of the pageblock skip information and cached PFN from isolate_freepages_block() and puts the responsibility of updating that information in the callers. The fast scanner will update the cached PFN if and only if it finds a block that is higher than the existing cached PFN and sets the skip if the pageblock is full or nearly full. The linear scanner will update skipped information and the cached PFN only when a block is completely scanned. The total impact is that the free scanner advances more slowly as it is primarily driven by the linear scanner instead of the fast search. 5.0.0-rc1 5.0.0-rc1 noresched-v3r17 slowfree-v3r17 Amean fault-both-3 2965.68 ( 0.00%) 3036.75 ( -2.40%) Amean fault-both-5 3995.90 ( 0.00%) 4522.24 * -13.17%* Amean fault-both-7 5842.12 ( 0.00%) 6365.35 ( -8.96%) Amean fault-both-12 9550.87 ( 0.00%) 10340.93 ( -8.27%) Amean fault-both-18 13304.72 ( 0.00%) 14732.46 ( -10.73%) Amean fault-both-24 14618.59 ( 0.00%) 16288.96 ( -11.43%) Amean fault-both-30 16650.96 ( 0.00%) 16346.21 ( 1.83%) Amean fault-both-32 17145.15 ( 0.00%) 19317.49 ( -12.67%) The impact to latency is higher than the last version but it appears to be due to a slight increase in the free scan rates which is a potential side-effect of the patch. However, this is necessary for later patches that are more careful about how pageblocks are treated as earlier iterations of those patches hit corner cases where the restarts were punishing and very visible. Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | cf66f0700c |
mm, compaction: do not consider a need to reschedule as contention
Scanning on large machines can take a considerable length of time and eventually need to be rescheduled. This is treated as an abort event but that's not appropriate as the attempt is likely to be retried after making numerous checks and taking another cycle through the page allocator. This patch will check the need to reschedule if necessary but continue the scanning. The main benefit is reduced scanning when compaction is taking a long time or the machine is over-saturated. It also avoids an unnecessary exit of compaction that ends up being retried by the page allocator in the outer loop. 5.0.0-rc1 5.0.0-rc1 synccached-v3r16 noresched-v3r17 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2958.27 ( 0.00%) 2965.68 ( -0.25%) Amean fault-both-5 4091.90 ( 0.00%) 3995.90 ( 2.35%) Amean fault-both-7 5803.05 ( 0.00%) 5842.12 ( -0.67%) Amean fault-both-12 9481.06 ( 0.00%) 9550.87 ( -0.74%) Amean fault-both-18 14141.51 ( 0.00%) 13304.72 ( 5.92%) Amean fault-both-24 16438.00 ( 0.00%) 14618.59 ( 11.07%) Amean fault-both-30 17531.72 ( 0.00%) 16650.96 ( 5.02%) Amean fault-both-32 17101.96 ( 0.00%) 17145.15 ( -0.25%) Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | cb810ad294 |
mm, compaction: rework compact_should_abort as compact_check_resched
With incremental changes, compact_should_abort no longer makes any documented sense. Rename to compact_check_resched and update the associated comments. There is no benefit other than reducing redundant code and making the intent slightly clearer. It could potentially be merged with earlier patches but it just makes the review slightly harder. Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 8854c55f54 |
mm, compaction: keep cached migration PFNs synced for unusable pageblocks
Migrate has separate cached PFNs for ASYNC and SYNC* migration on the basis that some migrations will fail in ASYNC mode. However, if the cached PFNs match at the start of scanning and pageblocks are skipped due to having no isolation candidates, then the sync state does not matter. This patch keeps matching cached PFNs in sync until a pageblock with isolation candidates is found. The actual benefit is marginal given that the sync scanner following the async scanner will often skip a number of pageblocks but it's useless work. Any benefit depends heavily on whether the scanners restarted recently. Link: http://lkml.kernel.org/r/20190118175136.31341-16-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 9bebefd590 |
mm, compaction: check early for huge pages encountered by the migration scanner
When scanning for sources or targets, PageCompound is checked for huge pages as they can be skipped quickly but it happens relatively late after a lot of setup and checking. This patch short-cuts the check to make it earlier. It might still change when the lock is acquired but this has less overhead overall. The free scanner advances but the migration scanner does not. Typically the free scanner encounters more movable blocks that change state over the lifetime of the system and also tends to scan more aggressively as it's actively filling its portion of the physical address space with data. This could change in the future but for the moment, this worked better in practice and incurred fewer scan restarts. The impact on latency and allocation success rates is marginal but the free scan rates are reduced by 15% and system CPU usage is reduced by 3.3%. The 2-socket results are not materially different. Link: http://lkml.kernel.org/r/20190118175136.31341-15-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | cb2dcaf023 |
mm, compaction: finish pageblock scanning on contention
Async migration aborts on spinlock contention but contention can be high when there are multiple compaction attempts and kswapd is active. The consequence is that the migration scanners move forward uselessly while still contending on locks for longer while leaving suitable migration sources behind. This patch will acquire the lock but track when contention occurs. When it does, the current pageblock will finish as compaction may succeed for that block and then abort. This will have a variable impact on latency as in some cases useless scanning is avoided (reduces latency) but a lock will be contended (increase latency) or a single contended pageblock is scanned that would otherwise have been skipped (increase latency). 5.0.0-rc1 5.0.0-rc1 norescan-v3r16 finishcontend-v3r16 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3002.07 ( 0.00%) 3153.17 ( -5.03%) Amean fault-both-5 4684.47 ( 0.00%) 4280.52 ( 8.62%) Amean fault-both-7 6815.54 ( 0.00%) 5811.50 * 14.73%* Amean fault-both-12 10864.02 ( 0.00%) 9276.85 ( 14.61%) Amean fault-both-18 12247.52 ( 0.00%) 11032.67 ( 9.92%) Amean fault-both-24 15683.99 ( 0.00%) 14285.70 ( 8.92%) Amean fault-both-30 18620.02 ( 0.00%) 16293.76 * 12.49%* Amean fault-both-32 19250.28 ( 0.00%) 16721.02 * 13.14%* 5.0.0-rc1 5.0.0-rc1 norescan-v3r16 finishcontend-v3r16 Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%) Percentage huge-3 95.00 ( 0.00%) 96.82 ( 1.92%) Percentage huge-5 94.22 ( 0.00%) 95.40 ( 1.26%) Percentage huge-7 92.35 ( 0.00%) 95.92 ( 3.86%) Percentage huge-12 91.90 ( 0.00%) 96.73 ( 5.25%) Percentage huge-18 89.58 ( 0.00%) 96.77 ( 8.03%) Percentage huge-24 90.03 ( 0.00%) 96.05 ( 6.69%) Percentage huge-30 89.14 ( 0.00%) 96.81 ( 8.60%) Percentage huge-32 90.58 ( 0.00%) 97.41 ( 7.54%) There is a variable impact that is mostly good on latency while allocation success rates are slightly higher. System CPU usage is reduced by about 10% but scan rate impact is mixed Compaction migrate scanned 27997659.00 20148867 Compaction free scanned 120782791.00 118324914 Migration scan rates are reduced 28% which is expected as a pageblock is used by the async scanner instead of skipped. The impact on the free scanner is known to be variable. Overall the primary justification for this patch is that completing scanning of a pageblock is very important for later patches. [yuehaibing@huawei.com: fix unused variable warning] Link: http://lkml.kernel.org/r/20190118175136.31341-14-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: YueHaibing <yuehaibing@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 804d3121ba |
mm, compaction: avoid rescanning the same pageblock multiple times
Pageblocks are marked for skip when no pages are isolated after a scan. However, it's possible to hit corner cases where the migration scanner gets stuck near the boundary between the source and target scanner. Due to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are migrated can be reallocated before the pageblock is complete. The pageblock is not necessarily skipped so it can be rescanned multiple times. Similarly, a pageblock with some dirty/writeback pages may fail to migrate and be rescanned until writeback completes which is wasteful. This patch tracks if a pageblock is being rescanned. If so, then the entire pageblock will be migrated as one operation. This narrows the race window during which pages can be reallocated during migration. Secondly, if there are pages that cannot be isolated then the pageblock will still be fully scanned and marked for skipping. On the second rescan, the pageblock skip is set and the migration scanner makes progress. 5.0.0-rc1 5.0.0-rc1 findfree-v3r16 norescan-v3r16 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%) Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%) Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%) Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%) Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%) Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%) Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%) Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%* 5.0.0-rc1 5.0.0-rc1 findfree-v3r16 norescan-v3r16 Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%) Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%) Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%) Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%) Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%) Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%) Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%) Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%) Negligible difference but this was likely a case when the specific corner case was not hit. A previous run of the same patch based on an earlier iteration of the series showed large differences where migration rates could be halved when the corner case was hit. The specific corner case where migration scan rates go through the roof was due to a dirty/writeback pageblock located at the boundary of the migration/free scanner did not happen in this case. When it does happen, the scan rates multipled by massive margins. Link: http://lkml.kernel.org/r/20190118175136.31341-13-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 5a811889de |
mm, compaction: use free lists to quickly locate a migration target
Similar to the migration scanner, this patch uses the free lists to quickly locate a migration target. The search is different in that lower orders will be searched for a suitable high PFN if necessary but the search is still bound. This is justified on the grounds that the free scanner typically scans linearly much more than the migration scanner. If a free page is found, it is isolated and compaction continues if enough pages were isolated. For SYNC* scanning, the full pageblock is scanned for any remaining free pages so that is can be marked for skipping in the near future. 1-socket thpfioscale 5.0.0-rc1 5.0.0-rc1 isolmig-v3r15 findfree-v3r16 Amean fault-both-3 3024.41 ( 0.00%) 3200.68 ( -5.83%) Amean fault-both-5 4749.30 ( 0.00%) 4847.75 ( -2.07%) Amean fault-both-7 6454.95 ( 0.00%) 6658.92 ( -3.16%) Amean fault-both-12 10324.83 ( 0.00%) 11077.62 ( -7.29%) Amean fault-both-18 12896.82 ( 0.00%) 12403.97 ( 3.82%) Amean fault-both-24 13470.60 ( 0.00%) 15607.10 * -15.86%* Amean fault-both-30 17143.99 ( 0.00%) 18752.27 ( -9.38%) Amean fault-both-32 17743.91 ( 0.00%) 21207.54 * -19.52%* The impact on latency is variable but the search is optimistic and sensitive to the exact system state. Success rates are similar but the major impact is to the rate of scanning 5.0.0-rc1 5.0.0-rc1 isolmig-v3r15 findfree-v3r16 Compaction migrate scanned 25646769 29507205 Compaction free scanned 201558184 100359571 The free scan rates are reduced by 50%. The 2-socket reductions for the free scanner are more dramatic which is a likely reflection that the machine has more memory. [dan.carpenter@oracle.com: fix static checker warning] [vbabka@suse.cz: correct number of pages scanned for lower orders] Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e380bebe47 |
mm, compaction: keep migration source private to a single compaction instance
Due to either a fast search of the free list or a linear scan, it is possible for multiple compaction instances to pick the same pageblock for migration. This is lucky for one scanner and increased scanning for all the others. It also allows a race between requests on which first allocates the resulting free block. This patch tests and updates the pageblock skip for the migration scanner carefully. When isolating a block, it will check and skip if the block is already in use. Once the zone lock is acquired, it will be rechecked so that only one scanner can set the pageblock skip for exclusive use. Any scanner contending will continue with a linear scan. The skip bit is still set if no pages can be isolated in a range. While this may result in redundant scanning, it avoids unnecessarily acquiring the zone lock when there are no suitable migration sources. 1-socket thpscale Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3390.40 ( 0.00%) 3024.41 ( 10.80%) Amean fault-both-5 5082.28 ( 0.00%) 4749.30 ( 6.55%) Amean fault-both-7 7012.51 ( 0.00%) 6454.95 ( 7.95%) Amean fault-both-12 11346.63 ( 0.00%) 10324.83 ( 9.01%) Amean fault-both-18 15324.19 ( 0.00%) 12896.82 * 15.84%* Amean fault-both-24 16088.50 ( 0.00%) 13470.60 * 16.27%* Amean fault-both-30 18723.42 ( 0.00%) 17143.99 ( 8.44%) Amean fault-both-32 18612.01 ( 0.00%) 17743.91 ( 4.66%) 5.0.0-rc1 5.0.0-rc1 findmig-v3r15 isolmig-v3r15 Percentage huge-3 89.83 ( 0.00%) 92.96 ( 3.48%) Percentage huge-5 91.96 ( 0.00%) 93.26 ( 1.41%) Percentage huge-7 92.85 ( 0.00%) 93.63 ( 0.84%) Percentage huge-12 92.74 ( 0.00%) 92.80 ( 0.07%) Percentage huge-18 91.71 ( 0.00%) 91.62 ( -0.10%) Percentage huge-24 92.13 ( 0.00%) 91.50 ( -0.69%) Percentage huge-30 93.79 ( 0.00%) 92.73 ( -1.13%) Percentage huge-32 91.27 ( 0.00%) 91.94 ( 0.74%) This shows a reasonable reduction in latency as multiple compaction scanners do not operate on the same blocks with a similar allocation success rate. Compaction migrate scanned 41093126 25646769 Migration scan rates are reduced by 38%. Link: http://lkml.kernel.org/r/20190118175136.31341-11-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 70b44595ea |
mm, compaction: use free lists to quickly locate a migration source
The migration scanner is a linear scan of a zone with a potentiall large search space. Furthermore, many pageblocks are unusable such as those filled with reserved pages or partially filled with pages that cannot migrate. These still get scanned in the common case of allocating a THP and the cost accumulates. The patch uses a partial search of the free lists to locate a migration source candidate that is marked as MOVABLE when allocating a THP. It prefers picking a block with a larger number of free pages already on the basis that there are fewer pages to migrate to free the entire block. The lowest PFN found during searches is tracked as the basis of the start for the linear search after the first search of the free list fails. After the search, the free list is shuffled so that the next search will not encounter the same page. If the search fails then the subsequent searches will be shorter and the linear scanner is used. If this search fails, or if the request is for a small or unmovable/reclaimable allocation then the linear scanner is still used. It is somewhat pointless to use the list search in those cases. Small free pages must be used for the search and there is no guarantee that movable pages are located within that block that are contiguous. 5.0.0-rc1 5.0.0-rc1 noboost-v3r10 findmig-v3r15 Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%) Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%) Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%) Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%) Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%) Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%* Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%* Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%* 5.0.0-rc1 5.0.0-rc1 noboost-v3r10 findmig-v3r15 Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%) Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%) Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%) Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%) Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%) Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%) Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%) Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%) This shows an improvement in allocation latencies with similar allocation success rates. While not presented, there was a 31% reduction in migration scanning and a 8% reduction on system CPU usage. A 2-socket machine showed similar benefits. [mgorman@techsingularity.net: several fixes] Link: http://lkml.kernel.org/r/20190204120111.GL9565@techsingularity.net [vbabka@suse.cz: migrate block that was found-fast, some optimisations] Link: http://lkml.kernel.org/r/20190118175136.31341-10-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <Vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | fd1444b272 |
mm, compaction: ignore the fragmentation avoidance boost for isolation and compaction
When pageblocks get fragmented, watermarks are artifically boosted to reclaim pages to avoid further fragmentation events. However, compaction is often either fragmentation-neutral or moving movable pages away from unmovable/reclaimable pages. As the true watermarks are preserved, allow compaction to ignore the boost factor. The expected impact is very slight as the main benefit is that compaction is slightly more likely to succeed when the system has been fragmented very recently. On both 1-socket and 2-socket machines for THP-intensive allocation during fragmentation the success rate was increased by less than 1% which is marginal. However, detailed tracing indicated that failure of migration due to a premature ENOMEM triggered by watermark checks were eliminated. Link: http://lkml.kernel.org/r/20190118175136.31341-9-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | efe771c760 |
mm, compaction: always finish scanning of a full pageblock
When compaction is finishing, it uses a flag to ensure the pageblock is complete but it makes sense to always complete migration of a pageblock. Minimally, skip information is based on a pageblock and partially scanned pageblocks may incur more scanning in the future. The pageblock skip handling also becomes more strict later in the series and the hint is more useful if a complete pageblock was always scanned. The potentially impacts latency as more scanning is done but it's not a consistent win or loss as the scanning is not always a high percentage of the pageblock and sometimes it is offset by future reductions in scanning. Hence, the results are not presented this time due to a misleading mix of gains/losses without any clear pattern. However, full scanning of the pageblock is important for later patches. Link: http://lkml.kernel.org/r/20190118175136.31341-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 806031bb5e |
mm, migrate: immediately fail migration of a page with no migration handler
Pages with no migration handler use a fallback handler which sometimes works and sometimes persistently retries. A historical example was blockdev pages but there are others such as odd refcounting when page->private is used. These are retried multiple times which is wasteful during compaction so this patch will fail migration faster unless the caller specifies MIGRATE_SYNC. This is not expected to help THP allocation success rates but it did reduce latencies very slightly in some cases. 1-socket thpfioscale 4.20.0 4.20.0 noreserved-v2r15 failfast-v2r15 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%) Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%) Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%) Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%) Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%) Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%) Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%) Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%) The 2-socket results are not materially different. Scan rates are similar as expected. Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 4469ab9847 |
mm, compaction: rename map_pages to split_map_pages
It's non-obvious that high-order free pages are split into order-0 pages from the function name. Fix it. Link: http://lkml.kernel.org/r/20190118175136.31341-6-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 40cacbcb32 |
mm, compaction: remove unnecessary zone parameter in some instances
A zone parameter is passed into a number of top-level compaction functions despite the fact that it's already in compact_control. This is harmless but it did need an audit to check if zone actually ever changes meaningfully. This patches removes the parameter in a number of top-level functions. The change could be much deeper but this was enough to briefly clarify the flow. No functional change. Link: http://lkml.kernel.org/r/20190118175136.31341-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 566e54e113 |
mm, compaction: remove last_migrated_pfn from compact_control
The last_migrated_pfn field is a bit dubious as to whether it really helps but either way, the information from it can be inferred without increasing the size of compact_control so remove the field. Link: http://lkml.kernel.org/r/20190118175136.31341-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | c5943b9c53 |
mm, compaction: rearrange compact_control
compact_control spans two cache lines with write-intensive lines on both. Rearrange so the most write-intensive fields are in the same cache line. This has a negligible impact on the overall performance of compaction and is more a tidying exercise than anything. Link: http://lkml.kernel.org/r/20190118175136.31341-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | c5fbd937b6 |
mm, compaction: shrink compact_control
Patch series "Increase success rates and reduce latency of compaction", v3. This series reduces scan rates and success rates of compaction, primarily by using the free lists to shorten scans, better controlling of skip information and whether multiple scanners can target the same block and capturing pageblocks before being stolen by parallel requests. The series is based on mmotm from January 9th, 2019 with the previous compaction series reverted. I'm mostly using thpscale to measure the impact of the series. The benchmark creates a large file, maps it, faults it, punches holes in the mapping so that the virtual address space is fragmented and then tries to allocate THP. It re-executes for different numbers of threads. From a fragmentation perspective, the workload is relatively benign but it does stress compaction. The overall impact on latencies for a 1-socket machine is baseline patches Amean fault-both-3 3832.09 ( 0.00%) 2748.56 * 28.28%* Amean fault-both-5 4933.06 ( 0.00%) 4255.52 ( 13.73%) Amean fault-both-7 7017.75 ( 0.00%) 6586.93 ( 6.14%) Amean fault-both-12 11610.51 ( 0.00%) 9162.34 * 21.09%* Amean fault-both-18 17055.85 ( 0.00%) 11530.06 * 32.40%* Amean fault-both-24 19306.27 ( 0.00%) 17956.13 ( 6.99%) Amean fault-both-30 22516.49 ( 0.00%) 15686.47 * 30.33%* Amean fault-both-32 23442.93 ( 0.00%) 16564.83 * 29.34%* The allocation success rates are much improved baseline patches Percentage huge-3 85.99 ( 0.00%) 97.96 ( 13.92%) Percentage huge-5 88.27 ( 0.00%) 96.87 ( 9.74%) Percentage huge-7 85.87 ( 0.00%) 94.53 ( 10.09%) Percentage huge-12 82.38 ( 0.00%) 98.44 ( 19.49%) Percentage huge-18 83.29 ( 0.00%) 99.14 ( 19.04%) Percentage huge-24 81.41 ( 0.00%) 97.35 ( 19.57%) Percentage huge-30 80.98 ( 0.00%) 98.05 ( 21.08%) Percentage huge-32 80.53 ( 0.00%) 97.06 ( 20.53%) That's a nearly perfect allocation success rate. The biggest impact is on the scan rates Compaction migrate scanned 55893379 19341254 Compaction free scanned 474739990 11903963 The number of pages scanned for migration was reduced by 65% and the free scanner was reduced by 97.5%. So much less work in exchange for lower latency and better success rates. The series was also evaluated using a workload that heavily fragments memory but the benefits there are also significant, albeit not presented. It was commented that we should be rethinking scanning entirely and to a large extent I agree. However, to achieve that you need a lot of this series in place first so it's best to make the linear scanners as best as possible before ripping them out. This patch (of 22): The isolate and migrate scanners should never isolate more than a pageblock of pages so unsigned int is sufficient saving 8 bytes on a 64-bit build. Link: http://lkml.kernel.org/r/20190118175136.31341-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
zhengbin | 35f12f0f5c |
mm/filemap: pass inclusive 'end_byte' parameter to filemap_range_has_page
The 'end_byte' parameter of filemap_range_has_page is required to be
inclusive, so follow the rule.
Link: http://lkml.kernel.org/r/1548678679-18122-1-git-send-email-zhengbin13@huawei.com
Fixes:
|
|
Yang Shi | e9f598730e |
mm: swap: add comment for swap_vma_readahead
swap_vma_readahead()'s comment is missing, just add it. Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Hugh Dickins <hughd@google.com Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | 8fd2e0b505 |
mm: swap: check if swap backing device is congested or not
Swap readahead would read in a few pages regardless if the underlying device is busy or not. It may incur long waiting time if the device is congested, and it may also exacerbate the congestion. Use inode_read_congested() to check if the underlying device is busy or not like what file page readahead does. Get inode from swap_info_struct. Although we can add inode information in swap_address_space (address_space->host), it may lead some unexpected side effect, i.e. it may break mapping_cap_account_dirty(). Using inode from swap_info_struct seems simple and good enough. Just does the check in vma_cluster_readahead() since swap_vma_readahead() is just used for non-rotational device which much less likely has congestion than traditional HDD. Although swap slots may be consecutive on swap partition, it still may be fragmented on swap file. This check would help to reduce excessive stall for such case. The test with page_fault1 of will-it-scale (sometimes tracing may just show runtest.py that is the wrapper script of page_fault1), which basically launches NR_CPU threads to generate 128MB anonymous pages for each thread, on my virtual machine with congested HDD shows long tail latency is reduced significantly. Without the patch page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page(); page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page(); page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page(); page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page(); page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page(); page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page(); page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page(); page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page(); With the patch runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page(); runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page(); runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page(); runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page(); runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page(); runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page(); runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page(); runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page(); [akpm@linux-foundation.org: code cleanup] [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Tim Chen <tim.c.chen@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Hugh Dickins <hughd@google.com Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matthew Wilcox | 14ef1fc72a |
mm/filemap.c: remove redundant test from find_get_pages_contig
After we establish a reference on the page, we check the pointer
continues to be in the correct position in i_pages. Checking
page->index afterwards is unnecessary; if it were to change, then the
pointer to it from the page cache would also move. The check used to be
done before grabbing a reference on the page which was racy (see commit
|
|
Gustavo A. R. Silva | 67b8046f42 |
mm/memcontrol.c: use struct_size() in kmalloc()
One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This code was detected with the help of Coccinelle. Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Wei Yang | c52e75935f |
mm: remove extra drain pages on pcp list
In the current implementation, there are two places to isolate a range of page: __offline_pages() and alloc_contig_range(). During this procedure, it will drain pages on pcp list. Below is a brief call flow: __offline_pages()/alloc_contig_range() start_isolate_page_range() set_migratetype_isolate() drain_all_pages() drain_all_pages() <--- A This snippet shows the current logic is isolate and drain pcp list for each pageblock and drain pcp list again for the whole range. start_isolate_page_range is responsible for isolating the given pfn range. One part of that job is to make sure that also pages that are on the allocator pcp lists are properly isolated. Otherwise they could be reused and the range wouldn't be completely isolated until the memory is freed back. While there is no strict guarantee here because pages might get allocated at any time before drain_all_pages is called there doesn't seem to be any strong demand for such a guarantee. In any case, draining is already done at the isolation level and there is no need to do it again later by start_isolate_page_range callers (memory hotplug and CMA allocator currently). Therefore remove pointless draining in existing callers to make the code more clear and functionally correct. [mhocko@suse.com: provide a clearer changelog for the last two paragraphs] Link: http://lkml.kernel.org/r/20190105233141.2329-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Anshuman Khandual | 7ed2c31dab |
mm/hugetlb: distinguish between migratability and movability
Patch series "arm64/mm: Enable HugeTLB migration", v4. This patch series enables HugeTLB migration support for all supported huge page sizes at all levels including contiguous bit implementation. Following HugeTLB migration support matrix has been enabled with this patch series. All permutations have been tested except for the 16GB. CONT PTE PMD CONT PMD PUD -------- --- -------- --- 4K: 64K 2M 32M 1G 16K: 2M 32M 1G 64K: 2M 512M 16G First the series adds migration support for PUD based huge pages. It then adds a platform specific hook to query an architecture if a given huge page size is supported for migration while also providing a default fallback option preserving the existing semantics which just checks for (PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB migration on arm64 and subscribe to this new platform specific hook by defining an override. The second patch differentiates between movability and migratability aspects of huge pages and implements hugepage_movable_supported() which can then be used during allocation to decide whether to place the huge page in movable zone or not. This patch (of 5): During huge page allocation it's migratability is checked to determine if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE. But the movability aspect of the huge page could depend on other factors than just migratability. Movability in itself is a distinct property which should not be tied with migratability alone. This differentiates these two and implements an enhanced movability check which also considers huge page size to determine if it is feasible to be placed under a movable zone. At present it just checks for gigantic pages but going forward it can incorporate other enhanced checks. Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Steve Capper <steve.capper@arm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Matthew Wilcox | 6b7e5cad65 |
mm: remove sysctl_extfrag_handler()
sysctl_extfrag_handler() neglects to propagate the return value from proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need to exist, so just use proc_dointvec_minmax() directly. Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Reported-by: Aditya Pakki <pakki001@umn.edu> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Uladzislau Rezki (Sony) | 153178edc7 |
vmalloc: export __vmalloc_node_range for CONFIG_TEST_VMALLOC_MODULE
Export __vmaloc_node_range() function if CONFIG_TEST_VMALLOC_MODULE is enabled. Some test cases in vmalloc test suite module require and make use of that function. Please note, that it is not supposed to be used for other purposes. We need it only for performance analysis, stressing and stability check of vmalloc allocator. Link: http://lkml.kernel.org/r/20190103142108.20744-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Roman Penyaev | bc84c53525 |
mm/vmalloc: pass VM_USERMAP flags directly to __vmalloc_node_range()
vmalloc_user*() calls differ from normal vmalloc() only in that they set VM_USERMAP flags for the area. During the whole history of vmalloc.c changes now it is possible simply to pass VM_USERMAP flags directly to __vmalloc_node_range() call instead of finding the area (which obviously takes time) after the allocation. Link: http://lkml.kernel.org/r/20190103145954.16942-4-rpenyaev@suse.de Signed-off-by: Roman Penyaev <rpenyaev@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Joe Perches <joe@perches.com> Cc: "Luis R. Rodriguez" <mcgrof@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Roman Penyaev | c67dc62475 |
mm/vmalloc: do not call kmemleak_free() on not yet accounted memory
__vmalloc_area_node() calls vfree() on error path, which in turn calls kmemleak_free(), but area is not yet accounted by kmemleak_vmalloc(). Link: http://lkml.kernel.org/r/20190103145954.16942-3-rpenyaev@suse.de Signed-off-by: Roman Penyaev <rpenyaev@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Joe Perches <joe@perches.com> Cc: "Luis R. Rodriguez" <mcgrof@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Roman Penyaev | 401592d2e0 |
mm/vmalloc: fix size check for remap_vmalloc_range_partial()
When VM_NO_GUARD is not set area->size includes adjacent guard page, thus for correct size checking get_vm_area_size() should be used, but not area->size. This fixes possible kernel oops when userspace tries to mmap an area on 1 page bigger than was allocated by vmalloc_user() call: the size check inside remap_vmalloc_range_partial() accounts non-existing guard page also, so check successfully passes but vmalloc_to_page() returns NULL (guard page does not physically exist). The following code pattern example should trigger an oops: static int oops_mmap(struct file *file, struct vm_area_struct *vma) { void *mem; mem = vmalloc_user(4096); BUG_ON(!mem); /* Do not care about mem leak */ return remap_vmalloc_range(vma, mem, 0); } And userspace simply mmaps size + PAGE_SIZE: mmap(NULL, 8192, PROT_WRITE|PROT_READ, MAP_PRIVATE, fd, 0); Possible candidates for oops which do not have any explicit size checks: *** drivers/media/usb/stkwebcam/stk-webcam.c: v4l_stk_mmap[789] ret = remap_vmalloc_range(vma, sbuf->buffer, 0); Or the following one: *** drivers/video/fbdev/core/fbmem.c static int fb_mmap(struct file *file, struct vm_area_struct * vma) ... res = fb->fb_mmap(info, vma); Where fb_mmap callback calls remap_vmalloc_range() directly without any explicit checks: *** drivers/video/fbdev/vfb.c static int vfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { return remap_vmalloc_range(vma, (void *)info->fix.smem_start, vma->vm_pgoff); } Link: http://lkml.kernel.org/r/20190103145954.16942-2-rpenyaev@suse.de Signed-off-by: Roman Penyaev <rpenyaev@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Joe Perches <joe@perches.com> Cc: "Luis R. Rodriguez" <mcgrof@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Roman Penyaev | 5a82ac715d |
mm/vmalloc.c: make vmalloc_32_user() align base kernel virtual address to SHMLBA
This patch repeats the original one from David S Miller:
|
|
Shakeel Butt | 60cd4bcd62 |
memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Wei Yang | 9234bae9b2 |
mm, slub: make the comment of put_cpu_partial() complete
There are two cases when put_cpu_partial() is invoked. * __slab_free * get_partial_node This patch just makes it cover these two cases. Link: http://lkml.kernel.org/r/20181025094437.18951-3-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill Tkhai | 52d1e606ee |
mm: reuse only-pte-mapped KSM page in do_wp_page()
Add an optimization for KSM pages almost in the same way that we have for ordinary anonymous pages. If there is a write fault in a page, which is mapped to an only pte, and it is not related to swap cache; the page may be reused without copying its content. [ Note that we do not consider PageSwapCache() pages at least for now, since we don't want to complicate __get_ksm_page(), which has nice optimization based on this (for the migration case). Currenly it is spinning on PageSwapCache() pages, waiting for when they have unfreezed counters (i.e., for the migration finish). But we don't want to make it also spinning on swap cache pages, which we try to reuse, since there is not a very high probability to reuse them. So, for now we do not consider PageSwapCache() pages at all. ] So in reuse_ksm_page() we check for 1) PageSwapCache() and 2) page_stable_node(), to skip a page, which KSM is currently trying to link to stable tree. Then we do page_ref_freeze() to prohibit KSM to merge one more page into the page, we are reusing. After that, nobody can refer to the reusing page: KSM skips !PageSwapCache() pages with zero refcount; and the protection against of all other participants is the same as for reused ordinary anon pages pte lock, page lock and mmap_sem. [akpm@linux-foundation.org: replace BUG_ON()s with WARN_ON()s] Link: http://lkml.kernel.org/r/154471491016.31352.1168978849911555609.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Anshuman Khandual | 98fa15f34c |
mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Liviu Dudau | 6ade20327d |
mm/vmalloc.c: don't dereference possible NULL pointer in __vunmap()
find_vmap_area() can return a NULL pointer and we're going to
dereference it without checking it first. Use the existing
find_vm_area() function which does exactly what we want and checks for
the NULL pointer.
Link: http://lkml.kernel.org/r/20181228171009.22269-1-liviu@dudau.co.uk
Fixes:
|
|
Arun KS | a9cd410a3d |
mm/page_alloc.c: memory hotplug: free pages as higher order
When freeing pages are done with higher order, time spent on coalescing pages by buddy allocator can be reduced. With section size of 256MB, hot add latency of a single section shows improvement from 50-60 ms to less than 1 ms, hence improving the hot add latency by 60 times. Modify external providers of online callback to align with the change. [arunks@codeaurora.org: v11] Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org [akpm@linux-foundation.org: remove unused local, per Arun] [akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar] [akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch] [arunks@codeaurora.org: v8] Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org [arunks@codeaurora.org: v9] Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Qian Cai | 278d7756df |
mm/slub.c: remove an unused addr argument
"addr" function argument is not used in alloc_consistency_checks() at
all, so remove it.
Link: http://lkml.kernel.org/r/20190211123214.35592-1-cai@lca.pw
Fixes:
|
|
Qian Cai | 92d1d07daa |
mm/slab.c: kmemleak no scan alien caches
Kmemleak throws endless warnings during boot due to in
__alloc_alien_cache(),
alc = kmalloc_node(memsize, gfp, node);
init_arraycache(&alc->ac, entries, batch);
kmemleak_no_scan(ac);
Kmemleak does not track the array cache (alc->ac) but the alien cache
(alc) instead, so let it track the latter by lifting kmemleak_no_scan()
out of init_arraycache().
There is another place that calls init_arraycache(), but
alloc_kmem_cache_cpus() uses the percpu allocation where will never be
considered as a leak.
kmemleak: Found object by alias at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
lookup_object+0x84/0xac
find_and_get_object+0x84/0xe4
kmemleak_no_scan+0x74/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
kmemleak: Object 0xffff8007b9aa7e00 (size 256):
kmemleak: comm "swapper/0", pid 1, jiffies 4294697137
kmemleak: min_count = 1
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
kmemleak_alloc+0x84/0xb8
kmem_cache_alloc_node_trace+0x31c/0x3a0
__kmalloc_node+0x58/0x78
setup_kmem_cache_node+0x26c/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
kmemleak_no_scan+0x90/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw
Fixes:
|
|
Peng Wang | edde82b6df |
mm/slub.c: freelist is ensured to be NULL when new_slab() fails
new_slab_objects() will return immediately if freelist is not NULL. if (freelist) return freelist; One more assignment operation could be avoided. Link: http://lkml.kernel.org/r/20181229062512.30469-1-rocking@whu.edu.cn Signed-off-by: Peng Wang <rocking@whu.edu.cn> Reviewed-by: Pekka Enberg <penberg@kernel.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrey Konovalov | 5c0198b6fb |
kasan: fix coccinelle warnings in kasan_p*_table
kasan_p4d_table(), kasan_pmd_table() and kasan_pud_table() are declared
as returning bool, but return 0 instead of false, which produces a
coccinelle warning. Fix it.
Link: http://lkml.kernel.org/r/1fa6fadf644859e8a6a8ecce258444b49be8c7ee.1551716733.git.andreyknvl@google.com
Fixes:
|