mirror of https://gitee.com/openkylin/linux.git
9811 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Linus Torvalds | ce307084c9 |
block-5.12-2021-03-12-v2
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBLzKsQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpi0ID/9djN1db0OrAjQgWdOQsKwzcPG4fmVRHJAu Zi8SPRj0ByonWGaPWjiSi297/j00dfYFFIXaB1Pfo4j0wX0IK8bJINl0G8SN6Dag WYBBrT/5rCQgD8fjQ1XhuzuqLwxwcZfYXAnCAlqABG18nPk532D4dX2CMEasl8F7 XWTTj5PqHDN4bCcriH1GEA5S+2nmoz5YXjNZEDcY3/pQMdyb8Jo9mRfZubkrnRxK c9fz2LjUz0IRaSb+9PILY5qDLOSIh+vHOIk/3BKW9DoqU/S3kTTr4twqnOclfVPH VgJM9b+sHveVCztCJ9bnNGkW7HWjUQa8gb/B40NBxKEhw7w/HCjykhhxd+QTUQTM GJVMRGYWhzuUEuU1M1hArPua0GLmPKSvC0CRgbKRmgPNjshTquZPJnBBFwv2wZKQ GkrwktdK9ihE1ya4gu20MupST3PIpT3jtc6NAizr6DCy0wJ0Z1X5KYnFdbtS79No I9qPC8lu3AcZq6NXdBfTO9ngIdiUwi9AfSYj7koS/4dmnVccVJmaj0/NNmVp2Ro3 HtaObanBnTi9v8YHl8WgX6lq5RjuQ204fXmd0No4mHFvgxsl7YaX+JBts7S3A2Nf PoQLqmulcLmzT3EVuEg279aXw2rbnyWHARbF/5/tIr4JcugtLJhwFnBA5YgFreq9 lSbqgoKSHw== =qHyO -----END PGP SIGNATURE----- Merge tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block Pull block fixes from Jens Axboe: "Mostly just random fixes all over the map. The only odd-one-out change is finally getting the rename of BIO_MAX_PAGES to BIO_MAX_VECS done. This should've been done with the multipage bvec change, but it's been left. Do it now to avoid hassles around changes piling up for the next merge window. Summary: - NVMe pull request: - one more quirk (Dmitry Monakhov) - fix max_zone_append_sectors initialization (Chaitanya Kulkarni) - nvme-fc reset/create race fix (James Smart) - fix status code on aborts/resets (Hannes Reinecke) - fix the CSS check for ZNS namespaces (Chaitanya Kulkarni) - fix a use after free in a debug printk in nvme-rdma (Lv Yunlong) - Follow-up NVMe error fix for NULL 'id' (Christoph) - Fixup for the bd_size_lock being IRQ safe, now that the offending driver has been dropped (Damien). - rsxx probe failure error return (Jia-Ju) - umem probe failure error return (Wei) - s390/dasd unbind fixes (Stefan) - blk-cgroup stats summing fix (Xunlei) - zone reset handling fix (Damien) - Rename BIO_MAX_PAGES to BIO_MAX_VECS (Christoph) - Suppress uevent trigger for hidden devices (Daniel) - Fix handling of discard on busy device (Jan) - Fix stale cache issue with zone reset (Shin'ichiro)" * tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block: nvme: fix the nsid value to print in nvme_validate_or_alloc_ns block: Discard page cache of zone reset target range block: Suppress uevent for hidden device when removed block: rename BIO_MAX_PAGES to BIO_MAX_VECS nvme-pci: add the DISABLE_WRITE_ZEROES quirk for a Samsung PM1725a nvme-rdma: Fix a use after free in nvmet_rdma_write_data_done nvme-core: check ctrl css before setting up zns nvme-fc: fix racing controller reset and create association nvme-fc: return NVME_SC_HOST_ABORTED_CMD when a command has been aborted nvme-fc: set NVME_REQ_CANCELLED in nvme_fc_terminate_exchange() nvme: add NVME_REQ_CANCELLED flag in nvme_cancel_request() nvme: simplify error logic in nvme_validate_ns() nvme: set max_zone_append_sectors nvme_revalidate_zones block: rsxx: fix error return code of rsxx_pci_probe() block: Fix REQ_OP_ZONE_RESET_ALL handling umem: fix error return code in mm_pci_probe() blk-cgroup: Fix the recursive blkg rwstat s390/dasd: fix hanging IO request during DASD driver unbind s390/dasd: fix hanging DASD driver unbind block: Try to handle busy underlying device on discard |
|
Christoph Hellwig | a8affc03a9 |
block: rename BIO_MAX_PAGES to BIO_MAX_VECS
Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop confusing users of the bio API. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Linus Torvalds | f09b04cc64 |
for-5.12-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBCOi4ACgkQxWXV+ddt WDtXvw//TWx3m05qHJqqG8V90uel8hB2J5vd4CA2r62Je1G8RDho57Bo7fyvL4l+ mdCPt+INajb0mpp0IoHMtyLHefojgNOsrX6FAK1/gjnLkjRLFZ3wQqkA34Ue9pNs 2u+rMY6eB105iaS3VejEmiebr++MZfjfQRV+GXU336AEeOEDZdgol8o6jMyde5TO zRH9Dni5Sy/YAGGAb0vaoG2BMyVigrqkbjkzwjYChbUj/KuyffAgQj0v8BvsC9Y6 DnPD5yrt5kSZzuqQFH7c2jxLN0cvW+tJ0znCpnwn/nmiCALbl6y2a4dmewC32TwJ II+3OPGpYudafLJEP15qafsJb7LmEfnGwUIrfEZbyb4lQG12uyYOdP3IN7+8td14 fd29GE62w5aErsmurcMFj/x43k4DIfcqC8b+Y+S27JZF1szh7ExCfoYC/6c5e5Qf j6/6RtRSVqdxImRd0QYv3mCIeSG0CH2UR/1otvC81jRTHRyB3r6TV8wPLo+5K/Rk ongKZ+BQa5RUk8skdFburhrkDDKgfBcjlexl5Gsqw+D/xTGNAcVnNQrTtW9sTSle hB3b7CunXA1eCyui2SIqN1dR8hwao4b9RzYNs3y2jWjSPZD/Bp0BdQ8oxSPvIWkX a8kauFGhKhY2Tdqau+CQ4UbbQWzEB7FulkPCOLiHDDZjyxIvAA4= =tlU3 -----END PGP SIGNATURE----- Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "More regression fixes and stabilization. Regressions: - zoned mode - count zone sizes in wider int types - fix space accounting for read-only block groups - subpage: fix page tail zeroing Fixes: - fix spurious warning when remounting with free space tree - fix warning when creating a directory with smack enabled - ioctl checks for qgroup inheritance when creating a snapshot - qgroup - fix missing unlock on error path in zero range - fix amount of released reservation on error - fix flushing from unsafe context with open transaction, potentially deadlocking - minor build warning fixes" * tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: do not account freed region of read-only block group as zone_unusable btrfs: zoned: use sector_t for zone sectors btrfs: subpage: fix the false data csum mismatch error btrfs: fix warning when creating a directory with smack enabled btrfs: don't flush from btrfs_delayed_inode_reserve_metadata btrfs: export and rename qgroup_reserve_meta btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata btrfs: fix spurious free_space_tree remount warning btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors btrfs: ref-verify: use 'inline void' keyword ordering |
|
Naohiro Aota | badae9c869 |
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
We migrate zone unusable bytes to read-only bytes when a block group is
set to read-only, and account all the free region as bytes_readonly.
Thus, we should not increase block_group->zone_unusable when the block
group is read-only.
Fixes:
|
|
Naohiro Aota | d734492a14 |
btrfs: zoned: use sector_t for zone sectors
We need to use sector_t for zone_sectors, or it would set the zone size
to zero when the size >= 4GB (= 2^24 sectors) by shifting the
zone_sectors value by SECTOR_SHIFT. We're assuming zones sizes up to
8GiB.
Fixes:
|
|
Qu Wenruo | c28ea613fa |
btrfs: subpage: fix the false data csum mismatch error
[BUG] When running fstresss, we can hit strange data csum mismatch where the on-disk data is in fact correct (passes scrub). With some extra debug info added, we have the following traces: 0482us: btrfs_do_readpage: root=5 ino=284 offset=393216, submit force=0 pgoff=0 iosize=8192 0494us: btrfs_do_readpage: root=5 ino=284 offset=401408, submit force=0 pgoff=8192 iosize=4096 0498us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=393216 len=8192 0591us: btrfs_do_readpage: root=5 ino=284 offset=405504, submit force=0 pgoff=12288 iosize=36864 0594us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=401408 len=4096 0863us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=405504 len=36864 0933us: btrfs_verify_data_csum: root=5 ino=284 offset=393216 len=8192 0967us: btrfs_do_readpage: root=5 ino=284 offset=442368, skip beyond isize pgoff=49152 iosize=16384 1047us: btrfs_verify_data_csum: root=5 ino=284 offset=401408 len=4096 1163us: btrfs_verify_data_csum: root=5 ino=284 offset=405504 len=36864 1290us: check_data_csum: !!! root=5 ino=284 offset=438272 pg_off=45056 !!! 7387us: end_bio_extent_readpage: root=5 ino=284 before pending_read_bios=0 [CAUSE] Normally we expect all submitted bio reads to only touch the range we specified, and under subpage context, it means we should only touch the range specified in each bvec. But in data read path, inside end_bio_extent_readpage(), we have page zeroing which only takes regular page size into consideration. This means for subpage if we have an inode whose content looks like below: 0 16K 32K 48K 64K |///////| |///////| | |//| = data needs to be read from disk | | = hole And i_size is 64K initially. Then the following race can happen: T1 | T2 --------------------------------+-------------------------------- btrfs_do_readpage() | |- isize = 64K; | | At this time, the isize is | | 64K | | | |- submit_extent_page() | | submit previous assembled bio| | assemble bio for [0, 16K) | | | |- submit_extent_page() | submit read bio for [0, 16K) | assemble read bio for | [32K, 48K) | | | btrfs_setsize() | |- i_size_write(, 16K); | Now i_size is only 16K end_io() for [0K, 16K) | |- end_bio_extent_readpage() | |- btrfs_verify_data_csum() | | No csum error | |- i_size = 16K; | |- zero_user_segment(16K, | PAGE_SIZE); | !!! We zeroed range | !!! [32K, 48K) | | end_io for [32K, 48K) | |- end_bio_extent_readpage() | |- btrfs_verify_data_csum() | ! CSUM MISMATCH ! | ! As the range is zeroed now ! [FIX] To fix the problem, make end_bio_extent_readpage() to only zero the range of bvec. The bug only affects subpage read-write support, as for full read-only mount we can't change i_size thus won't hit the race condition. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Filipe Manana | fd57a98d6f |
btrfs: fix warning when creating a directory with smack enabled
When we have smack enabled, during the creation of a directory smack may attempt to add a "smack transmute" xattr on the inode, which results in the following warning and trace: WARNING: CPU: 3 PID: 2548 at fs/btrfs/transaction.c:537 start_transaction+0x489/0x4f0 Modules linked in: nft_objref nf_conntrack_netbios_ns (...) CPU: 3 PID: 2548 Comm: mkdir Not tainted 5.9.0-rc2smack+ #81 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:start_transaction+0x489/0x4f0 Code: e9 be fc ff ff (...) RSP: 0018:ffffc90001887d10 EFLAGS: 00010202 RAX: ffff88816f1e0000 RBX: 0000000000000201 RCX: 0000000000000003 RDX: 0000000000000201 RSI: 0000000000000002 RDI: ffff888177849000 RBP: ffff888177849000 R08: 0000000000000001 R09: 0000000000000004 R10: ffffffff825e8f7a R11: 0000000000000003 R12: ffffffffffffffe2 R13: 0000000000000000 R14: ffff88803d884270 R15: ffff8881680d8000 FS: 00007f67317b8440(0000) GS:ffff88817bcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f67247a22a8 CR3: 000000004bfbc002 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? slab_free_freelist_hook+0xea/0x1b0 ? trace_hardirqs_on+0x1c/0xe0 btrfs_setxattr_trans+0x3c/0xf0 __vfs_setxattr+0x63/0x80 smack_d_instantiate+0x2d3/0x360 security_d_instantiate+0x29/0x40 d_instantiate_new+0x38/0x90 btrfs_mkdir+0x1cf/0x1e0 vfs_mkdir+0x14f/0x200 do_mkdirat+0x6d/0x110 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f673196ae6b Code: 8b 05 11 (...) RSP: 002b:00007ffc3c679b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000053 RAX: ffffffffffffffda RBX: 00000000000001ff RCX: 00007f673196ae6b RDX: 0000000000000000 RSI: 00000000000001ff RDI: 00007ffc3c67a30d RBP: 00007ffc3c67a30d R08: 00000000000001ff R09: 0000000000000000 R10: 000055d3e39fe930 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffc3c679cd8 R14: 00007ffc3c67a30d R15: 00007ffc3c679ce0 irq event stamp: 11029 hardirqs last enabled at (11037): [<ffffffff81153fe6>] console_unlock+0x486/0x670 hardirqs last disabled at (11044): [<ffffffff81153c01>] console_unlock+0xa1/0x670 softirqs last enabled at (8864): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20 softirqs last disabled at (8851): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20 This happens because at btrfs_mkdir() we call d_instantiate_new() while holding a transaction handle, which results in the following call chain: btrfs_mkdir() trans = btrfs_start_transaction(root, 5); d_instantiate_new() smack_d_instantiate() __vfs_setxattr() btrfs_setxattr_trans() btrfs_start_transaction() start_transaction() WARN_ON() --> a tansaction start has TRANS_EXTWRITERS set in its type h->orig_rsv = h->block_rsv h->block_rsv = NULL btrfs_end_transaction(trans) Besides the warning triggered at start_transaction, we set the handle's block_rsv to NULL which may cause some surprises later on. So fix this by making btrfs_setxattr_trans() not start a transaction when we already have a handle on one, stored in current->journal_info, and use that handle. We are good to use the handle because at btrfs_mkdir() we did reserve space for the xattr and the inode item. Reported-by: Casey Schaufler <casey@schaufler-ca.com> CC: stable@vger.kernel.org # 5.4+ Acked-by: Casey Schaufler <casey@schaufler-ca.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Link: https://lore.kernel.org/linux-btrfs/434d856f-bd7b-4889-a6ec-e81aaebfa735@schaufler-ca.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 4d14c5cde5 |
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
Calling btrfs_qgroup_reserve_meta_prealloc from btrfs_delayed_inode_reserve_metadata can result in flushing delalloc while holding a transaction and delayed node locks. This is deadlock prone. In the past multiple commits: * |
|
Nikolay Borisov | 80e9baed72 |
btrfs: export and rename qgroup_reserve_meta
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 0f9c03d824 |
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
Following commit |
|
Boris Burkov | c55a4319c4 |
btrfs: fix spurious free_space_tree remount warning
The intended logic of the check is to catch cases where the desired free_space_tree setting doesn't match the mounted setting, and the remount is anything but ro->rw. However, it makes the mistake of checking equality on a masked integer (btrfs_test_opt) against a boolean (btrfs_fs_compat_ro). If you run the reproducer: $ mount -o space_cache=v2 dev mnt $ mount -o remount,ro mnt you would expect no warning, because the remount is not attempting to change the free space tree setting, but we do see the warning. To fix this, add explicit bool type casts to the condition. I tested a variety of transitions: sudo mount -o space_cache=v2 /dev/vg0/lv0 mnt/lol (fst enabled) mount -o remount,ro mnt/lol (no warning, no fst change) sudo mount -o remount,rw,space_cache=v1,clear_cache (no warning, ro->rw) sudo mount -o remount,rw,space_cache=v2 mnt (warning, rw->rw with change) sudo mount -o remount,ro mnt (no warning, no fst change) sudo mount -o remount,rw,space_cache=v2 mnt (no warning, no fst change) Reported-by: Chris Murphy <lists@colorremedies.com> CC: stable@vger.kernel.org # 5.11 Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Dan Carpenter | 5011c5a663 |
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct. Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.
Fixes:
|
|
Nikolay Borisov | 4f6a49de64 |
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.
Fixes:
|
|
Randy Dunlap | aedb9d9089 |
btrfs: ref-verify: use 'inline void' keyword ordering
Fix build warnings of function signature when CONFIG_STACKTRACE is not enabled by reordering the 'inline' and 'void' keywords. ../fs/btrfs/ref-verify.c:221:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] static void inline __save_stack_trace(struct ref_action *ra) ../fs/btrfs/ref-verify.c:225:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] static void inline __print_stack_trace(struct btrfs_fs_info *fs_info, Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Linus Torvalds | 7a7fd0de4a |
Merge branch 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull kmap conversion updates from David Sterba: "This contains changes regarding kmap API use and eg conversion from kmap_atomic to kmap_local_page. The API belongs to memory management but to save cross-tree dependency headaches we've agreed to take it through the btrfs tree because there are some trivial conversions possible, while the rest will need some time and getting the easy cases out of the way would be convenient. The changes can be grouped: - function exports, new helpers - new VM_BUG_ON for additional verification; it's been discussed if it should be VM_BUG_ON or BUG_ON, the former was chosen due to performance reasons - code replaced by relevant helpers" [ This is an updated version of a request that originally came in during the merge window, but I asked for some updates: https://lore.kernel.org/lkml/cover.1614090658.git.dsterba@suse.com/ which is why this got merge after the merge window closed. - Linus ] * 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: use copy_highpage() instead of 2 kmaps() btrfs: use memcpy_[to|from]_page() and kmap_local_page() mm/highmem: Add VM_BUG_ON() to mem*_page() calls mm/highmem: Introduce memcpy_page(), memmove_page(), and memset_page() mm/highmem: Convert memcpy_[to|from]_page() to kmap_local_page() mm/highmem: Lift memcpy_[to|from]_page to core |
|
Linus Torvalds | c608aca57d |
for-5.12-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK 11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a 5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw= =QJEy -----END PGP SIGNATURE----- Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "This is the first batch of fixes that usually arrive during the merge window code freeze. Regressions and stable material. Regressions: - fix deadlock in log sync in zoned mode - fix bugs in subpage mode still wrongly assuming sectorsize == page size Fixes: - fix missing kunmap of the Q stripe in RAID6 - block group fixes: - fix race between extent freeing/allocation when using bitmaps - avoid double put of block group when emptying cluster - swapfile fixes: - fix swapfile writes vs running scrub - fix swapfile activation vs snapshot creation - fix stale data exposure after cloning a hole with NO_HOLES enabled - remove tree-checker check that does not work in case information from other leaves is necessary" * tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix deadlock on log sync btrfs: avoid double put of block group when emptying cluster btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled btrfs: tree-checker: do not error out if extent ref hash doesn't match btrfs: fix race between swap file activation and snapshot creation btrfs: fix race between writes to swap files and scrub btrfs: avoid checking for RO block group twice during nocow writeback btrfs: fix race between extent freeing/allocation when using bitmaps btrfs: make check_compressed_csum() to be subpage compatible btrfs: make btrfs_submit_compressed_read() subpage compatible btrfs: fix raid6 qstripe kmap |
|
Ira Weiny | 80cc838423 |
btrfs: use copy_highpage() instead of 2 kmaps()
There are many places where kmap/memove/kunmap patterns occur. This pattern exists in the core common function copy_highpage(). Use copy_highpage to avoid open coding the use of kmap and leverages the core functions use of kmap_local_page(). Development of this patch was aided by the following coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/copypage/kunmap pattern and replace with copy_highpage calls // // NOTE: The expressions in the copy page version of this kmap pattern are // overly complex and so these all need individual attention. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // Then a copy_page where we have 2 pages involved. // @ copy_page_rule @ expression page, page2, To, From, Size; identifier ptr, ptr2; type VP, VP2; @@ /* kmap */ ( -VP ptr = kmap(page); ... -VP2 ptr2 = kmap(page2); | -VP ptr = kmap_atomic(page); ... -VP2 ptr2 = kmap_atomic(page2); | -ptr = kmap(page); ... -ptr2 = kmap(page2); | -ptr = kmap_atomic(page); ... -ptr2 = kmap_atomic(page2); ) // 1 or more copy versions of the entire page <+... ( -copy_page(To, From); +copy_highpage(To, From); | -memmove(To, From, Size); +memmoveExtra(To, From, Size); ) ...+> /* kunmap */ ( -kunmap(page2); ... -kunmap(page); | -kunmap(page); ... -kunmap(page2); | -kmap_atomic(ptr2); ... -kmap_atomic(ptr); ) // Remove any pointers left unused @ depends on copy_page_rule @ identifier copy_page_rule.ptr; identifier copy_page_rule.ptr2; type VP, VP1; type VP2, VP21; @@ -VP ptr; ... when != ptr; ? VP1 ptr; -VP2 ptr2; ... when != ptr2; ? VP21 ptr2; // </smpl> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Ira Weiny | 3590ec5899 |
btrfs: use memcpy_[to|from]_page() and kmap_local_page()
There are many places where the pattern kmap/memcpy/kunmap occurs. This pattern was lifted to the core common functions memcpy_[to|from]_page(). Use these new functions to reduce the code, eliminate direct uses of kmap, and leverage the new core functions use of kmap_local_page(). Also, there is 1 place where a kmap/memcpy is followed by an optional memset. Here we leave the kmap open coded to avoid remapping the page but use kmap_local_page() directly. Development of this patch was aided by the coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls // // NOTE: Offsets and other expressions may be more complex than what the script // will automatically generate. Therefore a catchall rule is provided to find // the pattern which then must be evaluated by hand. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // simple memcpy version // @ memcpy_rule1 @ expression page, T, F, B, Off; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( -memcpy(ptr + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(ptr, F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, ptr + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, ptr, B); +memcpy_from_page(T, page, 0, B); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule1 @ identifier memcpy_rule1.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // // Some callers kmap without a temp pointer // @ memcpy_rule2 @ expression page, T, Off, F, B; @@ <+... ( -memcpy(kmap(page) + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(kmap(page), F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, kmap(page) + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, kmap(page), B); +memcpy_from_page(T, page, 0, B); ) ...+> -kunmap(page); // No need for the ptr variable removal // // Catch all // @ memcpy_rule3 @ expression page; expression GenTo, GenFrom, GenSize; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( // // Some call sites have complex expressions within the memcpy // match a catch all to be evaluated by hand. // -memcpy(GenTo, GenFrom, GenSize); +memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize); +memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule3 @ identifier memcpy_rule3.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // <smpl> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Christoph Hellwig | 87fa0f3eb2 |
mm/filemap: rename generic_file_buffered_read to filemap_read
Rename generic_file_buffered_read to match the naming of filemap_fault, also update the written parameter to a more descriptive name and improve the kerneldoc comment. Link: https://lkml.kernel.org/r/20210122160140.223228-18-willy@infradead.org Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | 7d6beb71da |
idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
https://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
|
|
Johannes Thumshirn | 6e37d24599 |
btrfs: zoned: fix deadlock on log sync
Lockdep with fstests test case btrfs/041 detected a unsafe locking
scenario when we allocate the log node on a zoned filesystem.
btrfs/041
============================================
WARNING: possible recursive locking detected
5.11.0-rc7+ #939 Not tainted
--------------------------------------------
xfs_io/698 is trying to acquire lock:
ffff88810cd673a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x3d1/0xee0 [btrfs]
but task is already holding lock:
ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&root->log_mutex);
lock(&root->log_mutex);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by xfs_io/698:
#0: ffff88810cd66620 (sb_internal){.+.+}-{0:0}, at: btrfs_sync_file+0x2c3/0x570 [btrfs]
#1: ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
stack backtrace:
CPU: 0 PID: 698 Comm: xfs_io Not tainted 5.11.0-rc7+ #939
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack+0x77/0x97
__lock_acquire.cold+0xb9/0x32a
lock_acquire+0xb5/0x400
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
__mutex_lock+0x7b/0x8d0
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? find_first_extent_bit+0x9f/0x100 [btrfs]
? __mutex_unlock_slowpath+0x35/0x270
btrfs_sync_log+0x3d1/0xee0 [btrfs]
btrfs_sync_file+0x3a8/0x570 [btrfs]
__x64_sys_fsync+0x34/0x60
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This happens, because we are taking the ->log_mutex albeit it has already
been locked.
Also while at it, fix the bogus unlock of the tree_log_mutex in the error
handling.
Fixes:
|
|
Josef Bacik | 95c85fba1f |
btrfs: avoid double put of block group when emptying cluster
It's wrong calling btrfs_put_block_group in
__btrfs_return_cluster_to_free_space if the block group passed is
different than the block group the cluster represents. As this means the
cluster doesn't have a reference to the passed block group. This results
in double put and a use-after-free bug.
Fix this by simply bailing if the block group we passed in does not
match the block group on the cluster.
Fixes:
|
|
Filipe Manana | 3660d0bcdb |
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
When using the NO_HOLES feature, if we clone a file range that spans only a hole into a range that is at or beyond the current i_size of the destination file, we end up not setting the full sync runtime flag on the inode. As a result, if we then fsync the destination file and have a power failure, after log replay we can end up exposing stale data instead of having a hole for that range. The conditions for this to happen are the following: 1) We have a file with a size of, for example, 1280K; 2) There is a written (non-prealloc) extent for the file range from 1024K to 1280K with a length of 256K; 3) This particular file extent layout is durably persisted, so that the existing superblock persisted on disk points to a subvolume root where the file has that exact file extent layout and state; 4) The file is truncated to a smaller size, to an offset lower than the start offset of its last extent, for example to 800K. The truncate sets the full sync runtime flag on the inode; 6) Fsync the file to log it and clear the full sync runtime flag; 7) Clone a region that covers only a hole (implicit hole due to NO_HOLES) into the file with a destination offset that starts at or beyond the 256K file extent item we had - for example to offset 1024K; 8) Since the clone operation does not find extents in the source range, we end up in the if branch at the bottom of btrfs_clone() where we punch a hole for the file range starting at offset 1024K by calling btrfs_replace_file_extents(). There we end up not setting the full sync flag on the inode, because we don't know we are being called in a clone context (and not fallocate's punch hole operation), and neither do we create an extent map to represent a hole because the requested range is beyond eof; 9) A further fsync to the file will be a fast fsync, since the clone operation did not set the full sync flag, and therefore it relies on modified extent maps to correctly log the file layout. But since it does not find any extent map marking the range from 1024K (the previous eof) to the new eof, it does not log a file extent item for that range representing the hole; 10) After a power failure no hole for the range starting at 1024K is punched and we end up exposing stale data from the old 256K extent. Turning this into exact steps: $ mkfs.btrfs -f -O no-holes /dev/sdi $ mount /dev/sdi /mnt # Create our test file with 3 extents of 256K and a 256K hole at offset # 256K. The file has a size of 1280K. $ xfs_io -f -s \ -c "pwrite -S 0xab -b 256K 0 256K" \ -c "pwrite -S 0xcd -b 256K 512K 256K" \ -c "pwrite -S 0xef -b 256K 768K 256K" \ -c "pwrite -S 0x73 -b 256K 1024K 256K" \ /mnt/sdi/foobar # Make sure it's durably persisted. We want the last committed super # block to point to this particular file extent layout. sync # Now truncate our file to a smaller size, falling within a position of # the second extent. This sets the full sync runtime flag on the inode. # Then fsync the file to log it and clear the full sync flag from the # inode. The third extent is no longer part of the file and therefore # it is not logged. $ xfs_io -c "truncate 800K" -c "fsync" /mnt/foobar # Now do a clone operation that only clones the hole and sets back the # file size to match the size it had before the truncate operation # (1280K). $ xfs_io \ -c "reflink /mnt/foobar 256K 1024K 256K" \ -c "fsync" \ /mnt/foobar # File data before power failure: $ od -A d -t x1 /mnt/foobar 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd * 0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef * 0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 1310720 <power fail> # Mount the fs again to replay the log tree. $ mount /dev/sdi /mnt # File data after power failure: $ od -A d -t x1 /mnt/foobar 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd * 0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef * 0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 1048576 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 * 1310720 The range from 1024K to 1280K should correspond to a hole but instead it points to stale data, to the 256K extent that should not exist after the truncate operation. The issue does not exists when not using NO_HOLES, because for that case we use file extent items to represent holes, these are found and copied during the loop that iterates over extents at btrfs_clone(), and that causes btrfs_replace_file_extents() to be called with a non-NULL extent_info argument and therefore set the full sync runtime flag on the inode. So fix this by making the code that deals with a trailing hole during cloning, at btrfs_clone(), to set the full sync flag on the inode, if the range starts at or beyond the current i_size. A test case for fstests will follow soon. Backporting notes: for kernel 5.4 the change goes to ioctl.c into btrfs_clone before the last call to btrfs_punch_hole_range. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 1119a72e22 |
btrfs: tree-checker: do not error out if extent ref hash doesn't match
The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system. Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like
key.objectid = <bytenr>
key.type = <BTRFS_EXTENT_DATA_REF_KEY|BTRFS_TREE_BLOCK_REF_KEY>
key.offset = hash(tree, owner, offset)
However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction. This is relatively easy to
reproduce, simply do something like the following
xfs_io -f -c "pwrite 0 1M" file
offset=2
for i in {0..10000}
do
xfs_io -c "reflink file 0 ${offset}M 1M" file
offset=$(( offset + 2 ))
done
xfs_io -c "reflink file 0 17999258914816 1M" file
xfs_io -c "reflink file 0 35998517829632 1M" file
xfs_io -c "reflink file 0 53752752058368 1M" file
btrfs filesystem sync
And the sync will error out because we'll abort the transaction. The
magic values above are used because they generate hash collisions with
the first file in the main subvol.
The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.
Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com>
Fixes:
|
|
Filipe Manana | dd0734f2a8 |
btrfs: fix race between swap file activation and snapshot creation
When creating a snapshot we check if the current number of swap files, in
the root, is non-zero, and if it is, we error out and warn that we can not
create the snapshot because there are active swap files.
However this is racy because when a task started activation of a swap
file, another task might have started already snapshot creation and might
have seen the counter for the number of swap files as zero. This means
that after the swap file is activated we may end up with a snapshot of the
same root successfully created, and therefore when the first write to the
swap file happens it has to fall back into COW mode, which should never
happen for active swap files.
Basically what can happen is:
1) Task A starts snapshot creation and enters ioctl.c:create_snapshot().
There it sees that root->nr_swapfiles has a value of 0 so it continues;
2) Task B enters btrfs_swap_activate(). It is not aware that another task
started snapshot creation but it did not finish yet. It increments
root->nr_swapfiles from 0 to 1;
3) Task B checks that the file meets all requirements to be an active
swap file - it has NOCOW set, there are no snapshots for the inode's
root at the moment, no file holes, no reflinked extents, etc;
4) Task B returns success and now the file is an active swap file;
5) Task A commits the transaction to create the snapshot and finishes.
The swap file's extents are now shared between the original root and
the snapshot;
6) A write into an extent of the swap file is attempted - there is a
snapshot of the file's root, so we fall back to COW mode and therefore
the physical location of the extent changes on disk.
So fix this by taking the snapshot lock during swap file activation before
locking the extent range, as that is the order in which we lock these
during buffered writes.
Fixes:
|
|
Filipe Manana | 195a49eaf6 |
btrfs: fix race between writes to swap files and scrub
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes:
|
|
Filipe Manana | 20903032cd |
btrfs: avoid checking for RO block group twice during nocow writeback
During the nocow writeback path, we currently iterate the rbtree of block groups twice: once for checking if the target block group is RO with the call to btrfs_extent_readonly()), and once again for getting a nocow reference on the block group with a call to btrfs_inc_nocow_writers(). Since btrfs_inc_nocow_writers() already returns false when the target block group is RO, remove the call to btrfs_extent_readonly(). Not only we avoid searching the blocks group rbtree twice, it also helps reduce contention on the lock that protects it (specially since it is a spin lock and not a read-write lock). That may make a noticeable difference on very large filesystems, with thousands of allocated block groups. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 3c17916510 |
btrfs: fix race between extent freeing/allocation when using bitmaps
During allocation the allocator will try to allocate an extent using cluster policy. Once the current cluster is exhausted it will remove the entry under btrfs_free_cluster::lock and subsequently acquire btrfs_free_space_ctl::tree_lock to dispose of the already-deleted entry and adjust btrfs_free_space_ctl::total_bitmap. This poses a problem because there exists a race condition between removing the entry under one lock and doing the necessary accounting holding a different lock since extent freeing only uses the 2nd lock. This can result in the following situation: T1: T2: btrfs_alloc_from_cluster insert_into_bitmap <holds tree_lock> if (entry->bytes == 0) if (block_group && !list_empty(&block_group->cluster_list)) { rb_erase(entry) spin_unlock(&cluster->lock); (total_bitmaps is still 4) spin_lock(&cluster->lock); <doesn't find entry in cluster->root> spin_lock(&ctl->tree_lock); <goes to new_bitmap label, adds <blocked since T2 holds tree_lock> <a new entry and calls add_new_bitmap> recalculate_thresholds <crashes, due to total_bitmaps becoming 5 and triggering an ASSERT> To fix this ensure that once depleted, the cluster entry is deleted when both cluster lock and tree locks are held in the allocator (T1), this ensures that even if there is a race with a concurrent insert_into_bitmap call it will correctly find the entry in the cluster and add the new space to it. CC: <stable@vger.kernel.org> # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 04d4ba4c90 |
btrfs: make check_compressed_csum() to be subpage compatible
Currently check_compressed_csum() completely relies on sectorsize == PAGE_SIZE to do checksum verification for compressed extents. To make it subpage compatible, this patch will: - Do extra calculation for the csum range Since we have multiple sectors inside a page, we need to only hash the range we want, not the full page anymore. - Do sector-by-sector hash inside the page With this patch and previous conversion on btrfs_submit_compressed_read(), now we can read subpage compressed extents properly, and do proper csum verification. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | be6a13613f |
btrfs: make btrfs_submit_compressed_read() subpage compatible
For compressed read, we always submit page read using page size. This doesn't work well with subpage, as for subpage one page can contain several sectors. Such submission will read range out of what we want, and cause problems. Thankfully to make it subpage compatible, we only need to change how the last page of the compressed extent is read. Instead of always adding a full page to the compressed read bio, if we're at the last page, calculate the size using compressed length, so that we only add part of the range into the compressed read bio. Since we are here, also change the PAGE_SIZE used in lookup_extent_mapping() to sectorsize. This modification won't cause any functional change, as lookup_extent_mapping() can handle the case where the search range is larger than found extent range. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Ira Weiny | d70cef0d46 |
btrfs: fix raid6 qstripe kmap
When a qstripe is required an extra page is allocated and mapped. There
were 3 problems:
1) There is no corresponding call of kunmap() for the qstripe page.
2) There is no reason to map the qstripe page more than once if the
number of bits set in rbio->dbitmap is greater than one.
3) There is no reason to map the parity page and unmap it each time
through the loop.
The page memory can continue to be reused with a single mapping on each
iteration by raid6_call.gen_syndrome() without remapping. So map the
page for the duration of the loop.
Similarly, improve the algorithm by mapping the parity page just 1 time.
Fixes:
|
|
Linus Torvalds | 582cd91f69 |
for-5.12/block-2021-02-17
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+ RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26 WC22RGC2MA== =os1E -----END PGP SIGNATURE----- Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block Pull core block updates from Jens Axboe: "Another nice round of removing more code than what is added, mostly due to Christoph's relentless pursuit of tech debt removal/cleanups. This pull request contains: - Two series of BFQ improvements (Paolo, Jan, Jia) - Block iov_iter improvements (Pavel) - bsg error path fix (Pan) - blk-mq scheduler improvements (Jan) - -EBUSY discard fix (Jan) - bvec allocation improvements (Ming, Christoph) - bio allocation and init improvements (Christoph) - Store bdev pointer in bio instead of gendisk + partno (Christoph) - Block trace point cleanups (Christoph) - hard read-only vs read-only split (Christoph) - Block based swap cleanups (Christoph) - Zoned write granularity support (Damien) - Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)" * tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits) mm: simplify swapdev_block sd_zbc: clear zone resources for non-zoned case block: introduce blk_queue_clear_zone_settings() zonefs: use zone write granularity as block size block: introduce zone_write_granularity limit block: use blk_queue_set_zoned in add_partition() nullb: use blk_queue_set_zoned() to setup zoned devices nvme: cleanup zone information initialization block: document zone_append_max_bytes attribute block: use bi_max_vecs to find the bvec pool md/raid10: remove dead code in reshape_request block: mark the bio as cloned in bio_iov_bvec_set block: set BIO_NO_PAGE_REF in bio_iov_bvec_set block: remove a layer of indentation in bio_iov_iter_get_pages block: turn the nr_iovecs argument to bio_alloc* into an unsigned short block: remove the 1 and 4 vec bvec_slabs entries block: streamline bvec_alloc block: factor out a bvec_alloc_gfp helper block: move struct biovec_slab to bio.c block: reuse BIO_INLINE_VECS for integrity bvecs ... |
|
Linus Torvalds | 4f016a316f |
New code for 5.12:
- Adjust the final parameter of iomap_dio_rw. - Add a new flag to request that iomap directio writes return EAGAIN if the write is not a pure overwrite within EOF; this will be used to reduce lock contention with unaligned direct writes on XFS. - Amend XFS' directio code to eliminate exclusive locking for unaligned direct writes if the circumstances permit -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmAZgQAACgkQ+H93GTRK tOtNqw/+KPff1NjQVK2k361R0+LjlEHfe2nxh7+kS10IiR5nbBz4Fu+GwEosZKq+ H9ficBbZ0wIveV+5CEt2xZLEJFC4LZUpNPVVrUf8XPLKiVexP/U3wtKzmv9Z7D5J 5walMWQycVeR+ycomynV36giqekvARL7KCQG5By2ITfSNxfnb/wvKhn1d61ZDOF6 f4xzq7F6+cEOrSZt2LcFzGSfsTl6oakYMAomPU57sqGmw7MHRqoPTErbdh2HnVJy yQ47eiZgSKWKA+Qm+VvHHePYCYnu0nvA2rbNerjTN70hnO8rK9S0Vle6Sp5CUqAX sXOy8zxOLYKqyM4S/QkIN2TGIyWg+CHiakVLZGF3Q4AUDDYfpD0cHvAe9N3v9euL qt8ypT8dz2C3qiTg5E31xy033wlAP0wg3FZiLAqEjL5o3fzD+qbplTiSmYbMV2Fb xuu7a2T6u1MHaIn1IhaL0cB49Fzn+5EMyp6BlAucAOakyuqJCyJiXokdk0Looy5e jUshvcwWcmHMpI/YYYY6t56KV6tl2exGq5sySY5U6dr8/r5lwc0SI+TrYFG0jTR8 59DGd5CkKgdBFcuys+eaZDXgr7A4ymkVE+pE0QNDz9UwNP20tLb3dQNlhgxchUgu NgPaFgQkoNM3HmQNyU2wX/t1aFlC/doqSkb/96UWQSxq6IrajMU= =AR07 -----END PGP SIGNATURE----- Merge tag 'iomap-5.12-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull iomap updates from Darrick Wong: "The big change in this cycle is some new code to make it possible for XFS to try unaligned directio overwrites without taking locks. If the block is fully written and within EOF (i.e. doesn't require any further fs intervention) then we can let the unlocked write proceed. If not, we fall back to synchronizing direct writes. Summary: - Adjust the final parameter of iomap_dio_rw. - Add a new flag to request that iomap directio writes return EAGAIN if the write is not a pure overwrite within EOF; this will be used to reduce lock contention with unaligned direct writes on XFS. - Amend XFS' directio code to eliminate exclusive locking for unaligned direct writes if the circumstances permit" * tag 'iomap-5.12-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: reduce exclusive locking on unaligned dio xfs: split the unaligned DIO write code out xfs: improve the reflink_bounce_dio_write tracepoint xfs: simplify the read/write tracepoints xfs: remove the buffered I/O fallback assert xfs: cleanup the read/write helper naming xfs: make xfs_file_aio_write_checks IOCB_NOWAIT-aware xfs: factor out a xfs_ilock_iocb helper iomap: add a IOMAP_DIO_OVERWRITE_ONLY flag iomap: pass a flags argument to iomap_dio_rw iomap: rename the flags variable in __iomap_dio_rw |
|
Linus Torvalds | 6f3952cbe0 |
for-5.12-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAqyGEACgkQxWXV+ddt WDuU6BAAhfI5BndMm6a1LooMsBHTR7Mh/aFXZEKX7vCDRnrkr+WiihDFhXu4tH3y arRsdwMnJCnta2/JMI5xCZZRg9Bsb/Sa0qWoR9sDBVoGRMnE1DS5YHQyv0bfJYk0 qYOW/jorBV1n/hL19+WbDFajwajP86uGtlDKV7cJ/C3lIogQma7zQ7ygwxbDcZqm ZQVHg7ooM4P1t7EV0eDlatxn0Sm8KFkxXD7dbu37qDLWr3Aw8N4IwT7I9h4b+/tg hL4dqMPxX6AyRiI0VBsqKnmcRWtT9cN7yw0+J+/JK5KuaFFx3qyZZ+EQu1jAGZDt 2m432YKya8LQfyBuSe8uoCIcczhGoD0EPIhspecDMfWTvxdo+AeTJZzZzj3u1y+v 3pih+gBN1sa8vRVSX08mIBF/k0pPfxRu7gIjvl4wl18bm3Khq5VJ93ImP7DNroNg bKiUG35K+kvXGBNaLY71zZfO6aLMddK73aDudSbYOS8XcbKhor1G8j5o5/EkcVQA wio4Gw5BmfVeRuXOl2h1aEXThk+469s0DR7MiMiAA6917cUjQiFUgFOaogR0XY3S 8ffX+S50AFW834J0eIGHPLmzi70WwSSXCS2q+zl87PPRK5+jCp9ZzWGi9MGG1qdh fp7XVMkzHVSKGK5GXB+ICUfzkShxfTCh+EbxcXIulONxsEdADsc= =0O6r -----END PGP SIGNATURE----- Merge tag 'for-5.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "This brings updates of space handling, performance improvements or bug fixes. The subpage block size and zoned mode features have reached state where they're usable but with limitations. Performance or related: - do not block on deleted block group mutex in the cleaner, avoids some long stalls - improved flushing: make it work better with ticket space reservations and avoid excessive transaction commits in some scenarios, slightly improves throughput for random write load - preemptive background flushing: separate the logic from ticket reservations, improve the accounting and decisions when to flush in low space conditions - less lock contention related to running delayed refs, let just one thread do the flushing when there are many inside transaction commit - dbench workload improvements: avoid unnecessary work when logging inodes, fewer fallbacks to transaction commit and thus less waiting for it (+7% throughput, -20% latency) Core: - subpage block size - currently read-only support - refactor and generalize code where sectorsize is assumed to be page size, add the subpage handling everywhere - the read-write support is on the way, page sizes are still limited to 4K or 64K - zoned mode, first working version but with limitations - SMR/ZBC/ZNS friendly allocation mode, utilizing the "no fixed location for structures" and chunked allocation - superblock as the only fixed data structure needs special handling, uses 2 consecutive zones as a ring buffer - tree-log support with a dedicated block group to avoid unordered writes - emulated zones on non-zoned devices - not yet working - all non-single block group profiles, requires more zone write pointer synchronization between the multiple block groups - fitrim due to dependency on space cache, can be implemented Fixes: - ref-verify: proper tree owner and node level tracking - fix pinned byte accounting, causing some early ENOSPC now more likely due to other changes in delayed refs Other: - error handling fixes and improvements - more error injection points - more function documentation - more and updated tracepoints - subset of W=1 checked by default - update comments to allow more automatic kdoc parameter checks" * tag 'for-5.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (144 commits) btrfs: zoned: enable to mount ZONED incompat flag btrfs: zoned: deal with holes writing out tree-log pages btrfs: zoned: reorder log node allocation on zoned filesystem btrfs: zoned: serialize log transaction on zoned filesystems btrfs: zoned: extend zoned allocator to use dedicated tree-log block group btrfs: split alloc_log_tree() btrfs: zoned: relocate block group to repair IO failure in zoned filesystems btrfs: zoned: enable relocation on a zoned filesystem btrfs: zoned: support dev-replace in zoned filesystems btrfs: zoned: implement copying for zoned device-replace btrfs: zoned: implement cloning for zoned device-replace btrfs: zoned: mark block groups to copy for device-replace btrfs: zoned: do not use async metadata checksum on zoned filesystems btrfs: zoned: wait for existing extents before truncating btrfs: zoned: serialize metadata IO btrfs: zoned: introduce dedicated data write path for zoned filesystems btrfs: zoned: enable zone append writing for direct IO btrfs: zoned: use ZONE_APPEND write for zoned mode btrfs: save irq flags when looking up an ordered extent btrfs: zoned: cache if block group is on a sequential zone ... |
|
Linus Torvalds | e42ee56fe5 |
for-5.11-rc7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAmlkAACgkQxWXV+ddt WDuwNxAAiBAhEwPllzyU86p4RMMip5pa24zu11HkTya65yGk6EFuj4zTlx/L5Fn6 JOjxwlPqaTItER1PYJ5HRdIy1Y2E4eWEiDLolvmvDCPZrfKRKhBU1MZbgXwDbp+Z pwaJGIm5ZaXDGyuFge3bKA48BERfqxRBO3qIOZ0tzgsUFLlZ2d9EdDc99093/J6k QzIijXQjFnvnB2MNawN1b/KQ63xqXLo2hemKcKIFCxJHm9eaet/qwGHl5iuR5ScY bOGCWvLSkCXceartDur3msOZXur09YLyfeYmE9dj1FN3aNu97sW8VivWRrs3aglK if51iYrrjKSnDr4SOK28S5UYdgeStb/qWWtosdcMsQVBo0t7iCnGT2psGaQCkdfG FChqbs2uXlbJrojlelV6xbaU3S2D2MtSz5mF+I2G5MpQbj1jkhYE9ZTUQeibcd7o l+edn/VJvVK4X0NAX8pIWJ4nFY1HqUTyfn28IQ7ymBhyyUloIoazvSkBuSWy6iy0 9aPpohOKjCw8Y3MbgcIfIEJhdK+aIKF8ZPh52+zcXQzf1OtSryVarLHsNXWm9vJ8 tHsRHCzrbLFdAXZccT6YlerzPs4+PVf44UknDbFCg7sLcG04NIGGrMXOtTHwgEZL BEywTjAMlMDjrEXouxYAPNPnEg/NlvQGZYRvBnxrtZE4G2fxJ7o= =7w6G -----END PGP SIGNATURE----- Merge tag 'for-5.11-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "A regression fix caused by a refactoring in 5.11. A corrupted superblock wouldn't be detected by checksum verification due to wrongly placed initialization of the checksum length, thus making memcmp always work" * tag 'for-5.11-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize fs_info::csum_size earlier in open_ctree |
|
Su Yue | 83c68bbcb6 |
btrfs: initialize fs_info::csum_size earlier in open_ctree
User reported that btrfs-progs misc-tests/028-superblock-recover fails: [TEST/misc] 028-superblock-recover unexpected success: mounted fs with corrupted superblock test failed for case 028-superblock-recover The test case expects that a broken image with bad superblock will be rejected to be mounted. However, the test image just passed csum check of superblock and was successfully mounted. Commit |
|
Naohiro Aota | 9d294a685f |
btrfs: zoned: enable to mount ZONED incompat flag
This final patch adds the ZONED incompat flag to the supported flags and enables to mount ZONED flagged file system. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | b528f46713 |
btrfs: zoned: deal with holes writing out tree-log pages
Since the zoned filesystem requires sequential write out of metadata, we cannot proceed with a hole in tree-log pages. When such a hole exists, btree_write_cache_pages() will return -EAGAIN. This happens when someone, e.g., a concurrent transaction commit, writes a dirty extent in this tree-log commit. If we are not going to wait for the extents, we can hope the concurrent writing fills the hole for us. So, we can ignore the error in this case and hope the next write will succeed. If we want to wait for them and got the error, we cannot wait for them because it will cause a deadlock. So, let's bail out to a full commit in this case. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 3ddebf27fc |
btrfs: zoned: reorder log node allocation on zoned filesystem
This is the 3/3 patch to enable tree-log on zoned filesystems. The allocation order of nodes of "fs_info->log_root_tree" and nodes of "root->log_root" is not the same as the writing order of them. So, the writing causes unaligned write errors. Reorder the allocation of them by delaying allocation of the root node of "fs_info->log_root_tree," so that the node buffers can go out sequentially to devices. Cc: Filipe Manana <fdmanana@gmail.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | fa1a0f42a0 |
btrfs: zoned: serialize log transaction on zoned filesystems
This is the 2/3 patch to enable tree-log on zoned filesystems. Since we can start more than one log transactions per subvolume simultaneously, nodes from multiple transactions can be allocated interleaved. Such mixed allocation results in non-sequential writes at the time of a log transaction commit. The nodes of the global log root tree (fs_info->log_root_tree), also have the same problem with mixed allocation. Serializes log transactions by waiting for a committing transaction when someone tries to start a new transaction, to avoid the mixed allocation problem. We must also wait for running log transactions from another subvolume, but there is no easy way to detect which subvolume root is running a log transaction. So, this patch forbids starting a new log transaction when other subvolumes already allocated the global log root tree. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 40ab3be102 |
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems. The tree-log feature does not work on a zoned filesystem as is. Blocks for a tree-log tree are allocated mixed with other metadata blocks and btrfs writes and syncs the tree-log blocks to devices at the time of fsync(), which has a different timing than a global transaction commit. As a result, both writing tree-log blocks and writing other metadata blocks become non-sequential writes that zoned filesystems must avoid. Introduce a dedicated block group for tree-log blocks, so that tree-log blocks and other metadata blocks can be separate write streams. As a result, each write stream can now be written to devices separately. "fs_info->treelog_bg" tracks the dedicated block group and assigns "treelog_bg" on-demand on tree-log block allocation time. This commit extends the zoned block allocator to use the block group. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 6ab6ebb760 |
btrfs: split alloc_log_tree()
This is a preparation patch for the next patch. Split alloc_log_tree() into two parts. The first one allocating the tree structure, remains in alloc_log_tree() and the second part allocating the tree node, which is moved into btrfs_alloc_log_tree_node(). Also export the latter part is to be used in the next patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | f7ef5287a6 |
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 32430c6148 |
btrfs: zoned: enable relocation on a zoned filesystem
Currently fallocate() is disabled on a zoned filesystem. Since current relocation process relies on preallocation to move file data extents, it must be handled differently. On a zoned filesystem, we just truncate the inode to the size that we wanted to pre-allocate. Then, we flush dirty pages on the file before finishing the relocation process. run_delalloc_zoned() will handle all the allocations and submit IOs to the underlying layers. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 7db1c5d14d |
btrfs: zoned: support dev-replace in zoned filesystems
This is 4/4 patch to implement device-replace on zoned filesystems. Even after the copying is done, the write pointers of the source device and the destination device may not be synchronized. For example, when the last allocated extent is freed before device-replace process, the extent is not copied, leaving a hole there. Synchronize the write pointers by writing zeroes to the destination device. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | de17addce7 |
btrfs: zoned: implement copying for zoned device-replace
This is 3/4 patch to implement device-replace on zoned filesystems.
This commit implements copying. To do this, it tracks the write pointer
during the device replace process. As device-replace's copy process is
smart enough to only copy used extents on the source device, we have to
fill the gap to honor the sequential write requirement in the target
device.
The device-replace process on zoned filesystems must copy or clone all
the extents in the source device exactly once. So, we need to ensure
allocations started just before the dev-replace process to have their
corresponding extent information in the B-trees.
finish_extent_writes_for_zoned() implements that functionality, which
basically is the removed code in the commit
|
|
Naohiro Aota | 6143c23ccc |
btrfs: zoned: implement cloning for zoned device-replace
This is 2/4 patch to implement device replace for zoned filesystems. In zoned mode, a block group must be either copied (from the source device to the target device) or cloned (to both devices). Implement the cloning part. If a block group targeted by an IO is marked to copy, we should not clone the IO to the destination device, because the block group is eventually copied by the replace process. This commit also handles cloning of device reset. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 78ce9fc269 |
btrfs: zoned: mark block groups to copy for device-replace
This is the 1/4 patch to support device-replace on zoned filesystems. We have two types of IOs during the device replace process. One is an IO to "copy" (by the scrub functions) all the device extents from the source device to the destination device. The other one is an IO to "clone" (by handle_ops_on_dev_replace()) new incoming write IOs from users to the source device into the target device. Cloning incoming IOs can break the sequential write rule in on target device. When a write is mapped in the middle of a block group, the IO is directed to the middle of a target device zone, which breaks the sequential write requirement. However, the cloning function cannot be disabled since incoming IOs targeting already copied device extents must be cloned so that the IO is executed on the target device. We cannot use dev_replace->cursor_{left,right} to determine whether a bio is going to a not yet copied region. Since we have a time gap between finishing btrfs_scrub_dev() and rewriting the mapping tree in btrfs_dev_replace_finishing(), we can have a newly allocated device extent which is never cloned nor copied. So the point is to copy only already existing device extents. This patch introduces mark_block_group_to_copy() to mark existing block groups as a target of copying. Then, handle_ops_on_dev_replace() and dev-replace can check the flag to do their job. Also, btrfs_finish_block_group_to_copy() will check if the copied stripe is the last stripe in the block group. With the last stripe copied, the to_copy flag is finally disabled. Afterwards we can safely clone incoming IOs on this block group. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 4eef29ef63 |
btrfs: zoned: do not use async metadata checksum on zoned filesystems
On zoned filesystems, btrfs uses per-fs zoned_meta_io_lock to serialize the metadata write IOs. Even with this serialization, write bios sent from btree_write_cache_pages can be reordered by async checksum workers as these workers are per CPU and not per zone. To preserve write bio ordering, we disable async metadata checksum on a zoned filesystem. This does not result in lower performance with HDDs as a single CPU core is fast enough to do checksum for a single zone write stream with the maximum possible bandwidth of the device. If multiple zones are being written simultaneously, HDD seek overhead lowers the achievable maximum bandwidth, resulting again in a per zone checksum serialization not affecting the performance. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Naohiro Aota | 24c0a7227f |
btrfs: zoned: wait for existing extents before truncating
When truncating a file, file buffers which have already been allocated but not yet written may be truncated. Truncating these buffers could cause breakage of a sequential write pattern in a block group if the truncated blocks are for example followed by blocks allocated to another file. To avoid this problem, always wait for write out of all unwritten buffers before proceeding with the truncate execution. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |