This patch adds the ability for a VSI to use multiple Tx queues. More
specifically, the patch
1) Provides the ability to update the Tx scheduler tree in the
firmware. The driver can configure the Tx scheduler tree by
adding/removing multiple Tx queues per TC per VSI.
2) Allows a VSI to reconfigure its Tx queues during runtime.
3) Synchronizes the Tx scheduler update operations using locks.
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This patch configures the VSIs to be able to send and receive
packets by doing the following:
1) Initialize flexible parser to extract and include certain
fields in the Rx descriptor.
2) Add Tx queues by programming the Tx queue context (implemented in
ice_vsi_cfg_txqs). Note that adding the queues also enables (starts)
the queues.
3) Add Rx queues by programming Rx queue context (implemented in
ice_vsi_cfg_rxqs). Note that this only adds queues but doesn't start
them. The rings will be started by calling ice_vsi_start_rx_rings on
interface up.
4) Configure interrupts for VSI queues.
5) Implement ice_open and ice_stop.
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This patch adds code to continue the initialization flow as follows:
1) Get PHY/link information and store it
2) Get default scheduler tree topology and store it
3) Get the MAC address associated with the port and store it
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This patch adds to the initialization flow by getting switch
configuration, scheduler configuration and device capabilities.
Switch configuration:
On boot, an L2 switch element is created in the firmware per physical
function. Each physical function is also mapped to a port, to which its
switch element is connected. In other words, this switch can be visualized
as an embedded vSwitch that can connect a physical function's virtual
station interfaces (VSIs) to the egress/ingress port. Egress/ingress
filters will be eventually created and applied on this switch element.
As part of the initialization flow, the driver gets configuration data
from this switch element and stores it.
Scheduler configuration:
The Tx scheduler is a subsystem responsible for setting and enforcing QoS.
As part of the initialization flow, the driver queries and stores the
default scheduler configuration for the given physical function.
Device capabilities:
As part of initialization, the driver has to determine what the device is
capable of (ex. max queues, VSIs, etc). This information is obtained from
the firmware and stored by the driver.
CC: Shannon Nelson <shannon.nelson@oracle.com>
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Acked-by: Shannon Nelson <shannon.nelson@oracle.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>