GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that drm_[cm]alloc* helpers are simple one line wrappers around
kvmalloc_array and drm_free_large is just kvfree alias we can drop
them and replace by their native forms.
This shouldn't introduce any functional change.
Changes since v1
- fix typo in drivers/gpu//drm/etnaviv/etnaviv_gem.c - noticed by 0day
build robot
Suggested-by: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Michal Hocko <mhocko@suse.com>drm: drop drm_[cm]alloc* helpers
[danvet: Fixup vgem which grew another user very recently.]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Christian König <christian.koenig@amd.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170517122312.GK18247@dhcp22.suse.cz
As we now take the breadcrumbs spinlock within the interrupt handler, we
wish to minimise its hold time. During the interrupt we do not care
about the state of the full rbtree, only that of the first element, so
we can guard that with a separate lock.
v2: Rename first_wait to irq_wait to make it clearer that it is guarded
by irq_lock.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170303190824.1330-1-chris@chris-wilson.co.uk
A request is assigned a global seqno only when it is on the hardware
execution queue. The global seqno can be used to maintain a list of
requests on the same engine in retirement order, for example for
constructing a priority queue for waiting. Prior to its execution, or
if it is subsequently removed in the event of preemption, its global
seqno is zero. As both insertion and removal from the execution queue
may operate in IRQ context, it is not guarded by the usual struct_mutex
BKL. Instead those relying on the global seqno must be prepared for its
value to change between reads. Only when the request is complete can
the global seqno be stable (due to the memory barriers on submitting
the commands to the hardware to write the breadcrumb, if the HWS shows
that it has passed the global seqno and the global seqno is unchanged
after the read, it is indeed complete).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170223074422.4125-9-chris@chris-wilson.co.uk
Third retroactive test, make sure that the seqno waiters are woken.
v2: Smattering of comments, rearrange code
v3: Fix IDLE assert to avoid startup/sleep races
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170213171558.20942-5-chris@chris-wilson.co.uk