Fix build failure with CONFIG_DEBUG_SLAB=y && CONFIG_DEBUG_PAGEALLOC=y caused
by commit 8a13a4cc "mm/sl[aou]b: Shrink __kmem_cache_create() parameter lists".
mm/slab.c: In function '__kmem_cache_create':
mm/slab.c:2474: error: 'align' undeclared (first use in this function)
mm/slab.c:2474: error: (Each undeclared identifier is reported only once
mm/slab.c:2474: error: for each function it appears in.)
make[1]: *** [mm/slab.o] Error 1
make: *** [mm] Error 2
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* Support exlusive get if backend is capable.
Bug-fixes:
* Fix compile warnings
* Add comments/cleanup doc
* Fix wrong if condition
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJQaZP3AAoJEFjIrFwIi8fJVIAH/0aBBYNaCk0Rzo086pHs4n9n
cJHl0NEj7/aM/Q2SzTf2vpKfaPxzOnY6rq/dzGHQ1eCipFPbry6gt9186bAs8mMN
q8UQEfRGeQXs3wo6I6bGVaRYqQrxxhtR9w/37VUQCZPsxUKnzquqw9wcKDFhpkuB
IL4uT+P0EY2hxFVq6kQA5rYg8UnIRSggkoKi+s5lJEC0p+Mzfy2uYiz7iL2/0ay7
twtSlcWKyDcYWpuN0ndQXDzzSevvuVjlo1z+ExJahWDRknSwQt2lghMttPS50O3n
rKPp4R5oZtsAau7Tp/nvS0z4cPIWjD/fveRYzHd49TUf2bq2Fb3Db8L2p92+CQk=
=ttUT
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-3.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm
Pull frontswap update from Konrad Rzeszutek Wilk:
"Features:
- Support exlusive get if backend is capable.
Bug-fixes:
- Fix compile warnings
- Add comments/cleanup doc
- Fix wrong if condition"
* tag 'stable/for-linus-3.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm:
frontswap: support exclusive gets if tmem backend is capable
mm: frontswap: fix a wrong if condition in frontswap_shrink
mm/frontswap: fix uninit'ed variable warning
mm/frontswap: cleanup doc and comment error
mm: frontswap: remove unneeded headers
Pull vfs update from Al Viro:
- big one - consolidation of descriptor-related logics; almost all of
that is moved to fs/file.c
(BTW, I'm seriously tempted to rename the result to fd.c. As it is,
we have a situation when file_table.c is about handling of struct
file and file.c is about handling of descriptor tables; the reasons
are historical - file_table.c used to be about a static array of
struct file we used to have way back).
A lot of stray ends got cleaned up and converted to saner primitives,
disgusting mess in android/binder.c is still disgusting, but at least
doesn't poke so much in descriptor table guts anymore. A bunch of
relatively minor races got fixed in process, plus an ext4 struct file
leak.
- related thing - fget_light() partially unuglified; see fdget() in
there (and yes, it generates the code as good as we used to have).
- also related - bits of Cyrill's procfs stuff that got entangled into
that work; _not_ all of it, just the initial move to fs/proc/fd.c and
switch of fdinfo to seq_file.
- Alex's fs/coredump.c spiltoff - the same story, had been easier to
take that commit than mess with conflicts. The rest is a separate
pile, this was just a mechanical code movement.
- a few misc patches all over the place. Not all for this cycle,
there'll be more (and quite a few currently sit in akpm's tree)."
Fix up trivial conflicts in the android binder driver, and some fairly
simple conflicts due to two different changes to the sock_alloc_file()
interface ("take descriptor handling from sock_alloc_file() to callers"
vs "net: Providing protocol type via system.sockprotoname xattr of
/proc/PID/fd entries" adding a dentry name to the socket)
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (72 commits)
MAX_LFS_FILESIZE should be a loff_t
compat: fs: Generic compat_sys_sendfile implementation
fs: push rcu_barrier() from deactivate_locked_super() to filesystems
btrfs: reada_extent doesn't need kref for refcount
coredump: move core dump functionality into its own file
coredump: prevent double-free on an error path in core dumper
usb/gadget: fix misannotations
fcntl: fix misannotations
ceph: don't abuse d_delete() on failure exits
hypfs: ->d_parent is never NULL or negative
vfs: delete surplus inode NULL check
switch simple cases of fget_light to fdget
new helpers: fdget()/fdput()
switch o2hb_region_dev_write() to fget_light()
proc_map_files_readdir(): don't bother with grabbing files
make get_file() return its argument
vhost_set_vring(): turn pollstart/pollstop into bool
switch prctl_set_mm_exe_file() to fget_light()
switch xfs_find_handle() to fget_light()
switch xfs_swapext() to fget_light()
...
Pull cgroup hierarchy update from Tejun Heo:
"Currently, different cgroup subsystems handle nested cgroups
completely differently. There's no consistency among subsystems and
the behaviors often are outright broken.
People at least seem to agree that the broken hierarhcy behaviors need
to be weeded out if any progress is gonna be made on this front and
that the fallouts from deprecating the broken behaviors should be
acceptable especially given that the current behaviors don't make much
sense when nested.
This patch makes cgroup emit warning messages if cgroups for
subsystems with broken hierarchy behavior are nested to prepare for
fixing them in the future. This was put in a separate branch because
more related changes were expected (didn't make it this round) and the
memory cgroup wanted to pull in this and make changes on top."
* 'for-3.7-hierarchy' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them
Pull cgroup updates from Tejun Heo:
- xattr support added. The implementation is shared with tmpfs. The
usage is restricted and intended to be used to manage per-cgroup
metadata by system software. tmpfs changes are routed through this
branch with Hugh's permission.
- cgroup subsystem ID handling simplified.
* 'for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Define CGROUP_SUBSYS_COUNT according the configuration
cgroup: Assign subsystem IDs during compile time
cgroup: Do not depend on a given order when populating the subsys array
cgroup: Wrap subsystem selection macro
cgroup: Remove CGROUP_BUILTIN_SUBSYS_COUNT
cgroup: net_prio: Do not define task_netpioidx() when not selected
cgroup: net_cls: Do not define task_cls_classid() when not selected
cgroup: net_cls: Move sock_update_classid() declaration to cls_cgroup.h
cgroup: trivial fixes for Documentation/cgroups/cgroups.txt
xattr: mark variable as uninitialized to make both gcc and smatch happy
fs: add missing documentation to simple_xattr functions
cgroup: add documentation on extended attributes usage
cgroup: rename subsys_bits to subsys_mask
cgroup: add xattr support
cgroup: revise how we re-populate root directory
xattr: extract simple_xattr code from tmpfs
Pull workqueue changes from Tejun Heo:
"This is workqueue updates for v3.7-rc1. A lot of activities this
round including considerable API and behavior cleanups.
* delayed_work combines a timer and a work item. The handling of the
timer part has always been a bit clunky leading to confusing
cancelation API with weird corner-case behaviors. delayed_work is
updated to use new IRQ safe timer and cancelation now works as
expected.
* Another deficiency of delayed_work was lack of the counterpart of
mod_timer() which led to cancel+queue combinations or open-coded
timer+work usages. mod_delayed_work[_on]() are added.
These two delayed_work changes make delayed_work provide interface
and behave like timer which is executed with process context.
* A work item could be executed concurrently on multiple CPUs, which
is rather unintuitive and made flush_work() behavior confusing and
half-broken under certain circumstances. This problem doesn't
exist for non-reentrant workqueues. While non-reentrancy check
isn't free, the overhead is incurred only when a work item bounces
across different CPUs and even in simulated pathological scenario
the overhead isn't too high.
All workqueues are made non-reentrant. This removes the
distinction between flush_[delayed_]work() and
flush_[delayed_]_work_sync(). The former is now as strong as the
latter and the specified work item is guaranteed to have finished
execution of any previous queueing on return.
* In addition to the various bug fixes, Lai redid and simplified CPU
hotplug handling significantly.
* Joonsoo introduced system_highpri_wq and used it during CPU
hotplug.
There are two merge commits - one to pull in IRQ safe timer from
tip/timers/core and the other to pull in CPU hotplug fixes from
wq/for-3.6-fixes as Lai's hotplug restructuring depended on them."
Fixed a number of trivial conflicts, but the more interesting conflicts
were silent ones where the deprecated interfaces had been used by new
code in the merge window, and thus didn't cause any real data conflicts.
Tejun pointed out a few of them, I fixed a couple more.
* 'for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (46 commits)
workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()
workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()
workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()
workqueue: remove @delayed from cwq_dec_nr_in_flight()
workqueue: fix possible stall on try_to_grab_pending() of a delayed work item
workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()
workqueue: use __cpuinit instead of __devinit for cpu callbacks
workqueue: rename manager_mutex to assoc_mutex
workqueue: WORKER_REBIND is no longer necessary for idle rebinding
workqueue: WORKER_REBIND is no longer necessary for busy rebinding
workqueue: reimplement idle worker rebinding
workqueue: deprecate __cancel_delayed_work()
workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()
workqueue: use mod_delayed_work() instead of __cancel + queue
workqueue: use irqsafe timer for delayed_work
workqueue: clean up delayed_work initializers and add missing one
workqueue: make deferrable delayed_work initializer names consistent
workqueue: cosmetic whitespace updates for macro definitions
workqueue: deprecate system_nrt[_freezable]_wq
workqueue: deprecate flush[_delayed]_work_sync()
...
Pull RCU changes from Ingo Molnar:
0. 'idle RCU':
Adds RCU APIs that allow non-idle tasks to enter RCU idle mode and
provides x86 code to make use of them, allowing RCU to treat
user-mode execution as an extended quiescent state when the new
RCU_USER_QS kernel configuration parameter is specified. (Work is
in progress to port this to a few other architectures, but is not
part of this series.)
1. A fix for a latent bug that has been in RCU ever since the addition
of CPU stall warnings. This bug results in false-positive stall
warnings, but thus far only on embedded systems with severely
cut-down userspace configurations.
2. Further reductions in latency spikes for huge systems, along with
additional boot-time adaptation to the actual hardware.
This is a large change, as it moves RCU grace-period initialization
and cleanup, along with quiescent-state forcing, from softirq to a
kthread. However, it appears to be in quite good shape (famous
last words).
3. Updates to documentation and rcutorture, the latter category
including keeping statistics on CPU-hotplug latencies and fixing
some initialization-time races.
4. CPU-hotplug fixes and improvements.
5. Idle-loop fixes that were omitted on an earlier submission.
6. Miscellaneous fixes and improvements
In certain RCU configurations new kernel threads will show up (rcu_bh,
rcu_sched), showing RCU processing overhead.
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (90 commits)
rcu: Apply micro-optimization and int/bool fixes to RCU's idle handling
rcu: Userspace RCU extended QS selftest
x86: Exit RCU extended QS on notify resume
x86: Use the new schedule_user API on userspace preemption
rcu: Exit RCU extended QS on user preemption
rcu: Exit RCU extended QS on kernel preemption after irq/exception
x86: Exception hooks for userspace RCU extended QS
x86: Unspaghettize do_general_protection()
x86: Syscall hooks for userspace RCU extended QS
rcu: Switch task's syscall hooks on context switch
rcu: Ignore userspace extended quiescent state by default
rcu: Allow rcu_user_enter()/exit() to nest
rcu: Settle config for userspace extended quiescent state
rcu: Make RCU_FAST_NO_HZ handle adaptive ticks
rcu: New rcu_user_enter_after_irq() and rcu_user_exit_after_irq() APIs
rcu: New rcu_user_enter() and rcu_user_exit() APIs
ia64: Add missing RCU idle APIs on idle loop
xtensa: Add missing RCU idle APIs on idle loop
score: Add missing RCU idle APIs on idle loop
parisc: Add missing RCU idle APIs on idle loop
...
Pull the trivial tree from Jiri Kosina:
"Tiny usual fixes all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
doc: fix old config name of kprobetrace
fs/fs-writeback.c: cleanup riteback_sb_inodes kerneldoc
btrfs: fix the commment for the action flags in delayed-ref.h
btrfs: fix trivial typo for the comment of BTRFS_FREE_INO_OBJECTID
vfs: fix kerneldoc for generic_fh_to_parent()
treewide: fix comment/printk/variable typos
ipr: fix small coding style issues
doc: fix broken utf8 encoding
nfs: comment fix
platform/x86: fix asus_laptop.wled_type module parameter
mfd: printk/comment fixes
doc: getdelays.c: remember to close() socket on error in create_nl_socket()
doc: aliasing-test: close fd on write error
mmc: fix comment typos
dma: fix comments
spi: fix comment/printk typos in spi
Coccinelle: fix typo in memdup_user.cocci
tmiofb: missing NULL pointer checks
tools: perf: Fix typo in tools/perf
tools/testing: fix comment / output typos
...
Speculative cache pagecache lookups can elevate the refcount from
under us, so avoid the false positive. If the refcount is < 2 we'll be
notified by a VM_BUG_ON in put_page_testzero as there are two
put_page(src_page) in a row before returning from this function.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CPU hotplug callback related to writeback calls writeback_set_ratelimit()
during every state change in the hotplug sequence. This is unnecessary
since num_online_cpus() changes only once during the entire hotplug operation.
So invoke the function only once per hotplug, thereby avoiding the
unnecessary repetition of those costly calculations.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
The bug was introduced in commit 4052147c0a ("mm, slab: Match SLAB
and SLUB kmem_cache_alloc_xxx_trace() prototype").
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This patch does not fix anything, and its only goal is to enable us
to obtain some common code between SLAB and SLUB.
Neither behavior nor produced code is affected.
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This patch does not fix anything and its only goal is to
produce common code between SLAB and SLUB.
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This long (seemingly unnecessary) patch does not fix anything and
its only goal is to produce common code between SLAB and SLUB.
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This allows to use _RET_IP_ instead of builtin_address(0), thus
achiveing implementation consistency in all three allocators.
Though maybe a nitpick, the real goal behind this patch is
to be able to obtain common code between SLAB and SLUB.
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Currently slob falls back to regular kmalloc for this case.
With this patch kmalloc_track_caller() is correctly implemented,
thus tracing the specified caller.
This is important to trace accurately allocations performed by
krealloc, kstrdup, kmemdup, etc.
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This function is seldom used, and can be simply replaced with cachep->size.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This patch replaces list_for_each_continue_rcu() with
list_for_each_entry_continue_rcu() to save a few lines
of code and allow removing list_for_each_continue_rcu().
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tmem, as originally specified, assumes that "get" operations
performed on persistent pools never flush the page of data out
of tmem on a successful get, waiting instead for a flush
operation. This is intended to mimic the model of a swap
disk, where a disk read is non-destructive. Unlike a
disk, however, freeing up the RAM can be valuable. Over
the years that frontswap was in the review process, several
reviewers (and notably Hugh Dickins in 2010) pointed out that
this would result, at least temporarily, in two copies of the
data in RAM: one (compressed for zcache) copy in tmem,
and one copy in the swap cache. We wondered if this could
be done differently, at least optionally.
This patch allows tmem backends to instruct the frontswap
code that this backend performs exclusive gets. Zcache2
already contains hooks to support this feature. Other
backends are completely unaffected unless/until they are
updated to support this feature.
While it is not clear that exclusive gets are a performance
win on all workloads at all times, this small patch allows for
experimentation by backends.
P.S. Let's not quibble about the naming of "get" vs "read" vs
"load" etc. The naming is currently horribly inconsistent between
cleancache and frontswap and existing tmem backends, so will need
to be straightened out as a separate patch. "Get" is used
by the tmem architecture spec, existing backends, and
all documentation and presentation material so I am
using it in this patch.
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
pages_to_unuse is set to 0 to unuse all frontswap pages
But that doesn't happen since a wrong condition in frontswap_shrink
cancel it.
-v2: Add comment to explain return value of __frontswap_shrink,
as suggested by Dan Carpenter, thanks
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
It doesn't seem worth adding a new taint flag for this, so just re-use
the one from 'bad page'
Acked-by: Christoph Lameter <cl@linux.com> # SLUB
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
On Tue, 11 Sep 2012, Stephen Rothwell wrote:
> After merging the final tree, today's linux-next build (sparc64 defconfig)
> produced this warning:
>
> mm/slab.c:808:13: warning: '__slab_error' defined but not used [-Wunused-function]
>
> Introduced by commit 945cf2b619 ("mm/sl[aou]b: Extract a common
> function for kmem_cache_destroy"). All uses of slab_error() are now
> guarded by DEBUG.
There is no use case left for slab builds without DEBUG.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
There may be a bug when registering section info. For example, on my
Itanium platform, the pfn range of node0 includes the other nodes, so
other nodes' section info will be double registered, and memmap's page
count will equal to 3.
node0: start_pfn=0x100, spanned_pfn=0x20fb00, present_pfn=0x7f8a3, => 0x000100-0x20fc00
node1: start_pfn=0x80000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x080000-0x100000
node2: start_pfn=0x100000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x100000-0x180000
node3: start_pfn=0x180000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x180000-0x200000
free_all_bootmem_node()
register_page_bootmem_info_node()
register_page_bootmem_info_section()
When hot remove memory, we can't free the memmap's page because
page_count() is 2 after put_page_bootmem().
sparse_remove_one_section()
free_section_usemap()
free_map_bootmem()
put_page_bootmem()
[akpm@linux-foundation.org: add code comment]
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The heuristic method for buddy has been introduced since commit
43506fad21 ("mm/page_alloc.c: simplify calculation of combined index
of adjacent buddy lists"). But the page address of higher page's buddy
was wrongly calculated, which will lead page_is_buddy to fail for ever.
IOW, the heuristic method would be disabled with the wrong page address
of higher page's buddy.
Calculating the page address of higher page's buddy should be based
higher_page with the offset between index of higher page and index of
higher page's buddy.
Signed-off-by: Haifeng Li <omycle@gmail.com>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_partial() is currently not checking pfmemalloc_match() meaning that
it is possible for pfmemalloc pages to leak to non-pfmemalloc users.
This is a problem in the following situation. Assume that there is a
request from normal allocation and there are no objects in the per-cpu
cache and no node-partial slab.
In this case, slab_alloc enters the slow path and new_slab_objects() is
called which may return a PFMEMALLOC page. As the current user is not
allowed to access PFMEMALLOC page, deactivate_slab() is called
([5091b74a: mm: slub: optimise the SLUB fast path to avoid pfmemalloc
checks]) and returns an object from PFMEMALLOC page.
Next time, when we get another request from normal allocation,
slab_alloc() enters the slow-path and calls new_slab_objects(). In
new_slab_objects(), we call get_partial() and get a partial slab which
was just deactivated but is a pfmemalloc page. We extract one object
from it and re-deactivate.
"deactivate -> re-get in get_partial -> re-deactivate" occures repeatedly.
As a result, access to PFMEMALLOC page is not properly restricted and it
can cause a performance degradation due to frequent deactivation.
deactivation frequently.
This patch changes get_partial_node() to take pfmemalloc_match() into
account and prevents the "deactivate -> re-get in get_partial()
scenario. Instead, new_slab() is called.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In array cache, there is a object at index 0, check it.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, we call ClearSlabPfmemalloc() for first page of slab when we
clear SlabPfmemalloc flag. This is fine for most swap-over-network use
cases as it is expected that order-0 pages are in use. Unfortunately it
is possible that that __ac_put_obj() checks SlabPfmemalloc on a tail
page and while this is harmless, it is sloppy. This patch ensures that
the head page is always used.
This problem was originally identified by Joonsoo Kim.
[js1304@gmail.com: Original implementation and problem identification]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kthread_run() fails, pgdat->kswapd contains errno. When we stop this
thread, we only check whether pgdat->kswapd is NULL and access it. If
it contains errno, it will cause page fault. Reset pgdat->kswapd to
NULL when creating kernel thread fails can avoid this problem.
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull a core sparse warning fix from Ingo Molnar
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/memblock: Use NULL instead of 0 for pointers
Currently, cgroup hierarchy support is a mess. cpu related subsystems
behave correctly - configuration, accounting and control on a parent
properly cover its children. blkio and freezer completely ignore
hierarchy and treat all cgroups as if they're directly under the root
cgroup. Others show yet different behaviors.
These differing interpretations of cgroup hierarchy make using cgroup
confusing and it impossible to co-mount controllers into the same
hierarchy and obtain sane behavior.
Eventually, we want full hierarchy support from all subsystems and
probably a unified hierarchy. Users using separate hierarchies
expecting completely different behaviors depending on the mounted
subsystem is deterimental to making any progress on this front.
This patch adds cgroup_subsys.broken_hierarchy and sets it to %true
for controllers which are lacking in hierarchy support. The goal of
this patch is two-fold.
* Move users away from using hierarchy on currently non-hierarchical
subsystems, so that implementing proper hierarchy support on those
doesn't surprise them.
* Keep track of which controllers are broken how and nudge the
subsystems to implement proper hierarchy support.
For now, start with a single warning message. We can whine louder
later on.
v2: Fixed a typo spotted by Michal. Warning message updated.
v3: Updated memcg part so that it doesn't generate warning in the
cases where .use_hierarchy=false doesn't make the behavior
different from root.use_hierarchy=true. Fixed a typo spotted by
Glauber.
v4: Check ->broken_hierarchy after cgroup creation is complete so that
->create() can affect the result per Michal. Dropped unnecessary
memcg root handling per Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
DEADLOCK will be report while running a kernel with NUMA and LOCKDEP enabled,
the process of this fake report is:
kmem_cache_free() //free obj in cachep
-> cache_free_alien() //acquire cachep's l3 alien lock
-> __drain_alien_cache()
-> free_block()
-> slab_destroy()
-> kmem_cache_free() //free slab in cachep->slabp_cache
-> cache_free_alien() //acquire cachep->slabp_cache's l3 alien lock
Since the cachep and cachep->slabp_cache's l3 alien are in the same lock class,
fake report generated.
This should not happen since we already have init_lock_keys() which will
reassign the lock class for both l3 list and l3 alien.
However, init_lock_keys() was invoked at a wrong position which is before we
invoke enable_cpucache() on each cache.
Since until set slab_state to be FULL, we won't invoke enable_cpucache()
on caches to build their l3 alien while creating them, so although we invoked
init_lock_keys(), the l3 alien lock class won't change since we don't have
them until invoked enable_cpucache() later.
This patch will invoke init_lock_keys() after we done enable_cpucache()
instead of before to avoid the fake DEADLOCK report.
Michael traced the problem back to a commit in release 3.0.0:
commit 30765b92ad
Author: Peter Zijlstra <peterz@infradead.org>
Date: Thu Jul 28 23:22:56 2011 +0200
slab, lockdep: Annotate the locks before using them
Fernando found we hit the regular OFF_SLAB 'recursion' before we
annotate the locks, cure this.
The relevant portion of the stack-trace:
> [ 0.000000] [<c085e24f>] rt_spin_lock+0x50/0x56
> [ 0.000000] [<c04fb406>] __cache_free+0x43/0xc3
> [ 0.000000] [<c04fb23f>] kmem_cache_free+0x6c/0xdc
> [ 0.000000] [<c04fb2fe>] slab_destroy+0x4f/0x53
> [ 0.000000] [<c04fb396>] free_block+0x94/0xc1
> [ 0.000000] [<c04fc551>] do_tune_cpucache+0x10b/0x2bb
> [ 0.000000] [<c04fc8dc>] enable_cpucache+0x7b/0xa7
> [ 0.000000] [<c0bd9d3c>] kmem_cache_init_late+0x1f/0x61
> [ 0.000000] [<c0bba687>] start_kernel+0x24c/0x363
> [ 0.000000] [<c0bba0ba>] i386_start_kernel+0xa9/0xaf
Reported-by: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311888176.2617.379.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The commit moved init_lock_keys() before we build up the alien, so we
failed to reclass it.
Cc: <stable@vger.kernel.org> # 3.0+
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Get rid of the refcount stuff in the allocators and do that part of
kmem_cache management in the common code.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Do the initial settings of the fields in common code. This will allow us
to push more processing into common code later and improve readability.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Shift the allocations to common code. That way the allocation and
freeing of the kmem_cache structures is handled by common code.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Simplify locking by moving the slab_add_sysfs after all locks have been
dropped. Eases the upcoming move to provide sysfs support for all
allocators.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The slab aliasing logic causes some strange contortions in slub. So add
a call to deal with aliases to slab_common.c but disable it for other
slab allocators by providng stubs that fail to create aliases.
Full general support for aliases will require additional cleanup passes
and more standardization of fields in kmem_cache.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Duping of the slabname has to be done by each slab. Moving this code to
slab_common avoids duplicate implementations.
With this patch we have common string handling for all slab allocators.
Strings passed to kmem_cache_create() are copied internally. Subsystems
can create temporary strings to create slab caches.
Slabs allocated in early states of bootstrap will never be freed (and
those can never be freed since they are essential to slab allocator
operations). During bootstrap we therefore do not have to worry about
duping names.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
What is done there can be done in __kmem_cache_shutdown.
This affects RCU handling somewhat. On rcu free all slab allocators do
not refer to other management structures than the kmem_cache structure.
Therefore these other structures can be freed before the rcu deferred
free to the page allocator occurs.
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The freeing action is basically the same in all slab allocators.
Move to the common kmem_cache_destroy() function.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Make all allocators use the "kmem_cache" slabname for the "kmem_cache"
structure.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
kmem_cache_destroy does basically the same in all allocators.
Extract common code which is easy since we already have common mutex
handling.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Move the code to append the new kmem_cache to the list of slab caches to
the kmem_cache_create code in the shared code.
This is possible now since the acquisition of the mutex was moved into
kmem_cache_create().
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Instead of using s == NULL use an errorcode. This allows much more
detailed diagnostics as to what went wrong. As we add more functionality
from the slab allocators to the common kmem_cache_create() function we will
also add more error conditions.
Print the error code during the panic as well as in a warning if the module
can handle failure. The API for kmem_cache_create() currently does not allow
the returning of an error code. Return NULL but log the cause of the problem
in the syslog.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Do not use kmalloc() but kmem_cache_alloc() for the allocation
of the kmem_cache structures in slub.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Add additional debugging to check that the objects is actually from the cache
the caller claims. Doing so currently trips up some other debugging code. It
takes a lot to infer from that what was happening.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
[ penberg@kernel.org: Use pr_err() ]
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This type cleanup also fixes the following sparse warning:
mm/memblock.c:249:49: warning: Using plain integer as NULL pointer
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: patches@linaro.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Without this patch we can get (many) kmem trace events
with call site at krealloc().
This happens because krealloc is calling __krealloc,
which performs the allocation through kmalloc_track_caller.
Since neither krealloc nor __krealloc are marked inline explicitly,
the caller can be traced as being krealloc, which clearly is not
the intended behavior.
This patch allows to get the real caller of krealloc, by creating
an always inlined function __do_krealloc, thus tracing the
call site accurately.
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
cache_grow() can reenable irqs so the cpu (and node) can change, so ensure
that we take list_lock on the correct nodelist.
This fixes an issue with commit 072bb0aa5e ("mm: sl[au]b: add
knowledge of PFMEMALLOC reserve pages") where list_lock for the wrong
node was taken after growing the cache.
Reported-and-tested-by: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It marks pages as reserved, as the long description says.
Signed-off-by: Javi Merino <javi.merino@arm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pull block-related fixes from Jens Axboe:
- Improvements to the buffered and direct write IO plugging from
Fengguang.
- Abstract out the mapping of a bio in a request, and use that to
provide a blk_bio_map_sg() helper. Useful for mapping just a bio
instead of a full request.
- Regression fix from Hugh, fixing up a patch that went into the
previous release cycle (and marked stable, too) attempting to prevent
a loop in __getblk_slow().
- Updates to discard requests, fixing up the sizing and how we align
them. Also a change to disallow merging of discard requests, since
that doesn't really work properly yet.
- A few drbd fixes.
- Documentation updates.
* 'for-linus' of git://git.kernel.dk/linux-block:
block: replace __getblk_slow misfix by grow_dev_page fix
drbd: Write all pages of the bitmap after an online resize
drbd: Finish requests that completed while IO was frozen
drbd: fix drbd wire compatibility for empty flushes
Documentation: update tunable options in block/cfq-iosched.txt
Documentation: update tunable options in block/cfq-iosched.txt
Documentation: update missing index files in block/00-INDEX
block: move down direct IO plugging
block: remove plugging at buffered write time
block: disable discard request merge temporarily
bio: Fix potential memory leak in bio_find_or_create_slab()
block: Don't use static to define "void *p" in show_partition_start()
block: Add blk_bio_map_sg() helper
block: Introduce __blk_segment_map_sg() helper
fs/block-dev.c:fix performance regression in O_DIRECT writes to md block devices
block: split discard into aligned requests
block: reorganize rounding of max_discard_sectors
Extract in-memory xattr APIs from tmpfs. Will be used by cgroup.
$ size vmlinux.o
text data bss dec hex filename
4658782 880729 5195032 10734543 a3cbcf vmlinux.o
$ size vmlinux.o
text data bss dec hex filename
4658957 880729 5195032 10734718 a3cc7e vmlinux.o
v7:
- checkpatch warnings fixed
- Implement the changes requested by Hugh Dickins:
- make simple_xattrs_init and simple_xattrs_free inline
- get rid of locking and list reinitialization in simple_xattrs_free,
they're not needed
v6:
- no changes
v5:
- no changes
v4:
- move simple_xattrs_free() to fs/xattr.c
v3:
- in kmem_xattrs_free(), reinitialize the list
- use simple_xattr_* prefix
- introduce simple_xattr_add() to prevent direct list usage
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Jim Schutt reported a problem that pointed at compaction contending
heavily on locks. The workload is straight-forward and in his own words;
The systems in question have 24 SAS drives spread across 3 HBAs,
running 24 Ceph OSD instances, one per drive. FWIW these servers
are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160
Ceph Linux clients doing dd simultaneously to a Ceph file system
backed by 12 of these servers.
Early in the test everything looks fine
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0
27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0
28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0
6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0
22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0
and then it goes to pot
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0
207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0
123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0
123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0
622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0
223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0
Note that system CPU usage is very high blocks being written out has
dropped by 42%. He analysed this with perf and found
perf record -g -a sleep 10
perf report --sort symbol --call-graph fractal,5
34.63% [k] _raw_spin_lock_irqsave
|
|--97.30%-- isolate_freepages
| compaction_alloc
| unmap_and_move
| migrate_pages
| compact_zone
| compact_zone_order
| try_to_compact_pages
| __alloc_pages_direct_compact
| __alloc_pages_slowpath
| __alloc_pages_nodemask
| alloc_pages_vma
| do_huge_pmd_anonymous_page
| handle_mm_fault
| do_page_fault
| page_fault
| |
| |--87.39%-- skb_copy_datagram_iovec
| | tcp_recvmsg
| | inet_recvmsg
| | sock_recvmsg
| | sys_recvfrom
| | system_call
| | __recv
| | |
| | --100.00%-- (nil)
| |
| --12.61%-- memcpy
--2.70%-- [...]
There was other data but primarily it is all showing that compaction is
contended heavily on the zone->lock and zone->lru_lock.
commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration] noted that it was possible for
migration to hold the lru_lock for an excessive amount of time. Very
broadly speaking this patch expands the concept.
This patch introduces compact_checklock_irqsave() to check if a lock
is contended or the process needs to be scheduled. If either condition
is true then async compaction is aborted and the caller is informed.
The page allocator will fail a THP allocation if compaction failed due
to contention. This patch also introduces compact_trylock_irqsave()
which will acquire the lock only if it is not contended and the process
does not need to schedule.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7db8889ab0 ("mm: have order > 0 compaction start off where it
left") introduced a caching mechanism to reduce the amount work the free
page scanner does in compaction. However, it has a problem. Consider
two process simultaneously scanning free pages
C
Process A M S F
|---------------------------------------|
Process B M FS
C is zone->compact_cached_free_pfn
S is cc->start_pfree_pfn
M is cc->migrate_pfn
F is cc->free_pfn
In this diagram, Process A has just reached its migrate scanner, wrapped
around and updated compact_cached_free_pfn accordingly.
Simultaneously, Process B finishes isolating in a block and updates
compact_cached_free_pfn again to the location of its free scanner.
Process A moves to "end_of_zone - one_pageblock" and runs this check
if (cc->order > 0 && (!cc->wrapped ||
zone->compact_cached_free_pfn >
cc->start_free_pfn))
pfn = min(pfn, zone->compact_cached_free_pfn);
compact_cached_free_pfn is above where it started so the free scanner
skips almost the entire space it should have scanned. When there are
multiple processes compacting it can end in a situation where the entire
zone is not being scanned at all. Further, it is possible for two
processes to ping-pong update to compact_cached_free_pfn which is just
random.
Overall, the end result wrecks allocation success rates.
There is not an obvious way around this problem without introducing new
locking and state so this patch takes a different approach.
First, it gets rid of the skip logic because it's not clear that it
matters if two free scanners happen to be in the same block but with
racing updates it's too easy for it to skip over blocks it should not.
Second, it updates compact_cached_free_pfn in a more limited set of
circumstances.
If a scanner has wrapped, it updates compact_cached_free_pfn to the end
of the zone. When a wrapped scanner isolates a page, it updates
compact_cached_free_pfn to point to the highest pageblock it
can isolate pages from.
If a scanner has not wrapped when it has finished isolated pages it
checks if compact_cached_free_pfn is pointing to the end of the
zone. If so, the value is updated to point to the highest
pageblock that pages were isolated from. This value will not
be updated again until a free page scanner wraps and resets
compact_cached_free_pfn.
This is not optimal and it can still race but the compact_cached_free_pfn
will be pointing to or very near a pageblock with free pages.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit cfd19c5a9e ("mm: only set page->pfmemalloc when
ALLOC_NO_WATERMARKS was used") tried to narrow down page->pfmemalloc
setting, but it missed some places the pfmemalloc should be set.
So, in __slab_alloc, the unalignment pfmemalloc and ALLOC_NO_WATERMARKS
cause incorrect deactivate_slab() on our core2 server:
64.73% fio [kernel.kallsyms] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|---0.34%-- deactivate_slab
| __slab_alloc
| kmem_cache_alloc
| |
That causes our fio sync write performance to have a 40% regression.
Move the checking in get_page_from_freelist() which resolves this issue.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Tested-by: Sage Weil <sage@inktank.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit aff622495c ("vmscan: only defer compaction for failed order and
higher") fixed bad deferring policy but made mistake about checking
compact_order_failed in __compact_pgdat(). So it can't update
compact_order_failed with the new order. This ends up preventing
correct operation of policy deferral. This patch fixes it.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Occasionally an isolated BUG_ON(mm->nr_ptes) gets reported, indicating
that not all the page tables allocated could be found and freed when
exit_mmap() tore down the user address space.
There's usually nothing we can say about it, beyond that it's probably a
sign of some bad memory or memory corruption; though it might still
indicate a bug in vma or page table management (and did recently reveal a
race in THP, fixed a few months ago).
But one overdue change we can make is from BUG_ON to WARN_ON.
It's fairly likely that the system will crash shortly afterwards in some
other way (for example, the BUG_ON(page_mapped(page)) in
__delete_from_page_cache(), once an inode mapped into the lost page tables
gets evicted); but might tell us more before that.
Change the BUG_ON(page_mapped) to WARN_ON too? Later perhaps: I'm less
eager, since that one has several times led to fixes.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initalizers for deferrable delayed_work are confused.
* __DEFERRED_WORK_INITIALIZER()
* DECLARE_DEFERRED_WORK()
* INIT_DELAYED_WORK_DEFERRABLE()
Rename them to
* __DEFERRABLE_WORK_INITIALIZER()
* DECLARE_DEFERRABLE_WORK()
* INIT_DEFERRABLE_WORK()
This patch doesn't cause any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch fixes:
https://bugzilla.redhat.com/show_bug.cgi?id=843640
If mmap_region()->uprobe_mmap() fails, unmap_and_free_vma path
does unmap_region() but does not remove the soon-to-be-freed vma
from rb tree. Actually there are more problems but this is how
William noticed this bug.
Perhaps we could do do_munmap() + return in this case, but in
fact it is simply wrong to abort if uprobe_mmap() fails. Until
at least we move the !UPROBE_COPY_INSN code from
install_breakpoint() to uprobe_register().
For example, uprobe_mmap()->install_breakpoint() can fail if the
probed insn is not supported (remember, uprobe_register()
succeeds if nobody mmaps inode/offset), mmap() should not fail
in this case.
dup_mmap()->uprobe_mmap() is wrong too by the same reason,
fork() can race with uprobe_register() and fail for no reason if
it wins the race and does install_breakpoint() first.
And, if nothing else, both mmap_region() and dup_mmap() return
success if uprobe_mmap() fails. Change them to ignore the error
code from uprobe_mmap().
Reported-and-tested-by: William Cohen <wcohen@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # v3.5
Cc: Anton Arapov <anton@redhat.com>
Cc: William Cohen <wcohen@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120819171042.GB26957@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
page_get_cache() isn't called from anything, so remove it.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
kmem_cache_create() does cache integrity checks when CONFIG_DEBUG_VM is
defined. These checks interspersed with the regular code path has lead
to compile time warnings when compiled without CONFIG_DEBUG_VM defined.
Restructuring the code to move the integrity checks in to a new function
would eliminate the current compile warning problem and also will allow
for future changes to the debug only code to evolve without introducing
new warnings in the regular path.
This restructuring work is based on the discussion in the following
thread:
https://lkml.org/lkml/2012/7/13/424
[akpm@linux-foundation.org: fix build, cleanup]
Signed-off-by: Shuah Khan <shuah.khan@hp.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
In current implementation, after unfreezing, we doesn't touch oldpage,
so it remain 'NOT NULL'. When we call this_cpu_cmpxchg()
with this old oldpage, this_cpu_cmpxchg() is mostly be failed.
We can change value of oldpage to NULL after unfreezing,
because unfreeze_partial() ensure that all the cpu partial slabs is removed
from cpu partial list. In this time, we could expect that
this_cpu_cmpxchg is mostly succeed.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Only applies to scenarios where debugging is on:
Validation of slabs can currently occur while debugging
information is updated from the fast paths of the allocator.
This results in various races where we get false reports about
slab metadata not being in order.
This patch makes the fast paths take the node lock so that
serialization with slab validation will occur. Causes additional
slowdown in debug scenarios.
Reported-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Eliminate an ifdef and a label by moving all the CONFIG_DEBUG_VM checking
inside the locked region.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
page_get_cache() does not need to call compound_head(), as its unique
caller virt_to_slab() already makes sure to return a head page.
Additionally, removing the compound_head() call makes page_get_cache()
consistent with page_get_slab().
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
When freeing objects, the slub allocator will most of the time free
empty pages by calling __free_pages(). But high-order kmalloc will be
diposed by means of put_page() instead. It makes no sense to call
put_page() in kernel pages that are provided by the object allocators,
so we shouldn't be doing this ourselves. Aside from the consistency
change, we don't change the flow too much. put_page()'s would call its
dtor function, which is __free_pages. We also already do all of the
Compound page tests ourselves, and the Mlock test we lose don't really
matter.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
CC: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Fixes uninitialized variable warning on 'type' in frontswap_shrink().
type is set before use by __frontswap_unuse_pages() called by
__frontswap_shrink() called by frontswap_shrink() before use by
try_to_unuse().
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Move unplugging for direct I/O from around ->direct_IO() down to
do_blockdev_direct_IO(). This implicitly adds plugging for direct
writes.
CC: Li Shaohua <shli@fusionio.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Buffered write(2) is not directly tied to IO, so it's not suitable to
handle plug in generic_file_aio_write().
Note that plugging for O_SYNC writes is also removed. The user may pass
arbitrary @size arguments, which may be much larger than the preferable
I/O size, or may cross extent/device boundaries. Let the lower layers
handle the plugging. The plugging code here actually turns them into
no-ops.
CC: Li Shaohua <shli@fusionio.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Finally we can kill the 'sync_supers' kernel thread along with the
'->write_super()' superblock operation because all the users are gone.
Now every file-system is supposed to self-manage own superblock and
its dirty state.
The nice thing about killing this thread is that it improves power management.
Indeed, 'sync_supers' is a source of monotonic system wake-ups - it woke up
every 5 seconds no matter what - even if there were no dirty superblocks and
even if there were no file-systems using this service (e.g., btrfs and
journalled ext4 do not need it). So it was wasting power most of the time. And
because the thread was in the core of the kernel, all systems had to have it.
So I am quite happy to make it go away.
Interestingly, this thread is a left-over from the pdflush kernel thread which
was a self-forking kernel thread responsible for all the write-back in old
Linux kernels. It was turned into per-block device BDI threads, and
'sync_supers' was a left-over. Thus, R.I.P, pdflush as well.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Borislav Petkov reports that the new warning added in commit
88fdf75d1b ("mm: warn if pg_data_t isn't initialized with zero")
triggers for him, and it is the node_start_pfn field that has already
been initialized once.
The call trace looks like this:
x86_64_start_kernel ->
x86_64_start_reservations ->
start_kernel ->
setup_arch ->
paging_init ->
zone_sizes_init ->
free_area_init_nodes ->
free_area_init_node
and (with the warning replaced by debug output), Borislav sees
On node 0 totalpages: 4193848
DMA zone: 64 pages used for memmap
DMA zone: 6 pages reserved
DMA zone: 3890 pages, LIFO batch:0
DMA32 zone: 16320 pages used for memmap
DMA32 zone: 798464 pages, LIFO batch:31
Normal zone: 52736 pages used for memmap
Normal zone: 3322368 pages, LIFO batch:31
free_area_init_node: pgdat->node_start_pfn: 4423680 <----
On node 1 totalpages: 4194304
Normal zone: 65536 pages used for memmap
Normal zone: 4128768 pages, LIFO batch:31
free_area_init_node: pgdat->node_start_pfn: 8617984 <----
On node 2 totalpages: 4194304
Normal zone: 65536 pages used for memmap
Normal zone: 4128768 pages, LIFO batch:31
free_area_init_node: pgdat->node_start_pfn: 12812288 <----
On node 3 totalpages: 4194304
Normal zone: 65536 pages used for memmap
Normal zone: 4128768 pages, LIFO batch:31
so remove the bogus warning for now to avoid annoying people. Minchan
Kim is looking at it.
Reported-by: Borislav Petkov <bp@amd64.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
Pull core block IO bits from Jens Axboe:
"The most complicated part if this is the request allocation rework by
Tejun, which has been queued up for a long time and has been in
for-next ditto as well.
There are a few commits from yesterday and today, mostly trivial and
obvious fixes. So I'm pretty confident that it is sound. It's also
smaller than usual."
* 'for-3.6/core' of git://git.kernel.dk/linux-block:
block: remove dead func declaration
block: add partition resize function to blkpg ioctl
block: uninitialized ioc->nr_tasks triggers WARN_ON
block: do not artificially constrain max_sectors for stacking drivers
blkcg: implement per-blkg request allocation
block: prepare for multiple request_lists
block: add q->nr_rqs[] and move q->rq.elvpriv to q->nr_rqs_elvpriv
blkcg: inline bio_blkcg() and friends
block: allocate io_context upfront
block: refactor get_request[_wait]()
block: drop custom queue draining used by scsi_transport_{iscsi|fc}
mempool: add @gfp_mask to mempool_create_node()
blkcg: make root blkcg allocation use %GFP_KERNEL
blkcg: __blkg_lookup_create() doesn't need radix preload
Merge Andrew's second set of patches:
- MM
- a few random fixes
- a couple of RTC leftovers
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
rtc/rtc-88pm80x: remove unneed devm_kfree
rtc/rtc-88pm80x: assign ret only when rtc_register_driver fails
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
tmpfs: distribute interleave better across nodes
mm: remove redundant initialization
mm: warn if pg_data_t isn't initialized with zero
mips: zero out pg_data_t when it's allocated
memcg: gix memory accounting scalability in shrink_page_list
mm/sparse: remove index_init_lock
mm/sparse: more checks on mem_section number
mm/sparse: optimize sparse_index_alloc
memcg: add mem_cgroup_from_css() helper
memcg: further prevent OOM with too many dirty pages
memcg: prevent OOM with too many dirty pages
mm: mmu_notifier: fix freed page still mapped in secondary MMU
mm: memcg: only check anon swapin page charges for swap cache
mm: memcg: only check swap cache pages for repeated charging
mm: memcg: split swapin charge function into private and public part
mm: memcg: remove needless !mm fixup to init_mm when charging
mm: memcg: remove unneeded shmem charge type
...
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When tmpfs has the interleave memory policy, it always starts allocating
for each file from node 0 at offset 0. When there are many small files,
the lower nodes fill up disproportionately.
This patch spreads out node usage by starting files at nodes other than 0,
by using the inode number to bias the starting node for interleave.
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pg_data_t is zeroed before reaching free_area_init_core(), so remove the
now unnecessary initializations.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Warn if memory-hotplug/boot code doesn't initialize pg_data_t with zero
when it is allocated. Arch code and memory hotplug already initiailize
pg_data_t. So this warning should never happen. I select fields randomly
near the beginning, middle and end of pg_data_t for checking.
This patch isn't for performance but for removing initialization code
which is necessary to add whenever we adds new field to pg_data_t or zone.
Firstly, Andrew suggested clearing out of pg_data_t in MM core part but
Tejun doesn't like it because in the future, some archs can initialize
some fields in arch code and pass them into general MM part so blindly
clearing it out in mm core part would be very annoying.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed in a multi-process parallel files reading benchmark I ran on a 8
socket machine, throughput slowed down by a factor of 8 when I ran the
benchmark within a cgroup container. I traced the problem to the
following code path (see below) when we are trying to reclaim memory from
file cache. The res_counter_uncharge function is called on every page
that's reclaimed and created heavy lock contention. The patch below
allows the reclaimed pages to be uncharged from the resource counter in
batch and recovered the regression.
Tim
40.67% usemem [kernel.kallsyms] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--92.61%-- res_counter_uncharge
| |
| |--100.00%-- __mem_cgroup_uncharge_common
| | |
| | |--100.00%-- mem_cgroup_uncharge_cache_page
| | | __remove_mapping
| | | shrink_page_list
| | | shrink_inactive_list
| | | shrink_mem_cgroup_zone
| | | shrink_zone
| | | do_try_to_free_pages
| | | try_to_free_pages
| | | __alloc_pages_nodemask
| | | alloc_pages_current
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_index_init() uses the index_init_lock spinlock to protect root
mem_section assignment. The lock is not necessary anymore because the
function is called only during boot (during paging init which is executed
only from a single CPU) and from the hotplug code (by add_memory() via
arch_add_memory()) which uses mem_hotplug_mutex.
The lock was introduced by 28ae55c9 ("sparsemem extreme: hotplug
preparation") and sparse_index_init() was used only during boot at that
time.
Later when the hotplug code (and add_memory()) was introduced there was no
synchronization so it was possible to online more sections from the same
root probably (though I am not 100% sure about that). The first
synchronization has been added by 6ad696d2 ("mm: allow memory hotplug and
hibernation in the same kernel") which was later replaced by the
mem_hotplug_mutex - 20d6c96b ("mem-hotplug: introduce
{un}lock_memory_hotplug()").
Let's remove the lock as it is not needed and it makes the code more
confusing.
[mhocko@suse.cz: changelog]
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__section_nr() was implemented to retrieve the corresponding memory
section number according to its descriptor. It's possible that the
specified memory section descriptor doesn't exist in the global array. So
add more checking on that and report an error for a wrong case.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_SPARSEMEM_EXTREME, the two levels of memory section
descriptors are allocated from slab or bootmem. When allocating from
slab, let slab/bootmem allocator clear the memory chunk. We needn't clear
it explicitly.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a mem_cgroup_from_css() helper to replace open-coded invokations of
container_of(). To clarify the code and to add a little more type safety.
[akpm@linux-foundation.org: fix extensive breakage]
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The may_enter_fs test turns out to be too restrictive: though I saw no
problem with it when testing on 3.5-rc6, it very soon OOMed when I tested
on 3.5-rc6-mm1. I don't know what the difference there is, perhaps I just
slightly changed the way I started off the testing: dd if=/dev/zero
of=/mnt/temp bs=1M count=1024; rm -f /mnt/temp; sync repeatedly, in 20M
memory.limit_in_bytes cgroup to ext4 on USB stick.
ext4 (and gfs2 and xfs) turn out to allocate new pages for writing with
AOP_FLAG_NOFS: that seems a little worrying, and it's unclear to me why
the transaction needs to be started even before allocating pagecache
memory. But it may not be worth worrying about these days: if direct
reclaim avoids FS writeback, does __GFP_FS now mean anything?
Anyway, we insisted on the may_enter_fs test to avoid hangs with the loop
device; but since that also masks off __GFP_IO, we can test for __GFP_IO
directly, ignoring may_enter_fs and __GFP_FS.
But even so, the test still OOMs sometimes: when originally testing on
3.5-rc6, it OOMed about one time in five or ten; when testing just now on
3.5-rc6-mm1, it OOMed on the first iteration.
This residual problem comes from an accumulation of pages under ordinary
writeback, not marked PageReclaim, so rightly not causing the memcg check
to wait on their writeback: these too can prevent shrink_page_list() from
freeing any pages, so many times that memcg reclaim fails and OOMs.
Deal with these in the same way as direct reclaim now deals with dirty FS
pages: mark them PageReclaim. It is appropriate to rotate these to tail
of list when writepage completes, but more importantly, the PageReclaim
flag makes memcg reclaim wait on them if encountered again. Increment
NR_VMSCAN_IMMEDIATE? That's arguable: I chose not.
Setting PageReclaim here may occasionally race with end_page_writeback()
clearing it: lru_deactivate_fn() already faced the same race, and
correctly concluded that the window is small and the issue non-critical.
With these changes, the test runs indefinitely without OOMing on ext4,
ext3 and ext2: I'll move on to test with other filesystems later.
Trivia: invert conditions for a clearer block without an else, and goto
keep_locked to do the unlock_page.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of dirty pages throttling is not memcg aware
which makes it easy to have memcg LRUs full of dirty pages. Without
throttling, these LRUs can be scanned faster than the rate of writeback,
leading to memcg OOM conditions when the hard limit is small.
This patch fixes the problem by throttling the allocating process
(possibly a writer) during the hard limit reclaim by waiting on
PageReclaim pages. We are waiting only for PageReclaim pages because
those are the pages that made one full round over LRU and that means that
the writeback is much slower than scanning.
The solution is far from being ideal - long term solution is memcg aware
dirty throttling - but it is meant to be a band aid until we have a real
fix. We are seeing this happening during nightly backups which are placed
into containers to prevent from eviction of the real working set.
The change affects only memcg reclaim and only when we encounter
PageReclaim pages which is a signal that the reclaim doesn't catch up on
with the writers so somebody should be throttled. This could be
potentially unfair because it could be somebody else from the group who
gets throttled on behalf of the writer but as writers need to allocate as
well and they allocate in higher rate the probability that only innocent
processes would be penalized is not that high.
I have tested this change by a simple dd copying /dev/zero to tmpfs or
ext3 running under small memcg (1G copy under 5M, 60M, 300M and 2G
containers) and dd got killed by OOM killer every time. With the patch I
could run the dd with the same size under 5M controller without any OOM.
The issue is more visible with slower devices for output.
* With the patch
================
* tmpfs size=2G
---------------
$ vim cgroup_cache_oom_test.sh
$ ./cgroup_cache_oom_test.sh 5M
using Limit 5M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 30.4049 s, 34.5 MB/s
$ ./cgroup_cache_oom_test.sh 60M
using Limit 60M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 31.4561 s, 33.3 MB/s
$ ./cgroup_cache_oom_test.sh 300M
using Limit 300M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 20.4618 s, 51.2 MB/s
$ ./cgroup_cache_oom_test.sh 2G
using Limit 2G for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 1.42172 s, 738 MB/s
* ext3
------
$ ./cgroup_cache_oom_test.sh 5M
using Limit 5M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 27.9547 s, 37.5 MB/s
$ ./cgroup_cache_oom_test.sh 60M
using Limit 60M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 30.3221 s, 34.6 MB/s
$ ./cgroup_cache_oom_test.sh 300M
using Limit 300M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 24.5764 s, 42.7 MB/s
$ ./cgroup_cache_oom_test.sh 2G
using Limit 2G for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 3.35828 s, 312 MB/s
* Without the patch
===================
* tmpfs size=2G
---------------
$ ./cgroup_cache_oom_test.sh 5M
using Limit 5M for group
./cgroup_cache_oom_test.sh: line 46: 4668 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count
$ ./cgroup_cache_oom_test.sh 60M
using Limit 60M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 25.4989 s, 41.1 MB/s
$ ./cgroup_cache_oom_test.sh 300M
using Limit 300M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 24.3928 s, 43.0 MB/s
$ ./cgroup_cache_oom_test.sh 2G
using Limit 2G for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 1.49797 s, 700 MB/s
* ext3
------
$ ./cgroup_cache_oom_test.sh 5M
using Limit 5M for group
./cgroup_cache_oom_test.sh: line 46: 4689 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count
$ ./cgroup_cache_oom_test.sh 60M
using Limit 60M for group
./cgroup_cache_oom_test.sh: line 46: 4692 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count
$ ./cgroup_cache_oom_test.sh 300M
using Limit 300M for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 20.248 s, 51.8 MB/s
$ ./cgroup_cache_oom_test.sh 2G
using Limit 2G for group
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 2.85201 s, 368 MB/s
[akpm@linux-foundation.org: tweak changelog, reordered the test to optimize for CONFIG_CGROUP_MEM_RES_CTLR=n]
[hughd@google.com: fix deadlock with loop driver]
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mmu_notifier_release() is called when the process is exiting. It will
delete all the mmu notifiers. But at this time the page belonging to the
process is still present in page tables and is present on the LRU list, so
this race will happen:
CPU 0 CPU 1
mmu_notifier_release: try_to_unmap:
hlist_del_init_rcu(&mn->hlist);
ptep_clear_flush_notify:
mmu nofifler not found
free page !!!!!!
/*
* At the point, the page has been
* freed, but it is still mapped in
* the secondary MMU.
*/
mn->ops->release(mn, mm);
Then the box is not stable and sometimes we can get this bug:
[ 738.075923] BUG: Bad page state in process migrate-perf pfn:03bec
[ 738.075931] page:ffffea00000efb00 count:0 mapcount:0 mapping: (null) index:0x8076
[ 738.075936] page flags: 0x20000000000014(referenced|dirty)
The same issue is present in mmu_notifier_unregister().
We can call ->release before deleting the notifier to ensure the page has
been unmapped from the secondary MMU before it is freed.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem knows for sure that the page is in swap cache when attempting to
charge a page, because the cache charge entry function has a check for it.
Only anon pages may be removed from swap cache already when trying to
charge their swapin.
Adjust the comment, though: '4969c11 mm: fix swapin race condition' added
a stable PageSwapCache check under the page lock in the do_swap_page()
before calling the memory controller, so it's unuse_pte()'s pte_same()
that may fail.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon and shmem pages in the swap cache are attempted to be charged
multiple times, from every swap pte fault or from shmem_unuse(). No other
pages require checking PageCgroupUsed().
Charging pages in the swap cache is also serialized by the page lock, and
since both the try_charge and commit_charge are called under the same page
lock section, the PageCgroupUsed() check might as well happen before the
counter charging, let alone reclaim.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shmem is charged upon swapin, it does not need to check twice whether
the memory controller is enabled.
Also, shmem pages do not have to be checked for everything that regular
anon pages have to be checked for, so let shmem use the internal version
directly and allow future patches to move around checks that are only
required when swapping in anon pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does not matter to __mem_cgroup_try_charge() if the passed mm is NULL
or init_mm, it will charge the root memcg in either case.
Also fix up the comment in __mem_cgroup_try_charge() that claimed the
init_mm would be charged when no mm was passed. It's not really
incorrect, but confusing. Clarify that the root memcg is charged in this
case.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem page charges have not needed a separate charge type to tell them
from regular file pages since 08e552c ("memcg: synchronized LRU").
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Charging cache pages may require swapin in the shmem case. Save the
forward declaration and just move the swapin functions above the cache
charging functions.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon pages that are uncharged at the time of the last page table
mapping vanishing may be in swapcache.
When shmem pages, file pages, swap-freed anon pages, or just migrated
pages are uncharged, they are known for sure to be not in swapcache.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all uncharge paths need to check if the page is swapcache, some of
them can know for sure.
Push down the check into all callsites of uncharge_common() so that the
patch that removes some of them is more obvious.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The conditional mem_cgroup_cancel_charge_swapin() is a leftover from when
the function would continue to reestablish the page even after
mem_cgroup_try_charge_swapin() failed. After 85d9fc8 "memcg: fix refcnt
handling at swapoff", the condition is always true when this code is
reached.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction (and page migration in general) can currently be hindered
through pages being owned by memory cgroups that are at their limits and
unreclaimable.
The reason is that the replacement page is being charged against the limit
while the page being replaced is also still charged. But this seems
unnecessary, given that only one of the two pages will still be in use
after migration finishes.
This patch changes the memcg migration sequence so that the replacement
page is not charged. Whatever page is still in use after successful or
failed migration gets to keep the charge of the page that was going to be
replaced.
The replacement page will still show up temporarily in the rss/cache
statistics, this can be fixed in a later patch as it's less urgent.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b3a27d ("swap: Add swap slot free callback to
block_device_operations") dereferences p->bdev->bd_disk but this is a NULL
dereference if using swap-over-NFS. This patch checks SWP_BLKDEV on the
swap_info_struct before dereferencing.
With reference to this callback, Christoph Hellwig stated "Please just
remove the callback entirely. It has no user outside the staging tree and
was added clearly against the rules for that staging tree". This would
also be my preference but there was not an obvious way of keeping zram in
staging/ happy.
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch "mm: add support for a filesystem to activate swap files and use
direct_IO for writing swap pages" added support for using direct_IO to
write swap pages but it is insufficient for highmem pages.
To support highmem pages, this patch kmaps() the page before calling the
direct_IO() handler. As direct_IO deals with virtual addresses an
additional helper is necessary for get_kernel_pages() to lookup the struct
page for a kmap virtual address.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The version of swap_activate introduced is sufficient for swap-over-NFS
but would not provide enough information to implement a generic handler.
This patch shuffles things slightly to ensure the same information is
available for aops->swap_activate() as is available to the core.
No functionality change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently swapfiles are managed entirely by the core VM by using ->bmap to
allocate space and write to the blocks directly. This effectively ensures
that the underlying blocks are allocated and avoids the need for the swap
subsystem to locate what physical blocks store offsets within a file.
If the swap subsystem is to use the filesystem information to locate the
blocks, it is critical that information such as block groups, block
bitmaps and the block descriptor table that map the swap file were
resident in memory. This patch adds address_space_operations that the VM
can call when activating or deactivating swap backed by a file.
int swap_activate(struct file *);
int swap_deactivate(struct file *);
The ->swap_activate() method is used to communicate to the file that the
VM relies on it, and the address_space should take adequate measures such
as reserving space in the underlying device, reserving memory for mempools
and pinning information such as the block descriptor table in memory. The
->swap_deactivate() method is called on sys_swapoff() if ->swap_activate()
returned success.
After a successful swapfile ->swap_activate, the swapfile is marked
SWP_FILE and swapper_space.a_ops will proxy to
sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache
pages and ->readpage to read.
It is perfectly possible that direct_IO be used to read the swap pages but
it is an unnecessary complication. Similarly, it is possible that
->writepage be used instead of direct_io to write the pages but filesystem
developers have stated that calling writepage from the VM is undesirable
for a variety of reasons and using direct_IO opens up the possibility of
writing back batches of swap pages in the future.
[a.p.zijlstra@chello.nl: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds two new APIs get_kernel_pages() and get_kernel_page() that
may be used to pin a vector of kernel addresses for IO. The initial user
is expected to be NFS for allowing pages to be written to swap using
aops->direct_IO(). Strictly speaking, swap-over-NFS only needs to pin one
page for IO but it makes sense to express the API in terms of a vector and
add a helper for pinning single pages.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to teach filesystems to handle swap cache pages, three new page
functions are introduced:
pgoff_t page_file_index(struct page *);
loff_t page_file_offset(struct page *);
struct address_space *page_file_mapping(struct page *);
page_file_index() - gives the offset of this page in the file in
PAGE_CACHE_SIZE blocks. Like page->index is for mapped pages, this
function also gives the correct index for PG_swapcache pages.
page_file_offset() - uses page_file_index(), so that it will give the
expected result, even for PG_swapcache pages.
page_file_mapping() - gives the mapping backing the actual page; that is
for swap cache pages it will give swap_file->f_mapping.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under significant pressure when writing back to network-backed storage,
direct reclaimers may get throttled. This is expected to be a short-lived
event and the processes get woken up again but processes do get stalled.
This patch counts how many times such stalling occurs. It's up to the
administrator whether to reduce these stalls by increasing
min_free_kbytes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If swap is backed by network storage such as NBD, there is a risk that a
large number of reclaimers can hang the system by consuming all
PF_MEMALLOC reserves. To avoid these hangs, the administrator must tune
min_free_kbytes in advance which is a bit fragile.
This patch throttles direct reclaimers if half the PF_MEMALLOC reserves
are in use. If the system is routinely getting throttled the system
administrator can increase min_free_kbytes so degradation is smoother but
the system will keep running.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Getting and putting objects in SLAB currently requires a function call but
the bulk of the work is related to PFMEMALLOC reserves which are only
consumed when network-backed storage is critical. Use an inline function
to determine if the function call is required.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the skb allocation API to indicate RX usage and use this to fall
back to the PFMEMALLOC reserve when needed. SKBs allocated from the
reserve are tagged in skb->pfmemalloc. If an SKB is allocated from the
reserve and the socket is later found to be unrelated to page reclaim, the
packet is dropped so that the memory remains available for page reclaim.
Network protocols are expected to recover from this packet loss.
[a.p.zijlstra@chello.nl: Ideas taken from various patches]
[davem@davemloft.net: Use static branches, coding style corrections]
[sebastian@breakpoint.cc: Avoid unnecessary cast, fix !CONFIG_NET build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The reserve is proportionally distributed over all !highmem zones in the
system. So we need to allow an emergency allocation access to all zones.
In order to do that we need to break out of any mempolicy boundaries we
might have.
In my opinion that does not break mempolicies as those are user oriented
and not system oriented. That is, system allocations are not guaranteed
to be within mempolicy boundaries. For instance IRQs do not even have a
mempolicy.
So breaking out of mempolicy boundaries for 'rare' emergency allocations,
which are always system allocations (as opposed to user) is ok.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_slowpath() is called when the number of free pages is below
the low watermark. If the caller is entitled to use ALLOC_NO_WATERMARKS
then the page will be marked page->pfmemalloc. This protects more pages
than are strictly necessary as we only need to protect pages allocated
below the min watermark (the pfmemalloc reserves).
This patch only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was
required to allocate the page.
[rientjes@google.com: David noticed the problem during review]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is needed to allow network softirq packet processing to make use of
PF_MEMALLOC.
Currently softirq context cannot use PF_MEMALLOC due to it not being
associated with a task, and therefore not having task flags to fiddle with
- thus the gfp to alloc flag mapping ignores the task flags when in
interrupts (hard or soft) context.
Allowing softirqs to make use of PF_MEMALLOC therefore requires some
trickery. This patch borrows the task flags from whatever process happens
to be preempted by the softirq. It then modifies the gfp to alloc flags
mapping to not exclude task flags in softirq context, and modify the
softirq code to save, clear and restore the PF_MEMALLOC flag.
The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't
leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag
cannot leak back into the preempted process. This should be safe due to
the following reasons
Softirqs can run on multiple CPUs sure but the same task should not be
executing the same softirq code. Neither should the softirq
handler be preempted by any other softirq handler so the flags
should not leak to an unrelated softirq.
Softirqs re-enable hardware interrupts in __do_softirq() so can be
preempted by hardware interrupts so PF_MEMALLOC is inherited
by the hard IRQ. However, this is similar to a process in
reclaim being preempted by a hardirq. While PF_MEMALLOC is
set, gfp_to_alloc_flags() distinguishes between hard and
soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS
flag.
If the softirq is deferred to ksoftirq then its flags may be used
instead of a normal tasks but as the softirq cannot be preempted,
the PF_MEMALLOC flag does not leak to other code by accident.
[davem@davemloft.net: Document why PF_MEMALLOC is safe]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_MEMALLOC will allow the allocation to disregard the watermarks, much
like PF_MEMALLOC. It allows one to pass along the memalloc state in
object related allocation flags as opposed to task related flags, such as
sk->sk_allocation. This removes the need for ALLOC_PFMEMALLOC as callers
using __GFP_MEMALLOC can get the ALLOC_NO_WATERMARK flag which is now
enough to identify allocations related to page reclaim.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes the check for pfmemalloc from the alloc hotpath and
puts the logic after the election of a new per cpu slab. For a pfmemalloc
page we do not use the fast path but force the use of the slow path which
is also used for the debug case.
This has the side-effect of weakening pfmemalloc processing in the
following way;
1. A process that is allocating for network swap calls __slab_alloc.
pfmemalloc_match is true so the freelist is loaded and c->freelist is
now pointing to a pfmemalloc page.
2. A process that is attempting normal allocations calls slab_alloc,
finds the pfmemalloc page on the freelist and uses it because it did
not check pfmemalloc_match()
The patch allows non-pfmemalloc allocations to use pfmemalloc pages with
the kmalloc slabs being the most vunerable caches on the grounds they
are most likely to have a mix of pfmemalloc and !pfmemalloc requests. A
later patch will still protect the system as processes will get throttled
if the pfmemalloc reserves get depleted but performance will not degrade
as smoothly.
[mgorman@suse.de: Expanded changelog]
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a user or administrator requires swap for their application, they
create a swap partition and file, format it with mkswap and activate it
with swapon. Swap over the network is considered as an option in diskless
systems. The two likely scenarios are when blade servers are used as part
of a cluster where the form factor or maintenance costs do not allow the
use of disks and thin clients.
The Linux Terminal Server Project recommends the use of the Network Block
Device (NBD) for swap according to the manual at
https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
There is also documentation and tutorials on how to setup swap over NBD at
places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
nbd-client also documents the use of NBD as swap. Despite this, the fact
is that a machine using NBD for swap can deadlock within minutes if swap
is used intensively. This patch series addresses the problem.
The core issue is that network block devices do not use mempools like
normal block devices do. As the host cannot control where they receive
packets from, they cannot reliably work out in advance how much memory
they might need. Some years ago, Peter Zijlstra developed a series of
patches that supported swap over an NFS that at least one distribution is
carrying within their kernels. This patch series borrows very heavily
from Peter's work to support swapping over NBD as a pre-requisite to
supporting swap-over-NFS. The bulk of the complexity is concerned with
preserving memory that is allocated from the PFMEMALLOC reserves for use
by the network layer which is needed for both NBD and NFS.
Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
preserve access to pages allocated under low memory situations
to callers that are freeing memory.
Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
reserves without setting PFMEMALLOC.
Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
for later use by network packet processing.
Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
Patches 7-12 allows network processing to use PFMEMALLOC reserves when
the socket has been marked as being used by the VM to clean pages. If
packets are received and stored in pages that were allocated under
low-memory situations and are unrelated to the VM, the packets
are dropped.
Patch 11 reintroduces __skb_alloc_page which the networking
folk may object to but is needed in some cases to propogate
pfmemalloc from a newly allocated page to an skb. If there is a
strong objection, this patch can be dropped with the impact being
that swap-over-network will be slower in some cases but it should
not fail.
Patch 13 is a micro-optimisation to avoid a function call in the
common case.
Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
PFMEMALLOC if necessary.
Patch 15 notes that it is still possible for the PFMEMALLOC reserve
to be depleted. To prevent this, direct reclaimers get throttled on
a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is
expected that kswapd and the direct reclaimers already running
will clean enough pages for the low watermark to be reached and
the throttled processes are woken up.
Patch 16 adds a statistic to track how often processes get throttled
Some basic performance testing was run using kernel builds, netperf on
loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
sysbench. Each of them were expected to use the sl*b allocators
reasonably heavily but there did not appear to be significant performance
variances.
For testing swap-over-NBD, a machine was booted with 2G of RAM with a
swapfile backed by NBD. 8*NUM_CPU processes were started that create
anonymous memory mappings and read them linearly in a loop. The total
size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
memory pressure.
Without the patches and using SLUB, the machine locks up within minutes
and runs to completion with them applied. With SLAB, the story is
different as an unpatched kernel run to completion. However, the patched
kernel completed the test 45% faster.
MICRO
3.5.0-rc2 3.5.0-rc2
vanilla swapnbd
Unrecognised test vmscan-anon-mmap-write
MMTests Statistics: duration
Sys Time Running Test (seconds) 197.80 173.07
User+Sys Time Running Test (seconds) 206.96 182.03
Total Elapsed Time (seconds) 3240.70 1762.09
This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
Allocations of pages below the min watermark run a risk of the machine
hanging due to a lack of memory. To prevent this, only callers who have
PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to
a slab though, nothing prevents other callers consuming free objects
within those slabs. This patch limits access to slab pages that were
alloced from the PFMEMALLOC reserves.
When this patch is applied, pages allocated from below the low watermark
are returned with page->pfmemalloc set and it is up to the caller to
determine how the page should be protected. SLAB restricts access to any
page with page->pfmemalloc set to callers which are known to able to
access the PFMEMALLOC reserve. If one is not available, an attempt is
made to allocate a new page rather than use a reserve. SLUB is a bit more
relaxed in that it only records if the current per-CPU page was allocated
from PFMEMALLOC reserve and uses another partial slab if the caller does
not have the necessary GFP or process flags. This was found to be
sufficient in tests to avoid hangs due to SLUB generally maintaining
smaller lists than SLAB.
In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
a slab allocation even though free objects are available because they are
being preserved for callers that are freeing pages.
[a.p.zijlstra@chello.nl: Original implementation]
[sebastian@breakpoint.cc: Correct order of page flag clearing]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hotplug offlining happens on zone A, it starts to mark freed page as
MIGRATE_ISOLATE type in buddy for preventing further allocation.
(MIGRATE_ISOLATE is very irony type because it's apparently on buddy but
we can't allocate them).
When the memory shortage happens during hotplug offlining, current task
starts to reclaim, then wake up kswapd. Kswapd checks watermark, then go
sleep because current zone_watermark_ok_safe doesn't consider
MIGRATE_ISOLATE freed page count. Current task continue to reclaim in
direct reclaim path without kswapd's helping. The problem is that
zone->all_unreclaimable is set by only kswapd so that current task would
be looping forever like below.
__alloc_pages_slowpath
restart:
wake_all_kswapd
rebalance:
__alloc_pages_direct_reclaim
do_try_to_free_pages
if global_reclaim && !all_unreclaimable
return 1; /* It means we did did_some_progress */
skip __alloc_pages_may_oom
should_alloc_retry
goto rebalance;
If we apply KOSAKI's patch[1] which doesn't depends on kswapd about
setting zone->all_unreclaimable, we can solve this problem by killing some
task in direct reclaim path. But it doesn't wake up kswapd, still. It
could be a problem still if other subsystem needs GFP_ATOMIC request. So
kswapd should consider MIGRATE_ISOLATE when it calculate free pages BEFORE
going sleep.
This patch counts the number of MIGRATE_ISOLATE page block and
zone_watermark_ok_safe will consider it if the system has such blocks
(fortunately, it's very rare so no problem in POV overhead and kswapd is
never hotpath).
Copy/modify from Mel's quote
"
Ideal solution would be "allocating" the pageblock.
It would keep the free space accounting as it is but historically,
memory hotplug didn't allocate pages because it would be difficult to
detect if a pageblock was isolated or if part of some balloon.
Allocating just full pageblocks would work around this, However,
it would play very badly with CMA.
"
[1] http://lkml.org/lkml/2012/6/14/74
[akpm@linux-foundation.org: simplify nr_zone_isolate_freepages(), rework zone_watermark_ok_safe() comment, simplify set_pageblock_isolate() and restore_pageblock_isolate()]
[akpm@linux-foundation.org: fix CONFIG_MEMORY_ISOLATION=n build]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Suggested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__zone_watermark_ok currently compares free_pages which is a signed type
with z->lowmem_reserve[classzone_idx] which is unsigned which might lead
to sign overflow if free_pages doesn't satisfy the given order (or it came
as negative already) and then we rely on the following order loop to fix
it (which doesn't work for order-0). Let's fix the type conversion and do
not rely on the given value of free_pages or follow up fixups.
This patch fixes it because "memory-hotplug: fix kswapd looping forever
problem" depends on this.
As benefit of this patch, it doesn't rely on the loop to exit
__zone_watermark_ok in case of high order check and make the first test
effective.(ie, if (free_pages <= min + lowmem_reserve))
Aaditya reported this problem when he test my hotplug patch.
Reported-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Tested-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/page_alloc.c has some memory isolation functions but they are used only
when we enable CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. So let's make
it configurable by new CONFIG_MEMORY_ISOLATION so that it can reduce
binary size and we can check it simple by CONFIG_MEMORY_ISOLATION, not if
defined CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By globally defining check_panic_on_oom(), the memcg oom handler can be
moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the
oom killer and cleans up the code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since exiting tasks require write_lock_irq(&tasklist_lock) several times,
try to reduce the amount of time the readside is held for oom kills. This
makes the interface with the memcg oom handler more consistent since it
now never needs to take tasklist_lock unnecessarily.
The only time the oom killer now takes tasklist_lock is when iterating the
children of the selected task, everything else is protected by
rcu_read_lock().
This requires that a reference to the selected process, p, is grabbed
before calling oom_kill_process(). It may release it and grab a reference
on another one of p's threads if !p->mm, but it also guarantees that it
will release the reference before returning.
[hughd@google.com: fix duplicate put_task_struct()]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global oom killer is serialized by the per-zonelist
try_set_zonelist_oom() which is used in the page allocator. Concurrent
oom kills are thus a rare event and only occur in systems using
mempolicies and with a large number of nodes.
Memory controller oom kills, however, can frequently be concurrent since
there is no serialization once the oom killer is called for oom conditions
in several different memcgs in parallel.
This creates a massive contention on tasklist_lock since the oom killer
requires the readside for the tasklist iteration. If several memcgs are
calling the oom killer, this lock can be held for a substantial amount of
time, especially if threads continue to enter it as other threads are
exiting.
Since the exit path grabs the writeside of the lock with irqs disabled in
a few different places, this can cause a soft lockup on cpus as a result
of tasklist_lock starvation.
The kernel lacks unfair writelocks, and successful calls to the oom killer
usually result in at least one thread entering the exit path, so an
alternative solution is needed.
This patch introduces a seperate oom handler for memcgs so that they do
not require tasklist_lock for as much time. Instead, it iterates only
over the threads attached to the oom memcg and grabs a reference to the
selected thread before calling oom_kill_process() to ensure it doesn't
prematurely exit.
This still requires tasklist_lock for the tasklist dump, iterating
children of the selected process, and killing all other threads on the
system sharing the same memory as the selected victim. So while this
isn't a complete solution to tasklist_lock starvation, it significantly
reduces the amount of time that it is held.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces a helper function to process each thread during the
iteration over the tasklist. A new return type, enum oom_scan_t, is
defined to determine the future behavior of the iteration:
- OOM_SCAN_OK: continue scanning the thread and find its badness,
- OOM_SCAN_CONTINUE: do not consider this thread for oom kill, it's
ineligible,
- OOM_SCAN_ABORT: abort the iteration and return, or
- OOM_SCAN_SELECT: always select this thread with the highest badness
possible.
There is no functional change with this patch. This new helper function
will be used in the next patch in the memory controller.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark functions used by both boot and memory hotplug as __meminit to reduce
memory footprint when memory hotplug is disabled.
Alos guard zone_pcp_update() with CONFIG_MEMORY_HOTPLUG because it's only
used by memory hotplug code.
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Cc: Wei Wang <Bessel.Wang@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a zone becomes empty after memory offlining, free zone->pageset.
Otherwise it will cause memory leak when adding memory to the empty zone
again because build_all_zonelists() will allocate zone->pageset for an
empty zone.
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Wei Wang <Bessel.Wang@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When online_pages() is called to add new memory to an empty zone, it
rebuilds all zone lists by calling build_all_zonelists(). But there's a
bug which prevents the new zone to be added to other nodes' zone lists.
online_pages() {
build_all_zonelists()
.....
node_set_state(zone_to_nid(zone), N_HIGH_MEMORY)
}
Here the node of the zone is put into N_HIGH_MEMORY state after calling
build_all_zonelists(), but build_all_zonelists() only adds zones from
nodes in N_HIGH_MEMORY state to the fallback zone lists.
build_all_zonelists()
->__build_all_zonelists()
->build_zonelists()
->find_next_best_node()
->for_each_node_state(n, N_HIGH_MEMORY)
So memory in the new zone will never be used by other nodes, and it may
cause strange behavor when system is under memory pressure. So put node
into N_HIGH_MEMORY state before calling build_all_zonelists().
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hotadd_new_pgdat() is called to create new pgdat for a new node, a
fallback zonelist should be created for the new node. There's code to try
to achieve that in hotadd_new_pgdat() as below:
/*
* The node we allocated has no zone fallback lists. For avoiding
* to access not-initialized zonelist, build here.
*/
mutex_lock(&zonelists_mutex);
build_all_zonelists(pgdat, NULL);
mutex_unlock(&zonelists_mutex);
But it doesn't work as expected. When hotadd_new_pgdat() is called, the
new node is still in offline state because node_set_online(nid) hasn't
been called yet. And build_all_zonelists() only builds zonelists for
online nodes as:
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
Though we hope to create zonelist for the new pgdat, but it doesn't. So
add a new parameter "pgdat" the build_all_zonelists() to build pgdat for
the new pgdat too.
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as
Itanium, pageblock_order is a variable with default value of 0. It's set
to the right value by set_pageblock_order() in function
free_area_init_core().
But pageblock_order may be used by sparse_init() before free_area_init_core()
is called along path:
sparse_init()
->sparse_early_usemaps_alloc_node()
->usemap_size()
->SECTION_BLOCKFLAGS_BITS
->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) *
NR_PAGEBLOCK_BITS)
The uninitialized pageblock_size will cause memory wasting because
usemap_size() returns a much bigger value then it's really needed.
For example, on an Itanium platform,
sparse_init() pageblock_order=0 usemap_size=24576
free_area_init_core() before pageblock_order=0, usemap_size=24576
free_area_init_core() after pageblock_order=12, usemap_size=8
That means 24K memory has been wasted for each section, so fix it by calling
set_pageblock_order() from sparse_init().
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Call up_read(&mm->mmap_sem) directly since we have already got mm via
current->mm at the beginning of print_vma_addr().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Order > 0 compaction stops when enough free pages of the correct page
order have been coalesced. When doing subsequent higher order
allocations, it is possible for compaction to be invoked many times.
However, the compaction code always starts out looking for things to
compact at the start of the zone, and for free pages to compact things to
at the end of the zone.
This can cause quadratic behaviour, with isolate_freepages starting at the
end of the zone each time, even though previous invocations of the
compaction code already filled up all free memory on that end of the zone.
This can cause isolate_freepages to take enormous amounts of CPU with
certain workloads on larger memory systems.
The obvious solution is to have isolate_freepages remember where it left
off last time, and continue at that point the next time it gets invoked
for an order > 0 compaction. This could cause compaction to fail if
cc->free_pfn and cc->migrate_pfn are close together initially, in that
case we restart from the end of the zone and try once more.
Forced full (order == -1) compactions are left alone.
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: s/laste/last/, use 80 cols]
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have an application that does the following:
* copy the state of all controllers attached to a hierarchy
* replicate it as a child of the current level.
I would expect writes to the files to mostly succeed, since they are
inheriting sane values from parents.
But that is not the case for use_hierarchy. If it is set to 0, we succeed
ok. If we're set to 1, the value of the file is automatically set to 1 in
the children, but if userspace tries to write the very same 1, it will
fail. That same situation happens if we set use_hierarchy, create a
child, and then try to write 1 again.
Now, there is no reason whatsoever for failing to write a value that is
already there. It doesn't even match the comments, that states:
/* If parent's use_hierarchy is set, we can't make any modifications
* in the child subtrees...
since we are not changing anything.
So test the new value against the one we're storing, and automatically
return 0 if we're not proposing a change.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Dhaval Giani <dhaval.giani@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __count_immobile_pages() naming is rather awkward. Choose a more
clear name and add a comment.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
d179e84ba ("mm: vmscan: do not use page_count without a page pin") fixed
this problem in vmscan.c but same problem is in __count_immobile_pages().
I copy and paste d179e84ba's contents for description.
"It is unsafe to run page_count during the physical pfn scan because
compound_head could trip on a dangling pointer when reading
page->first_page if the compound page is being freed by another CPU."
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of ptes and swap entries are used in the oom killer's badness
heuristic, so they should be shown in the tasklist dump.
This patch adds those fields and replaces cpu and oom_adj values that are
currently emitted. Cpu isn't interesting and oom_adj is deprecated and
will be removed later this year, the same information is already displayed
as oom_score_adj which is used internally.
At the same time, make the documentation a little more clear to state this
information is helpful to determine why the oom killer chose the task it
did to kill.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/sys/vm/oom_kill_allocating_task will immediately kill current when
the oom killer is called to avoid a potentially expensive tasklist scan
for large systems.
Currently, however, it is not checking current's oom_score_adj value which
may be OOM_SCORE_ADJ_MIN, meaning that it has been disabled from oom
killing.
This patch avoids killing current in such a condition and simply falls
back to the tasklist scan since memory still needs to be freed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 2ff754fa8f ("mm: clear pages_scanned only if draining a pcp adds
pages to the buddy allocator again") fixed one free_pcppages_bulk()
misuse. But two another miuse still exist.
This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Wong reported his test suite failex when /tmp is tmpfs.
https://lkml.org/lkml/2012/2/24/479
Currentlt the input check of POSIX_FADV_WILLNEED has two problems.
- requires a_ops->readpage. But in fact, force_page_cache_readahead()
requires that the target filesystem has either ->readpage or ->readpages.
- returns -EINVAL when the filesystem doesn't have ->readpage. But
posix says that fadvise is merely a hint. Thus fadvise() should return
0 if filesystem has no means of implementing fadvise(). The userland
application should not know nor care whcih type of filesystem backs the
TMPDIR directory, as Eric pointed out. There is nothing which userspace
can do to solve this error.
So change the return value to 0 when filesytem doesn't support readahead.
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Eric Wong <normalperson@yhbt.net>
Tested-by: Eric Wong <normalperson@yhbt.net>
Reviewed-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_force_empty_list() just returns 0 or -EBUSY and -EBUSY
indicates 'you need to retry'. Make mem_cgroup_force_empty_list() return
a bool to simplify the logic.
[akpm@linux-foundation.org: rework mem_cgroup_force_empty_list()'s comment]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After bf544fdc241da8 "memcg: move charges to root cgroup if
use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()"
mem_cgroup_move_parent() returns only -EBUSY or -EINVAL. So we can remove
the -ENOMEM and -EINTR checks.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After bf544fdc241da8 "memcg: move charges to root cgroup if
use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()", no memory reclaim
will occur when removing a memory cgroup. If -EINTR is returned here,
cgroup will show a warning.
We don't need to handle any user interruption signal. Remove this.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is an 80-column eyesore, quite unnecessarily. Clean that
up, and use standard comment layout style.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Greg Pearson <greg.pearson@hp.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer currently schedules away from current in an uninterruptible
sleep if it does not have access to memory reserves. It's possible that
current was killed because it shares memory with the oom killed thread or
because it was killed by the user in the interim, however.
This patch only schedules away from current if it does not have a pending
kill, i.e. if it does not share memory with the oom killed thread. It's
possible that it will immediately retry its memory allocation and fail,
but it will immediately be given access to memory reserves if it calls the
oom killer again.
This prevents the delay of memory freeing when threads that share memory
with the oom killed thread get unnecessarily scheduled.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already hold the hugetlb_lock. That should prevent a parallel cgroup
rmdir from touching page's hugetlb cgroup. So remove the exclude and
wakeup calls.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A page's hugetlb cgroup assignment and movement to the active list should
occur with hugetlb_lock held. Otherwise when we remove the hugetlb cgroup
we will iterate the active list and find pages with NULL hugetlb cgroup
values.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we fail to allocate pages from the reserve pool, hugetlb tries to
allocate huge pages using alloc_buddy_huge_page. Add these to the active
list. We also need to add the huge page we allocate when we soft offline
the oldpage to active list.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With HugeTLB pages, hugetlb cgroup is uncharged in compound page
destructor. Since we are holding a hugepage reference, we can be sure
that old page won't get uncharged till the last put_page().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for cgroup removal. If we don't have parent cgroup, the
charges are moved to root cgroup.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the hugetlb cgroup pointer to 3rd page lru.next. This limit the usage
to hugetlb cgroup to only hugepages with 3 or more normal pages. I guess
that is an acceptable limitation.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement a new controller that allows us to control HugeTLB allocations.
The extension allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how
much HugeTLB pages it would require for its use.
The charge/uncharge calls will be added to HugeTLB code in later patch.
Support for cgroup removal will be added in later patches.
[akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g]
[akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g]
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We will use them later in hugetlb_cgroup.c
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepage_activelist will be used to track currently used HugeTLB pages.
We need to find the in-use HugeTLB pages to support HugeTLB cgroup removal.
On cgroup removal we update the page's HugeTLB cgroup to point to parent
cgroup.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we migrate only one hugepage, don't use linked list for passing the
page around. Directly pass the page that need to be migrated as argument.
This also removes the usage of page->lru in the migrate path.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use a mmu_gather instead of a temporary linked list for accumulating pages
when we unmap a hugepage range
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an inline helper and use it in the code.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current use of VM_FAULT_* codes with ERR_PTR requires us to ensure
VM_FAULT_* values will not exceed MAX_ERRNO value. Decouple the
VM_FAULT_* values from MAX_ERRNO.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset implements a cgroup resource controller for HugeTLB pages.
The controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how
much HugeTLB pages it would require for its use.
The goal is to control how many HugeTLB pages a group of task can
allocate. It can be looked at as an extension of the existing quota
interface which limits the number of HugeTLB pages per hugetlbfs
superblock. HPC job scheduler requires jobs to specify their resource
requirements in the job file. Once their requirements can be met, job
schedulers like (SLURM) will schedule the job. We need to make sure that
the jobs won't consume more resources than requested. If they do we
should either error out or kill the application.
This patch:
Rename max_hstate to hugetlb_max_hstate. We will be using this from other
subsystems like hugetlb controller in later patches.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since per-BDI flusher threads were introduced in 2.6, the pdflush
mechanism is not used any more. But the old interface exported through
/proc/sys/vm/nr_pdflush_threads still exists and is obviously useless.
For back-compatibility, printk warning information and return 2 to notify
the users that the interface is removed.
Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, function should_fail() has "bool" for its return value, so it's
reasonable to change the return value of function should_fail_alloc_page()
into "bool" as well.
The patch does cleanup on function should_fail_alloc_page() to have "bool"
for its return value.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm_stat_account() accounts the shared_vm, stack_vm and reserved_vm now.
But we can also account for total_vm in the vm_stat_account() which makes
the code tidy.
Even for mprotect_fixup(), we can get the right result in the end.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead works fine, but the I/O to disk is almost always done in
page size requests, despite the fact that readahead submits
1<<page-cluster pages at a time.
On older kernels the old per device plugging behavior might have captured
this and merged the requests, but currently all comes down to much more
I/Os than required.
On a single device this might not be an issue, but as soon as a server
runs on shared san resources savin I/Os not only improves swapin
throughput but also provides a lower resource utilization.
With a load running KVM in a lot of memory overcommitment (the hot memory
is 1.5 times the host memory) swapping throughput improves significantly
and the lead feels more responsive as well as achieves more throughput.
In a test setup with 16 swap disks running blocktrace on one of those disks
shows the improved merging:
Prior:
Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB
Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB
Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB
IO unplugs: 149,614 Timer unplugs: 2,940
With the patch:
Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB
Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB
Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB
IO unplugs: 337,130 Timer unplugs: 11,184
I got ~10% to ~40% more throughput in my cases and at the same time much
lower cpu consumption when broken down per transferred kilobyte (the
majority of that due to saved interrupts and better cache handling). In a
shared SAN others might get an additional benefit as well, because this
now causes less protocol overhead.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no users since commit b24028572f ("memcg: remove PCG_CACHE").
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, in memcg, 2 "MAPPED" enum/macro are found
MEM_CGROUP_CHARGE_TYPE_MAPPED
MEM_CGROUP_STAT_FILE_MAPPED
Thier names looks similar to each other but the former is used for
accounting anonymous memory. rename it as TYPE_ANON.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MEM_CGROUP_STAT_SWAPOUT represents the usage of swap rather than
the number of swap-out events. Rename it to be MEM_CGROUP_STAT_SWAP.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If someone calls vb_alloc() (or vm_map_ram() for that matter) to allocate
0 bytes (0 pages), get_order() returns BITS_PER_LONG - PAGE_CACHE_SHIFT
and interesting stuff happens. So make debugging such problems easier and
warn about 0-size allocation.
[akpm@linux-foundation.org: use WARN_ON-return-value feature]
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a walk by repeating rb_next to find a suitable hole. Could be
simply replaced by walk on the sorted vmap_area_list. More simpler and
efficient.
Mutation of the list and tree only happens in pair within
__insert_vmap_area and __free_vmap_area, under protection of
vmap_area_lock. The patch code is also under vmap_area_lock, so the list
walk is safe, and consistent with the tree walk.
Tested on SMP by repeating batch of vmalloc anf vfree for random sizes and
rounds for hours.
Signed-off-by: Hong Zhiguo <honkiko@gmail.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull perf updates from Ingo Molnar:
"The biggest changes are Intel Nehalem-EX PMU uncore support, uprobes
updates/cleanups/fixes from Oleg and diverse tooling updates (mostly
fixes) now that Arnaldo is back from vacation."
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
uprobes: __replace_page() needs munlock_vma_page()
uprobes: Rename vma_address() and make it return "unsigned long"
uprobes: Fix register_for_each_vma()->vma_address() check
uprobes: Introduce vaddr_to_offset(vma, vaddr)
uprobes: Teach build_probe_list() to consider the range
uprobes: Remove insert_vm_struct()->uprobe_mmap()
uprobes: Remove copy_vma()->uprobe_mmap()
uprobes: Fix overflow in vma_address()/find_active_uprobe()
uprobes: Suppress uprobe_munmap() from mmput()
uprobes: Uprobe_mmap/munmap needs list_for_each_entry_safe()
uprobes: Clean up and document write_opcode()->lock_page(old_page)
uprobes: Kill write_opcode()->lock_page(new_page)
uprobes: __replace_page() should not use page_address_in_vma()
uprobes: Don't recheck vma/f_mapping in write_opcode()
perf/x86: Fix missing struct before structure name
perf/x86: Fix format definition of SNB-EP uncore QPI box
perf/x86: Make bitfield unsigned
perf/x86: Fix LLC-* and node-* events on Intel SandyBridge
perf/x86: Add Intel Nehalem-EX uncore support
perf/x86: Fix typo in format definition of uncore PCU filter
...
There are several entry points which dirty pages in a filesystem. mmap
(handled by block_page_mkwrite()), buffered write (handled by
__generic_file_aio_write()), splice write (generic_file_splice_write),
truncate, and fallocate (these can dirty last partial page - handled inside
each filesystem separately). Protect these places with sb_start_write() and
sb_end_write().
->page_mkwrite() calls are particularly complex since they are called with
mmap_sem held and thus we cannot use standard sb_start_write() due to lock
ordering constraints. We solve the problem by using a special freeze protection
sb_start_pagefault() which ranks below mmap_sem.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
which can adapt equally well to fast/slow devices.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJQF0/wAAoJECvKgwp+S8JaszsP/16EO5F5mUCOFgncVRp+8R9U
BxuKJ61j2R9ckHA+ngMEg72W5vJQds64cjywZnz6HMr0/+3tXUf4QBbU4/4sCeai
0lpK8MCKgp5KHHCxgO8zyoSaboankUgoDcbSmGJREV1WXoR8VWXsO9gXqiiH9XOe
e8ADjds/YdxkQbOYDRgZKvLzwWS61K9Kwq5/56GASh2uflw7rkJZ38xqvGbo3YiQ
IJJwOUYfJjFadIewYARQmkZZyWeAmtY0ADh15Z8pJt+iY4PgcDDlaWagwUH2Oaoi
vhTFO4KnCjhSpc872et21g/jN/VrcQqzuUF/LUE9rW5irXeDZVCDrCQOuHQ+3Uo5
YuV3rpNABW/LU8AvtIwt9hUunaKUnrXaSluoL9LzH2VpH++JljQeR4yZ62Q5rpRs
z4Bow25p7tlbcIJWzueMPdOFUr5s3P6XfQHoLVRWqN94eJ+Z1DPOgBlOain6cCUN
oivPh4FxZfUscNmX8/7cHaTNEpGzJ0FzLPMNFnGQ2zwG0gk41fnMdWb19aVIE5GL
/Q96TB24k/v+o1lbxGmyPi0L+Aq+NknvNm+p/YJHAAQrIpu5t2hPvka8/m7Nj7tu
c3rM75RKiZkEI+3U6Ws1DhhQPtVcfNIVlNYQMGzlIndtK6T0ByueQ4eN5Z7ltjSE
pS89rv2hyBw7yCaTU6ui
=gZrM
-----END PGP SIGNATURE-----
Merge tag 'writeback-proportions' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux
Pull writeback updates from Wu Fengguang:
"Use time based periods to age the writeback proportions, which can
adapt equally well to fast/slow devices."
Fix up trivial conflict in comment in fs/sync.c
* tag 'writeback-proportions' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Fix some comment errors
block: Convert BDI proportion calculations to flexible proportions
lib: Fix possible deadlock in flexible proportion code
lib: Proportions with flexible period
Merge Andrew's first set of patches:
"Non-MM patches:
- lots of misc bits
- tree-wide have_clk() cleanups
- quite a lot of printk tweaks. I draw your attention to "printk:
convert the format for KERN_<LEVEL> to a 2 byte pattern" which
looks a bit scary. But afaict it's solid.
- backlight updates
- lib/ feature work (notably the addition and use of memweight())
- checkpatch updates
- rtc updates
- nilfs updates
- fatfs updates (partial, still waiting for acks)
- kdump, proc, fork, IPC, sysctl, taskstats, pps, etc
- new fault-injection feature work"
* Merge emailed patches from Andrew Morton <akpm@linux-foundation.org>: (128 commits)
drivers/misc/lkdtm.c: fix missing allocation failure check
lib/scatterlist: do not re-write gfp_flags in __sg_alloc_table()
fault-injection: add tool to run command with failslab or fail_page_alloc
fault-injection: add selftests for cpu and memory hotplug
powerpc: pSeries reconfig notifier error injection module
memory: memory notifier error injection module
PM: PM notifier error injection module
cpu: rewrite cpu-notifier-error-inject module
fault-injection: notifier error injection
c/r: fcntl: add F_GETOWNER_UIDS option
resource: make sure requested range is included in the root range
include/linux/aio.h: cpp->C conversions
fs: cachefiles: add support for large files in filesystem caching
pps: return PTR_ERR on error in device_create
taskstats: check nla_reserve() return
sysctl: suppress kmemleak messages
ipc: use Kconfig options for __ARCH_WANT_[COMPAT_]IPC_PARSE_VERSION
ipc: compat: use signed size_t types for msgsnd and msgrcv
ipc: allow compat IPC version field parsing if !ARCH_WANT_OLD_COMPAT_IPC
ipc: add COMPAT_SHMLBA support
...
Commit a6bc32b899 ("mm: compaction: introduce sync-light migration for
use by compaction") changed the declaration of migrate_pages() and
migrate_huge_pages().
But it missed changing the argument of migrate_huge_pages() in
soft_offline_huge_page(). In this case, we should call
migrate_huge_pages() with MIGRATE_SYNC.
Additionally, there is a mismatch between type the of argument and the
function declaration for migrate_pages().
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make default vm_ops provide ->page_mkwrite handler. Currently it only updates
file's modification times and gets locked page but later it will also handle
filesystem freezing.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Filesystems wanting to properly support freezing need to have control
when file_update_time() is called. After pushing file_update_time()
to all relevant .page_mkwrite implementations we can just stop calling
file_update_time() when filesystem implements .page_mkwrite.
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull SLAB changes from Pekka Enberg:
"Most of the changes included are from Christoph Lameter's "common
slab" patch series that unifies common parts of SLUB, SLAB, and SLOB
allocators. The unification is needed for Glauber Costa's "kmem
memcg" work that will hopefully appear for v3.7.
The rest of the changes are fixes and speedups by various people."
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (32 commits)
mm: Fix build warning in kmem_cache_create()
slob: Fix early boot kernel crash
mm, slub: ensure irqs are enabled for kmemcheck
mm, sl[aou]b: Move kmem_cache_create mutex handling to common code
mm, sl[aou]b: Use a common mutex definition
mm, sl[aou]b: Common definition for boot state of the slab allocators
mm, sl[aou]b: Extract common code for kmem_cache_create()
slub: remove invalid reference to list iterator variable
mm: Fix signal SIGFPE in slabinfo.c.
slab: move FULL state transition to an initcall
slab: Fix a typo in commit 8c138b "slab: Get rid of obj_size macro"
mm, slab: Build fix for recent kmem_cache changes
slab: rename gfpflags to allocflags
slub: refactoring unfreeze_partials()
slub: use __cmpxchg_double_slab() at interrupt disabled place
slab/mempolicy: always use local policy from interrupt context
slab: Get rid of obj_size macro
mm, sl[aou]b: Extract common fields from struct kmem_cache
slab: Remove some accessors
slab: Use page struct fields instead of casting
...
Pull DMA-mapping updates from Marek Szyprowski:
"Those patches are continuation of my earlier work.
They contains extensions to DMA-mapping framework to remove limitation
of the current ARM implementation (like limited total size of DMA
coherent/write combine buffers), improve performance of buffer sharing
between devices (attributes to skip cpu cache operations or creation
of additional kernel mapping for some specific use cases) as well as
some unification of the common code for dma_mmap_attrs() and
dma_mmap_coherent() functions. All extensions have been implemented
and tested for ARM architecture."
* 'for-linus-for-3.6-rc1' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping:
ARM: dma-mapping: add support for DMA_ATTR_SKIP_CPU_SYNC attribute
common: DMA-mapping: add DMA_ATTR_SKIP_CPU_SYNC attribute
ARM: dma-mapping: add support for dma_get_sgtable()
common: dma-mapping: introduce dma_get_sgtable() function
ARM: dma-mapping: add support for DMA_ATTR_NO_KERNEL_MAPPING attribute
common: DMA-mapping: add DMA_ATTR_NO_KERNEL_MAPPING attribute
common: dma-mapping: add support for generic dma_mmap_* calls
ARM: dma-mapping: fix error path for memory allocation failure
ARM: dma-mapping: add more sanity checks in arm_dma_mmap()
ARM: dma-mapping: remove custom consistent dma region
mm: vmalloc: use const void * for caller argument
scatterlist: add sg_alloc_table_from_pages function
This patch changes dma-mapping subsystem to use generic vmalloc areas
for all consistent dma allocations. This increases the total size limit
of the consistent allocations and removes platform hacks and a lot of
duplicated code.
Atomic allocations are served from special pool preallocated on boot,
because vmalloc areas cannot be reliably created in atomic context.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
'const void *' is a safer type for caller function type. This patch
updates all references to caller function type.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
The label oops is used in CONFIG_DEBUG_VM ifdef block and is defined
outside ifdef CONFIG_DEBUG_VM block. This results in the following
build warning when built with CONFIG_DEBUG_VM disabled. Fix to move
label oops definition to inside a CONFIG_DEBUG_VM block.
mm/slab_common.c: In function ‘kmem_cache_create’:
mm/slab_common.c:101:1: warning: label ‘oops’ defined but not used
[-Wunused-label]
Signed-off-by: Shuah Khan <shuah.khan@hp.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>