mirror of https://gitee.com/openkylin/linux.git
7 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Linus Torvalds | 441692aafc |
Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King: - add support for ELF fdpic binaries on both MMU and noMMU platforms - linker script cleanups - support for compressed .data section for XIP images - discard memblock arrays when possible - various cleanups - atomic DMA pool updates - better diagnostics of missing/corrupt device tree - export information to allow userspace kexec tool to place images more inteligently, so that the device tree isn't overwritten by the booting kernel - make early_printk more efficient on semihosted systems - noMMU cleanups - SA1111 PCMCIA update in preparation for further cleanups * 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (38 commits) ARM: 8719/1: NOMMU: work around maybe-uninitialized warning ARM: 8717/2: debug printch/printascii: translate '\n' to "\r\n" not "\n\r" ARM: 8713/1: NOMMU: Support MPU in XIP configuration ARM: 8712/1: NOMMU: Use more MPU regions to cover memory ARM: 8711/1: V7M: Add support for MPU to M-class ARM: 8710/1: Kconfig: Kill CONFIG_VECTORS_BASE ARM: 8709/1: NOMMU: Disallow MPU for XIP ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C ARM: 8707/1: NOMMU: Update MPU accessors to use cp15 helpers ARM: 8706/1: NOMMU: Move out MPU setup in separate module ARM: 8702/1: head-common.S: Clear lr before jumping to start_kernel() ARM: 8705/1: early_printk: use printascii() rather than printch() ARM: 8703/1: debug.S: move hexbuf to a writable section ARM: add additional table to compressed kernel ARM: decompressor: fix BSS size calculation pcmcia: sa1111: remove special sa1111 mmio accessors pcmcia: sa1111: use sa1111_get_irq() to obtain IRQ resources ARM: better diagnostics with missing/corrupt dtb ARM: 8699/1: dma-mapping: Remove init_dma_coherent_pool_size() ARM: 8698/1: dma-mapping: Mark atomic_pool as __ro_after_init .. |
|
Greg Kroah-Hartman | b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
Nicolas Pitre | 5c16595353 |
ARM: signal handling support for FDPIC_FUNCPTRS functions
Signal handlers are not direct function pointers but pointers to function descriptor in that case. Therefore we must retrieve the actual function address and load the GOT value into r9 from the descriptor before branching to the actual handler. If a restorer is provided, we also have to load its address and GOT from its descriptor. That descriptor address and the code to load it is pushed onto the stack to be executed as soon as the signal handler returns. However, to be compatible with NX stacks, the FDPIC bounce code is also copied to the signal page along with the other code stubs. Therefore this code must get at the descriptor address whether it executes from the stack or the signal page. To do so we use the stack pointer which points at the signal stack frame where the descriptor address was stored. Because the rt signal frame is different from the simpler frame, two versions of the bounce code are needed, and two variants (ARM and Thumb) as well. The asm-offsets facility is used to determine the actual offset in the signal frame for each version, meaning that struct sigframe and rt_sigframe had to be moved to a separate file. Signed-off-by: Nicolas Pitre <nico@linaro.org> Acked-by: Mickael GUENE <mickael.guene@st.com> Tested-by: Vincent Abriou <vincent.abriou@st.com> Tested-by: Andras Szemzo <szemzo.andras@gmail.com> |
|
Dave Martin | ce184a0dee |
ARM: 8687/1: signal: Fix unparseable iwmmxt_sigframe in uc_regspace[]
In kernels with CONFIG_IWMMXT=y running on non-iWMMXt hardware, the signal frame can be left partially uninitialised in such a way that userspace cannot parse uc_regspace[] safely. In particular, this means that the VFP registers cannot be located reliably in the signal frame when a multi_v7_defconfig kernel is run on the majority of platforms. The cause is that the uc_regspace[] is laid out statically based on the kernel config, but the decision of whether to save/restore the iWMMXt registers must be a runtime decision. To minimise breakage of software that may assume a fixed layout, this patch emits a dummy block of the same size as iwmmxt_sigframe, for non-iWMMXt threads. However, the magic and size of this block are now filled in to help parsers skip over it. A new DUMMY_MAGIC is defined for this purpose. It is probably legitimate (if non-portable) for userspace to manufacture its own sigframe for sigreturn, and there is no obvious reason why userspace should be required to insert a DUMMY_MAGIC block when running on non-iWMMXt hardware, when omitting it has worked just fine forever in other configurations. So in this case, sigreturn does not require this block to be present. Reported-by: Edmund Grimley-Evans <Edmund.Grimley-Evans@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
|
Lucas De Marchi | 25985edced |
Fix common misspellings
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi> |
|
Imre Deak | 82c6f5a5b3 |
ARM: 6051/1: VFP: preserve the HW context when calling signal handlers
From: Imre Deak <imre.deak@nokia.com> Signal handlers can use floating point, so prevent them to corrupt the main thread's VFP context. So far there were two signal stack frame formats defined based on the VFP implementation, but the user struct used for ptrace covers all posibilities, so use it for the signal stack too. Introduce also a new user struct for VFP exception registers. In this too fields not relevant to the current VFP architecture are ignored. Support to save / restore the exception registers was added by Will Deacon. Signed-off-by: Imre Deak <imre.deak@nokia.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> |
|
Russell King | 4baa992243 |
[ARM] move include/asm-arm to arch/arm/include/asm
Move platform independent header files to arch/arm/include/asm, leaving those in asm/arch* and asm/plat* alone. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> |