mirror of https://gitee.com/openkylin/linux.git
13 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Linus Torvalds | be092017b6 |
arm64 updates for 4.7:
- virt_to_page/page_address optimisations - Support for NUMA systems described using device-tree - Support for hibernate/suspend-to-disk - Proper support for maxcpus= command line parameter - Detection and graceful handling of AArch64-only CPUs - Miscellaneous cleanups and non-critical fixes -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJXNbgkAAoJELescNyEwWM0PtcIAK11xaOMmSqXz8fcTeNLw4dS taaPWhjCYus8EhJyvTetfwk74+qVApdvKXKNKgODJXQEjeQx2brdUfbQZb31DTGT 798UYCAyEYCWkXspqi+/dpZEgUGPYH7uGOu2eDd19+PhTeX/EQSRX3fC9k0BNhvh PN9pOgRcKAlIExZ6QYmT0g56VLtbCfFShN41mQ8HdpShl6pPJuhQ+kDDzudmRjuD 11/oYuOaVTnwbPuXn+sjOrWvMkfINHI70BAQnnBs0v+5c45mzpqEMsy0dYo2Pl2m ar5lUFVIZggQkiqcOzqBzEgF+4gNw4LUu1DgK6cNKNMtL6k8E9zeOZMWeSVr0lg= =bT5E -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: - virt_to_page/page_address optimisations - support for NUMA systems described using device-tree - support for hibernate/suspend-to-disk - proper support for maxcpus= command line parameter - detection and graceful handling of AArch64-only CPUs - miscellaneous cleanups and non-critical fixes * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) arm64: do not enforce strict 16 byte alignment to stack pointer arm64: kernel: Fix incorrect brk randomization arm64: cpuinfo: Missing NULL terminator in compat_hwcap_str arm64: secondary_start_kernel: Remove unnecessary barrier arm64: Ensure pmd_present() returns false after pmd_mknotpresent() arm64: Replace hard-coded values in the pmd/pud_bad() macros arm64: Implement pmdp_set_access_flags() for hardware AF/DBM arm64: Fix typo in the pmdp_huge_get_and_clear() definition arm64: mm: remove unnecessary EXPORT_SYMBOL_GPL arm64: always use STRICT_MM_TYPECHECKS arm64: kvm: Fix kvm teardown for systems using the extended idmap arm64: kaslr: increase randomization granularity arm64: kconfig: drop CONFIG_RTC_LIB dependency arm64: make ARCH_SUPPORTS_DEBUG_PAGEALLOC depend on !HIBERNATION arm64: hibernate: Refuse to hibernate if the boot cpu is offline arm64: kernel: Add support for hibernate/suspend-to-disk PM / Hibernate: Call flush_icache_range() on pages restored in-place arm64: Add new asm macro copy_page arm64: Promote KERNEL_START/KERNEL_END definitions to a header file arm64: kernel: Include _AC definition in page.h ... |
|
Ard Biesheuvel | 57fdb89aeb |
arm64/efi/libstub: Make screen_info accessible to the UEFI stub
Unlike on 32-bit ARM, where we need to pass the stub's version of struct screen_info to the kernel proper via a configuration table, on 64-bit ARM it simply involves making the core kernel's copy of struct screen_info visible to the stub by exposing an __efistub_ alias for it. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-21-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ard Biesheuvel | 18b9c0d641 |
arm64: don't map TEXT_OFFSET bytes below the kernel if we can avoid it
For historical reasons, the kernel Image must be loaded into physical memory at a 512 KB offset above a 2 MB aligned base address. The region between the base address and the start of the kernel Image has no significance to the kernel itself, but it is currently mapped explicitly into the early kernel VMA range for all translation granules. In some cases (i.e., 4 KB granule), this is unavoidable, due to the 2 MB granularity of the early kernel mappings. However, in other cases, e.g., when running with larger page sizes, or in the future, with more granular KASLR, there is no reason to map it explicitly like we do currently. So update the logic so that the region is mapped only if that happens as a side effect of rounding the start address of the kernel to swapper block size, and leave it unmapped otherwise. Since the symbol kernel_img_size now simply resolves to the memory footprint of the kernel Image, we can drop its definition from image.h and opencode its calculation. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Ard Biesheuvel | 546c8c44f0 |
arm64: move early boot code to the .init segment
Apart from the arm64/linux and EFI header data structures, there is nothing in the .head.text section that must reside at the beginning of the Image. So let's move it to the .init section where it belongs. Note that this involves some minor tweaking of the EFI header, primarily because the address of 'stext' no longer coincides with the start of the .text section. It also requires a couple of relocated symbol references to be slightly rewritten or their definition moved to the linker script. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Linus Torvalds | 588ab3f9af |
arm64 updates for 4.6:
- Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+ RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv 50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3 DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7 3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM LepccTgykiUBqW5TRzPz =/oS+ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Here are the main arm64 updates for 4.6. There are some relatively intrusive changes to support KASLR, the reworking of the kernel virtual memory layout and initial page table creation. Summary: - Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits) arm64: kasan: Fix zero shadow mapping overriding kernel image shadow arm64: kasan: Use actual memory node when populating the kernel image shadow arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission arm64: Fix misspellings in comments. arm64: efi: add missing frame pointer assignment arm64: make mrs_s prefixing implicit in read_cpuid arm64: enable CONFIG_DEBUG_RODATA by default arm64: Rework valid_user_regs arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly arm64: KVM: Move kvm_call_hyp back to its original localtion arm64: mm: treat memstart_addr as a signed quantity arm64: mm: list kernel sections in order arm64: lse: deal with clobbered IP registers after branch via PLT arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR arm64: kconfig: add submenu for 8.2 architectural features arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot arm64: Add support for Half precision floating point arm64: Remove fixmap include fragility arm64: Add workaround for Cavium erratum 27456 arm64: mm: Mark .rodata as RO ... |
|
Ard Biesheuvel | 6ad1fe5d90 |
arm64: avoid R_AARCH64_ABS64 relocations for Image header fields
Unfortunately, the current way of using the linker to emit build time constants into the Image header will no longer work once we switch to the use of PIE executables. The reason is that such constants are emitted into the binary using R_AARCH64_ABS64 relocations, which are resolved at runtime, not at build time, and the places targeted by those relocations will contain zeroes before that. So refactor the endian swapping linker script constant generation code so that it emits the upper and lower 32-bit words separately. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Ard Biesheuvel | a7f8de168a |
arm64: allow kernel Image to be loaded anywhere in physical memory
This relaxes the kernel Image placement requirements, so that it may be placed at any 2 MB aligned offset in physical memory. This is accomplished by ignoring PHYS_OFFSET when installing memblocks, and accounting for the apparent virtual offset of the kernel Image. As a result, virtual address references below PAGE_OFFSET are correctly mapped onto physical references into the kernel Image regardless of where it sits in memory. Special care needs to be taken for dealing with memory limits passed via mem=, since the generic implementation clips memory top down, which may clip the kernel image itself if it is loaded high up in memory. To deal with this case, we simply add back the memory covering the kernel image, which may result in more memory to be retained than was passed as a mem= parameter. Since mem= should not be considered a production feature, a panic notifier handler is installed that dumps the memory limit at panic time if one was set. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Thierry Reding | 7f4e346263 |
arm64/efi: Make strnlen() available to the EFI namespace
Changes introduced in the upstream version of libfdt pulled in by commit
|
|
Ard Biesheuvel | 75feee3d9d |
arm64: hide __efistub_ aliases from kallsyms
Commit
|
|
Ard Biesheuvel | 9d372c9fab |
arm64: Add page size to the kernel image header
This patch adds the page size to the arm64 kernel image header so that one can infer the PAGESIZE used by the kernel. This will be helpful to diagnose failures to boot the kernel with page size not supported by the CPU. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Andrey Ryabinin | 39d114ddc6 |
arm64: add KASAN support
This patch adds arch specific code for kernel address sanitizer (see Documentation/kasan.txt). 1/8 of kernel addresses reserved for shadow memory. There was no big enough hole for this, so virtual addresses for shadow were stolen from vmalloc area. At early boot stage the whole shadow region populated with just one physical page (kasan_zero_page). Later, this page reused as readonly zero shadow for some memory that KASan currently don't track (vmalloc). After mapping the physical memory, pages for shadow memory are allocated and mapped. Functions like memset/memmove/memcpy do a lot of memory accesses. If bad pointer passed to one of these function it is important to catch this. Compiler's instrumentation cannot do this since these functions are written in assembly. KASan replaces memory functions with manually instrumented variants. Original functions declared as weak symbols so strong definitions in mm/kasan/kasan.c could replace them. Original functions have aliases with '__' prefix in name, so we could call non-instrumented variant if needed. Some files built without kasan instrumentation (e.g. mm/slub.c). Original mem* function replaced (via #define) with prefixed variants to disable memory access checks for such files. Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Ard Biesheuvel | e8f3010f73 |
arm64/efi: isolate EFI stub from the kernel proper
Since arm64 does not use a builtin decompressor, the EFI stub is built into the kernel proper. So far, this has been working fine, but actually, since the stub is in fact a PE/COFF relocatable binary that is executed at an unknown offset in the 1:1 mapping provided by the UEFI firmware, we should not be seamlessly sharing code with the kernel proper, which is a position dependent executable linked at a high virtual offset. So instead, separate the contents of libstub and its dependencies, by putting them into their own namespace by prefixing all of its symbols with __efistub. This way, we have tight control over what parts of the kernel proper are referenced by the stub. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Mark Rutland | a2c1d73b94 |
arm64: Update the Image header
Currently the kernel Image is stripped of everything past the initial stack, and at runtime the memory is initialised and used by the kernel. This makes the effective minimum memory footprint of the kernel larger than the size of the loaded binary, though bootloaders have no mechanism to identify how large this minimum memory footprint is. This makes it difficult to choose safe locations to place both the kernel and other binaries required at boot (DTB, initrd, etc), such that the kernel won't clobber said binaries or other reserved memory during initialisation. Additionally when big endian support was added the image load offset was overlooked, and is currently of an arbitrary endianness, which makes it difficult for bootloaders to make use of it. It seems that bootloaders aren't respecting the image load offset at present anyway, and are assuming that offset 0x80000 will always be correct. This patch adds an effective image size to the kernel header which describes the amount of memory from the start of the kernel Image binary which the kernel expects to use before detecting memory and handling any memory reservations. This can be used by bootloaders to choose suitable locations to load the kernel and/or other binaries such that the kernel will not clobber any memory unexpectedly. As before, memory reservations are required to prevent the kernel from clobbering these locations later. Both the image load offset and the effective image size are forced to be little-endian regardless of the native endianness of the kernel to enable bootloaders to load a kernel of arbitrary endianness. Bootloaders which wish to make use of the load offset can inspect the effective image size field for a non-zero value to determine if the offset is of a known endianness. To enable software to determine the endinanness of the kernel as may be required for certain use-cases, a new flags field (also little-endian) is added to the kernel header to export this information. The documentation is updated to clarify these details. To discourage future assumptions regarding the value of text_offset, the value at this point in time is removed from the main flow of the documentation (though kept as a compatibility note). Some minor formatting issues in the documentation are also corrected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Tom Rini <trini@ti.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Kevin Hilman <kevin.hilman@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |