Connect the xfs_defer mechanism with the pieces that we'll need to
handle deferred extent freeing. We'll wire up the existing code to
our new deferred mechanism later.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Replace structure typedefs with struct xfs_foo_* in the EFI/EFD
handling code in preparation to move it over to deferred ops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add tracepoints for the internals of the deferred ops mechanism
and tracepoint classes for clients of the dops, to make debugging
easier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
All the code around struct xfs_bmap_free basically implements a
deferred operation framework through which we can roll transactions
(to unlock buffers and avoid violating lock order rules) while
managing all the necessary log redo items. Previously we only used
this code to free extents after some sort of mapping operation, but
with the advent of rmap and reflink, we suddenly need to do more than
that.
With that in mind, xfs_bmap_free really becomes a deferred ops control
structure. Rename the structure and move the deferred ops into their
own file to avoid further bloating of the bmap code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Refactor the btree_change_owner function into a more generic apparatus
which visits all blocks in a btree. We'll use this in a subsequent
patch for counting btree blocks for AG reservations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a function to enable querying of btree records mapping to a
range of keys. This will be used in subsequent patches to allow
querying the reverse mapping btree to find the extents mapped to a
range of physical blocks, though the generic code can be used for
any range query.
The overlapped query range function needs to use the btree get_block
helper because the root block could be an inode, in which case
bc_bufs[nlevels-1] will be NULL.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a filesystem with both reflink and reverse mapping enabled, it's
possible to have multiple rmap records referring to the same blocks on
disk. When overlapping intervals are possible, querying a classic
btree to find all records intersecting a given interval is inefficient
because we cannot use the left side of the search interval to filter
out non-matching records the same way that we can use the existing
btree key to filter out records coming after the right side of the
search interval. This will become important once we want to use the
rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl.
(For the non-overlapping case, we can perform such queries trivially
by starting at the left side of the interval and walking the tree
until we pass the right side.)
Therefore, extend the btree code to come closer to supporting
intervals as a first-class record attribute. This involves widening
the btree node's key space to store both the lowest key reachable via
the node pointer (as the btree does now) and the highest key reachable
via the same pointer and teaching the btree modifying functions to
keep the highest-key records up to date.
This behavior can be turned on via a new btree ops flag so that btrees
that cannot store overlapping intervals don't pay the overhead costs
in terms of extra code and disk format changes.
When we're deleting a record in a btree that supports overlapped
interval records and the deletion results in two btree blocks being
joined, we defer updating the high/low keys until after all possible
joining (at higher levels in the tree) have finished. At this point,
the btree pointers at all levels have been updated to remove the empty
blocks and we can update the low and high keys.
When we're doing this, we must be careful to update the keys of all
node pointers up to the root instead of stopping at the first set of
keys that don't need updating. This is because it's possible for a
single deletion to cause joining of multiple levels of tree, and so
we need to update everything going back to the root.
The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than,
equal to, or greater than key2, respectively. This is consistent
with the rest of the kernel and the C library.
In btree_updkeys(), we need to evaluate the force_all parameter before
running the key diff to avoid reading uninitialized memory when we're
forcing a key update. This happens when we've allocated an empty slot
at level N + 1 to point to a new block at level N and we're in the
process of filling out the new keys.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add some function pointers to bc_ops to get the btree keys for
leaf and node blocks, and to update parent keys of a block.
Convert the _btree_updkey calls to use our new pointer, and
modify the tree shape changing code to call the appropriate
get_*_keys pointer instead of _btree_copy_keys because the
overlapping btree has to calculate high key values.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When a btree block has to be split, we pass the new block's ptr from
xfs_btree_split() back to xfs_btree_insert() via a pointer parameter;
however, we pass the block's key through the cursor's record. It is a
little weird to "initialize" a record from a key since the non-key
attributes will have garbage values.
When we go to add support for interval queries, we have to be able to
pass the lowest and highest keys accessible via a pointer. There's no
clean way to pass this back through the cursor's record field.
Therefore, pass the key directly back to xfs_btree_insert() the same
way that we pass the btree_ptr.
As a bonus, we no longer need init_rec_from_key and can drop it from the
codebase.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If we make the inode root block of a btree unfull by expanding the
root, we must set *stat to 1 to signal success, rather than leaving
it uninitialized.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're deleting realtime extents, we need to lock the summary
inode in case we need to update the summary info to prevent an assert
on the rsumip inode lock on a debug kernel. While we're at it, fix
the locking annotations so that we avoid triggering lockdep warnings.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Apparently cris doesn't require structure stride to align with the
largest type in the struct, so list[0] isn't at offset 4 like it is
everywhere else. Fix this... insofar as existing XFSes on cris are
screwed.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're iterating inode xattrs by handle, we have to copy the
cursor back to userspace so that a subsequent invocation actually
retrieves subsequent contents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull vfs updates from Al Viro:
"Assorted cleanups and fixes.
Probably the most interesting part long-term is ->d_init() - that will
have a bunch of followups in (at least) ceph and lustre, but we'll
need to sort the barrier-related rules before it can get used for
really non-trivial stuff.
Another fun thing is the merge of ->d_iput() callers (dentry_iput()
and dentry_unlink_inode()) and a bunch of ->d_compare() ones (all
except the one in __d_lookup_lru())"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
fs/dcache.c: avoid soft-lockup in dput()
vfs: new d_init method
vfs: Update lookup_dcache() comment
bdev: get rid of ->bd_inodes
Remove last traces of ->sync_page
new helper: d_same_name()
dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends()
vfs: clean up documentation
vfs: document ->d_real()
vfs: merge .d_select_inode() into .d_real()
unify dentry_iput() and dentry_unlink_inode()
binfmt_misc: ->s_root is not going anywhere
drop redundant ->owner initializations
ufs: get rid of redundant checks
orangefs: constify inode_operations
missed comment updates from ->direct_IO() prototype change
file_inode(f)->i_mapping is f->f_mapping
trim fsnotify hooks a bit
9p: new helper - v9fs_parent_fid()
debugfs: ->d_parent is never NULL or negative
...
Changes in this update:
o generic iomap based IO path infrastructure
o generic iomap based fiemap implementation
o xfs iomap based Io path implementation
o buffer error handling fixes
o tracking of in flight buffer IO for unmount serialisation
o direct IO and DAX io path separation and simplification
o shortform directory format definition changes for wider platform compatibility
o various buffer cache fixes
o cleanups in preparation for rmap merge
o error injection cleanups and fixes
o log item format buffer memory allocation restructuring to prevent rare OOM
reclaim deadlocks
o sparse inode chunks are now fully supported.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmA5XAAoJEK3oKUf0dfodCc0QAKY5Jlfw5HwLria+Ad87HCcM
Zi/LGMMC3CPh+vkbqsmDnLKHYjXRwi3HamBoXdufiE8E3UtOjp/sV98/fCw+zwhe
tHDLmdAx23RLTn7gUhcsIXydKeXh0+HlRxPa4eBAlmnsJ3nGgrKrKQLgDT7Gjlum
nPfRSTYjzm5gs2dpUTYhMV7MplenDW9GFz2uBMct6N9kYQ9m225I99fd/4nb/L7R
o/8UocsK7iREUXP6decDoN9uIAzE2mYR720EL+Txy09CTYy+luNyGoNXOsQtxT5O
plyoPZbzIIDvC44bvp6bZX96Udm7tAeTloieInCZG13I2zJy9gmTmLqkZ3M2at12
kOyeAMSBOWQYSa3uh++FsEP+JGtBTlZXf+4DAYf+U08s8tMVE/61/RZrtJZF4OjW
hyumRBD6zqZ9Y6Qtji2HaA3l9IGxOC2k4URw9JZdDDyMoRTQvawN1QWNAeZINXiv
9ywqTruVsfQnoGDC1Gk1OEfQpubNztTAkEPqVM7ez5dkwOdwuOZXcZPL1Ltvb4Bt
PLaWKLIYFYZKrM5kqgQlTERspSQA99++z8H9a21wFezfetaBby28fIqwMMfQAiSw
nCq95WshJPwenogMtWjNfOgs/fqOBKdPdLFw0H6Jpmjwna2KpuFIZiTnwu25vvjz
dHh4DVSuMTq1pBkXEU7B
=vcSd
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"The major addition is the new iomap based block mapping
infrastructure. We've been kicking this about locally for years, but
there are other filesystems want to use it too (e.g. gfs2). Now it
is fully working, reviewed and ready for merge and be used by other
filesystems.
There are a lot of other fixes and cleanups in the tree, but those are
XFS internal things and none are of the scale or visibility of the
iomap changes. See below for details.
I am likely to send another pull request next week - we're just about
ready to merge some new functionality (on disk block->owner reverse
mapping infrastructure), but that's a huge chunk of code (74 files
changed, 7283 insertions(+), 1114 deletions(-)) so I'm keeping that
separate to all the "normal" pull request changes so they don't get
lost in the noise.
Summary of changes in this update:
- generic iomap based IO path infrastructure
- generic iomap based fiemap implementation
- xfs iomap based Io path implementation
- buffer error handling fixes
- tracking of in flight buffer IO for unmount serialisation
- direct IO and DAX io path separation and simplification
- shortform directory format definition changes for wider platform
compatibility
- various buffer cache fixes
- cleanups in preparation for rmap merge
- error injection cleanups and fixes
- log item format buffer memory allocation restructuring to prevent
rare OOM reclaim deadlocks
- sparse inode chunks are now fully supported"
* tag 'xfs-for-linus-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (53 commits)
xfs: remove EXPERIMENTAL tag from sparse inode feature
xfs: bufferhead chains are invalid after end_page_writeback
xfs: allocate log vector buffers outside CIL context lock
libxfs: directory node splitting does not have an extra block
xfs: remove dax code from object file when disabled
xfs: skip dirty pages in ->releasepage()
xfs: remove __arch_pack
xfs: kill xfs_dir2_inou_t
xfs: kill xfs_dir2_sf_off_t
xfs: split direct I/O and DAX path
xfs: direct calls in the direct I/O path
xfs: stop using generic_file_read_iter for direct I/O
xfs: split xfs_file_read_iter into buffered and direct I/O helpers
xfs: remove s_maxbytes enforcement in xfs_file_read_iter
xfs: kill ioflags
xfs: don't pass ioflags around in the ioctl path
xfs: track and serialize in-flight async buffers against unmount
xfs: exclude never-released buffers from buftarg I/O accounting
xfs: don't reset b_retries to 0 on every failure
xfs: remove extraneous buffer flag changes
...
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2
- most(?) of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (125 commits)
thp: fix comments of __pmd_trans_huge_lock()
cgroup: remove unnecessary 0 check from css_from_id()
cgroup: fix idr leak for the first cgroup root
mm: memcontrol: fix documentation for compound parameter
mm: memcontrol: remove BUG_ON in uncharge_list
mm: fix build warnings in <linux/compaction.h>
mm, thp: convert from optimistic swapin collapsing to conservative
mm, thp: fix comment inconsistency for swapin readahead functions
thp: update Documentation/{vm/transhuge,filesystems/proc}.txt
shmem: split huge pages beyond i_size under memory pressure
thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
khugepaged: add support of collapse for tmpfs/shmem pages
shmem: make shmem_inode_info::lock irq-safe
khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page()
thp: extract khugepaged from mm/huge_memory.c
shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings
shmem: add huge pages support
shmem: get_unmapped_area align huge page
shmem: prepare huge= mount option and sysfs knob
mm, rmap: account shmem thp pages
...
Remove the unused wrappers dax_fault() and dax_pmd_fault(). After this
removal, rename __dax_fault() and __dax_pmd_fault() to dax_fault() and
dax_pmd_fault() respectively, and update all callers.
The dax_fault() and dax_pmd_fault() wrappers were initially intended to
capture some filesystem independent functionality around page faults
(calling sb_start_pagefault() & sb_end_pagefault(), updating file mtime
and ctime).
However, the following commits:
5726b27b09 ("ext2: Add locking for DAX faults")
ea3d7209ca ("ext4: fix races between page faults and hole punching")
added locking to the ext2 and ext4 filesystems after these common
operations but before __dax_fault() and __dax_pmd_fault() were called.
This means that these wrappers are no longer used, and are unlikely to
be used in the future.
XFS has had locking analogous to what was recently added to ext2 and
ext4 since DAX support was initially introduced by:
6b698edeee ("xfs: add DAX file operations support")
Link: http://lkml.kernel.org/r/20160714214049.20075-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull core block updates from Jens Axboe:
- the big change is the cleanup from Mike Christie, cleaning up our
uses of command types and modified flags. This is what will throw
some merge conflicts
- regression fix for the above for btrfs, from Vincent
- following up to the above, better packing of struct request from
Christoph
- a 2038 fix for blktrace from Arnd
- a few trivial/spelling fixes from Bart Van Assche
- a front merge check fix from Damien, which could cause issues on
SMR drives
- Atari partition fix from Gabriel
- convert cfq to highres timers, since jiffies isn't granular enough
for some devices these days. From Jan and Jeff
- CFQ priority boost fix idle classes, from me
- cleanup series from Ming, improving our bio/bvec iteration
- a direct issue fix for blk-mq from Omar
- fix for plug merging not involving the IO scheduler, like we do for
other types of merges. From Tahsin
- expose DAX type internally and through sysfs. From Toshi and Yigal
* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
block: Fix front merge check
block: do not merge requests without consulting with io scheduler
block: Fix spelling in a source code comment
block: expose QUEUE_FLAG_DAX in sysfs
block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
Btrfs: fix comparison in __btrfs_map_block()
block: atari: Return early for unsupported sector size
Doc: block: Fix a typo in queue-sysfs.txt
cfq-iosched: Charge at least 1 jiffie instead of 1 ns
cfq-iosched: Fix regression in bonnie++ rewrite performance
cfq-iosched: Convert slice_resid from u64 to s64
block: Convert fifo_time from ulong to u64
blktrace: avoid using timespec
block/blk-cgroup.c: Declare local symbols static
block/bio-integrity.c: Add #include "blk.h"
block/partition-generic.c: Remove a set-but-not-used variable
block: bio: kill BIO_MAX_SIZE
cfq-iosched: temporarily boost queue priority for idle classes
block: drbd: avoid to use BIO_MAX_SIZE
block: bio: remove BIO_MAX_SECTORS
...
Been around for long enough now, hasn't caused any regression test
failures in the past 3 months, so it's time to make it a fully
supported feature.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In xfs_finish_page_writeback(), we have a loop that looks like this:
do {
if (off < bvec->bv_offset)
goto next_bh;
if (off > end)
break;
bh->b_end_io(bh, !error);
next_bh:
off += bh->b_size;
} while ((bh = bh->b_this_page) != head);
The b_end_io function is end_buffer_async_write(), which will call
end_page_writeback() once all the buffers have marked as no longer
under IO. This issue here is that the only thing currently
protecting both the bufferhead chain and the page from being
reclaimed is the PageWriteback state held on the page.
While we attempt to limit the loop to just the buffers covered by
the IO, we still read from the buffer size and follow the next
pointer in the bufferhead chain. There is no guarantee that either
of these are valid after the PageWriteback flag has been cleared.
Hence, loops like this are completely unsafe, and result in
use-after-free issues. One such problem was caught by Calvin Owens
with KASAN:
.....
INFO: Freed in 0x103fc80ec age=18446651500051355200 cpu=2165122683 pid=-1
free_buffer_head+0x41/0x90
__slab_free+0x1ed/0x340
kmem_cache_free+0x270/0x300
free_buffer_head+0x41/0x90
try_to_free_buffers+0x171/0x240
xfs_vm_releasepage+0xcb/0x3b0
try_to_release_page+0x106/0x190
shrink_page_list+0x118e/0x1a10
shrink_inactive_list+0x42c/0xdf0
shrink_zone_memcg+0xa09/0xfa0
shrink_zone+0x2c3/0xbc0
.....
Call Trace:
<IRQ> [<ffffffff81e8b8e4>] dump_stack+0x68/0x94
[<ffffffff8153a995>] print_trailer+0x115/0x1a0
[<ffffffff81541174>] object_err+0x34/0x40
[<ffffffff815436e7>] kasan_report_error+0x217/0x530
[<ffffffff81543b33>] __asan_report_load8_noabort+0x43/0x50
[<ffffffff819d651f>] xfs_destroy_ioend+0x3bf/0x4c0
[<ffffffff819d69d4>] xfs_end_bio+0x154/0x220
[<ffffffff81de0c58>] bio_endio+0x158/0x1b0
[<ffffffff81dff61b>] blk_update_request+0x18b/0xb80
[<ffffffff821baf57>] scsi_end_request+0x97/0x5a0
[<ffffffff821c5558>] scsi_io_completion+0x438/0x1690
[<ffffffff821a8d95>] scsi_finish_command+0x375/0x4e0
[<ffffffff821c3940>] scsi_softirq_done+0x280/0x340
Where the access is occuring during IO completion after the buffer
had been freed from direct memory reclaim.
Prevent use-after-free accidents in this end_io processing loop by
pre-calculating the loop conditionals before calling bh->b_end_io().
The loop is already limited to just the bufferheads covered by the
IO in progress, so the offset checks are sufficient to prevent
accessing buffers in the chain after end_page_writeback() has been
called by the the bh->b_end_io() callout.
Yet another example of why Bufferheads Must Die.
cc: <stable@vger.kernel.org> # 4.7
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reported-and-Tested-by: Calvin Owens <calvinowens@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
One of the problems we currently have with delayed logging is that
under serious memory pressure we can deadlock memory reclaim. THis
occurs when memory reclaim (such as run by kswapd) is reclaiming XFS
inodes and issues a log force to unpin inodes that are dirty in the
CIL.
The CIL is pushed, but this will only occur once it gets the CIL
context lock to ensure that all committing transactions are complete
and no new transactions start being committed to the CIL while the
push switches to a new context.
The deadlock occurs when the CIL context lock is held by a
committing process that is doing memory allocation for log vector
buffers, and that allocation is then blocked on memory reclaim
making progress. Memory reclaim, however, is blocked waiting for
a log force to make progress, and so we effectively deadlock at this
point.
To solve this problem, we have to move the CIL log vector buffer
allocation outside of the context lock so that memory reclaim can
always make progress when it needs to force the log. The problem
with doing this is that a CIL push can take place while we are
determining if we need to allocate a new log vector buffer for
an item and hence the current log vector may go away without
warning. That means we canot rely on the existing log vector being
present when we finally grab the context lock and so we must have a
replacement buffer ready to go at all times.
To ensure this, introduce a "shadow log vector" buffer that is
always guaranteed to be present when we gain the CIL context lock
and format the item. This shadow buffer may or may not be used
during the formatting, but if the log item does not have an existing
log vector buffer or that buffer is too small for the new
modifications, we swap it for the new shadow buffer and format
the modifications into that new log vector buffer.
The result of this is that for any object we modify more than once
in a given CIL checkpoint, we double the memory required
to track dirty regions in the log. For single modifications then
we consume the shadow log vectorwe allocate on commit, and that gets
consumed by the checkpoint. However, if we make multiple
modifications, then the second transaction commit will allocate a
shadow log vector and hence we will end up with double the memory
usage as only one of the log vectors is consumed by the CIL
checkpoint. The remaining shadow vector will be freed when th elog
item is freed.
This can probably be optimised in future - access to the shadow log
vector is serialised by the object lock (as opposited to the active
log vector, which is controlled by the CIL context lock) and so we
can probably free shadow log vector from some objects when the log
item is marked clean on removal from the AIL.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfsprogs source commit 4280e59dcbc4cd8e01585efe788a68eb378048e8
xfs_da3_split() has to handle all three versions of the
directory/attribute btree structure. The attr tree is v1, the dir
tre is v2 or v3. The main difference between the v1 and v2/3 trees
is the way tree nodes are split - in the v1 tree we can require a
double split to occur because the object to be inserted may be
larger than the space made by splitting a leaf. In this case we need
to do a double split - one to split the full leaf, then another to
allocate an empty leaf block in the correct location for the new
entry. This does not happen with dir (v2/v3) formats as the objects
being inserted are always guaranteed to fit into the new space in
the split blocks.
Indeed, for directories they *may* be an extra block on this buffer
pointer. However, it's guaranteed not to be a leaf block (i.e. a
directory data block) - the directory code only ever places hash
index or free space blocks in this pointer (as a cursor of
sorts), and so to use it as a directory data block will immediately
corrupt the directory.
The problem is that the code assumes that there may be extra blocks
that we need to link into the tree once we've split the root, but
this is not true for either dir or attr trees, because the extra
attr block is always consumed by the last node split before we split
the root. Hence the linking in an extra block is always wrong at the
root split level, and this manifests itself in repair as a directory
corruption in a repaired directory, leaving the directory rebuild
incomplete.
This is a dir v2 zero-day bug - it was in the initial dir v2 commit
that was made back in February 1998.
Fix this by ensuring the linking of the blocks after the root split
never tries to make use of the extra blocks that may be held in the
cursor. They are held there for other purposes and should never be
touched by the root splitting code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We check IS_DAX(inode) before calling either xfs_file_dax_read or
xfs_file_dax_write, and this will lead the call being optimized out at
compile time when CONFIG_FS_DAX is disabled.
However, the two functions are marked STATIC, so they become global
symbols when CONFIG_XFS_DEBUG is set, leaving us with two unused global
functions that call into an undefined function and a broken "allmodconfig"
build:
fs/built-in.o: In function `xfs_file_dax_read':
fs/xfs/xfs_file.c:348: undefined reference to `dax_do_io'
fs/built-in.o: In function `xfs_file_dax_write':
fs/xfs/xfs_file.c:758: undefined reference to `dax_do_io'
Marking the two functions 'static noinline' instead of 'STATIC' will let
the compiler drop the symbols when there are no callers but avoid the
implicit inlining.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 16d4d43595 ("xfs: split direct I/O and DAX path")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has had scattered reports of delalloc blocks present at
->releasepage() time. This results in a warning with a stack trace
similar to the following:
...
Call Trace:
[<ffffffffa23c5b8f>] dump_stack+0x63/0x84
[<ffffffffa20837a7>] warn_slowpath_common+0x97/0xe0
[<ffffffffa208380a>] warn_slowpath_null+0x1a/0x20
[<ffffffffa2326caf>] xfs_vm_releasepage+0x10f/0x140
[<ffffffffa218c680>] ? page_mkclean_one+0xd0/0xd0
[<ffffffffa218d3a0>] ? anon_vma_prepare+0x150/0x150
[<ffffffffa21521c2>] try_to_release_page+0x32/0x50
[<ffffffffa2166b2e>] shrink_active_list+0x3ce/0x3e0
[<ffffffffa21671c7>] shrink_lruvec+0x687/0x7d0
[<ffffffffa21673ec>] shrink_zone+0xdc/0x2c0
[<ffffffffa2168539>] kswapd+0x4f9/0x970
[<ffffffffa2168040>] ? mem_cgroup_shrink_node_zone+0x1a0/0x1a0
[<ffffffffa20a0d99>] kthread+0xc9/0xe0
[<ffffffffa20a0cd0>] ? kthread_stop+0x100/0x100
[<ffffffffa26b404f>] ret_from_fork+0x3f/0x70
[<ffffffffa20a0cd0>] ? kthread_stop+0x100/0x100
This occurs because it is possible for shrink_active_list() to send
pages marked dirty to ->releasepage() when certain buffer_head threshold
conditions are met. shrink_active_list() doesn't check the page dirty
state apparently to handle an old ext3 corner case where in some cases
clean pages would not have the dirty bit cleared, thus it is up to the
filesystem to determine how to handle the page.
XFS currently handles the delalloc case properly, but this behavior
makes the warning spurious. Update the XFS ->releasepage() handler to
explicitly skip dirty pages. Retain the existing delalloc/unwritten
checks so we continue to warn if such buffers exist on clean pages when
they shouldn't.
Diagnosed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead we always declare struct xfs_dir2_sf_hdr as packed. That's
the expected layout, and while most major architectures do the packing
by default the new structure size and offset checker showed that not
only the ARM old ABI got this wrong, but various minor embedded
architectures did as well.
[Verified that no code change on x86-64 results from this change]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And use an array of unsigned char values directly to avoid problems
with architectures that pad the size of structures. This also gets
rid of the xfs_dir2_ino4_t and xfs_dir2_ino8_t types, and introduces
new constants for the size of 4 and 8 bytes as well as the size
difference between the two.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use an array of two unsigned chars directly to avoid problems
with architectures that pad the size of structures.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
So far the DAX code overloaded the direct I/O code path. There is very little
in common between the two, and untangling them allows to clean up both variants.
As a side effect we also get separate trace points for both I/O types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We control both the callers and callees of ->direct_IO, so remove the
indirect calls.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS already implement it's own flushing of the pagecache because it
implements proper synchronization for direct I/O reads. This means
calling generic_file_read_iter for direct I/O is rather useless,
as it doesn't do much but updating the atime and iocb position for
us. This also gets rid of the buffered I/O fallback that isn't used
for XFS.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Similar to what we did on the write side a while ago.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
All the three low-level read implementations that we might call already
take care of not overflowing the maximum supported bytes, no need to
duplicate it here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that we have the direct I/O kiocb flag there is no real need to sample
the value inside of XFS, and the invis flag was always just partially used
and isn't worth keeping this infrastructure around for. This also splits
the read tracepoint into buffered vs direct as we've done for writes a long
time ago.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead check the file pointer for the invisble I/O flag directly, and
use the chance to drop redundant arguments from the xfs_ioc_space
prototype.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Newly allocated XFS metadata buffers are added to the LRU once the hold
count is released, which typically occurs after I/O completion. There is
no other mechanism at current that tracks the existence or I/O state of
a new buffer. Further, readahead I/O tends to be submitted
asynchronously by nature, which means the I/O can remain in flight and
actually complete long after the calling context is gone. This means
that file descriptors or any other holds on the filesystem can be
released, allowing the filesystem to be unmounted while I/O is still in
flight. When I/O completion occurs, core data structures may have been
freed, causing completion to run into invalid memory accesses and likely
to panic.
This problem is reproduced on XFS via directory readahead. A filesystem
is mounted, a directory is opened/closed and the filesystem immediately
unmounted. The open/close cycle triggers a directory readahead that if
delayed long enough, runs buffer I/O completion after the unmount has
completed.
To address this problem, add a mechanism to track all in-flight,
asynchronous buffers using per-cpu counters in the buftarg. The buffer
is accounted on the first I/O submission after the current reference is
acquired and unaccounted once the buffer is returned to the LRU or
freed. Update xfs_wait_buftarg() to wait on all in-flight I/O before
walking the LRU list. Once in-flight I/O has completed and the workqueue
has drained, all new buffers should have been released onto the LRU.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The upcoming buftarg I/O accounting mechanism maintains a count of
all buffers that have undergone I/O in the current hold-release
cycle. Certain buffers associated with core infrastructure (e.g.,
the xfs_mount superblock buffer, log buffers) are never released,
however. This means that accounting I/O submission on such buffers
elevates the buftarg count indefinitely and could lead to lockup on
unmount.
Define a new buffer flag to explicitly exclude buffers from buftarg
I/O accounting. Set the flag on the superblock and associated log
buffers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
With the code as it stands today, b_retries never increments because
it gets reset to 0 in the error callback.
Remove that, and fix a similar problem where the first retry time
was constantly being overwritten, which defeated the timeout tunable
as well. We now only set first retry time if a non-zero timeout is
set, to match the behavior of only incrementing retries if a retry
value is set.
This way max retries & timeouts consistently take effect after a
tunable is set, rather than acting retroactively on a buffer which
has failed at some point in the past and has accumulated state from
those prior failures.
Thanks to dchinner for talking through this with me.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Fix up a couple places where extra flag manipulation occurs.
In the first case we clear XBF_ASYNC and then immediately reset it -
so don't bother clearing in the first place.
In the 2nd case we are at a point in the function where the buffer
must already be async, so there is no need to reset it.
Add consistent spacing around the " | " while we're at it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_error_get_cfg() is called with bp->b_error as an arg, which is
negative, so the switch statement won't ever find any matches.
This results in only the default error handler having any effect, as
EIO/ENOSPC/ENODEV get ignored due to the wrong sign.
It seems simplest to always flip the error sign to positive, so that
we can handle either negative errors in bp->b_error, or possibly a
positive errno via something like xfs_error_get_cfg(EIO) - this
future-proofs the function.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
replace the magic numbers by offsetof(...) and sizeof(...), and add two
extra checks on xfs_check_ondisk_structs()
[dchinner: renamed header structures to be more descriptive]
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The indentation in this function is different from the other functions.
Those spacebars are converted to tabs to improve readability.
Signed-off-by: Kaho Ng <ngkaho1234@gmail.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Errors go from zero which means no error to XFS_ERRTAG_MAX (22). My
static checker complains that xfs_errortag_add() puts an upper bound on
this but not a lower bound. Let's fix it by making it unsigned.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When calling fdget() in xfs_ioc_swapext(), we need to verify that
the file descriptors passed into the ioctl point to XFS inodes
before we start operations on them. If we don't do this, we could be
referencing arbitrary kernel memory as an XFS inode. THis could lead
to memory corruption and/or performing locking operations on
attacker-chosen structures in kernel memory.
[dchinner: rewrite commit message ]
[dchinner: add comment explaining new check ]
Signed-off-by: Jann Horn <jann@thejh.net>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Without this check, the following XFS_I invocations would return bad
pointers when used on non-XFS inodes (perhaps pointers into preceding
allocator chunks).
This could be used by an attacker to trick xfs_swap_extents into
performing locking operations on attacker-chosen structures in kernel
memory, potentially leading to code execution in the kernel. (I have
not investigated how likely this is to be usable for an attack in
practice.)
Signed-off-by: Jann Horn <jann@thejh.net>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of creeping pnfs layout configuration into filesystems, move the
definition of block-based export operations under a more abstract
configuration.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Create a common function to calculate the maximum height of a per-AG
btree. This will eventually be used by the rmapbt and refcountbt
code to calculate appropriate maxlevels values for each. This is
important because the verifiers and the transaction block
reservations depend on accurate estimates of how many blocks are
needed to satisfy a btree split.
We were mistakenly using the max bnobt height for all the btrees,
which creates a dangerous situation since the larger records and
keys in an rmapbt make it very possible that the rmapbt will be
taller than the bnobt and so we can run out of transaction block
reservation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In struct xfs_bmap_free, convert the open-coded free extent list to
a regular list, then use list_sort to sort it prior to processing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Break up xfs_free_extent() into a helper that fixes the freelist.
This helper will be used subsequently to ensure the freelist during
deferred rmap processing.
[darrick: refactor to put this at the head of the patchset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This is already in xfsprogs' libxfs, so port it to the kernel.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently we don't check the error_tag when someone's trying to set up
error injection testing. If userspace passes in a value we don't know
about, send back an error. This will help xfstests to _notrun a test
that uses error injection to test things like log replay.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a second buf_trylock tracepoint so that we can distinguish
between a successful and a failed trylock. With this piece, we can
use a script to look at the ftrace output to detect buffer deadlocks.
[dchinner: update to if/else as per hch's suggestion]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Some of the directory/attr structures contain variable-length objects,
so the enclosing structure doesn't have a meaningful fixed size at
compile time. We can check the offsets of the members before the
variable-length member, so do those.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The filesystem quiesce sequence performs the operations necessary to
drain all background work, push pending transactions through the log
infrastructure and wait on I/O resulting from the final AIL push. We
have had reports of remount,ro hangs in xfs_log_quiesce() ->
xfs_wait_buftarg(), however, and some instrumentation code to detect
transaction commits at this point in the quiesce sequence has inculpated
the eofblocks background scanner as a cause.
While higher level remount code generally prevents user modifications by
the time the filesystem has made it to xfs_log_quiesce(), the background
scanner may still be alive and can perform pending work at any time. If
this occurs between the xfs_log_force() and xfs_wait_buftarg() calls
within xfs_log_quiesce(), this can lead to an indefinite lockup in
xfs_wait_buftarg().
To prevent this problem, cancel the background eofblocks scan worker
during the remount read-only quiesce sequence. This suspends background
trimming when a filesystem is remounted read-only. This is only done in
the remount path because the freeze codepath has already locked out new
transactions by the time the filesystem attempts to quiesce (and thus
waiting on an active work item could deadlock). Kick the eofblocks
worker to pick up where it left off once an fs is remounted back to
read-write.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead punch the whole first, and the use the our zeroing helper
to punch out the edge blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We now skip holes in it, so no need to have the caller do it as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We'll want to use this code for large offsets now that we're
skipping holes and unwritten extents efficiently. Also rename it to
xfs_zero_range to be a bit more descriptive, and tell the caller if
we actually did any zeroing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Note that this removes support for the untested FIEMAP_FLAG_XATTR. It
could be added relatively easily with iomap ops for the attr fork, but
without test coverage I don't feel safe doing this.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Convert XFS to use the new iomap based multipage write path. This involves
implementing the ->iomap_begin and ->iomap_end methods, and switching the
buffered file write, page_mkwrite and xfs_iozero paths to the new iomap
helpers.
With this change __xfs_get_blocks will never be used for buffered writes,
and the code handling them can be removed.
Based on earlier code from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently zeroing out blocks and waiting for writeout is a bit of a mess in
truncate. This patch gives it a clear order in preparation for the iomap
path:
(1) we first wait for any direct I/O to complete to prevent any races
for it
(2) we then perform the actual zeroing, and only use the truncate_page
helpers for truncating down. The truncate up case already is
handled by the separate call to xfs_zero_eof.
(3) only then we write back dirty data, as zeroing block may cause
dirty pages when using either xfs_zero_eof or the new iomap
infrastructure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And ensure it works for RT subvolume files an set the block device,
both of which will be needed to be able to use the function in the
buffered write path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
BIO_MAX_PAGES is used as maximum count of bvecs, so
replace BIO_MAX_SECTORS with BIO_MAX_PAGES since
BIO_MAX_SECTORS is to be removed.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Tested-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
To avoid confusion between REQ_OP_FLUSH, which is handled by
request_fn drivers, and upper layers requesting the block layer
perform a flush sequence along with possibly a WRITE, this patch
renames REQ_FLUSH to REQ_PREFLUSH.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Separate the op from the rq_flag_bits and have xfs
set/get the bio using bio_set_op_attrs/bio_op.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This has callers of submit_bio/submit_bio_wait set the bio->bi_rw
instead of passing it in. This makes that use the same as
generic_make_request and how we set the other bio fields.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Fixed up fs/ext4/crypto.c
Signed-off-by: Jens Axboe <axboe@fb.com>
When we have a lot of metadata to flush from the AIL, the buffer
list can get very long. The current submission code tries to batch
submission to optimise IO order of the metadata (i.e. ascending
block order) to maximise block layer merging or IO to adjacent
metadata blocks.
Unfortunately, the method used can result in long lock times
occurring as buffers locked early on in the buffer list might not be
dispatched until the end of the IO licst processing. This is because
sorting does not occur util after the buffer list has been processed
and the buffers that are going to be submitted are locked. Hence
when the buffer list is several thousand buffers long, the lock hold
times before IO dispatch can be significant.
To fix this, sort the buffer list before we start trying to lock and
submit buffers. This means we can now submit buffers immediately
after they are locked, allowing merging to occur immediately on the
plug and dispatch to occur as quickly as possible. This means there
is minimal delay between locking the buffer and IO submission
occuring, hence reducing the worst case lock hold times seen during
delayed write buffer IO submission signficantly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And the same for XFS_IOC_THAW. Just because we now have a common
version of the ioctl we still need to provide the old name for it
for anyone using those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Al Viro noticed that xfs_lock_inodes should be static, and
that led to ... a few more.
These are just the easy ones, others require moving functions
higher in source files, so that's not done here to keep
this review simple.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The static checker reports that after commit 8d99fe92fe ("xfs: fix
efi/efd error handling to avoid fs shutdown hangs"), the code has been
reworked such that error == -EFSCORRUPTED is not possible in this
codepath.
Remove the spurious error check and just use SHUTDOWN_META_IO_ERROR
unconditionally.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Multi-block buffers are logged based on buffer offset in
xfs_trans_log_buf(). xfs_buf_item_log() ultimately walks each mapping in
the buffer and marks the associated range to be logged in the
xfs_buf_log_format bitmap for that mapping. This code is broken,
however, in that it marks the actual buffer offsets of the associated
range in each bitmap rather than shifting to the byte range for that
particular mapping.
For example, on a 4k fsb fs, buffer offset 4096 refers to the first byte
of the second mapping in the buffer. This means byte 0 of the second log
format bitmap should be tagged as dirty. Instead, the current code marks
byte offset 4096 of the second log format bitmap, which is invalid and
potentially out of range of the mapping.
As a result of this, the log item format code invoked at transaction
commit time is not be able to correctly identify what parts of the
buffer to copy into log vectors. This can lead to NULL log vector
pointer dereferences in CIL push context if the item format code was not
able to locate any dirty ranges at all. This crash has been reproduced
on a 4k FSB filesystem using 16k directory blocks where an unlink
operation happened not to log anything in the first block of the
mapping. The logged offsets were all over 4k, marked as such in the
subsequent log format mappings, and thus left the transaction with an
xfs_log_item that is marked DIRTY but without any logged regions.
Further, even when the logged regions are marked correctly in the buffer
log format bitmaps, the format code doesn't copy the correct ranges of
the buffer into the log. This means that any logged region beyond the
first block of a multi-block buffer is subject to corruption after a
crash and log recovery sequence. This is due to a failure to convert the
mapping bm_len field from basic blocks to bytes in the buffer offset
tracking code in xfs_buf_item_format().
Update xfs_buf_item_log() to convert buffer offsets to segment relative
offsets when logging multi-block buffers. This ensures that the modified
regions of a buffer are logged correctly and avoids the aforementioned
crash. Also update xfs_buf_item_format() to correctly track the source
offset into the buffer for the log vector formatting code. This ensures
that the correct data is copied into the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
it's not needed for file_operations of inodes located on fs defined
in the hosting module and for file_operations that go into procfs.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs fixes from Al Viro:
"Followups to the parallel lookup work:
- update docs
- restore killability of the places that used to take ->i_mutex
killably now that we have down_write_killable() merged
- Additionally, it turns out that I missed a prerequisite for
security_d_instantiate() stuff - ->getxattr() wasn't the only thing
that could be called before dentry is attached to inode; with smack
we needed the same treatment applied to ->setxattr() as well"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch ->setxattr() to passing dentry and inode separately
switch xattr_handler->set() to passing dentry and inode separately
restore killability of old mutex_lock_killable(&inode->i_mutex) users
add down_write_killable_nested()
update D/f/directory-locking
- Until now, dax has been disabled if media errors were found on
any device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition
is page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent reads/writes
would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX related to
zeroing, writeback, and some size checks.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQ4GKAAoJEHr6Yb6juE3/zowP/iclIhgXXXMQJRUHJlePMXC8
15sGZ32JS1ak9g7vrsmNVEDNynfNtiMYdBxtUyRuj6xqgwdZvFk3F55KOCPtaeA1
+yADkgeRkTAcwzmHw9WQVEzBCqyzSisdrwtEfH817qdq9FJdH66x2Kos6i+HeAVr
5Q/e4gs7lKrjf384/QBl+wxNZOndJaQAPd2VRHQqx2A9F33v0ljdwRaUG1r4fjK2
dtmhcZCqdQyuAGXW3piTnZc5ZFc3DPqO4FkEfqkEK3lFOflK0fd8wMsAZRp/Jd0j
GJsgnVSWSqG0Dz476djlG0w8t2p5Jv1g9cKChV+ZZEdFLKWHCOUFqXNj8uI8I4k5
cOEKCHyJ3IwfSHhNQqktEWrQN4T8ZXhWtuc9GuV4UZYuqJqHci6EdR/YsWsJjV+L
lm/qvK4ipDS1pivxOy8KX/iN0z7Io8J9GXpStDx3g8iWjLlh4YYlbJLWeeRepo/z
aPlV/QAKcHiGY6jzLExrZIyCWkzwo6O+0p1Kxerv9/7K/32HWbOodZ+tC8eD+N25
pV69nCGf+u50T2TtIx1+iann4NC1r7zg5yqnT9AgpyZpiwR5joCDzI5sXW+D0rcS
vPtfM84Ccdeq/e6mvfIpZgR0/npQapKnrmUest0J7P2BFPHiFPji1KzZ7M+1aFOo
9R6JdrAj0Sc+FBa+cGzH
=v6Of
-----END PGP SIGNATURE-----
Merge tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull misc DAX updates from Vishal Verma:
"DAX error handling for 4.7
- Until now, dax has been disabled if media errors were found on any
device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition is
page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent
reads/writes would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX
related to zeroing, writeback, and some size checks"
* tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: fix a comment in dax_zero_page_range and dax_truncate_page
dax: for truncate/hole-punch, do zeroing through the driver if possible
dax: export a low-level __dax_zero_page_range helper
dax: use sb_issue_zerout instead of calling dax_clear_sectors
dax: enable dax in the presence of known media errors (badblocks)
dax: fallback from pmd to pte on error
block: Update blkdev_dax_capable() for consistency
xfs: Add alignment check for DAX mount
ext2: Add alignment check for DAX mount
ext4: Add alignment check for DAX mount
block: Add bdev_dax_supported() for dax mount checks
block: Add vfs_msg() interface
dax: Remove redundant inode size checks
dax: Remove pointless writeback from dax_do_io()
dax: Remove zeroing from dax_io()
dax: Remove dead zeroing code from fault handlers
ext2: Avoid DAX zeroing to corrupt data
ext2: Fix block zeroing in ext2_get_blocks() for DAX
dax: Remove complete_unwritten argument
DAX: move RADIX_DAX_ definitions to dax.c
Changes in this update:
o fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
o allow fast path symlink lookups for inline symlinks.
o attribute listing cleanups
o writeback goes direct to bios rather than indirecting through
bufferheads
o transaction allocation cleanup
o optimised kmem_realloc
o added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
o fixed several inode cluster writeback lookup vs reclaim race
conditions
o fixed inode cluster writeback checking wrong inode after lookup
o fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
o cleaned up inode reclaim tagging
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRo8LAAoJEK3oKUf0dfodxLgP+wQMd46i/nCncr6jMcdoVXfL
rE6cL1LJWWVOWzax/bmdlV1VNXqqW7n0ABAVMqikzqSEd+fBQe/HOkdBeVUywu7o
bmqgNxuofMqHaiYhiTvUijHLHWLFxIgd/jNT7L5oGRzZdmP260VGf3EPipN7aA9U
Y3KVhFQCqohpeIUeSV4Z/eIDdHN5LyUI1s+7zMLquHKCWyO4aO4GBX8YlyXdRRVe
cwCZb4TBryS0PBCIra31MZ5wBRwLx8PBXqcNsnTQSR5Uu+WeuwxofXz5q3kdmNOU
XGTWiabQbcvaC4twrzqnErHEX41PAs43tWxsI/qJH49QIFdfOYM+t8ERhEa2Q3DW
Ihl+Q/2qiOuZZterG/t5MrxhybrmQhEFVJT6Ib8b/CnwpRm+K8kWTead1YJL8Xzd
F9k8e57BCgTbDA7jWxWDbp7eQ1/4KglBD4sefFPpsuFgO882mmo5GmymALGjmitw
JH1v3HL3PeTkQoHfcay8ZM/zNjX643CXHwCWYEOAgD+e77TPiOs/cHLZaXbrBkLK
PpSJNfYiBe31eeSOEGsxivMapLpus+cHZyK3uR+XU+naJhjOdaBDTTo8RsAD9jS5
C/dzxc4l7o+gYT+UjV5KtyfEeVwtGo5mtR9XozPbNDjNQor8Vo6NQMZXMXpFYDZI
2XgzVNpkEf/74kexdEzV
=0tYo
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"A pretty average collection of fixes, cleanups and improvements in
this request.
Summary:
- fixes for mount line parsing, sparse warnings, read-only compat
feature remount behaviour
- allow fast path symlink lookups for inline symlinks.
- attribute listing cleanups
- writeback goes direct to bios rather than indirecting through
bufferheads
- transaction allocation cleanup
- optimised kmem_realloc
- added configurable error handling for metadata write errors,
changed default error handling behaviour from "retry forever" to
"retry until unmount then fail"
- fixed several inode cluster writeback lookup vs reclaim race
conditions
- fixed inode cluster writeback checking wrong inode after lookup
- fixed bugs where struct xfs_inode freeing wasn't actually RCU safe
- cleaned up inode reclaim tagging"
* tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: fix warning in xfs_finish_page_writeback for non-debug builds
xfs: move reclaim tagging functions
xfs: simplify inode reclaim tagging interfaces
xfs: rename variables in xfs_iflush_cluster for clarity
xfs: xfs_iflush_cluster has range issues
xfs: mark reclaimed inodes invalid earlier
xfs: xfs_inode_free() isn't RCU safe
xfs: optimise xfs_iext_destroy
xfs: skip stale inodes in xfs_iflush_cluster
xfs: fix inode validity check in xfs_iflush_cluster
xfs: xfs_iflush_cluster fails to abort on error
xfs: remove xfs_fs_evict_inode()
xfs: add "fail at unmount" error handling configuration
xfs: add configuration handlers for specific errors
xfs: add configuration of error failure speed
xfs: introduce table-based init for error behaviors
xfs: add configurable error support to metadata buffers
xfs: introduce metadata IO error class
xfs: configurable error behavior via sysfs
xfs: buffer ->bi_end_io function requires irq-safe lock
...
dax_clear_sectors() cannot handle poisoned blocks. These must be
zeroed using the BIO interface instead. Convert ext2 and XFS to use
only sb_issue_zerout().
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
[vishal: Also remove the dax_clear_sectors function entirely]
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Pull parallel lookup fixups from Al Viro:
"Fix for xfs parallel readdir (turns out the cxfs exposure was not
enough to catch all problems), and a reversion of btrfs back to
->iterate() until the fs/btrfs/delayed-inode.c gets fixed"
* 'work.lookups' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xfs: concurrent readdir hangs on data buffer locks
Revert "btrfs: switch to ->iterate_shared()"
There's a three-process deadlock involving shared/exclusive barriers
and inverted lock orders in the directory readdir implementation.
It's a pre-existing problem with lock ordering, exposed by the
VFS parallelisation code.
process 1 process 2 process 3
--------- --------- ---------
readdir
iolock(shared)
get_leaf_dents
iterate entries
ilock(shared)
map, lock and read buffer
iunlock(shared)
process entries in buffer
.....
readdir
iolock(shared)
get_leaf_dents
iterate entries
ilock(shared)
map, lock buffer
<blocks>
finish ->iterate_shared
file_accessed()
->update_time
start transaction
ilock(excl)
<blocks>
.....
finishes processing buffer
get next buffer
ilock(shared)
<blocks>
And that's the deadlock.
Fix this by dropping the current buffer lock in process 1 before
trying to map the next buffer. This means we keep the lock order of
ilock -> buffer lock intact and hence will allow process 3 to make
progress and drop it's ilock(shared) once it is done.
Reported-by: Xiong Zhou <xzhou@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rearrange the inode tagging functions so that they are higher up in
xfs_cache.c and so there is no need for forward prototypes to be
defined. This is purely code movement, no other change.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Inode radix tree tagging for reclaim passes a lot of unnecessary
variables around. Over time the xfs-perag has grown a xfs_mount
backpointer, and an internal agno so we don't need to pass other
variables into the tagging functions to supply this information.
Rework the functions to pass the minimal variable set required
and simplify the internal logic and flow.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The cluster inode variable uses unconventional naming - iq - which
makes it hard to distinguish it between the inode passed into the
function - ip - and that is a vector for mistakes to be made.
Rename all the cluster inode variables to use a more conventional
prefixes to reduce potential future confusion (cilist, cilist_size,
cip).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_iflush_cluster() does a gang lookup on the radix tree, meaning
it can find inodes beyond the current cluster if there is sparse
cache population. gang lookups return results in ascending index
order, so stop trying to cluster inodes once the first inode outside
the cluster mask is detected.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The last thing we do before using call_rcu() on an xfs_inode to be
freed is mark it as invalid. This means there is a window between
when we know for certain that the inode is going to be freed and
when we do actually mark it as "freed".
This is important in the context of RCU lookups - we can look up the
inode, find that it is valid, and then use it as such not realising
that it is in the final stages of being freed.
As such, mark the inode as being invalid the moment we know it is
going to be reclaimed. This can be done while we still hold the
XFS_ILOCK_EXCL and the flush lock in xfs_inode_reclaim, meaning that
it occurs well before we remove it from the radix tree, and that
the i_flags_lock, the XFS_ILOCK and the inode flush lock all act as
synchronisation points for detecting that an inode is about to go
away.
For defensive purposes, this allows us to add a further check to
xfs_iflush_cluster to ensure we skip inodes that are being freed
after we grab the XFS_ILOCK_SHARED and the flush lock - we know that
if the inode number if valid while we have these locks held we know
that it has not progressed through reclaim to the point where it is
clean and is about to be freed.
[bfoster: fixed __xfs_inode_clear_reclaim() using ip->i_ino after it
had already been zeroed.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The xfs_inode freed in xfs_inode_free() has multiple allocated
structures attached to it. We free these in xfs_inode_free() before
we mark the inode as invalid, and before we run call_rcu() to queue
the structure for freeing.
Unfortunately, this freeing can race with other accesses that are in
the RCU current grace period that have found the inode in the radix
tree with a valid state. This includes xfs_iflush_cluster(), which
calls xfs_inode_clean(), and that accesses the inode log item on the
xfs_inode.
The log item structure is freed in xfs_inode_free(), so there is the
possibility we can be accessing freed memory in xfs_iflush_cluster()
after validating the xfs_inode structure as being valid for this RCU
context. Hence we can get spuriously incorrect clean state returned
from such checks. This can lead to use thinking the inode is dirty
when it is, in fact, clean, and so incorrectly attaching it to the
buffer for IO and completion processing.
This then leads to use-after-free situations on the xfs_inode itself
if the IO completes after the current RCU grace period expires. The
buffer callbacks will access the xfs_inode and try to do all sorts
of things it shouldn't with freed memory.
IOWs, xfs_iflush_cluster() only works correctly when racing with
inode reclaim if the inode log item is present and correctly stating
the inode is clean. If the inode is being freed, then reclaim has
already made sure the inode is clean, and hence xfs_iflush_cluster
can skip it. However, we are accessing the inode inode under RCU
read lock protection and so also must ensure that all dynamically
allocated memory we reference in this context is not freed until the
RCU grace period expires.
To fix this, move all the potential memory freeing into
xfs_inode_free_callback() so that we are guarantee RCU protected
lookup code will always have the memory structures it needs
available during the RCU grace period that lookup races can occur
in.
Discovered-by: Brain Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When unmounting XFS, we call:
xfs_inode_free => xfs_idestroy_fork => xfs_iext_destroy
This goes over the whole indirection array and calls
xfs_iext_irec_remove for each one of the erps (from the last one to
the first one). As a result, we keep shrinking (reallocating
actually) the indirection array until we shrink out all of its
elements. When we have files with huge numbers of extents, umount
takes 30-80 sec, depending on the amount of files that XFS loaded
and the amount of indirection entries of each file. The unmount
stack looks like:
[<ffffffffc0b6d200>] xfs_iext_realloc_indirect+0x40/0x60 [xfs]
[<ffffffffc0b6cd8e>] xfs_iext_irec_remove+0xee/0xf0 [xfs]
[<ffffffffc0b6cdcd>] xfs_iext_destroy+0x3d/0xb0 [xfs]
[<ffffffffc0b6cef6>] xfs_idestroy_fork+0xb6/0xf0 [xfs]
[<ffffffffc0b87002>] xfs_inode_free+0xb2/0xc0 [xfs]
[<ffffffffc0b87260>] xfs_reclaim_inode+0x250/0x340 [xfs]
[<ffffffffc0b87583>] xfs_reclaim_inodes_ag+0x233/0x370 [xfs]
[<ffffffffc0b8823d>] xfs_reclaim_inodes+0x1d/0x20 [xfs]
[<ffffffffc0b96feb>] xfs_unmountfs+0x7b/0x1a0 [xfs]
[<ffffffffc0b98e4d>] xfs_fs_put_super+0x2d/0x70 [xfs]
[<ffffffff811e9e36>] generic_shutdown_super+0x76/0x100
[<ffffffff811ea207>] kill_block_super+0x27/0x70
[<ffffffff811ea519>] deactivate_locked_super+0x49/0x60
[<ffffffff811eaaee>] deactivate_super+0x4e/0x70
[<ffffffff81207593>] cleanup_mnt+0x43/0x90
[<ffffffff81207632>] __cleanup_mnt+0x12/0x20
[<ffffffff8108f8e7>] task_work_run+0xa7/0xe0
[<ffffffff81014ff7>] do_notify_resume+0x97/0xb0
[<ffffffff81717c6f>] int_signal+0x12/0x17
Further, this reallocation prevents us from freeing the extent list
from a RCU callback as allocation can block. Hence if the extent
list is in indirect format, optimise the freeing of the extent list
to only use kmem_free calls by freeing entire extent buffer pages at
a time, rather than extent by extent.
[dchinner: simplified freeing loop based on Christoph's suggestion]
Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We don't write back stale inodes so we should skip them in
xfs_iflush_cluster, too.
cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Some careless idiot(*) wrote crap code in commit 1a3e8f3 ("xfs:
convert inode cache lookups to use RCU locking") back in late 2010,
and so xfs_iflush_cluster checks the wrong inode for whether it is
still valid under RCU protection. Fix it to lock and check the
correct inode.
(*) Careless-idiot: Dave Chinner <dchinner@redhat.com>
cc: <stable@vger.kernel.org> # 3.10.x-
Discovered-by: Brain Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When a failure due to an inode buffer occurs, the error handling
fails to abort the inode writeback correctly. This can result in the
inode being reclaimed whilst still in the AIL, leading to
use-after-free situations as well as filesystems that cannot be
unmounted as the inode log items left in the AIL never get removed.
Fix this by ensuring fatal errors from xfs_imap_to_bp() result in
the inode flush being aborted correctly.
cc: <stable@vger.kernel.org> # 3.10.x-
Reported-by: Shyam Kaushik <shyam@zadarastorage.com>
Diagnosed-by: Shyam Kaushik <shyam@zadarastorage.com>
Tested-by: Shyam Kaushik <shyam@zadarastorage.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Joe Lawrence reported a list_add corruption with 4.6-rc1 when
testing some custom md administration code that made it's own
block device nodes for the md array. The simple test loop of:
for i in {0..100}; do
mknod --mode=0600 $tmp/tmp_node b $MAJOR $MINOR
mdadm --detail --export $tmp/tmp_node > /dev/null
rm -f $tmp/tmp_node
done
Would produce this warning in bd_acquire() when mdadm opened the
device node:
list_add double add: new=ffff88043831c7b8, prev=ffff8804380287d8, next=ffff88043831c7b8.
And then produce this from bd_forget from kdevtmpfs evicting a block
dev inode:
list_del corruption. prev->next should be ffff8800bb83eb10, but was ffff88043831c7b8
This is a regression caused by commit c19b3b05 ("xfs: mode di_mode
to vfs inode"). The issue is that xfs_inactive() frees the
unlinked inode, and the above commit meant that this freeing zeroed
the mode in the struct inode. The problem is that after evict() has
called ->evict_inode, it expects the i_mode to be intact so that it
can call bd_forget() or cd_forget() to drop the reference to the
block device inode attached to the XFS inode.
In reality, the only thing we do in xfs_fs_evict_inode() that is not
generic is call xfs_inactive(). We can move the xfs_inactive() call
to xfs_fs_destroy_inode() without any problems at all, and this
will leave the VFS inode intact until it is completely done with it.
So, remove xfs_fs_evict_inode(), and do the work it used to do in
->destroy_inode instead.
cc: <stable@vger.kernel.org> # 4.6
Reported-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If we take "retry forever" literally on metadata IO errors, we can
hang at unmount, once it retries those writes forever. This is the
default behavior, unfortunately.
Add an error configuration option for this behavior and default it
to "fail" so that an unmount will trigger actuall errors, a shutdown
and allow the unmount to succeed. It will be noisy, though, as it
will log the errors and shutdown that occurs.
To fix this, we need to mark the filesystem as being in the process
of unmounting. Do this with a mount flag that is added at the
appropriate time (i.e. before the blocking AIL sync). We also need
to add this flag if mount fails after the initial phase of log
recovery has been run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
now most of the infrastructure is in place, we can start adding
support for configuring specific errors such as ENODEV, ENOSPC, EIO,
etc. Add these error configurations and configure them all to have
appropriate behaviours. That is, all will be configured to retry
forever by default, except for ENODEV, which is an unrecoverable
error, so it will be configured to not retry on error
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On reception of an error, we can fail immediately, perform some
bound amount of retries or retry indefinitely. The current behaviour
we have is to retry forever.
However, we'd like the ability to choose how long the filesystem
should try after an error, it can either fail immediately, retry a
few times, or retry forever. This is implemented by using
max_retries sysfs attribute, to hold the amount of times we allow
the filesystem to retry after an error. Being -1 a special case
where the filesystem will retry indefinitely.
Add both a maximum retry count and a retry timeout so that we can
bound by time and/or physical IO attempts.
Finally, plumb these into xfs_buf_iodone error processing so that
the error behaviour follows the selected configuration.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Before we start expanding the number of error classes and errors we
can configure behaviour for, we need a simple and clear way to
define the default behaviour that we initialized each mount with.
Introduce a table based method for keeping the initial configuration
in, and apply that to the existing initialization code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
With the error configuration handle for async metadata write errors
in place, we can now add initial support to the IO error processing
in xfs_buf_iodone_error().
Add an infrastructure function to look up the configuration handle,
and rearrange the error handling to prepare the way for different
error handling conigurations to be used.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now we have the basic infrastructure, add the first error class so
we can build up the infrastructure in a meaningful way. Add the
metadata async write IO error class and sysfs entry, and introduce a
default configuration that matches the existing "retry forever"
behavior for async write metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We need to be able to change the way XFS behaviours in error
conditions depending on the type of underlying storage. This is
necessary for handling non-traditional block devices with extended
error cases, such as thin provisioned devices that can return ENOSPC
as an IO error.
Introduce the basic sysfs infrastructure needed to define and
configure error behaviours. This is done to be generic enough to
extend to configuring behaviour in other error conditions, such as
ENOMEM, which also has different desired behaviours according to
machine configuration.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reports have surfaced of a lockdep splat complaining about an
irq-safe -> irq-unsafe locking order in the xfs_buf_bio_end_io() bio
completion handler. This only occurs when I/O errors are present
because bp->b_lock is only acquired in this context to protect
setting an error on the buffer. The problem is that this lock can be
acquired with the (request_queue) q->queue_lock held. See
scsi_end_request() or ata_qc_schedule_eh(), for example.
Replace the locked test/set of b_io_error with a cmpxchg() call.
This eliminates the need for the lock and thus the lock ordering
problem goes away.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull vfs cleanups from Al Viro:
"More cleanups from Christoph"
* 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
nfsd: use RWF_SYNC
fs: add RWF_DSYNC aand RWF_SYNC
ceph: use generic_write_sync
fs: simplify the generic_write_sync prototype
fs: add IOCB_SYNC and IOCB_DSYNC
direct-io: remove the offset argument to dio_complete
direct-io: eliminate the offset argument to ->direct_IO
xfs: eliminate the pos variable in xfs_file_dio_aio_write
filemap: remove the pos argument to generic_file_direct_write
filemap: remove pos variables in generic_file_read_iter
When a partition is not aligned by 4KB, mount -o dax succeeds,
but any read/write access to the filesystem fails, except for
metadata update.
Call bdev_dax_supported() to perform proper precondition checks
which includes this partition alignment check.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Fault handlers currently take complete_unwritten argument to convert
unwritten extents after PTEs are updated. However no filesystem uses
this anymore as the code is racy. Remove the unused argument.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
no changes needed (XFS isn't simple, but it has the same parallelism
in the interesting parts exercised from CXFS).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The kiocb already has the new position, so use that. The only interesting
case is AIO, where we currently don't bother updating ki_pos. We're about
to free the kiocb after we're done, so we might as well update it to make
everyone's life simpler.
While we're at it also return the bytes written argument passed in if
we were successful so that the boilerplate error switch code in the
callers can go away.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This will allow us to do per-I/O sync file writes, as required by a lot
of fileservers or storage targets.
XXX: Will need a few additional audits for O_DSYNC
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually
work, so eliminate the superflous argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These three warnings are fixed:
fs/xfs/xfs_inode.c:1033:44: warning: Using plain integer as NULL pointer
fs/xfs/xfs_inode_item.c:525:20: warning: context imbalance in 'xfs_inode_item_push' - unexpected unlock
fs/xfs/xfs_dquot.c:696:1: warning: symbol 'xfs_dq_get_next_id' was not declared. Should it be static?
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use krealloc to implement our realloc function. This helps to avoid
new allocations if we are still in the slab bucket. At least for the
bmap btree root that's actually the common case.
This also allows removing the now unused oldsize argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
I had sent this patch yesterday, but for some reason it didn't reach
xfs list, sending again.
Output the caller of xfs_log_force might be useful when tracing log
checkpoint problems without the need to build kernel with DEBUG.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These aren't used for CIL-style logging and can be dropped.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Merge xfs_trans_reserve and xfs_trans_alloc into a single function call
that returns a transaction with all the required log and block reservations,
and which allows passing transaction flags directly to avoid the cumbersome
_xfs_trans_alloc interface.
While we're at it we also get rid of the transaction type argument that has
been superflous since we stopped supporting the non-CIL logging mode. The
guts of it will be removed in another patch.
[dchinner: fixed transaction leak in error path in xfs_setattr_nonsize]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch implements two closely related changes: First it embeds
a bio the ioend structure so that we don't have to allocate one
separately. Second it uses the block layer bio chaining mechanism
to chain additional bios off this first one if needed instead of
manually accounting for multiple bio completions in the ioend
structure. Together this removes a memory allocation per ioend and
greatly simplifies the ioend setup and I/O completion path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Completion of an ioend requires us to walk the bufferhead list to
end writback on all the bufferheads. This, in turn, is needed so
that we can end writeback on all the pages we just did IO on.
To remove our dependency on bufferheads in writeback, we need to
turn this around the other way - we need to walk the pages we've
just completed IO on, and then walk the buffers attached to the
pages and complete their IO. In doing this, we remove the
requirement for the ioend to track bufferheads directly.
To enable IO completion to walk all the pages we've submitted IO on,
we need to keep the bios that we used for IO around until the ioend
has been completed. We can do this simply by chaining the bios to
the ioend at completion time, and then walking their pages directly
just before destroying the ioend.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: changed the xfs_finish_page_writeback calling convention]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently adding a buffer to the ioend and then building a bio from
the buffer list are two separate operations. We don't build the bios
and submit them until the ioend is submitted, and this places a
fixed dependency on bufferhead chaining in the ioend.
The first step to removing the bufferhead chaining in the ioend is
on the IO submission side. We can build the bio directly as we add
the buffers to the ioend chain, thereby removing the need for a
latter "buffer-to-bio" submission loop. This allows us to submit
bios on large ioends as soon as we cannot add more data to the bio.
These bios then get captured by the active plug, and hence will be
dispatched as soon as either the plug overflows or we schedule away
from the writeback context. This will reduce submission latency for
large IOs, but will also allow more timely request queue based
writeback blocking when the device becomes congested.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: various small updates]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Consolidate the 2 calls to ->put_listent in
xfs_attr3_leaf_list_int(), by setting up name, namelen, and
valuelen for the local vs remote cases, then call ->put_listent
and do the error handling all in one spot.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
The put_value context member is never set; remove it
and the conditional test in xfs_attr3_leaf_list_int().
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The value is not used; only names and value lengths are
returned. Remove the argument.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, the put_listent formatters return either 1 or 0; if
they return 1, some callers treat this as an error and return
it up the stack, despite "1" not being a valid (negative)
error code.
The intent seems to be that if the input buffer is full,
we set seen_enough or set count = -1, and return 1;
but some callers check the return before checking the
seen_enough or count fields of the context.
Fix this by only returning non-zero for actual errors
encountered, and rely on the caller to first check the
return value, then check the values in the context to
decide what to do.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By overallocating the in-core inode fork data buffer and zero
terminating the link target in xfs_init_local_fork we can avoid
the memory allocation in ->follow_link.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Also drop the now unused readlink_copy export.
[dchinner: use d_inode(dentry) rather than dentry->d_inode]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In the next patch we'll set up different inode operations for inline vs
out of line symlinks, for that we need to make sure the flags are already
set up properly.
[dchinner: added xfs_setup_iops() call to xfs_rename_alloc_whiteout()]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 2e74af0e11 ("xfs: convert mount option parsing to tokens")
missed a 'break;' in xfs_parseargs() which causes mount to fail with
"-o pqnoenforce" option when mounting a v4 filesystem. xfs/050
catches this failure:
XFS (vda6): Super block does not support project and group quota together
Fixes: 2e74af0e11 ("xfs: convert mount option parsing to tokens")
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 96f859d ("libxfs: pack the agfl header structure so
XFS_AGFL_SIZE is correct") allowed the freelist to use the empty
slot at the end of the freelist on 64 bit systems that was not
being used due to sizeof() rounding up the structure size.
This has caused versions of xfs_repair prior to 4.5.0 (which also
has the fix) to report this as a corruption once the filesystem has
been grown. Older kernels can also have problems (seen from a whacky
container/vm management environment) mounting filesystems grown on a
system with a newer kernel than the vm/container it is deployed on.
To avoid this problem, change the initial free list indexes not to
wrap across the end of the AGFL, hence avoiding the initialisation
of agf_fllast to the last index in the AGFL.
cc: <stable@vger.kernel.org> # 4.4-4.5
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, a kernel which refuses to mount a filesystem read-write
due to unknown ro-compat features can still transition to read-write
via the remount path. The old kernel is most likely none the wiser,
because it's unaware of the new feature, and isn't using it. However,
writing to the filesystem may well corrupt metadata related to that
new feature, and moving to a newer kernel which understand the feature
will have problems.
Right now the only ro-compat feature we have is the free inode btree,
which showed up in v3.16. It would be good to push this back to
all the active stable kernels, I think, so that if anyone is using
newer mkfs (which enables the finobt feature) with older kernel
releases, they'll be protected.
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Mostly direct substitution with occasional adjustment or removing
outdated comments.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When get_acl() is called for an inode whose ACL is not cached yet, the
get_acl inode operation is called to fetch the ACL from the filesystem.
The inode operation is responsible for updating the cached acl with
set_cached_acl(). This is done without locking at the VFS level, so
another task can call set_cached_acl() or forget_cached_acl() before the
get_acl inode operation gets to calling set_cached_acl(), and then
get_acl's call to set_cached_acl() results in caching an outdate ACL.
Prevent this from happening by setting the cached ACL pointer to a
task-specific sentinel value before calling the get_acl inode operation.
Move the responsibility for updating the cached ACL from the get_acl
inode operations to get_acl(). There, only set the cached ACL if the
sentinel value hasn't changed.
The sentinel values are chosen to have odd values. Likewise, the value
of ACL_NOT_CACHED is odd. In contrast, ACL object pointers always have
an even value (ACLs are aligned in memory). This allows to distinguish
uncached ACLs values from ACL objects.
In addition, switch from guarding inode->i_acl and inode->i_default_acl
upates by the inode->i_lock spinlock to using xchg() and cmpxchg().
Filesystems that do not want ACLs returned from their get_acl inode
operations to be cached must call forget_cached_acl() to prevent the VFS
from doing so.
(Patch written by Al Viro and Andreas Gruenbacher.)
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
pnfs layout type from Christoph Hellwig. The new layout type is a
variant of the block layout which uses SCSI features to offer improved
fencing and device identification.
Note this pull request also includes the client side of SCSI layout,
with Trond's permission.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW9D0/AAoJECebzXlCjuG+fYcP/ibluAOSRrQ523gQcJNS+QSV
3B7YY6diJkfQNkm4oAROwPd1KHT2qhoVAO3JHXA3SZnjVVYQxAHeh2wsZJ2jL6Ft
uyZARxix+F9alJVT3S+uYLwagjh9LXLhb0MaRTMheaWGsPKLQTU4JtsLsjAIhCah
R0EIIdQfWcb83XoVPmiflVO4Nl/TQWmfA5wHfoVtITJcL3AaC9gzCGNbc8dHLnFC
HRjGVgHr3nSL3suvUEFfxSEo4QoNPWIX4kBaWXgqbVgOQqmbtQtaXdnd3gIRtkzj
9Q/lxiwaArtDjdAQdyNtRRBUpkpWo+xWp/vpnNUxTXKoRtpSyqYQX5FaPCPRVAAp
GYGw2qHrvWn2hSajtVtKyWwsQ3lYsDmbkxAkgScO9kQdS+kuxNyIzYIEvakdtFyJ
txFsauJczkNNFeHKzLPDoGbuX7KB/+pUsjmX5nYtMhwRriXA5S8zcO4AvTrmTPDF
vQrLM97mqI60LWmpQUO1OE8CEFPVx5DUZ0KdLMvFNKPZph8BTPJxJMmxJK4R6stV
/TWglRTEO8IGUh0ww8+3PfMfxVG5XHnQc99+VGVZOS9hJ4GOXbWYAqZ0m+sRJ2Pi
JPawILie5x2gH1FrVYbcTZsQzdmdn/BF9yePNzAkMucjuEUHXFTlf3MMfEhKpYTl
0l8LBCv6ZvtGU+PUJxZn
=MToz
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.6-1' of git://linux-nfs.org/~bfields/linux
Pull more nfsd updates from Bruce Fields:
"Apologies for the previous request, which omitted the top 8 commits
from my for-next branch (including the SCSI layout commits). Thanks
to Trond for spotting my error!"
This actually includes the new layout types, so here's that part of
the pull message repeated:
"Support for a new pnfs layout type from Christoph Hellwig. The new
layout type is a variant of the block layout which uses SCSI features
to offer improved fencing and device identification.
Note this pull request also includes the client side of SCSI layout,
with Trond's permission"
* tag 'nfsd-4.6-1' of git://linux-nfs.org/~bfields/linux:
nfsd: use short read as well as i_size to set eof
nfsd: better layoutupdate bounds-checking
nfsd: block and scsi layout drivers need to depend on CONFIG_BLOCK
nfsd: add SCSI layout support
nfsd: move some blocklayout code
nfsd: add a new config option for the block layout driver
nfs/blocklayout: add SCSI layout support
nfs4.h: add SCSI layout definitions
Change summary:
o error propagation for direct IO failures fixes for both XFS and ext4
o new quota interfaces and XFS implementation for iterating all the quota IDs
in the filesystem
o locking fixes for real-time device extent allocation
o reduction of duplicate information in the xfs and vfs inode, saving roughly
100 bytes of memory per cached inode.
o buffer flag cleanup
o rework of the writepage code to use the generic write clustering mechanisms
o several fixes for inode flag based DAX enablement
o rework of remount option parsing
o compile time verification of on-disk format structure sizes
o delayed allocation reservation overrun fixes
o lots of little error handling fixes
o small memory leak fixes
o enable xfsaild freezing again
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW71DQAAoJEK3oKUf0dfodyiwP/0Tou9f1huzLC0kd7kmEoKKC
BWQmtJGEdo0iSpJNZhg/EJmjvRtbBiOB9CRcEyG8d71kqZ+MKW7t/4JjNvNG34aE
vHjhwMBVVqkw/q6azi2LiEDsVcOe5bXxUrXNZi18/09OAl4pHm+X8VERLnnC5y+i
QIHAOdB5R+36cXcceJm1HR6jTZedbNdQkT/ndhm5S60FGhvVI29cs9NwYwoi5aif
O55r6krSWBj6U/X6MsLvr+lNb6+1Sd1hyE8dGTE7lOUX/crFIysaDPEuQmWvDjsO
M1ulVfzKoBJHcyvpbdHwdBEyiBjzvETcrgndMRoWOjZiOLqNtWYsgIEiC+Nlidwd
+T4XhkJJJg5UUQ4r6Hs85SQn/THanzR5KoN5nbTsFtFkCKw1DRkUSNuh2mXP2xVG
JcNDCjDvvHG76EfQ1otlYf7ru79Ck+hjVs+szaEVPpOzAwz8yOtD+L7I8f73gQ6a
ayP8W2oZQpYvQRv+smgvt+HwQA4fNJk9ZseY3QD5+z5snJz7JEhZogqW+ngFYkNQ
dtA5Y7gpTkKfo3mKO0XmE5+3fcSXhGHGYQzmUgJFlgWTK7+E8fuDhn6D66wFcZSq
QhyRk9J7Xb7ZWuP5PlOkxb9DLd4hnuyie2bYw/0hVtOatjE/Em4gRJ3Oq3ZANwZx
OeMGj4Uyb3/MKAJwy3Gq
=ZoiX
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There's quite a lot in this request, and there's some cross-over with
ext4, dax and quota code due to the nature of the changes being made.
As for the rest of the XFS changes, there are lots of little things
all over the place, which add up to a lot of changes in the end.
The major changes are that we've reduced the size of the struct
xfs_inode by ~100 bytes (gives an inode cache footprint reduction of
>10%), the writepage code now only does a single set of mapping tree
lockups so uses less CPU, delayed allocation reservations won't
overrun under random write loads anymore, and we added compile time
verification for on-disk structure sizes so we find out when a commit
or platform/compiler change breaks the on disk structure as early as
possible.
Change summary:
- error propagation for direct IO failures fixes for both XFS and
ext4
- new quota interfaces and XFS implementation for iterating all the
quota IDs in the filesystem
- locking fixes for real-time device extent allocation
- reduction of duplicate information in the xfs and vfs inode, saving
roughly 100 bytes of memory per cached inode.
- buffer flag cleanup
- rework of the writepage code to use the generic write clustering
mechanisms
- several fixes for inode flag based DAX enablement
- rework of remount option parsing
- compile time verification of on-disk format structure sizes
- delayed allocation reservation overrun fixes
- lots of little error handling fixes
- small memory leak fixes
- enable xfsaild freezing again"
* tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (66 commits)
xfs: always set rvalp in xfs_dir2_node_trim_free
xfs: ensure committed is initialized in xfs_trans_roll
xfs: borrow indirect blocks from freed extent when available
xfs: refactor delalloc indlen reservation split into helper
xfs: update freeblocks counter after extent deletion
xfs: debug mode forced buffered write failure
xfs: remove impossible condition
xfs: check sizes of XFS on-disk structures at compile time
xfs: ioends require logically contiguous file offsets
xfs: use named array initializers for log item dumping
xfs: fix computation of inode btree maxlevels
xfs: reinitialise per-AG structures if geometry changes during recovery
xfs: remove xfs_trans_get_block_res
xfs: fix up inode32/64 (re)mount handling
xfs: fix format specifier , should be %llx and not %llu
xfs: sanitize remount options
xfs: convert mount option parsing to tokens
xfs: fix two memory leaks in xfs_attr_list.c error paths
xfs: XFS_DIFLAG2_DAX limited by PAGE_SIZE
xfs: dynamically switch modes when XFS_DIFLAG2_DAX is set/cleared
...
This is a simple extension to the block layout driver to use SCSI
persistent reservations for access control and fencing, as well as
SCSI VPD pages for device identification.
For this we need to pass the nfs4_client to the proc_getdeviceinfo method
to generate the reservation key, and add a new fence_client method
to allow for fence actions in the layout driver.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Split the config symbols into a generic pNFS one, which is invisible
and gets selected by the layout drivers, and one for the block layout
driver.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.
This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.
This patch (of 5):
So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat(). But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.
Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg(). Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfs_dir2_node_trim_free can return with setting the rvalp argument
pointer. Initialize it to 0 at the beginning of the function and
only update it to 1 if we succeeded trimming a freespace block.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
__xfs_trans_roll() can return without setting the
*committed argument; this was a problem for xfs_bmap_finish():
int committed;/* xact committed or not */
...
error = __xfs_trans_roll(tp, ip, &committed);
if (error) {
...
if (committed) {
and we tested an uninitialized "committed" variable on the
error path. No caller is preserving "committed" state across
calls to __xfs_trans_roll(), so just initialize committed inside
the function to avoid future errors like this.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmap_del_extent() handles extent removal from the in-core and
on-disk extent lists. When removing a delalloc range, it updates the
indirect block reservation appropriately based on the removal. It
currently enforces that the new indirect block reservation is less than
or equal to the original. This is normally the case in all situations
except for in certain cases when the removed range creates a hole in a
single delalloc extent, thus splitting a single delalloc extent in two.
It is possible with small enough extents to split an indlen==1 extent
into two such slightly smaller extents. This leaves one extent with 0
indirect blocks and leads to assert failures in other areas (e.g.,
xfs_bunmapi() if the extent happens to be removed).
Update the indlen distribution code to steal blocks from the deleted
extent, if necessary, to satisfy the worst case total indirect
reservation for the new extents. This is safe as the caller does not
update the fdblocks counters until the extent is removed. Blocks stolen
in this manner simply remain accounted as allocated, having ownership
transferred from the data extent to an indirect reservation.
As a precaution, fall back to the original reservation algorithm if the
new indlen requirement is not met and warn if we end up with extents
without any reservation at all to detect this more easily in the future.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The delayed allocation indirect reservation splitting code is not
sufficient in some cases where a delalloc extent is split in two. In
preparation for enhancements to this code, refactor the current indlen
distribution algorithm into a new helper function.
[dchinner: rename temp, temp2 variables]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bunmapi() currently updates the fdblocks counter, unreserves quota,
etc. before the extent is deleted by xfs_bmap_del_extent(). The function
has problems dividing up the indirect reserved blocks for scenarios
where a single delalloc extent is split in two. Particularly, there
aren't always enough blocks reserved for multiple extents in a single
extent reservation.
The solution to this problem is to allow the extent removal code to
steal from the deleted extent to meet indirect reservation requirements.
Move the block of code in xfs_bmapi() that updates the fdblocks counter
to after the call to xfs_bmap_del_extent() to allow the codepath to
update the extent record before the free blocks are accounted. Also,
reshuffle the code slightly so the delalloc accounting occurs near the
xfs_bmap_del_extent() call to provide context for the comments.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a DEBUG mode-only sysfs knob to enable forced buffered write
failure. An additional side effect of this mode is brute force killing
of delayed allocation blocks in the range of the write. The latter is
the prime motiviation behind this patch, as userspace test
infrastructure requires a reliable mechanism to create and split
delalloc extents without causing extent conversion.
Certain fallocate operations (i.e., zero range) were used for this in
the past, but the implementations have changed such that delalloc
extents are flushed and converted to real blocks, rendering the test
useless.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Changes:
o Only perform torn log write detection on dirty logs. This prevents
failures being detected due to a clean filesystem being moved
between machines or kernels of different architectures (e.g. 32
-> 64 bit, BE -> LE, etc). This fixes a regression introduced by
the torn log write detection in 4.5-rc1.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW4fdHAAoJEK3oKUf0dfod/6EP/1Mi2K+z8t9FaevB0yiy+Yfs
CzRe2Sim5EF67IFeh1CBChcJ4dpUtVxwn+vM6/tfOWM8jS0Oo1Chr5woRm2Xc1Ko
O4xmLcoooIBeustVt12/3+lKR0ACY4tSq8V673wBp7tSFi4dj5cnpb2pDuQTio3q
JCTFtHkG7s5d2XnDn0dYVdrm7/eKB1ZdQCaVxikVtqQvdwrnyZpo0Q5iu5/Ync4H
ULOoMW1xrrJQ7bZcMq4uLM9GglUEB2/tPfT2jFtiUFaNo+420B7FzZR9e6P9giBV
JB/t02uiqicN0+WN9xyu+ohYMtjUZ2wrysLaX8P9szy/Rmsn7gOUYs946KUhullD
D5JFzB/IUrLnIhfY4il8bK6NoTLPCj9DlktaA7GikA7QAyZFLrRr3b1r/XbR2lDB
8Sy3ij7yKh2fhThOk4D6fxyVkSgKpr9E2gz6LSl45imbrj69IjXCJwadD1i7yB8j
VJj+Vr54DcjxFR0SnCrpGSG2i7fgkGk+8woIyVkPczPMpVlmQrpnmBbD0+fn4d31
aRX4aDmv7OsT+OKEoy9Hu3wRmfUZSmaRmp+2QdJ0dT98LEFoUCmhsaiJLL+nVgv0
tsApndnvAFxWHZZ9w5VPnJ/99YIvWpb3zzn6mKD3XfN/2Mf4sMcN2JTzxLgEdU9D
2JX+S1/AUMZfL0Ghaww8
=NDeH
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs fixes from Dave Chinner:
"This is a fix for a regression introduced in 4.5-rc1 by the new torn
log write detection code. The regression only affects people moving a
clean filesystem between machines/kernels of different architecture
(such as changing between 32 bit and 64 bit kernels), but this is the
recommended (and only!) safe way to migrate a filesystem between
architectures so we really need to ensure it works.
The changes are larger than I'd prefer right at the end of the release
cycle, but the majority of the change is just factoring code to enable
the detection of a clean log at the correct time to avoid this issue.
Changes:
- Only perform torn log write detection on dirty logs. This prevents
failures being detected due to a clean filesystem being moved
between machines or kernels of different architectures (e.g. 32 ->
64 bit, BE -> LE, etc). This fixes a regression introduced by the
torn log write detection in 4.5-rc1"
* tag 'xfs-for-linus-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: only run torn log write detection on dirty logs
xfs: refactor in-core log state update to helper
xfs: refactor unmount record detection into helper
xfs: separate log head record discovery from verification
bp_release is set to 0 just before the breakpoint of the for loop before
the conditional check (in line 458). The other breakpoint is a goto that
skips the dead code.
Addresses-Coverity-Id: 102338
Signed-off-by: Luis de Bethencourt <luisbg@osg.samsung.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the sizes of XFS on-disk structures when compiling the kernel.
Use this to catch inadvertent changes in structure size due to padding
and alignment issues, etc.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We need to create a new ioend if the current writepage call isn't
logically contiguous with the range contained in the previous ioend.
Hopefully writepage gets called in order of increasing file offset.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use named array initializers for the string arrays used to dump log
items, rather than depending on the order being maintained correctly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 88740da18[1] introduced a function to compute the maximum
height of the inode btree back in 1994. Back then, apparently, the
freespace and inode btrees shared the same geometry; however, it has
long since been the case that the inode and freespace btrees have
different record and key sizes. Therefore, we must use m_inobt_mnr if
we want a correct calculation/log reservation/etc.
(Yes, this bug has been around for 21 years and ten months.)
(Yes, I was in middle school when this bug was committed.)
[1] http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=88740da18ddd9d7ba3ebaa9502fefc6ef2fd19cd
Historical-research-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If a crash occurs immediately after a filesystem grow operation, the
updated superblock geometry is found only in the log. After we
recover the log, the superblock is reread and re-initialised and so
has the new geometry in memory. If the new geometry has more AGs
than prior to the grow operation, then the new AGs will not have
in-memory xfs_perag structurea associated with them.
This will result in an oops when the first metadata buffer from a
new AG is looked up in the buffer cache, as the block lies within
the new geometry but then fails to find a perag structure on lookup.
This is easily fixed by simply re-initialising the perag structure
after re-reading the superblock at the conclusion of the first pahse
of log recovery.
This, however, does not fix the case of log recovery requiring
access to metadata in the newly grown space. Fortunately for us,
because the in-core superblock has not been updated, this will
result in detection of access beyond the end of the filesystem
and so recovery will fail at that point. If this proves to be
a problem, then we can address it separately to the current
reported issue.
Reported-by: Alex Lyakas <alex@zadarastorage.com>
Tested-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
XFS uses CRC verification over a sub-range of the head of the log to
detect and handle torn writes. This torn log write detection currently
runs unconditionally at mount time, regardless of whether the log is
dirty or clean. This is problematic in cases where a filesystem might
end up being moved across different, incompatible (i.e., opposite
byte-endianness) architectures.
The problem lies in the fact that log data is not necessarily written in
an architecture independent format. For example, certain bits of data
are written in native endian format. Further, the size of certain log
data structures differs (i.e., struct xlog_rec_header) depending on the
word size of the cpu. This leads to false positive crc verification
errors and ultimately failed mounts when a cleanly unmounted filesystem
is mounted on a system with an incompatible architecture from data that
was written near the head of the log.
Update the log head/tail discovery code to run torn write detection only
when the log is not clean. This means something other than an unmount
record resides at the head of the log and log recovery is imminent. It
is a requirement to run log recovery on the same type of host that had
written the content of the dirty log and therefore CRC failures are
legitimate corruptions in that scenario.
Reported-by: Jan Beulich <JBeulich@suse.com>
Tested-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Once the record at the head of the log is identified and verified, the
in-core log state is updated based on the record. This includes
information such as the current head block and cycle, the start block of
the last record written to the log, the tail lsn, etc.
Once torn write detection is conditional, this logic will need to be
reused. Factor the code to update the in-core log data structures into a
new helper function. This patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Once the mount sequence has identified the head and tail blocks of the
physical log, the record at the head of the log is located and examined
for an unmount record to determine if the log is clean. This currently
occurs after torn write verification of the head region of the log.
This must ultimately be separated from torn write verification and may
need to be called again if the log head is walked back due to a torn
write (to determine whether the new head record is an unmount record).
Separate this logic into a new helper function. This patch does not
change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The code that locates the log record at the head of the log is buried in
the log head verification function. This is fine when torn write
verification occurs unconditionally, but this behavior is problematic
for filesystems that might be moved across systems with different
architectures.
In preparation for separating examination of the log head for unmount
records from torn write detection, lift the record location logic out of
the log verification function and into the caller. This patch does not
change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use the t_blk_res field directly instead of obsfucating the reference
by a macro.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
inode32/inode64 allocator behavior with respect to mount, remount
and growfs is a little tricky.
The inode32 mount option should only enable the inode32 allocator
heuristics if the filesystem is large enough for 64-bit inodes to
exist. Today, it has this behavior on the initial mount, but a
remount with inode32 unconditionally changes the allocation
heuristics, even for a small fs.
Also, an inode32 mounted small filesystem should transition to the
inode32 allocator if the filesystem is subsequently grown to a
sufficient size. Today that does not happen.
This patch consolidates xfs_set_inode32 and xfs_set_inode64 into a
single new function, and moves the "is the maximum inode number big
enough to matter" test into that function, so it doesn't rely on the
caller to get it right - which remount did not do, previously.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
busyp->bno is printed with a %llu format specifier when the
intention is to print a hexadecimal value. Trivial fix to
use %llx instead. Found with smatch static analysis:
fs/xfs/xfs_discard.c:229 xfs_discard_extents() warn: '0x'
prefix is confusing together with '%llu' specifier
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Perform basic sanitization of remount options by
passing the option string and a dummy mount structure
through xfs_parseargs and returning the result.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This should be a no-op change, just switch to token parsing
like every other respectable filesystem does.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This plugs 2 trivial leaks in xfs_attr_shortform_list and
xfs_attr3_leaf_list_int.
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the block size of a filesystem is not at least PAGE_SIZEd, then
at this point in time DAX cannot be used due to the fact we can't
guarantee extents are page sized or aligned without further work.
Hence disallow setting the DAX flag on an inode if the block size is
too small. Also, be defensive and check the block size when reading
an inode in off disk.
In future, we want to allow DAX to work on any filesystem, so this
is temporary while we sort of the correct conbination of extent size
hints and allocation alignment configurations needed to guarantee
page sized and aligned extent allocation for DAX enabled files.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we set or clear the XFS_DIFLAG2_DAX flag, we should also
set/clear the S_DAX flag in the VFS inode. To do this, we need to
ensure that we first flush and remove any cached entries in the
radix tree to ensure the correct data access method is used when we
next try to read or write data. We ahve to be especially careful
here to lock out page faults so they don't race with the flush and
invalidation before we change the access mode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Only regular files can use DAX for data operations, so we should
restrict setting it on the VFS inode to regular files. Setting it on
metadata inodes may cause the VFS to do the wrong thing for such
inodes, so avoid potential problems by restricting the scope of the
flag to what we know is supported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Only file data can use DAX, so we should onyl be able to set this
flag on regular files. However, the flag also serves as an "inherit"
flag at file create time when set on directories, so limit the
FS_IOC_FSSETXATTR ioctl to only set this flag on regular files and
directories.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Previously calls to dax_writeback_mapping_range() for all DAX filesystems
(ext2, ext4 & xfs) were centralized in filemap_write_and_wait_range().
dax_writeback_mapping_range() needs a struct block_device, and it used
to get that from inode->i_sb->s_bdev. This is correct for normal inodes
mounted on ext2, ext4 and XFS filesystems, but is incorrect for DAX raw
block devices and for XFS real-time files.
Instead, call dax_writeback_mapping_range() directly from the filesystem
->writepages function so that it can supply us with a valid block
device. This also fixes DAX code to properly flush caches in response
to sync(2).
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_clear_blocks() needs a valid struct block_device and previously it
was using inode->i_sb->s_bdev in all cases. This is correct for normal
inodes on mounted ext2, ext4 and XFS filesystems, but is incorrect for
DAX raw block devices and for XFS real-time devices.
Instead, rename dax_clear_blocks() to dax_clear_sectors(), and change
its arguments to take a bdev and a sector instead of an inode and a
block. This better reflects what the function does, and it allows the
filesystem and raw block device code to pass in an appropriate struct
block_device.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we can build a long ioend chain during ->writepages that
gets attached to the writepage context. IO submission only then
occurs when we finish all the writepage processing. This means we
can have many ioends allocated and pending, and this violates the
mempool guarantees that we need to give about forwards progress.
i.e. we really should only have one ioend being built at a time,
otherwise we may drain the mempool trying to allocate a new ioend
and that blocks submission, completion and freeing of ioends that
are already in progress.
To prevent this situation from happening, we need to submit ioends
for IO as soon as they are ready for dispatch rather than queuing
them for later submission. This means the ioends have bios built
immediately and they get queued on any plug that is current active.
Hence if we schedule away from writeback, the ioends that have been
built will make forwards progress due to the plug flushing on
context switch. This will also prevent context switches from
creating unnecessary IO submission latency.
We can't completely avoid having nested IO allocation - when we have
a block size smaller than a page size, we still need to hold the
ioend submission until after we have marked the current page dirty.
Hence we may need multiple ioends to be held while the current page
is completely mapped and made ready for IO dispatch. We cannot avoid
this problem - the current code already has this ioend chaining
within a page so we can mostly ignore that it occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Separate out the bufferhead based mapping from the writepage code so
that we have a clear separation of the page operations and the
bufferhead state.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_cluster_write() is not necessary now that xfs_vm_writepages()
aggregates writepage calls across a single mapping. This means we no
longer need to do page lookups in xfs_cluster_write, so writeback
only needs to look up th epage cache once per page being written.
This also removes a large amount of mostly duplicate code between
xfs_do_writepage() and xfs_convert_page().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_vm_writepages() calls generic_writepages to writeback a range of
a file, but then xfs_vm_writepage() clusters pages itself as it does
not have any context it can pass between->writepage calls from
__write_cache_pages().
Introduce a writeback context for xfs_vm_writepages() and call
__write_cache_pages directly with our own writepage callback so that
we can pass that context to each writepage invocation. This
encapsulates the current mapping, whether it is valid or not, the
current ioend and it's IO type and the ioend chain being built.
This requires us to move the ioend submission up to the level where
the writepage context is declared. This does mean we do not submit
IO until we packaged the entire writeback range, but with the block
plugging in the writepages call this is the way IO is submitted,
anyway.
It also means that we need to handle discontiguous page ranges. If
the pages sent down by write_cache_pages to the writepage callback
are discontiguous, we need to detect this and put each discontiguous
page range into individual ioends. This is needed to ensure that the
ioend accurately represents the range of the file that it covers so
that file size updates during IO completion set the size correctly.
Failure to take into account the discontiguous ranges results in
files being too small when writeback patterns are non-sequential.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently have code to cancel ioends being built because we
change bufferhead state as we build the ioend. On error, this needs
to be unwound and so we have cancelling code that walks the buffers
on the ioend chain and undoes these state changes.
However, the IO submission path already handles state changes for
buffers when a submission error occurs, so we don't really need a
separate cancel function to do this - we can simply submit the
ioend chain with the specific error and it will be cancelled rather
than submitted.
Hence we can remove the explicit cancel code and just rely on
submission to deal with the error correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove the nonblocking optimisation done for mapping lookups during
writeback. It's not clear that leaving a hole in the writeback range
just because we couldn't get a lock is really a win, as it makes us
do another small random IO later on rather than a large sequential
IO now.
As this gets in the way of sane error handling later on, just remove
for the moment and we can re-introduce an equivalent optimisation in
future if we see problems due to extent map lock contention.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The places where we use this macro already clear unnecessary IO
flags (e.g. through xfs_bwrite()) or never have unexpected IO flags
set on them in the first place (e.g. iclog buffers). Remove the
macro from these locations, and where necessary clear only the
specific flags that are conditional in the current buffer context.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can store the di_changecount in the i_version field of the VFS
inode and remove another 8 bytes from the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull another 4 bytes out of the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS tracks the inode nlink just like the xfs_icdinode. We can
remove the variable from the icdinode and use the VFS inode variable
everywhere, reducing the size of the xfs_icdinode by a further 4
bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We are going to keep certain on-disk information in the VFS inode
rather than in a separate XFS specific stucture, so we have to be
careful of the VFS code clearing that information when we
re-initialise reclaimable cached inodes during lookup. If we don't
do this, then we lose critical information from the inode and that
results in corruption being detected.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
So we don't have to carry an di_onlink variable around anymore, move
the inode conversion from v1 inode format to v2 inode format into
xfs_inode_from_disk(). This means we can remove the di_onlink fields
from the struct xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the struct xfs_icdinode is not directly related to the
on-disk format, we can cull things in it we really don't need to
store:
- magic number never changes
- padding is not necessary
- next_unlinked is never used
- inode number is redundant
- uuid is redundant
- lsn is accessed directly from dinode
- inode CRC is only accessed directly from dinode
Hence we can remove these from the struct xfs_icdinode and redirect
the code that uses them to the xfs_dinode appripriately. This
reduces the size of the struct icdinode from 152 bytes to 88 bytes,
and removes a fair chunk of unnecessary code, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The struct xfs_inode has two copies of the current timestamps in it,
one in the vfs inode and one in the struct xfs_icdinode. Now that we
no longer log the struct xfs_icdinode directly, we don't need to
keep the timestamps in this structure. instead we can copy them
straight out of the VFS inode when formatting the inode log item or
the on-disk inode.
This reduces the struct xfs_inode in size by 24 bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently carry around and log an entire inode core in the
struct xfs_inode. A lot of the information in the inode core is
duplicated in the VFS inode, but we cannot remove this duplication
of infomration because the inode core is logged directly in
xfs_inode_item_format().
Add a new function xfs_inode_item_format_core() that copies the
inode core data into a struct xfs_icdinode that is pulled directly
from the log vector buffer. This means we no longer directly
copy the inode core, but copy the structures one member at a time.
This will be slightly less efficient than copying, but will allow us
to remove duplicate and unnecessary items from the struct xfs_inode.
To enable us to do this, call the new structure a xfs_log_dinode,
so that we know it's different to the physical xfs_dinode and the
in-core xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Buffers without verifiers issue runtime warnings on XFS. We don't
have anything we can actually verify in the RT buffers (no CRCs, not
magic numbers, etc), but we still need verifiers to avoid the
warnings.
Add a set of dummy verifier operations for the realtime buffers and
apply them in the appropriate places.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When logging buffers, we attach a type to them that follows the
buffer all the way into the log and is used to identify the buffer
contents in log recovery. Both the realtime summary buffers and the
bitmap buffers do not have types defined or set, so when we try to
log them we see assert failure:
XFS: Assertion failed: (bip->bli_flags & XFS_BLI_STALE) || (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF), file: fs/xfs/xfs_buf_item.c, line: 294
Fix this by adding buffer log format types for these buffers, and
add identification support into log recovery for them. Only build the log
recovery support if CONFIG_XFS_RT=y - we can't get into log recovery for real
time filesystems if support is not built into the kernel, and this avoids
potential build problems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the filesystem has shut down, xfs_end_io() currently sets an
error on the ioend and proceeds to ioend destruction. The ioend
might contain a truncate transaction if the I/O extended the size of
the file. This transaction is only cleaned up in
xfs_setfilesize_ioend(), however, which is skipped in this case.
This results in an xfs_log_ticket leak message when the associate
cache slab is destroyed (e.g., on rmmod).
This was originally reproduced by xfs/141 on a distro kernel. The
problem is reproducible on an upstream kernel, but not easily
detected in current upstream if the xfs_log_ticket cache happens to
be merged with another cache. This can be reproduced more
deterministically with the 'slab_nomerge' kernel boot option.
Update xfs_end_io() to proceed with normal end I/O processing after
an error is set on an ioend due to fs shutdown. The I/O type-based
processing is already designed to handle an I/O error and ensure
that the ioend is cleaned up correctly.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The xfs_vm_write_failed() handler is currently responsible for cleaning
up any delalloc blocks over the range of a failed write beyond EOF.
Failure to do so results in warning messages and other inconsistencies
between buffer and extent state. The ->releasepage() handler currently
warns in the event of a page being released with either unwritten or
delalloc buffers, as neither is ever expected by the time a page is
released.
As has been reproduced by generic/083 on a -bsize=1k fs, it is currently
possible to trigger the ->releasepage() warning for a page with
unwritten buffers when a filesystem is near ENOSPC. This is reproduced
by the following sequence:
$ mkfs.xfs -f -b size=1k -d size=100m <dev>
$ mount <dev> /mnt/
$
$ xfs_io -fc "falloc -k 0 1k" /mnt/file
$ dd if=/dev/zero of=/mnt/enospc conv=notrunc oflag=append
$
$ xfs_io -c "pwrite 512 1k" /mnt/file
$ xfs_io -d -c "pwrite 16k 1k" /mnt/file
The first pwrite command attempts a block unaligned write across an
unwritten block and a hole. The delalloc for the hole fails with ENOSPC
and the subsequent error handling does not clean up the unwritten buffer
that was instantiated during the first ->get_block() call.
The second pwrite triggers a warning as part of the inode mapping
invalidation that occurs prior to direct I/O. The releasepage() handler
detects the unwritten buffer at this time, warns and prevents the
release of the page.
To deal with this problem, update xfs_vm_write_failed() to clean up
unwritten as well as delalloc buffers that are beyond EOF and within the
range of the failed write.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the shortform attr structure definition to the same place as the
other attribute structure definitions for consistency and also so that
xfs/122 verifies the structure size.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Hendik has reported suspend failures due to xfsaild blocking the freezer
to settle down.
Jan 17 19:59:56 linux-6380 kernel: PM: Syncing filesystems ... done.
Jan 17 19:59:56 linux-6380 kernel: PM: Preparing system for sleep (mem)
Jan 17 19:59:56 linux-6380 kernel: Freezing user space processes ... (elapsed 0.001 seconds) done.
Jan 17 19:59:56 linux-6380 kernel: Freezing remaining freezable tasks ...
Jan 17 19:59:56 linux-6380 kernel: Freezing of tasks failed after 20.002 seconds (1 tasks refusing to freeze, wq_busy=0):
Jan 17 19:59:56 linux-6380 kernel: xfsaild/dm-5 S 00000000 0 1293 2 0x00000080
Jan 17 19:59:56 linux-6380 kernel: f0ef5f00 00000046 00000200 00000000 ffff9022 c02d3800 00000000 00000032
Jan 17 19:59:56 linux-6380 kernel: ee0b2400 00000032 f71e0d00 f36fabc0 f0ef2d00 f0ef6000 f0ef2d00 f12f90c0
Jan 17 19:59:56 linux-6380 kernel: f0ef5f0c c0844e44 00000000 f0ef5f6c f811e0be 00000000 00000000 f0ef2d00
Jan 17 19:59:56 linux-6380 kernel: Call Trace:
Jan 17 19:59:56 linux-6380 kernel: [<c0844e44>] schedule+0x34/0x90
Jan 17 19:59:56 linux-6380 kernel: [<f811e0be>] xfsaild+0x5de/0x600 [xfs]
Jan 17 19:59:56 linux-6380 kernel: [<c0286cbb>] kthread+0x9b/0xb0
Jan 17 19:59:56 linux-6380 kernel: [<c0848a79>] ret_from_kernel_thread+0x21/0x38
The issue has been there for quite some time but it has been made
visible by only by 24ba16bb3d ("xfs: clear PF_NOFREEZE for xfsaild
kthread") because the suspend started seeing xfsaild.
The above commit has missed that the !xfs_ail_min branch might call
schedule with TASK_INTERRUPTIBLE without calling try_to_freeze so the pm
suspend would wake up the kernel thread over and over again without any
progress. What we want here is to use freezable_schedule instead to hide
the thread from the suspend.
While we are here also change schedule_timeout to freezable variant to
prevent from spurious wakeups by suspend.
[dchinner: re-add set_freezeable call so the freezer will account properly
for this kthread. ]
Reported-by: Hendrik Woltersdorf <hendrikw@arcor.de>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Old leftovers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
... instead of leaving it in the methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only need to communicate two bits of information to the direct I/O
completion handler:
(1) do we need to convert any unwritten extents in the range
(2) do we need to check if we need to update the inode size based
on the range passed to the completion handler
We can use the private data passed to the get_block handler and the
completion handler as a simple bitmask to communicate this information
instead of the current complicated infrastructure reusing the ioends
from the buffer I/O path, and thus avoiding a memory allocation and
a context switch for any non-trivial direct write. As a nice side
effect we also decouple the direct I/O path implementation from that
of the buffered I/O path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This way we can pass back errors to the file system, and allow for
cleanup required for all direct I/O invocations.
Also allow the ->end_io handlers to return errors on their own, so that
I/O completion errors can be passed on to the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Default quotas are globally set due historical reasons. IRIX only
supported user and project quotas, and default quota was only
applied to user quotas.
In Linux, when a default quota is set, all different quota types
inherits the same default value.
An user with a quota limit larger than the default quota value, will
still be limited to the default value because the group quotas also
inherits the default quotas. Unless the group which the user belongs
to have a custom quota limit set.
This patch aims to split the default quota value by quota type.
Allowing each quota type having different default values.
Default time limits are still set globally. XFS does not set a
per-user/group timer, but a single global timer. For changing this
behavior, some changes should be made in user-space tools another
bugs being fixed.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add code to allow the Q_XGETNEXTQUOTA quotactl to quickly find
all active quotas by examining the quota inode, and skipping
over unallocated or uninitialized regions.
Userspace can then use this interface rather than i.e. a
getpwent() loop when asked to report all active quotas.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Factor xfs_seek_hole_data into an unlocked helper which takes
an xfs inode rather than a file for internal use.
Also allow specification of "end" - the vfs lseek interface is
defined such that any offset past eof/i_size shall return -ENXIO,
but we will use this for quota code which does not maintain i_size,
and we want to be able to SEEK_DATA past i_size as well. So the
lseek path can send in i_size, and the quota code can determine
its own ending offset.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Allow us to get the appropriate quota inode from any
mp & quota flags, not necessarily associated with a
particular dqp. Needed for when we are searching for
the next active ID with quotas and we want to examine
the quota inode.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Quota IDs are unsigned, and so we can pass in values up
to 2^32-1. But if we try to initialize a block containing
values over MAX_INT, curid will overflow and assert.
curid holds a quota ID, so give it the proper
xfs_dqid_t type (and remove the now-impossible ASSERT).
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since the checksum function and the field are both __le32, don't
perform endian conversion when comparing the two. This fixes mount
failures on ppc64.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
RT allocation can fail on a debug kernel with:
XFS: Assertion failed: xfs_isilocked(ip, XFS_ILOCK_SHARED|XFS_ILOCK_EXCL), file: fs/xfs/libxfs/xfs_bmap.c, line: 4039
When modifying the summary inode during allocation. This occurs
because the summary inode is never locked, and xfs_bmapi_*
operations expect it to be locked. The summary inode is effectively
protected byt he lock on the bitmap inode, so this really is only a
debug kernel issue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull final vfs updates from Al Viro:
- The ->i_mutex wrappers (with small prereq in lustre)
- a fix for too early freeing of symlink bodies on shmem (they need to
be RCU-delayed) (-stable fodder)
- followup to dedupe stuff merged this cycle
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: abort dedupe loop if fatal signals are pending
make sure that freeing shmem fast symlinks is RCU-delayed
wrappers for ->i_mutex access
lustre: remove unused declaration
To properly support the new DAX fsync/msync infrastructure filesystems
need to call dax_pfn_mkwrite() so that DAX can track when user pages are
dirtied.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This update contains:
o promotion of XFS_IOC_FS[GS]ETXATTR ioctl to the vfs level so that
it can be shared with other filesystems. The ext4 project quota
functionality is the first target for this. The commits in this
series have not been updated with review or final SOB tags because
the branch they were originally published in was needed by ext4.
Those tags are:
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Dave Chinner <david@fromrobit.com>
o Revert a change that is causing suspend failures.
o Fix a use-after-free that can occur on log mount failures. Been
around forever, but now exposed by other changes to log recovery
made in the first 4.5 merge.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWoV0hAAoJEK3oKUf0dfodSCQP/RXlZp6TQhv2DQ2MW4AeZRzs
kzp3zvWUN1udB0fgAARMUDbHHeqEp5gUB6Fj8GOjgh69VGac1pjR2GOvEA9UbnhL
uLQwaRggVB/BJV6+hDUw283kENXE1H8JcDiEIFratwdiZ6KrhniMptzrbUnG22LO
cBLzHOCFI0x4ib2fdTvrVV8bNaAaLYViYUxuVwzblzhoODN4Nmv5HZ5BlMHDFJsd
E47Yw/0tdYFVRDuujN22ylYsKsySXBxPaWyUvDDlW/ryeKSfwn3V8Y7BSDZU4vUZ
CFstsqlzEySGrNNCfor5bFn9EO3i882M+DU60UhZAKRgvAzANAsxjJ97B8Of5KA+
/0OQarl0ZNJ93g6mZJ2bhuVpRCIGWJ3rBl9+GK8JdtsjF0mPOvrusKTQKoz1frK7
B8h52P+jxfqrrqeqpNigMWfDKYkXCfUUMAJm57+QILAoTNRupAzgFyXZnSgAermE
jaDfvnkaSZxfaLtTOlkkpGukhbFubhAWTk3TksVxICPXztZelQLmmbqjZnTYFCT/
dKieKbwop58DBTycFuzCrWiSjXjodAq/+IfpAQcvJ5xZPLtgfjHxQaHD6zsOVKzQ
lWosgYOnIaN/PYPOpAzo0sRDf80d5KFjwcdSjrWZVZ5lGfAsx8iYErh3v0Xv3rkE
YuKQw2AjVVtD64SfHvIn
=wEy8
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull more xfs updates from Dave Chinner:
"This is the second update for XFS that I mentioned in the original
pull request last week.
It contains a revert for a suspend regression in 4.4 and a fix for a
long standing log recovery issue that has been further exposed by all
the log recovery changes made in the original 4.5 merge.
There is one more thing in this pull request - one that I forgot to
merge into the origin. That is, pulling the XFS_IOC_FS[GS]ETXATTR
ioctl up to the VFS level so that other filesystems can also use it
for modifying project quota IDs
Summary:
- promotion of XFS_IOC_FS[GS]ETXATTR ioctl to the vfs level so that
it can be shared with other filesystems. The ext4 project quota
functionality is the first target for this. The commits in this
series have not been updated with review or final SOB tags because
the branch they were originally published in was needed by ext4.
Those tags are:
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Dave Chinner <david@fromrobit.com>
- Revert a change that is causing suspend failures.
- Fix a use-after-free that can occur on log mount failures. Been
around forever, but now exposed by other changes to log recovery
made in the first 4.5 merge"
* tag 'xfs-for-linus-4.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: log mount failures don't wait for buffers to be released
Revert "xfs: clear PF_NOFREEZE for xfsaild kthread"
xfs: introduce per-inode DAX enablement
xfs: use FS_XFLAG definitions directly
fs: XFS_IOC_FS[SG]SETXATTR to FS_IOC_FS[SG]ETXATTR promotion
Recently I've been seeing xfs/051 fail on 1k block size filesystems.
Trying to trace the events during the test lead to the problem going
away, indicating that it was a race condition that lead to this
ASSERT failure:
XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 156
.....
[<ffffffff814e1257>] xfs_free_perag+0x87/0xb0
[<ffffffff814e21b9>] xfs_mountfs+0x4d9/0x900
[<ffffffff814e5dff>] xfs_fs_fill_super+0x3bf/0x4d0
[<ffffffff811d8800>] mount_bdev+0x180/0x1b0
[<ffffffff814e3ff5>] xfs_fs_mount+0x15/0x20
[<ffffffff811d90a8>] mount_fs+0x38/0x170
[<ffffffff811f4347>] vfs_kern_mount+0x67/0x120
[<ffffffff811f7018>] do_mount+0x218/0xd60
[<ffffffff811f7e5b>] SyS_mount+0x8b/0xd0
When I finally caught it with tracing enabled, I saw that AG 2 had
an elevated reference count and a buffer was responsible for it. I
tracked down the specific buffer, and found that it was missing the
final reference count release that would put it back on the LRU and
hence be found by xfs_wait_buftarg() calls in the log mount failure
handling.
The last four traces for the buffer before the assert were (trimmed
for relevance)
kworker/0:1-5259 xfs_buf_iodone: hold 2 lock 0 flags ASYNC
kworker/0:1-5259 xfs_buf_ioerror: hold 2 lock 0 error -5
mount-7163 xfs_buf_lock_done: hold 2 lock 0 flags ASYNC
mount-7163 xfs_buf_unlock: hold 2 lock 1 flags ASYNC
This is an async write that is completing, so there's nobody waiting
for it directly. Hence we call xfs_buf_relse() once all the
processing is complete. That does:
static inline void xfs_buf_relse(xfs_buf_t *bp)
{
xfs_buf_unlock(bp);
xfs_buf_rele(bp);
}
Now, it's clear that mount is waiting on the buffer lock, and that
it has been released by xfs_buf_relse() and gained by mount. This is
expected, because at this point the mount process is in
xfs_buf_delwri_submit() waiting for all the IO it submitted to
complete.
The mount process, however, is waiting on the lock for the buffer
because it is in xfs_buf_delwri_submit(). This waits for IO
completion, but it doesn't wait for the buffer reference owned by
the IO to go away. The mount process collects all the completions,
fails the log recovery, and the higher level code then calls
xfs_wait_buftarg() to free all the remaining buffers in the
filesystem.
The issue is that on unlocking the buffer, the scheduler has decided
that the mount process has higher priority than the the kworker
thread that is running the IO completion, and so immediately
switched contexts to the mount process from the semaphore unlock
code, hence preventing the kworker thread from finishing the IO
completion and releasing the IO reference to the buffer.
Hence by the time that xfs_wait_buftarg() is run, the buffer still
has an active reference and so isn't on the LRU list that the
function walks to free the remaining buffers. Hence we miss that
buffer and continue onwards to tear down the mount structures,
at which time we get find a stray reference count on the perag
structure. On a non-debug kernel, this will be ignored and the
structure torn down and freed. Hence when the kworker thread is then
rescheduled and the buffer released and freed, it will access a
freed perag structure.
The problem here is that when the log mount fails, we still need to
quiesce the log to ensure that the IO workqueues have returned to
idle before we run xfs_wait_buftarg(). By synchronising the
workqueues, we ensure that all IO completions are fully processed,
not just to the point where buffers have been unlocked. This ensures
we don't end up in the situation above.
cc: <stable@vger.kernel.org> # 3.18
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This reverts commit 24ba16bb3d as it
prevents machines from suspending. This regression occurs when the
xfsaild is idle on entry to suspend, and so there s no activity to
wake it from it's idle sleep and hence see that it is supposed to
freeze. Hence the freezer times out waiting for it and suspend is
cancelled.
There is no obvious fix for this short of freezing the filesystem
properly, so revert this change for now.
cc: <stable@vger.kernel.org> # 4.4
Signed-off-by: Dave Chinner <david@fromorbit.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This update contains:
o extensive CRC validation during log recovery
o several log recovery bug fixes
o Various DAX support fixes
o AGFL size calculation fix
o various cleanups in preparation for new functionality
o project quota ENOSPC notification via netlink
o tracing and debug improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWlx22AAoJEK3oKUf0dfodtyYP/2vXx/ZFreyLGndUgx6AlKgf
h2AIoHJJPoAdiNApY3hYUglPbBSH2jqQBkw/jpdrkAJ+iR//BlqF+Mh8WxiUbf5q
DKkLBHxAMyAe52ur+GA8uxIW5HznZVkIMxnBWF9wKFcQpaXjQlnXROr6wQ/GZvG2
PNW80dN7khRLdh9/ITFYDINRU/tWy+D9rRrEfmC8PJBxzLkOxqC/hgyrpm/OefoA
ikVtMY5KEcC8VZXwXpta2W7GowEvMaNEomg3zMvnu0hFvm78cxBL6KB42FaVMtyu
V3l3bQe6w2LLst07ZQoH5Zpbb6WFdgwaaQdrRBnFP/mdQRMAU7YJwnqfCvqHUpHp
T2BbQYy8LdWWp5mwNSXXoHWdVng7FwEQV2IrIpUQywEs9wAdbnhBEk41S2fDM11P
TCS3Nn8MXg2jsIcpc6Zfj0S575rmRDdR83YQGJZtSbCWWqyqGdc5RUZ9qrVoYRLP
SV72dLb0bUPrDtE1yvPVc/iXfQOcelYfc6KnkDSMs+4r2wjeXTqvOSMkIaiCx+CX
IeYZr6jnVsgsnLJH4K2GE3OXzAI4WTz5lyqgrk7XyjyN39PC5Czm+/qtdnpbOj+e
dLUXYyCFu4vx5nzy/CjD3XdnrBccqkLHmxz312qQX3aozvpBa4Y3BqWyd9SB1uVD
N//PFaCClwsGH2inIBVC
=eCYp
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There's not a lot in this - the main addition is the CRC validation of
the entire region of the log that the will be recovered, along with
several log recovery fixes. Most of the rest is small bug fixes and
cleanups.
I have three bug fixes still pending, all that address recently fixed
regressions that I will send to next week after they've had some time
in for-next.
Summary:
- extensive CRC validation during log recovery
- several log recovery bug fixes
- Various DAX support fixes
- AGFL size calculation fix
- various cleanups in preparation for new functionality
- project quota ENOSPC notification via netlink
- tracing and debug improvements"
* tag 'xfs-for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (26 commits)
xfs: handle dquot buffer readahead in log recovery correctly
xfs: inode recovery readahead can race with inode buffer creation
xfs: eliminate committed arg from xfs_bmap_finish
xfs: bmapbt checking on debug kernels too expensive
xfs: add tracepoints to readpage calls
xfs: debug mode log record crc error injection
xfs: detect and trim torn writes during log recovery
xfs: fix recursive splice read locking with DAX
xfs: Don't use reserved blocks for data blocks with DAX
XFS: Use a signed return type for suffix_kstrtoint()
libxfs: refactor short btree block verification
libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct
libxfs: use a convenience variable instead of open-coding the fork
xfs: fix log ticket type printing
libxfs: make xfs_alloc_fix_freelist non-static
xfs: make xfs_buf_ioend_async() static
xfs: send warning of project quota to userspace via netlink
xfs: get mp from bma->ip in xfs_bmap code
xfs: print name of verifier if it fails
libxfs: Optimize the loop for xfs_bitmap_empty
...
Pull misc vfs updates from Al Viro:
"All kinds of stuff. That probably should've been 5 or 6 separate
branches, but by the time I'd realized how large and mixed that bag
had become it had been too close to -final to play with rebasing.
Some fs/namei.c cleanups there, memdup_user_nul() introduction and
switching open-coded instances, burying long-dead code, whack-a-mole
of various kinds, several new helpers for ->llseek(), assorted
cleanups and fixes from various people, etc.
One piece probably deserves special mention - Neil's
lookup_one_len_unlocked(). Similar to lookup_one_len(), but gets
called without ->i_mutex and tries to avoid ever taking it. That, of
course, means that it's not useful for any directory modifications,
but things like getting inode attributes in nfds readdirplus are fine
with that. I really should've asked for moratorium on lookup-related
changes this cycle, but since I hadn't done that early enough... I
*am* asking for that for the coming cycle, though - I'm going to try
and get conversion of i_mutex to rwsem with ->lookup() done under lock
taken shared.
There will be a patch closer to the end of the window, along the lines
of the one Linus had posted last May - mechanical conversion of
->i_mutex accesses to inode_lock()/inode_unlock()/inode_trylock()/
inode_is_locked()/inode_lock_nested(). To quote Linus back then:
-----
| This is an automated patch using
|
| sed 's/mutex_lock(&\(.*\)->i_mutex)/inode_lock(\1)/'
| sed 's/mutex_unlock(&\(.*\)->i_mutex)/inode_unlock(\1)/'
| sed 's/mutex_lock_nested(&\(.*\)->i_mutex,[ ]*I_MUTEX_\([A-Z0-9_]*\))/inode_lock_nested(\1, I_MUTEX_\2)/'
| sed 's/mutex_is_locked(&\(.*\)->i_mutex)/inode_is_locked(\1)/'
| sed 's/mutex_trylock(&\(.*\)->i_mutex)/inode_trylock(\1)/'
|
| with a very few manual fixups
-----
I'm going to send that once the ->i_mutex-affecting stuff in -next
gets mostly merged (or when Linus says he's about to stop taking
merges)"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
nfsd: don't hold i_mutex over userspace upcalls
fs:affs:Replace time_t with time64_t
fs/9p: use fscache mutex rather than spinlock
proc: add a reschedule point in proc_readfd_common()
logfs: constify logfs_block_ops structures
fcntl: allow to set O_DIRECT flag on pipe
fs: __generic_file_splice_read retry lookup on AOP_TRUNCATED_PAGE
fs: xattr: Use kvfree()
[s390] page_to_phys() always returns a multiple of PAGE_SIZE
nbd: use ->compat_ioctl()
fs: use block_device name vsprintf helper
lib/vsprintf: add %*pg format specifier
fs: use gendisk->disk_name where possible
poll: plug an unused argument to do_poll
amdkfd: don't open-code memdup_user()
cdrom: don't open-code memdup_user()
rsxx: don't open-code memdup_user()
mtip32xx: don't open-code memdup_user()
[um] mconsole: don't open-code memdup_user_nul()
[um] hostaudio: don't open-code memdup_user()
...
Pull vfs xattr updates from Al Viro:
"Andreas' xattr cleanup series.
It's a followup to his xattr work that went in last cycle; -0.5KLoC"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xattr handlers: Simplify list operation
ocfs2: Replace list xattr handler operations
nfs: Move call to security_inode_listsecurity into nfs_listxattr
xfs: Change how listxattr generates synthetic attributes
tmpfs: listxattr should include POSIX ACL xattrs
tmpfs: Use xattr handler infrastructure
btrfs: Use xattr handler infrastructure
vfs: Distinguish between full xattr names and proper prefixes
posix acls: Remove duplicate xattr name definitions
gfs2: Remove gfs2_xattr_acl_chmod
vfs: Remove vfs_xattr_cmp