statx has the ability to report inode creation times and inode flags, so
hook up di_crtime and di_flags to that functionality.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The inline directory verifiers should be called on the inode fork data,
which means after iformat_local on the read side, and prior to
ifork_flush on the write side. This makes the fork verifier more
consistent with the way buffer verifiers work -- i.e. they will operate
on the memory buffer that the code will be reading and writing directly.
Furthermore, revise the verifier function to return -EFSCORRUPTED so
that we don't flood the logs with corruption messages and assert
notices. This has been a particular problem with xfs/348, which
triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the
kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do
that, at least not in a verifier.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
---
v2: get the inode d_ops the proper way
v3: describe the bug that this patch fixes; no code changes
When we're reading or writing the data fork of an inline directory,
check the contents to make sure we're not overflowing buffers or eating
garbage data. xfs/348 corrupts an inline symlink into an inline
directory, triggering a buffer overflow bug.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
---
v2: add more checks consistent with _dir2_sf_check and make the verifier
usable from anywhere.
When a reflink operation causes the bmap code to allocate a btree block
we're currently doing single-AG allocations due to having ->firstblock
set and then try any higher AG due a little reflink quirk we've put in
when adding the reflink code. But given that we do not have a minleft
reservation of any kind in this AG we can still not have any space in
the same or higher AG even if the file system has enough free space.
To fix this use a XFS_ALLOCTYPE_FIRST_AG allocation in this fall back
path instead.
[And yes, we need to redo this properly instead of piling hacks over
hacks. I'm working on that, but it's not going to be a small series.
In the meantime this fixes the customer reported issue]
Also add a warning for failing allocations to make it easier to debug.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit fa7f138 ("xfs: clear delalloc and cache on buffered write
failure") fixed one regression in the iomap error handling code and
exposed another. The fundamental problem is that if a buffered write
is a rewrite of preexisting delalloc blocks and the write fails, the
failure handling code can punch out preexisting blocks with valid
file data.
This was reproduced directly by sub-block writes in the LTP
kernel/syscalls/write/write03 test. A first 100 byte write allocates
a single block in a file. A subsequent 100 byte write fails and
punches out the block, including the data successfully written by
the previous write.
To address this problem, update the ->iomap_begin() handler to
distinguish newly allocated delalloc blocks from preexisting
delalloc blocks via the IOMAP_F_NEW flag. Use this flag in the
->iomap_end() handler to decide when a failed or short write should
punch out delalloc blocks.
This introduces the subtle requirement that ->iomap_begin() should
never combine newly allocated delalloc blocks with existing blocks
in the resulting iomap descriptor. This can occur when a new
delalloc reservation merges with a neighboring extent that is part
of the current write, for example. Therefore, drop the
post-allocation extent lookup from xfs_bmapi_reserve_delalloc() and
just return the record inserted into the fork. This ensures only new
blocks are returned and thus that preexisting delalloc blocks are
always handled as "found" blocks and not punched out on a failed
rewrite.
Reported-by: Xiong Zhou <xzhou@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The sole remaining caller of kmem_zalloc_greedy is bulkstat, which uses
it to grab 1-4 pages for staging of inobt records. The infinite loop in
the greedy allocation function is causing hangs[1] in generic/269, so
just get rid of the greedy allocator in favor of kmem_zalloc_large.
This makes bulkstat somewhat more likely to ENOMEM if there's really no
pages to spare, but eliminates a source of hangs.
[1] http://lkml.kernel.org/r/20170301044634.rgidgdqqiiwsmfpj%40XZHOUW.usersys.redhat.com
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
---
v2: remove single-page fallback
When block size is larger than inode cluster size, the call to
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size) returns 0. Also, mkfs.xfs
would have set xfs_sb->sb_inoalignmt to 0. Hence in
xfs_set_inoalignment(), xfs_mount->m_inoalign_mask gets initialized to
-1 instead of 0. However, xfs_mount->m_sinoalign would get correctly
intialized to 0 because for every positive value of xfs_mount->m_dalign,
the condition "!(mp->m_dalign & mp->m_inoalign_mask)" would evaluate to
false.
Also, xfs_imap() worked fine even with xfs_mount->m_inoalign_mask having
-1 as the value because blks_per_cluster variable would have the value 1
and hence we would never have a need to use xfs_mount->m_inoalign_mask
to compute the inode chunk's agbno and offset within the chunk.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are two different cases of buffered I/O errors:
- first we can have an already shutdown fs. In that case we should skip
any on-disk operations and just clean up the appen transaction if
present and destroy the ioend
- a real I/O error. In that case we should cleanup any lingering COW
blocks. This gets skipped in the current code and is fixed by this
patch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only want to reclaim preallocations from our periodic work item.
Currently this is archived by looking for a dirty inode, but that check
is rather fragile. Instead add a flag to xfs_reflink_cancel_cow_* so
that the caller can ask for just cancelling unwritten extents in the COW
fork.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix typos in commit message]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Update the .c files that depend on these APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs
branch.
This patch also fixes multiple checkpatch warnings: WARNING: Prefer
'unsigned int' to bare use of 'unsigned'
Thanks to Andrew Morton for suggesting more appropriate function instead
of macro.
[geliangtang@gmail.com: truncate: use i_blocksize()]
Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com
Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJYp85wAAoJEPh/dxk0SrTr5HgP/jcx/oI+ap/NaXMi1Q8K65mh
C3gf27cgUxtdGnEO5KRUE1Jyscuu4ZpzugDdLQISwR55kesT5FU0xpgbsfiICc86
dxLAhg8auwpTfHV+96Do2hfpO3IhYoBC2w5jo32+C+SaQUqTdPixncZukX89tjyP
HOFLrQnpc336hCO2rv1Q9hSkD6IUCkSAtk+Dh1xMvbsmKFLGdmkTdqUQfl1U4YnV
2S98k9QSRdiVyzj3lAGOy+IU9aTcPX/PptMEYaQZEaod5WWNjy91lQZNM6zRc4QW
8P199yiH6CQa2vESO2SV72cJ40WihM1KQXqnrlJjAMGQ7mMGTGJcTwxhuZYUbDYZ
cuk6bAUaijt/PzfmydJKlcH8vFerX4aU4CGkxPU0nph0iTR5kxYlIAMmFw2cdRzf
Iar3SBb8Pc9jiNnEZMFsQ0Fd9hNk9rNoUSpKqm4FtSRocU6JjmpAdPqNYdTVKc2l
2EY7JMo0xCaTVC1WT6sE2NsxsFvm0R7H6HHG2vMFIMNkhI24GRijIXH6dQlaGCQJ
5oTHrSM7503qPlEQNsxF7zI02LpJT+duf+2ODw/FSjA1z/TWwOUYYUrPUOyQNdzP
NrRnMa6LWsEehkuvz2FFko8PKXD55lTuUP1KdjigjqKp8Jzkc/PP+uvuwF5vUFfd
pWRvE5m/NePWBZetbL3Q
=Ga1F
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.11. We aren't introducing any major
features in this release cycle except for this being the first merge
window I've managed on my own. :)
Changes since last update:
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes"
* tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (39 commits)
xfs: remove XFS_ALLOCTYPE_ANY_AG and XFS_ALLOCTYPE_START_AG
xfs: simplify xfs_rtallocate_extent
xfs: tune down agno asserts in the bmap code
xfs: Use xfs_icluster_size_fsb() to calculate inode chunk alignment
xfs: don't reserve blocks for right shift transactions
xfs: fix len comparison in xfs_extent_busy_trim
xfs: fix uninitialized variable in _reflink_convert_cow
xfs: split indlen reservations fairly when under reserved
xfs: handle indlen shortage on delalloc extent merge
xfs: resurrect debug mode drop buffered writes mechanism
xfs: clear delalloc and cache on buffered write failure
xfs: don't block the log commit handler for discards
xfs: improve busy extent sorting
xfs: improve handling of busy extents in the low-level allocator
xfs: don't fail xfs_extent_busy allocation
xfs: correct null checks and error processing in xfs_initialize_perag
xfs: update ctime and mtime on clone destinatation inodes
xfs: allocate direct I/O COW blocks in iomap_begin
xfs: go straight to real allocations for direct I/O COW writes
xfs: return the converted extent in __xfs_reflink_convert_cow
...
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
XFS_ALLOCTYPE_ANY_AG was only used for the RT allocator and is unused
now, and XFS_ALLOCTYPE_START_AG has been unused for a while.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can deduce the allocation type from the bno argument, and do the
return without prod much simpler internally.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix the macro for the non-rt build]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In various places we currently assert that xfs_bmap_btalloc allocates
from the same as the firstblock value passed in, unless it's either
NULLAGNO or the dop_low flag is set. But the reflink code does not
fully follow this convention as it passes in firstblock purely as
a hint for the allocator without actually having previous allocations
in the transaction, and without having a minleft check on the current
AG, leading to the assert firing on a very full and heavily used
file system. As even the reflink code only allocates from equal or
higher AGs for now we can simply the check to always allow for equal
or higher AGs.
Note that we need to eventually split the two meanings of the firstblock
value. At that point we can also allow the reflink code to allocate
from any AG instead of limiting it in any way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On a ppc64 system, executing generic/256 test with 32k block size gives the following call trace,
XFS: Assertion failed: args->maxlen > 0, file: /root/repos/linux/fs/xfs/libxfs/xfs_alloc.c, line: 2026
kernel BUG at /root/repos/linux/fs/xfs/xfs_message.c:113!
Oops: Exception in kernel mode, sig: 5 [#1]
SMP NR_CPUS=2048
DEBUG_PAGEALLOC
NUMA
pSeries
Modules linked in:
CPU: 2 PID: 19361 Comm: mkdir Not tainted 4.10.0-rc5 #58
task: c000000102606d80 task.stack: c0000001026b8000
NIP: c0000000004ef798 LR: c0000000004ef798 CTR: c00000000082b290
REGS: c0000001026bb090 TRAP: 0700 Not tainted (4.10.0-rc5)
MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI>
CR: 28004428 XER: 00000000
CFAR: c0000000004ef180 SOFTE: 1
GPR00: c0000000004ef798 c0000001026bb310 c000000001157300 ffffffffffffffea
GPR04: 000000000000000a c0000001026bb130 0000000000000000 ffffffffffffffc0
GPR08: 00000000000000d1 0000000000000021 00000000ffffffd1 c000000000dd4990
GPR12: 0000000022004444 c00000000fe00800 0000000020000000 0000000000000000
GPR16: 0000000000000000 0000000043a606fc 0000000043a76c08 0000000043a1b3d0
GPR20: 000001002a35cd60 c0000001026bbb80 0000000000000000 0000000000000001
GPR24: 0000000000000240 0000000000000004 c00000062dc55000 0000000000000000
GPR28: 0000000000000004 c00000062ecd9200 0000000000000000 c0000001026bb6c0
NIP [c0000000004ef798] .assfail+0x28/0x30
LR [c0000000004ef798] .assfail+0x28/0x30
Call Trace:
[c0000001026bb310] [c0000000004ef798] .assfail+0x28/0x30 (unreliable)
[c0000001026bb380] [c000000000455d74] .xfs_alloc_space_available+0x194/0x1b0
[c0000001026bb410] [c00000000045b914] .xfs_alloc_fix_freelist+0x144/0x480
[c0000001026bb580] [c00000000045c368] .xfs_alloc_vextent+0x698/0xa90
[c0000001026bb650] [c0000000004a6200] .xfs_ialloc_ag_alloc+0x170/0x820
[c0000001026bb7c0] [c0000000004a9098] .xfs_dialloc+0x158/0x320
[c0000001026bb8a0] [c0000000004e628c] .xfs_ialloc+0x7c/0x610
[c0000001026bb990] [c0000000004e8138] .xfs_dir_ialloc+0xa8/0x2f0
[c0000001026bbaa0] [c0000000004e8814] .xfs_create+0x494/0x790
[c0000001026bbbf0] [c0000000004e5ebc] .xfs_generic_create+0x2bc/0x410
[c0000001026bbce0] [c0000000002b4a34] .vfs_mkdir+0x154/0x230
[c0000001026bbd70] [c0000000002bc444] .SyS_mkdirat+0x94/0x120
[c0000001026bbe30] [c00000000000b760] system_call+0x38/0xfc
Instruction dump:
4e800020 60000000 7c0802a6 7c862378 3c82ffca 7ca72b78 38841c18 7c651b78
38600000 f8010010 f821ff91 4bfff94d <0fe00000> 60000000 7c0802a6 7c892378
When block size is larger than inode cluster size, the call to
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size) returns 0. Also, mkfs.xfs
would have set xfs_sb->sb_inoalignmt to 0. This causes
xfs_ialloc_cluster_alignment() to return 0. Due to this
args.minalignslop (in xfs_ialloc_ag_alloc()) gets the unsigned
equivalent of -1 assigned to it. This later causes alloc_len in
xfs_alloc_space_available() to have a value of 0. In such a scenario
when args.total is also 0, the assert statement "ASSERT(args->maxlen >
0);" fails.
This commit fixes the bug by replacing the call to XFS_B_TO_FSBT() in
xfs_ialloc_cluster_alignment() with a call to xfs_icluster_size_fsb().
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The block reservation for the transaction allocated in
xfs_shift_file_space() is an artifact of the original collapse range
support. It exists to handle the case where a collapse range occurs,
the initial extent is left shifted into a location that forms a
contiguous boundary with the previous extent and thus the extents
are merged. This code was subsequently refactored and reused for
insert range (right shift) support.
If an insert range occurs under low free space conditions, the
extent at the starting offset is split before the first shift
transaction is allocated. If the block reservation fails, this
leaves separate, but contiguous extents around in the inode. While
not a fatal problem, this is unexpected and will flag a warning on
subsequent insert range operations on the inode. This problem has
been reproduce intermittently by generic/270 running against a
ramdisk device.
Since right shift does not create new extent boundaries in the
inode, a block reservation for extent merge is unnecessary. Update
xfs_shift_file_space() to conditionally reserve fs blocks for left
shift transactions only. This avoids the warning reproduced by
generic/270.
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The length is now passed by reference, so the assertion has to be updated
to match the other changes, as pointed out by this W=1 warning:
fs/xfs/xfs_extent_busy.c: In function 'xfs_extent_busy_trim':
fs/xfs/xfs_extent_busy.c:356:13: error: ordered comparison of pointer with integer zero [-Werror=extra]
Fixes: ebf5587261 ("xfs: improve handling of busy extents in the low-level allocator")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix an uninitialize variable.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Certain workoads that punch holes into speculative preallocation can
cause delalloc indirect reservation splits when the delalloc extent is
split in two. If further splits occur, an already short-handed extent
can be split into two in a manner that leaves zero indirect blocks for
one of the two new extents. This occurs because the shortage is large
enough that the xfs_bmap_split_indlen() algorithm completely drains the
requested indlen of one of the extents before it honors the existing
reservation.
This ultimately results in a warning from xfs_bmap_del_extent(). This
has been observed during file copies of large, sparse files using 'cp
--sparse=always.'
To avoid this problem, update xfs_bmap_split_indlen() to explicitly
apply the reservation shortage fairly between both extents. This smooths
out the overall indlen shortage and defers the situation where we end up
with a delalloc extent with zero indlen reservation to extreme
circumstances.
Reported-by: Patrick Dung <mpatdung@gmail.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a delalloc extent is created, it can be merged with pre-existing,
contiguous, delalloc extents. When this occurs,
xfs_bmap_add_extent_hole_delay() merges the extents along with the
associated indirect block reservations. The expectation here is that the
combined worst case indlen reservation is always less than or equal to
the indlen reservation for the individual extents.
This is not always the case, however, as existing extents can less than
the expected indlen reservation if the extent was previously split due
to a hole punch. If a new extent merges with such an extent, the total
indlen requirement may be larger than the sum of the indlen reservations
held by both extents.
xfs_bmap_add_extent_hole_delay() assumes that the worst case indlen
reservation is always available and assigns it to the merged extent
without consideration for the indlen held by the pre-existing extent. As
a result, the subsequent xfs_mod_fdblocks() call can attempt an
unintentional allocation rather than a free (indicated by an ASSERT()
failure). Further, if the allocation happens to fail in this context,
the failure goes unhandled and creates a filesystem wide block
accounting inconsistency.
Fix xfs_bmap_add_extent_hole_delay() to function as designed. Cap the
indlen reservation assigned to the merged extent to the sum of the
indlen reservations held by each of the individual extents.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A debug mode write failure mechanism was introduced to XFS in commit
801cc4e17a ("xfs: debug mode forced buffered write failure") to
facilitate targeted testing of delalloc indirect reservation management
from userspace. This code was subsequently rendered ineffective by the
move to iomap based buffered writes in commit 68a9f5e700 ("xfs:
implement iomap based buffered write path"). This likely went unnoticed
because the associated userspace code had not made it into xfstests.
Resurrect this mechanism to facilitate effective indlen reservation
testing from xfstests. The move to iomap based buffered writes relocated
the hook this mechanism needs to return write failure from XFS to
generic code. The failure trigger must remain in XFS. Given that
limitation, convert this from a write failure mechanism to one that
simply drops writes without returning failure to userspace. Rename all
"fail_writes" references to "drop_writes" to illustrate the point. This
is more hacky than preferred, but still triggers the XFS error handling
behavior required to drive the indlen tests. This is only available in
DEBUG mode and for testing purposes only.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The buffered write failure handling code in
xfs_file_iomap_end_delalloc() has a couple minor problems. First, if
written == 0, start_fsb is not rounded down and it fails to kill off a
delalloc block if the start offset is block unaligned. This results in a
lingering delalloc block and broken delalloc block accounting detected
at unmount time. Fix this by rounding down start_fsb in the unlikely
event that written == 0.
Second, it is possible for a failed overwrite of a delalloc extent to
leave dirty pagecache around over a hole in the file. This is because is
possible to hit ->iomap_end() on write failure before the iomap code has
attempted to allocate pagecache, and thus has no need to clean it up. If
the targeted delalloc extent was successfully written by a previous
write, however, then it does still have dirty pages when ->iomap_end()
punches out the underlying blocks. This ultimately results in writeback
over a hole. To fix this problem, unconditionally punch out the
pagecache from XFS before the associated delalloc range.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead we submit the discard requests and use another workqueue to
release the extents from the extent busy list.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Sort busy extents by the full block number instead of just the AGNO so
that we can issue consecutive discard requests that the block layer could
merge (although we'll need additional block layer fixes for fast devices).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we force the log and simply try again if we hit a busy extent,
but especially with online discard enabled it might take a while after
the log force for the busy extents to disappear, and we might have
already completed our second pass.
So instead we add a new waitqueue and a generation counter to the pag
structure so that we can do wakeups once we've removed busy extents,
and we replace the single retry with an unconditional one - after
all we hold the AGF buffer lock, so no other allocations or frees
can be racing with us in this AG.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We don't just need the structure to track busy extents which can be
avoided with a synchronous transaction, but also to keep track of
pending discard.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If pag cannot be allocated, the current error exit path will trip
a null pointer deference error when calling xfs_buf_hash_destroy
with a null pag. Fix this by adding a new error exit labels and
jumping to those accordingly, avoiding the hash destroy and
unnecessary kmem_free on pag.
Up to three things need to be properly unwound:
1) pag memory allocation
2) xfs_buf_hash_init
3) radix_tree_insert
For any given iteration through the loop, any of the above which
succeed must be unwound for /this/ pag, and then all prior
initialized pags must be unwound.
Addresses-Coverity-Id: 1397628 ("Dereference after null check")
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We're changing both metadata and data, so we need to update the
timestamps for clone operations. Dedupe on the other hand does
not change file data, and only changes invisible metadata so the
timestamps should not be updated.
This follows existing btrfs behavior.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: remove redundant is_dedupe test]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of preallocating all the required COW blocks in the high-level
write code do it inside the iomap code, like we do for all other I/O.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we allocate COW fork blocks for direct I/O writes we currently first
create a delayed allocation, and then convert it to a real allocation
once we've got the delayed one.
As there is no good reason for that this patch instead makes use call
xfs_bmapi_write from the COW allocation path. The only interesting bits
are a few tweaks the low-level allocator to allow for this, most notably
the need to remove the call to xfs_bmap_extsize_align for the cowextsize
in xfs_bmap_btalloc - for the existing convert case it's a no-op, but
for the direct allocation case it would blow up our block reservation
way beyond what we reserved for the transaction.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We'll need it for the direct I/O code. Also rename the function to
xfs_reflink_convert_cow_extent to describe it a bit better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Factor a helper to calculate the extent-size aligned block out of the
iomap code, so that it can be reused by the upcoming reflink dio code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We currently fall back from direct to buffered writes if we detect a
remaining shared extent in the iomap_begin callback. But by the time
iomap_begin is called for the potentially unaligned end block we might
have already written most of the data to disk, which we'd now write
again using buffered I/O. To avoid this reject all writes to reflinked
files before starting I/O so that we are guaranteed to only write the
data once.
The alternative would be to unshare the unaligned start and/or end block
before doing the I/O. I think that's doable, and will actually be
required to support reflinks on DAX file system. But it will take a
little more time and I'd rather get rid of the double write ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After successful IO or permanent error, b_first_retry_time also
needs to be cleared, else the invalid first retry time will be
used by the next retry check.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Christoph Hellwig pointed out that there's a potentially nasty race when
performing simultaneous nearby directio cow writes:
"Thread 1 writes a range from B to c
" B --------- C
p
"a little later thread 2 writes from A to B
" A --------- B
p
[editor's note: the 'p' denote cowextsize boundaries, which I added to
make this more clear]
"but the code preallocates beyond B into the range where thread
"1 has just written, but ->end_io hasn't been called yet.
"But once ->end_io is called thread 2 has already allocated
"up to the extent size hint into the write range of thread 1,
"so the end_io handler will splice the unintialized blocks from
"that preallocation back into the file right after B."
We can avoid this race by ensuring that thread 1 cannot accidentally
remap the blocks that thread 2 allocated (as part of speculative
preallocation) as part of t2's write preparation in t1's end_io handler.
The way we make this happen is by taking advantage of the unwritten
extent flag as an intermediate step.
Recall that when we begin the process of writing data to shared blocks,
we create a delayed allocation extent in the CoW fork:
D: --RRRRRRSSSRRRRRRRR---
C: ------DDDDDDD---------
When a thread prepares to CoW some dirty data out to disk, it will now
convert the delalloc reservation into an /unwritten/ allocated extent in
the cow fork. The da conversion code tries to opportunistically
allocate as much of a (speculatively prealloc'd) extent as possible, so
we may end up allocating a larger extent than we're actually writing
out:
D: --RRRRRRSSSRRRRRRRR---
U: ------UUUUUUU---------
Next, we convert only the part of the extent that we're actively
planning to write to normal (i.e. not unwritten) status:
D: --RRRRRRSSSRRRRRRRR---
U: ------UURRUUU---------
If the write succeeds, the end_cow function will now scan the relevant
range of the CoW fork for real extents and remap only the real extents
into the data fork:
D: --RRRRRRRRSRRRRRRRR---
U: ------UU--UUU---------
This ensures that we never obliterate valid data fork extents with
unwritten blocks from the CoW fork.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In the data fork, we only allow extents to perform the following state
transitions:
delay -> real <-> unwritten
There's no way to move directly from a delalloc reservation to an
/unwritten/ allocated extent. However, for the CoW fork we want to be
able to do the following to each extent:
delalloc -> unwritten -> written -> remapped to data fork
This will help us to avoid a race in the speculative CoW preallocation
code between a first thread that is allocating a CoW extent and a second
thread that is remapping part of a file after a write. In order to do
this, however, we need two things: first, we have to be able to
transition from da to unwritten, and second the function that converts
between real and unwritten has to be made aware of the cow fork. Do
both of those things.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Perform basic sanity checking of the directory free block header
fields so that we avoid hanging the system on invalid data.
(Granted that just means that now we shutdown on directory write,
but that seems better than hanging...)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We can't handle a bmbt that's taller than BTREE_MAXLEVELS, and there's
no such thing as a zero-level bmbt (for that we have extents format),
so if we see this, send back an error code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't let anybody load an obviously bad btree pointer. Since the values
come from disk, we must return an error, not just ASSERT.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
When we open a directory, we try to readahead block 0 of the directory
on the assumption that we're going to need it soon. If the bmbt is
corrupt, the directory will never be usable and the readahead fails
immediately, so we might as well prevent the directory from being opened
at all. This prevents a subsequent read or modify operation from
hitting it and taking the fs offline.
NOTE: We're only checking for early failures in the block mapping, not
the readahead directory block itself.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We use di_format and if_flags to decide whether we're grabbing the ilock
in btree mode (btree extents not loaded) or shared mode (anything else),
but the state of those fields can be changed by other threads that are
also trying to load the btree extents -- IFEXTENTS gets set before the
_bmap_read_extents call and cleared if it fails.
We don't actually need to have IFEXTENTS set until after the bmbt
records are successfully loaded and validated, which will fix the race
between multiple threads trying to read the same directory. The next
patch strengthens directory bmbt validation by refusing to open the
directory if reading the bmbt to start directory readahead fails.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
blk_get_backing_dev_info() is now a simple dereference. Remove that
function and simplify some code around that.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
The "full" argument was used only by the fiemap formatter,
which is now gone with the iomap updates.
Remove the unused arg.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Alex Elder <elder@linaro.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It's possible for post-eof blocks to end up being used for direct I/O
writes. dio write performs an upfront unwritten extent allocation, sends
the dio and then updates the inode size (if necessary) on write
completion. If a file release occurs while a file extending dio write is
in flight, it is possible to mistake the post-eof blocks for speculative
preallocation and incorrectly truncate them from the inode. This means
that the resulting dio write completion can discover a hole and allocate
new blocks rather than perform unwritten extent conversion.
This requires a strange mix of I/O and is thus not likely to reproduce
in real world workloads. It is intermittently reproduced by generic/299.
The error manifests as an assert failure due to transaction overrun
because the aforementioned write completion transaction has only
reserved enough blocks for btree operations:
XFS: Assertion failed: tp->t_blk_res_used <= tp->t_blk_res, \
file: fs/xfs//xfs_trans.c, line: 309
The root cause is that xfs_free_eofblocks() uses i_size to truncate
post-eof blocks from the inode, but async, file extending direct writes
do not update i_size until write completion, long after inode locks are
dropped. Therefore, xfs_free_eofblocks() effectively truncates the inode
to the incorrect size.
Update xfs_free_eofblocks() to serialize against dio similar to how
extending writes are serialized against i_size updates before post-eof
block zeroing. Specifically, wait on dio while under the iolock. This
ensures that dio write completions have updated i_size before post-eof
blocks are processed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_eofblocks.eof_scan_owner field is an internal field to
facilitate invoking eofb scans from the kernel while under the iolock.
This is necessary because the eofb scan acquires the iolock of each
inode. Synchronous scans are invoked on certain buffered write failures
while under iolock. In such cases, the scan owner indicates that the
context for the scan already owns the particular iolock and prevents a
double lock deadlock.
eofblocks scans while under iolock are still livelock prone in the event
of multiple parallel scans, however. If multiple buffered writes to
different inodes fail and invoke eofblocks scans at the same time, each
scan avoids a deadlock with its own inode by virtue of the
eof_scan_owner field, but will never be able to acquire the iolock of
the inode from the parallel scan. Because the low free space scans are
invoked with SYNC_WAIT, the scan will not return until it has processed
every tagged inode and thus both scans will spin indefinitely on the
iolock being held across the opposite scan. This problem can be
reproduced reliably by generic/224 on systems with higher cpu counts
(x16).
To avoid this problem, simplify the semantics of eofblocks scans to
never invoke a scan while under iolock. This means that the buffered
write context must drop the iolock before the scan. It must reacquire
the lock before the write retry and also repeat the initial write
checks, as the original state might no longer be valid once the iolock
was dropped.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_free_eofblocks() requires the IOLOCK_EXCL lock, but is called from
different contexts where the lock may or may not be held. The
need_iolock parameter exists for this reason, to indicate whether
xfs_free_eofblocks() must acquire the iolock itself before it can
proceed.
This is ugly and confusing. Simplify the semantics of
xfs_free_eofblocks() to require the caller to acquire the iolock
appropriately and kill the need_iolock parameter. While here, the mp
param can be removed as well as the xfs_mount is accessible from the
xfs_inode structure. This patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After scratching my head looking for "xfs_busy_extent" I realized
it's not used; it's xfs_extent_busy, and the declaration for the
other name is bogus. Remove that and a few others as well.
(struct xfs_log_callback is used, but the 2nd declaration is
unnecessary).
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that xfs_btree_init_block_int is able to determine crc
status from the passed-in mp, we can determine the proper
magic as well if we are given a btree number, rather than
an explicit magic value.
Change xfs_btree_init_block[_int] callers to pass in the
btree number, and let xfs_btree_init_block_int use the
xfs_magics array via the xfs_btree_magic macro to determine
which magic value is needed. This makes all of the
if (crc) / else stanzas identical, and the if/else can be
removed, leading to a single, common init_block call.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Right now the xfs_btree_magic() define takes only a cursor;
change this to take crc and btnum args to make it more generically
useful, and move to a function.
This will allow xfs_btree_init_block_int callers which don't
have a cursor to make use of the xfs_magics array, which will
happen in the next patch.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_btree_init_block_int() can determine whether crcs are
in effect without the passed-in XFS_BTREE_CRC_BLOCKS flag;
the mp argument allows us to determine this from the
superblock. Remove the flag from callers, and use
xfs_sb_version_hascrc(&mp->m_sb) internally instead.
This removes one difference between the if & else cases
in the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Quotacheck runs at mount time in situations where quota accounting must
be recalculated. In doing so, it uses bulkstat to visit every inode in
the filesystem. Historically, every inode processed during quotacheck
was released and immediately tagged for reclaim because quotacheck runs
before the superblock is marked active by the VFS. In other words,
the final iput() lead to an immediate ->destroy_inode() call, which
allowed the XFS background reclaim worker to start reclaiming inodes.
Commit 17c12bcd3 ("xfs: when replaying bmap operations, don't let
unlinked inodes get reaped") marks the XFS superblock active sooner as
part of the mount process to support caching inodes processed during log
recovery. This occurs before quotacheck and thus means all inodes
processed by quotacheck are inserted to the LRU on release. The
s_umount lock is held until the mount has completed and thus prevents
the shrinkers from operating on the sb. This means that quotacheck can
excessively populate the inode LRU and lead to OOM conditions on systems
without sufficient RAM.
Update the quotacheck bulkstat handler to set XFS_IGET_DONTCACHE on
inodes processed by quotacheck. This causes ->drop_inode() to return 1
and in turn causes iput_final() to evict the inode. This preserves the
original quotacheck behavior and prevents it from overloading the LRU
and running out of memory.
CC: stable@vger.kernel.org # v4.9
Reported-by: Martin Svec <martin.svec@zoner.cz>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In a bmapx call, bmv_count is the total size of the array, including the
zeroth element that userspace uses to supply the search key. The output
array starts at offset 1 so that we can set up the user for the next
invocation. Since we now can split an extent into multiple bmap records
due to shared/unshared status, we have to be careful that we don't
overflow the output array.
In the original patch f86f403794 ("xfs: teach get_bmapx about shared
extents and the CoW fork") I used cur_ext (the output index) to check
for overflows, albeit with an off-by-one error. Since nexleft no longer
describes the number of unfilled slots in the output, we can rip all
that out and use cur_ext for the overflow check directly.
Failure to do this causes heap corruption in bmapx callers such as
xfs_io and xfs_scrub. xfs/328 can reproduce this problem.
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If we try to allocate memory pages to back an xfs_buf that we're trying
to read, it's possible that we'll be so short on memory that the page
allocation fails. For a blocking read we'll just wait, but for
readahead we simply dump all the pages we've collected so far.
Unfortunately, after dumping the pages we neglect to clear the
_XBF_PAGES state, which means that the subsequent call to xfs_buf_free
thinks that b_pages still points to pages we own. It then double-frees
the b_pages pages.
This results in screaming about negative page refcounts from the memory
manager, which xfs oughtn't be triggering. To reproduce this case,
mount a filesystem where the size of the inodes far outweighs the
availalble memory (a ~500M inode filesystem on a VM with 300MB memory
did the trick here) and run bulkstat in parallel with other memory
eating processes to put a huge load on the system. The "check summary"
phase of xfs_scrub also works for this purpose.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
With COW files they are the hotpath, just like for files with the
extent size hint attribute. We really shouldn't micro-manage anything
but failure cases with unlikely.
Additionally Arnd Bergmann recently reported that one of these two
unlikely annotations causes link failures together with an upcoming
kernel instrumentation patch, so let's get rid of it ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_attr_[get|remove]() have unlocked attribute fork checks to optimize
away a lock cycle in cases where the fork does not exist or is otherwise
empty. This check is not safe, however, because an attribute fork short
form to extent format conversion includes a transient state that causes
the xfs_inode_hasattr() check to fail. Specifically,
xfs_attr_shortform_to_leaf() creates an empty extent format attribute
fork and then adds the existing shortform attributes to it.
This means that lookup of an existing xattr can spuriously return
-ENOATTR when racing against a setxattr that causes the associated
format conversion. This was originally reproduced by an untar on a
particularly configured glusterfs volume, but can also be reproduced on
demand with properly crafted xattr requests.
The format conversion occurs under the exclusive ilock. xfs_attr_get()
and xfs_attr_remove() already have the proper locking and checks further
down in the functions to handle this situation correctly. Drop the
unlocked checks to avoid the spurious failure and rely on the existing
logic.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we try to rely on the global reserved block pool for block
allocations for the free inode btree, but I have customer reports
(fairly complex workload, need to find an easier reproducer) where that
is not enough as the AG where we free an inode that requires a new
finobt block is entirely full. This causes us to cancel a dirty
transaction and thus a file system shutdown.
I think the right way to guard against this is to treat the finot the same
way as the refcount btree and have a per-AG reservations for the possible
worst case size of it, and the patch below implements that.
Note that this could increase mount times with large finobt trees. In
an ideal world we would have added a field for the number of finobt
fields to the AGI, similar to what we did for the refcount blocks.
We should do add it next time we rev the AGI or AGF format by adding
new fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Try to reserve the blocks first and only then update the fields in
or hanging off the mount structure. This way we can call __xfs_ag_resv_init
again after a previous failure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
sb_dirblklog is added to sb_blocklog to compute the directory block size
in bytes. Therefore, we must compare the sum of both those values
against XFS_MAX_BLOCKSIZE_LOG, not just dirblklog.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way how xfs_iomap_write_allocate tries to convert the whole
found extents from delalloc to real space we can run into a race
condition with multiple threads doing writes to this same extent.
For the non-COW case that is harmless as the only thing that can happen
is that we call xfs_bmapi_write on an extent that has already been
converted to a real allocation. For COW writes where we move the extent
from the COW to the data fork after I/O completion the race is, however,
not quite as harmless. In the worst case we are now calling
xfs_bmapi_write on a region that contains hole in the COW work, which
will trip up an assert in debug builds or lead to file system corruption
in non-debug builds. This seems to be reproducible with workloads of
small O_DSYNC write, although so far I've not managed to come up with
a with an isolated reproducer.
The fix for the issue is relatively simple: tell xfs_bmapi_write
that we are only asked to convert delayed allocations and skip holes
in that case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A harmless warning just got introduced:
fs/xfs/libxfs/xfs_dir2.h:40:8: error: type qualifiers ignored on function return type [-Werror=ignored-qualifiers]
Removing the 'const' modifier avoids the warning and has no
other effect.
Fixes: 1fc4d33fed ("xfs: replace xfs_mode_to_ftype table with switch statement")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The GETNEXTQOTA ioctl takes whatever ID is sent in,
and looks for the next active quota for an user
equal or higher to that ID.
But if we are at the maximum ID and then ask for the "next"
one, we may wrap back to zero. In this case, userspace
may loop forever, because it will start querying again
at zero.
We'll fix this in userspace as well, but for the kernel,
return -ENOENT if we ask for the next quota ID
past UINT_MAX so the caller knows to stop.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Check for invalid file type in xfs_dinode_verify()
and fail to load the inode structure from disk.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The helper xfs_dentry_to_name() is used by 2 different
classes of callers: Callers that pass zero mode and don't care
about the returned name.type field and Callers that pass
non zero mode and do care about the name.type field.
Change xfs_dentry_to_name() to not take the mode argument and
change the call sites of the first class to not pass the mode
argument.
Create a new helper xfs_dentry_mode_to_name() which does pass
the mode argument and returns -EFSCORRUPTED if mode is invalid.
Callers that translate non zero mode to on-disk file type now
check the return value and will export the error to user instead
of staging an invalid file type to be written to directory entry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The size of the xfs_mode_to_ftype[] conversion table
was too small to handle an invalid value of mode=S_IFMT.
Instead of fixing the table size, replace the conversion table
with a conversion helper that uses a switch statement.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_dir2.h dereferences some data types in inline functions
and fails to include those type definitions, e.g.:
xfs_dir2_data_aoff_t, struct xfs_da_geometry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This changes fixes an assertion hit when fuzzing on-disk
i_mode values.
The easy case to fix is when changing an empty file
i_mode to S_IFDIR. In this case, xfs_dinode_verify()
detects an illegal zero size for directory and fails
to load the inode structure from disk.
For the case of non empty file whose i_mode is changed
to S_IFDIR, the ASSERT() statement in xfs_dir2_isblock()
is replaced with return -EFSCORRUPTED, to avoid interacting
with corrupted jusk also when XFS_DEBUG is disabled.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ASSERT() condition is the normal case, not the exception,
so testing the condition should be likely(), not unlikely().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit 99579ccec4 "xfs: skip dirty pages in ->releasepage()" started
to skip dirty pages in xfs_vm_releasepage() which also has the effect
that if a dirty page is truncated, it does not get freed by
block_invalidatepage() and is lingering in LRU list waiting for reclaim.
So a simple loop like:
while true; do
dd if=/dev/zero of=file bs=1M count=100
rm file
done
will keep using more and more memory until we hit low watermarks and
start pagecache reclaim which will eventually reclaim also the truncate
pages. Keeping these truncated (and thus never usable) pages in memory
is just a waste of memory, is unnecessarily stressing page cache
reclaim, and reportedly also leads to anonymous mmap(2) returning ENOMEM
prematurely.
So instead of just skipping dirty pages in xfs_vm_releasepage(), return
to old behavior of skipping them only if they have delalloc or unwritten
buffers and fix the spurious warnings by warning only if the page is
clean.
CC: stable@vger.kernel.org
CC: Brian Foster <bfoster@redhat.com>
CC: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Petr Tůma <petr.tuma@d3s.mff.cuni.cz>
Fixes: 99579ccec4
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are only two reasons for xfs_log_force / xfs_log_force_lsn to fail:
one is an I/O error, for which xlog_bdstrat already logs a warning, and
the second is an already shutdown log due to a previous I/O errors. In
the latter case we'll already have a previous indication for the actual
error, but the large stream of misleading warnings from xfs_log_force
will probably scroll it out of the message buffer.
Simply removing the warnings thus makes the XFS log reporting significantly
better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
->total is a bit of an odd parameter passed down to the low-level
allocator all the way from the high-level callers. It's supposed to
contain the maximum number of blocks to be allocated for the whole
transaction [1].
But in xfs_iomap_write_allocate we only convert existing delayed
allocations and thus only have a minimal block reservation for the
current transaction, so xfs_alloc_space_available can't use it for
the allocation decisions. Use the maximum of args->total and the
calculated block requirement to make a decision. We probably should
get rid of args->total eventually and instead apply ->minleft more
broadly, but that will require some extensive changes all over.
[1] which creates lots of confusion as most callers don't decrement it
once doing a first allocation. But that's for a separate series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We must decide in xfs_alloc_fix_freelist if we can perform an
allocation from a given AG is possible or not based on the available
space, and should not fail the allocation past that point on a
healthy file system.
But currently we have two additional places that second-guess
xfs_alloc_fix_freelist: xfs_alloc_ag_vextent tries to adjust the
maxlen parameter to remove the reservation before doing the
allocation (but ignores the various minium freespace requirements),
and xfs_alloc_fix_minleft tries to fix up the allocated length
after we've found an extent, but ignores the reservations and also
doesn't take the AGFL into account (and thus fails allocations
for not matching minlen in some cases).
Remove all these later fixups and just correct the maxlen argument
inside xfs_alloc_fix_freelist once we have the AGF buffer locked.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can't just set minleft to 0 when we're low on space - that's exactly
what we need minleft for: to protect space in the AG for btree block
allocations when we are low on free space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Setting aside 4 blocks globally for bmbt splits isn't all that useful,
as different threads can allocate space in parallel. Bump it to 4
blocks per AG to allow each thread that is currently doing an
allocation to dip into it separately. Without that we may no have
enough reserved blocks if there are enough parallel transactions
in an almost out space file system that all run into bmap btree
splits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
max_retries _show and _store functions should test against cfg->max_retries,
not cfg->retry_timeout
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is a race window between write_cache_pages calling
clear_page_dirty_for_io and XFS calling set_page_writeback, in which
the mapping for an inode is tagged neither as dirty, nor as writeback.
If the COW shrinker hits in exactly that window we'll remove the delayed
COW extents and writepages trying to write it back, which in release
kernels will manifest as corruption of the bmap btree, and in debug
kernels will trip the ASSERT about now calling xfs_bmapi_write with the
COWFORK flag for holes. A complex customer load manages to hit this
window fairly reliably, probably by always having COW writeback in flight
while the cow shrinker runs.
This patch adds another check for having the I_DIRTY_PAGES flag set,
which is still set during this race window. While this fixes the problem
I'm still not overly happy about the way the COW shrinker works as it
still seems a bit fragile.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to use the actual AG length when making per-AG reservations,
since we could otherwise end up reserving more blocks out of the last
AG than there are actual blocks.
Complained-about-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Dan Carpenter reported a double-free of rcur if _defer_finish fails
while we're recovering CUI items. Fix the error recovery to prevent
this.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Strengthen the checking of pos/len vs. i_size, clarify the return values
for the clone prep function, and remove pointless code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers
Pull more vfs updates from Al Viro:
"In this pile:
- autofs-namespace series
- dedupe stuff
- more struct path constification"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
ocfs2: charge quota for reflinked blocks
ocfs2: fix bad pointer cast
ocfs2: always unlock when completing dio writes
ocfs2: don't eat io errors during _dio_end_io_write
ocfs2: budget for extent tree splits when adding refcount flag
ocfs2: prohibit refcounted swapfiles
ocfs2: add newlines to some error messages
ocfs2: convert inode refcount test to a helper
simple_write_end(): don't zero in short copy into uptodate
exofs: don't mess with simple_write_{begin,end}
9p: saner ->write_end() on failing copy into non-uptodate page
fix gfs2_stuffed_write_end() on short copies
fix ceph_write_end()
nfs_write_end(): fix handling of short copies
vfs: refactor clone/dedupe_file_range common functions
fs: try to clone files first in vfs_copy_file_range
vfs: misc struct path constification
namespace.c: constify struct path passed to a bunch of primitives
quota: constify struct path in quota_on
...
Contained in this update:
- DAX PMD vaults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYUgqdAAoJEK3oKUf0dfodQgsP/1dJ4qUc6cRk8kL+f10FoIek
oFzdViRHZj8cROGe2n2YTBJtPa9KjU5DNHnxaxWZBN4ZpItp/uN1sAQhgtNQ4/cN
C3JF6B/+/dIbNSbd7DwvSl0dMWknzmrB+Myfs2ZPpMA1S4GInk1MOJSj7AQdYAvJ
dS0dQWAuIB20cahwuGA4y7zUniYL1IcF/BH8hlmzpcUNUoJ9AkR1hTg5/aVfmga3
w2p1vZyT2E4xs/Ff4FYW5MzPGxLVQMZVNIAXAcJl+c61z46ndXqidSmVHGvc+Tlt
ouxftHy/7KqowZlCFss1pSXg9HlXHhjS+iLbZerfcjO2qldriZS+QqQyASmQzPAz
+PpnMfVOj+yjsXKyIHWuS1G35aV16pPWwdA0ECeU6yv9iZ7tSz5rvSrsPZPLFz4x
RVhcKbmXR3y8DugkmtznU5ozxPt5hbbstEV3leCzxJpZu5reRJThUW7nYkSd0CEJ
ZyT/GP6Aq/MM8O/hOgVutAH409dsrYok8m/lq1J7VbNUt8inylcsMWsBeX/0/AHY
aC7I2Vx8bnbfL+C8wYKYhuShOGSch93O5hDUXdH2K/Sm5cK4y2asWge6MfFsS6Lu
waVYwd5aYBlNbzkvUMm2I5EV4cCCR3YwWYwfBEP7kPYUDxN14huOz6lVXnQPDLQ1
qsV1aNfK9PPiw6Fcaop0
=HwDG
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is quite a varied bunch of stuff in this update, and some of it
you will have already merged through the ext4 tree which imported the
dax-4.10-iomap-pmd topic branch from the XFS tree.
There is also a new direct IO implementation that uses the iomap
infrastructure. It's much simpler, faster, and has lower IO latency
than the existing direct IO infrastructure.
Summary:
- DAX PMD faults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS
i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups"
* tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (63 commits)
xfs: nuke unused tracepoint definitions
xfs: use GPF_NOFS when allocating btree cursors
xfs: use xfs_vn_setattr_size to check on new size
xfs: deprecate barrier/nobarrier mount option
xfs: Always flush caches when integrity is required
xfs: ignore leaf attr ichdr.count in verifier during log replay
xfs: use rhashtable to track buffer cache
xfs: optimise CRC updates
xfs: make xfs btree stats less huge
xfs: don't cap maximum dedupe request length
xfs: don't allow di_size with high bit set
xfs: error out if trying to add attrs and anextents > 0
xfs: don't crash if reading a directory results in an unexpected hole
xfs: complain if we don't get nextents bmap records
xfs: check for bogus values in btree block headers
xfs: forbid AG btrees with level == 0
xfs: several xattr functions can be void
xfs: handle cow fork in xfs_bmap_trace_exlist
xfs: pass state not whichfork to trace_xfs_extlist
xfs: Move AGI buffer type setting to xfs_read_agi
...
needed for both ext4 and xfs dax changes to use iomap for DAX. It
also includes the fscrypt branch which is needed for ubifs encryption
work as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlhQQVEACgkQ8vlZVpUN
gaN9TQgAoCD+V4kJjMCFhiV8u6QR3hqD6bOZbggo5wJf4CHglWkmrbAmc3jANOgH
CKsXDRRjxuDjPXf1ukB1i4M7ArLYjkbbzKdsu7lismoJLS+w8uwUKSNdep+LYMjD
alxUcf5DCzLlUmdOdW4yE22L+CwRfqfs8IpBvKmJb7DrAKiwJVA340ys6daBGuu1
63xYx0QIyPzq0xjqLb6TVf88HUI4NiGVXmlm2wcrnYd5966hEZd/SztOZTVCVWOf
Z0Z0fGQ1WJzmaBB9+YV3aBi+BObOx4m2PUprIa531+iEW02E+ot5Xd4vVQFoV/r4
NX3XtoBrT1XlKagy2sJLMBoCavqrKw==
=j4KP
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"This merge request includes the dax-4.0-iomap-pmd branch which is
needed for both ext4 and xfs dax changes to use iomap for DAX. It also
includes the fscrypt branch which is needed for ubifs encryption work
as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (86 commits)
dax: Fix sleep in atomic contex in grab_mapping_entry()
fscrypt: Rename FS_WRITE_PATH_FL to FS_CTX_HAS_BOUNCE_BUFFER_FL
fscrypt: Delay bounce page pool allocation until needed
fscrypt: Cleanup page locking requirements for fscrypt_{decrypt,encrypt}_page()
fscrypt: Cleanup fscrypt_{decrypt,encrypt}_page()
fscrypt: Never allocate fscrypt_ctx on in-place encryption
fscrypt: Use correct index in decrypt path.
fscrypt: move the policy flags and encryption mode definitions to uapi header
fscrypt: move non-public structures and constants to fscrypt_private.h
fscrypt: unexport fscrypt_initialize()
fscrypt: rename get_crypt_info() to fscrypt_get_crypt_info()
fscrypto: move ioctl processing more fully into common code
fscrypto: remove unneeded Kconfig dependencies
MAINTAINERS: fscrypto: recommend linux-fsdevel for fscrypto patches
ext4: do not perform data journaling when data is encrypted
ext4: return -ENOMEM instead of success
ext4: reject inodes with negative size
ext4: remove another test in ext4_alloc_file_blocks()
Documentation: fix description of ext4's block_validity mount option
ext4: fix checks for data=ordered and journal_async_commit options
...
Pull block layer updates from Jens Axboe:
"This is the main block pull request this series. Contrary to previous
release, I've kept the core and driver changes in the same branch. We
always ended up having dependencies between the two for obvious
reasons, so makes more sense to keep them together. That said, I'll
probably try and keep more topical branches going forward, especially
for cycles that end up being as busy as this one.
The major parts of this pull request is:
- Improved support for O_DIRECT on block devices, with a small
private implementation instead of using the pig that is
fs/direct-io.c. From Christoph.
- Request completion tracking in a scalable fashion. This is utilized
by two components in this pull, the new hybrid polling and the
writeback queue throttling code.
- Improved support for polling with O_DIRECT, adding a hybrid mode
that combines pure polling with an initial sleep. From me.
- Support for automatic throttling of writeback queues on the block
side. This uses feedback from the device completion latencies to
scale the queue on the block side up or down. From me.
- Support from SMR drives in the block layer and for SD. From Hannes
and Shaun.
- Multi-connection support for nbd. From Josef.
- Cleanup of request and bio flags, so we have a clear split between
which are bio (or rq) private, and which ones are shared. From
Christoph.
- A set of patches from Bart, that improve how we handle queue
stopping and starting in blk-mq.
- Support for WRITE_ZEROES from Chaitanya.
- Lightnvm updates from Javier/Matias.
- Supoort for FC for the nvme-over-fabrics code. From James Smart.
- A bunch of fixes from a whole slew of people, too many to name
here"
* 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits)
blk-stat: fix a few cases of missing batch flushing
blk-flush: run the queue when inserting blk-mq flush
elevator: make the rqhash helpers exported
blk-mq: abstract out blk_mq_dispatch_rq_list() helper
blk-mq: add blk_mq_start_stopped_hw_queue()
block: improve handling of the magic discard payload
blk-wbt: don't throttle discard or write zeroes
nbd: use dev_err_ratelimited in io path
nbd: reset the setup task for NBD_CLEAR_SOCK
nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME
nvme-fabrics: Add target support for FC transport
nvme-fabrics: Add host support for FC transport
nvme-fabrics: Add FC transport LLDD api definitions
nvme-fabrics: Add FC transport FC-NVME definitions
nvme-fabrics: Add FC transport error codes to nvme.h
Add type 0x28 NVME type code to scsi fc headers
nvme-fabrics: patch target code in prep for FC transport support
nvme-fabrics: set sqe.command_id in core not transports
parser: add u64 number parser
nvme-rdma: align to generic ib_event logging helper
...
Hoist both the XFS reflink inode state and preparation code and the XFS
file blocks compare functions into the VFS so that ocfs2 can take
advantage of it for reflink and dedupe.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A clone is a perfectly fine implementation of a file copy, so most
file systems just implement the copy that way. Instead of duplicating
this logic move it to the VFS. Currently btrfs and XFS implement copies
the same way as clones and there is no behavior change for them, cifs
only implements clones and grow support for copy_file_range with this
patch. NFS implements both, so this will allow copy_file_range to work
on servers that only implement CLONE and be lot more efficient on servers
that implements CLONE and COPY.
Signed-off-by: Christoph Hellwig <hch@lst.de>
If .readlink == NULL implies generic_readlink().
Generated by:
to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Also check d_is_symlink() in callers instead of inode->i_op->readlink
because following patches will allow NULL ->readlink for symlinks.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This is all unused code, so remove it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use NOFS for allocating btree cursors, since they can be called
under the ilock.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 6552321831 ("xfs: remove i_iolock and use i_rwsem in the
VFS inode instead") introduced a regression that truncate(2) doesn't
check on new size, so it succeeds even if the new size exceeds the
current resource limit. Because xfs_setattr_size() was used instead
of xfs_vn_setattr_size(), and the latter calls xfs_vn_change_ok()
first to do sanity check on permission and new size.
This is found by truncate03 test from ltp, and the following is a
simplified reproducer:
#!/bin/bash
dev=/dev/sda5
mnt=/mnt/xfs
mkfs -t xfs -f $dev
mount $dev $mnt
# set max file size to 16k
ulimit -f 16
truncate -s $((16 * 1024 + 1)) /mnt/xfs/testfile
[ $? -eq 0 ] && echo "FAIL: truncate exceeded max file size"
ulimit -f unlimited
umount $mnt
Signed-off-by: Eryu Guan <eguan@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We always perform integrity operations now, so these mount options
don't do anything. Deprecate them and mark them for removal in
in a year.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no reason anymore for not issuing device integrity
operations when teh filesystem requires ordering or data integrity
guarantees. We should always issue cache flushes and FUA writes
where necessary and let the underlying storage optimise them as
necessary for correct integrity operation.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we create a new attribute, we first create a shortform
attribute, and try to fit the new attribute into it.
If that fails, we copy the (empty) attribute into a leaf attribute,
and do the copy again. Thus there can be a transient state where
we have an empty leaf attribute.
If we encounter this during log replay, the verifier will fail.
So add a test to ignore this part of the leaf attr verification
during log replay.
Thanks as usual to dchinner for spotting the problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On filesystems with a lot of metadata and in metadata intensive workloads
xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of
the CPU time is spent on CPU cache misses while traversing the rbtree.
As the buffer cache does not need any kind of ordering, but fast lookups
a hashtable is the natural data structure to use. The rhashtable
infrastructure provides a self-scaling hashtable implementation and
allows lookups to proceed while the table is going through a resize
operation.
This reduces the CPU-time spent for the lookups to 1/3 even for small
filesystems with a relatively small number of cached buffers, with
possibly much larger gains on higher loaded filesystems.
[dchinner: reduce minimum hash size to an acceptable size for large
filesystems with many AGs with no active use.]
[dchinner: remove stale rbtree asserts.]
[dchinner: use xfs_buf_map for compare function argument.]
[dchinner: make functions static.]
[dchinner: remove redundant comments.]
Signed-off-by: Lucas Stach <dev@lynxeye.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nick Piggin reported that the CRC overhead in an fsync heavy
workload was higher than expected on a Power8 machine. Part of this
was to do with the fact that the power8 CRC implementation is not
efficient for CRC lengths of less than 512 bytes, and so the way we
split the CRCs over the CRC field means a lot of the CRCs are
reduced to being less than than optimal size.
To optimise this, change the CRC update mechanism to zero the CRC
field first, and then compute the CRC in one pass over the buffer
and write the result back into the buffer. We can do this safely
because anything writing a CRC has exclusive access to the buffer
the CRC is being calculated over.
We leave the CRC verify code the same - it still splits the CRC
calculation - because we do not want read-only operations modifying
the underlying buffer. This is because read-only operations may not
have an exclusive access to the buffer guaranteed, and so temporary
modifications could leak out to to other processes accessing the
buffer concurrently.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.
Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.
If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.
We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:
text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o
it reduces the core btree infrastructure code size by close to 25%!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
After various discussions on linux-fsdevel, it has been decided that it
is not necessary to cap the length of a dedupe request, and that
correctly-written userspace client programs will be able to absorb the
change. Therefore, remove the length clamping behavior.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The on-disk field di_size is used to set i_size, which is a signed
integer of loff_t. If the high bit of di_size is set, we'll end up with
a negative i_size, which will cause all sorts of problems. Since the
VFS won't let us create a file with such length, we should catch them
here in the verifier too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We shouldn't assert if somehow we end up trying to add an attr fork to
an inode that apparently already has attr extents because this is an
indication of on-disk corruption. Instead, return an error code to
userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In xfs_dir3_data_read, we can encounter the situation where err == 0 and
*bpp == NULL if the given bno offset happens to be a hole; this leads to
a crash if we try to set the buffer type after the _da_read_buf call.
Holes can happen due to corrupt or malicious entries in the bmbt data,
so be a little more careful when we're handling buffers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When reading into memory all extents of a btree-format inode fork,
complain if the number of extents we find is not the same as the number
of extents reported in the inode core. This is needed to stop an IO
action from accessing the garbage areas of the in-core fork.
[dchinner: removed redundant assert]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're reading a btree block, make sure that what we retrieved
matches the owner and level; and has a plausible number of records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no such thing as a zero-level AG btree since even a single-node
zero-records btree has one level. Btree cursor constructors read
cur_nlevels straight from disk and then access things like
cur_bufs[cur_nlevels - 1] which is /really/ bad if cur_nlevels is zero!
Therefore, strengthen the verifiers to prevent this possibility.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There are a handful of xattr functions which now return
nothing but zero. They can be made void, chased through calling
functions, and error handling etc can be removed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By inspection, xfs_bmap_trace_exlist isn't handling cow forks,
and will trace the data fork instead.
Fix this by setting state appropriately if whichfork
== XFS_COW_FORK.
()___()
< @ @ >
| |
{o_o}
(|)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When xfs_bmap_trace_exlist called trace_xfs_extlist,
it sent in the "whichfork" var instead of the bmap "state"
as expected (even though state was already set up for this
purpose).
As a result, the xfs_bmap_class in tracing code used
"whichfork" not state in xfs_iext_state_to_fork(), and got
the wrong ifork pointer. It all goes downhill from
there, including an ASSERT when ifp_bytes is empty
by the time it reaches xfs_iext_get_ext():
XFS: Assertion failed: idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We've missed properly setting the buffer type for
an AGI transaction in 3 spots now, so just move it
into xfs_read_agi() and set it if we are in a transaction
to avoid the problem in the future.
This is similar to how it is done in i.e. the dir3
and attr3 read functions.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xlog_recover_clear_agi_bucket didn't set the
type to XFS_BLFT_AGI_BUF, so we got a warning during log
replay (or an ASSERT on a debug build).
XFS (md0): Unknown buffer type 0!
XFS (md0): _xfs_buf_ioapply: no ops on block 0xaea8802/0x1
Fix this, as was done in f19b872b for 2 other locations
with the same problem.
cc: <stable@vger.kernel.org> # 3.10 to current
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Straight switch over to using iomap for direct I/O - we already have the
non-COW dio path in write_begin for DAX and files with extent size hints,
so nothing to add there. The COW path is ported over from the old
get_blocks version and a bit of a mess, but I have some work in progress
to make it look more like the buffered I/O COW path.
This gets rid of xfs_get_blocks_direct and the last caller of
xfs_get_blocks with the create flag set, so all that code can be removed.
Last but not least I've removed a comment in xfs_filemap_fault that
refers to xfs_get_blocks entirely instead of updating it - while the
reference is correct, the whole DAX fault path looks different than
the non-DAX one, so it seems rather pointless.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch drops the XFS-own i_iolock and uses the VFS i_rwsem which
recently replaced i_mutex instead. This means we only have to take
one lock instead of two in many fast path operations, and we can
also shrink the xfs_inode structure. Thanks to the xfs_ilock family
there is very little churn, the only thing of note is that we need
to switch to use the lock_two_directory helper for taking the i_rwsem
on two inodes in a few places to make sure our lock order matches
the one used in the VFS.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_file_iomap_begin_delay() implements post-eof speculative
preallocation by extending the block count of the requested delayed
allocation. Now that xfs_bmapi_reserve_delalloc() has been updated to
handle prealloc blocks separately and tag the inode, update
xfs_file_iomap_begin_delay() to use the new parameter and rely on the
former to tag the inode.
Note that this patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
COW fork reservation is implemented via delayed allocation. The code is
modeled after the traditional delalloc allocation code, but is slightly
different in terms of how preallocation occurs. Rather than post-eof
speculative preallocation, COW fork preallocation is implemented via a
COW extent size hint that is designed to minimize fragmentation as a
reflinked file is split over time.
xfs_reflink_reserve_cow() still uses logic that is oriented towards
dealing with post-eof speculative preallocation, however, and is stale
or not necessarily correct. First, the EOF alignment to the COW extent
size hint is implemented in xfs_bmapi_reserve_delalloc() (which does so
correctly by aligning the start and end offsets) and so is not necessary
in xfs_reflink_reserve_cow(). The backoff and retry logic on ENOSPC is
also ineffective for the same reason, as xfs_bmapi_reserve_delalloc()
will simply perform the same allocation request on the retry. Finally,
since the COW extent size hint aligns the start and end offset of the
range to allocate, the end_fsb != orig_end_fsb logic is not sufficient.
Indeed, if a write request happens to end on an aligned offset, it is
possible that we do not tag the inode for COW preallocation even though
xfs_bmapi_reserve_delalloc() may have preallocated at the start offset.
Kill the unnecessary, duplicate code in xfs_reflink_reserve_cow().
Remove the inode tag logic as well since xfs_bmapi_reserve_delalloc()
has been updated to tag the inode correctly.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Speculative preallocation is currently processed entirely by the callers
of xfs_bmapi_reserve_delalloc(). The caller determines how much
preallocation to include, adjusts the extent length and passes down the
resulting request.
While this works fine for post-eof speculative preallocation, it is not
as reliable for COW fork preallocation. COW fork preallocation is
implemented via the cowextszhint, which aligns the start offset as well
as the length of the extent. Further, it is difficult for the caller to
accurately identify when preallocation occurs because the returned
extent could have been merged with neighboring extents in the fork.
To simplify this situation and facilitate further COW fork preallocation
enhancements, update xfs_bmapi_reserve_delalloc() to take a separate
preallocation parameter to incorporate into the allocation request. The
preallocation blocks value is tacked onto the end of the request and
adjusted to accommodate neighboring extents and extent size limits.
Since xfs_bmapi_reserve_delalloc() now knows precisely how much
preallocation was included in the allocation, it can also tag the inodes
appropriately to support preallocation reclaim.
Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to
use the preallocation mechanism. This patch should not change behavior
outside of correctly tagging reflink inodes when start offset
preallocation occurs (which the caller does not handle correctly).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It turns out that btrfs and xfs had differing interpretations of what
to do when the dedupe length is zero. Change xfs to follow btrfs'
semantics so that the userland interface is consistent.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Declare the structure xfs_nameops as const as it is only stored in the
m_dirnameops field of a xfs_mount structure. This field is of type
const struct xfs_nameops *, so xfs_nameops structures having this
property can be declared as const.
Done using Coccinelle:
@r1 disable optional_qualifier @
identifier i;
position p;
@@
static struct xfs_nameops i@p = {...};
@ok1@
identifier r1.i;
position p;
struct xfs_mount mp;
@@
mp.m_dirnameops=&i@p
@bad@
position p!={r1.p,ok1.p};
identifier r1.i;
@@
i@p
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
static
+const
struct xfs_nameops i={...};
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
+const
struct xfs_nameops i;
File size before:
text data bss dec hex filename
5302 85 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
File size after:
text data bss dec hex filename
5318 69 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Declare the structure xfs_item_ops as const as it is only passed as an
argument to the function xfs_log_item_init. As this argument is of type
const struct xfs_item_ops *, so xfs_item_ops structures having this
property can be declared as const.
Done using Coccinelle:
@r1 disable optional_qualifier @
identifier i;
position p;
@@
static struct xfs_item_ops i@p = {...};
@ok1@
identifier r1.i;
position p;
expression e1,e2,e3;
@@
xfs_log_item_init(e1,e2,e3,&i@p)
@bad@
position p!={r1.p,ok1.p};
identifier r1.i;
@@
i@p
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
static
+const
struct xfs_item_ops i={...};
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
+const
struct xfs_item_ops i;
File size before:
text data bss dec hex filename
737 64 8 809 329 fs/xfs/xfs_icreate_item.o
File size after:
text data bss dec hex filename
801 0 8 809 329 fs/xfs/xfs_icreate_item.o
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're estimating the amount of space it's going to take to satisfy
a delalloc reservation, we need to include the space that we might need
to grow the rmapbt. This helps us to avoid running out of space later
when _iomap_write_allocate needs more space than we reserved. Eryu Guan
observed this happening on generic/224 when sunit/swidth were set.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When XBF_NO_IOACCT got added, it missed the translation
in XFS_BUF_FLAGS, so we see "0x8" in trace output rather
than the flag name. Fix it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only ever set a field to this constant for an impossible to reach
error case in xfs_bmap_search_extents. That functions has been removed,
so we can remove the constant as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that all users are gone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And remove the unused return value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use xfs_iext_lookup_extent to look up the extent, drop a useless check,
drop a unneeded return value and clean up the general style a little bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
And only lookup the previous extent inside xfs_iomap_prealloc_size
if we actually need it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can easily lookup the previous extent for the cases where we need it,
which saves the callers from looking it up for us later in the series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rewrite the function using xfs_iext_lookup_extent and xfs_iext_get_extent,
and massage the flow into something easily understandable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_iext_lookup_extent looks up a single extent at the passed in offset,
and returns the extent covering the area, or the one behind it in case
of a hole, as well as the index of the returned extent in arguments,
as well as a simple bool as return value that is set to false if no
extent could be found because the offset is behind EOF. It is a simpler
replacement for xfs_bmap_search_extent that leaves looking up the rarely
needed previous extent to the caller and has a nicer calling convention.
xfs_iext_get_extent is a helper for iterating over the extent list,
it takes an extent index as input, and returns the extent at that index
in it's expanded form in an argument if it exists. The actual return
value is a bool whether the index is valid or not.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Filesystem shutdown testing on an older distro kernel has uncovered an
imbalanced locking pattern for the inode flush lock in
xfs_reclaim_inode(). Specifically, there is a double unlock sequence
between the call to xfs_iflush_abort() and xfs_reclaim_inode() at the
"reclaim:" label.
This actually does not cause obvious problems on current kernels due to
the current flush lock implementation. Older kernels use a counting
based flush lock mechanism, however, which effectively breaks the lock
indefinitely when an already unlocked flush lock is repeatedly unlocked.
Though this only currently occurs on filesystem shutdown, it has
reproduced the effect of elevating an fs shutdown to a system-wide crash
or hang.
As it turns out, the flush lock is not actually required for the reclaim
logic in xfs_reclaim_inode() because by that time we have already cycled
the flush lock once while holding ILOCK_EXCL. Therefore, remove the
additional flush lock/unlock cycle around the 'reclaim:' label and
update branches into this label to release the flush lock where
appropriate. Add an assert to xfs_ifunlock() to help prevent future
occurences of the same problem.
Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the minimum block size on v5 filesystems.
[dchinner: cleaned up XFS_MIN_CRC_BLOCKSIZE check]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The open-coded pattern:
ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)
is all over the xfs code; provide a new helper
xfs_iext_count(ifp) to count the number of inline extents
in an inode fork.
[dchinner: pick up several missed conversions]
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There have been several reports over the years of NULL pointer
dereferences in xfs_trans_log_inode during xfs_fsr processes,
when the process is doing an fput and tearing down extents
on the temporary inode, something like:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
PID: 29439 TASK: ffff880550584fa0 CPU: 6 COMMAND: "xfs_fsr"
[exception RIP: xfs_trans_log_inode+0x10]
#9 [ffff8800a57bbbe0] xfs_bunmapi at ffffffffa037398e [xfs]
#10 [ffff8800a57bbce8] xfs_itruncate_extents at ffffffffa0391b29 [xfs]
#11 [ffff8800a57bbd88] xfs_inactive_truncate at ffffffffa0391d0c [xfs]
#12 [ffff8800a57bbdb8] xfs_inactive at ffffffffa0392508 [xfs]
#13 [ffff8800a57bbdd8] xfs_fs_evict_inode at ffffffffa035907e [xfs]
#14 [ffff8800a57bbe00] evict at ffffffff811e1b67
#15 [ffff8800a57bbe28] iput at ffffffff811e23a5
#16 [ffff8800a57bbe58] dentry_kill at ffffffff811dcfc8
#17 [ffff8800a57bbe88] dput at ffffffff811dd06c
#18 [ffff8800a57bbea8] __fput at ffffffff811c823b
#19 [ffff8800a57bbef0] ____fput at ffffffff811c846e
#20 [ffff8800a57bbf00] task_work_run at ffffffff81093b27
#21 [ffff8800a57bbf30] do_notify_resume at ffffffff81013b0c
#22 [ffff8800a57bbf50] int_signal at ffffffff8161405d
As it turns out, this is because the i_itemp pointer, along
with the d_ops pointer, has been overwritten with zeros
when we tear down the extents during truncate. When the in-core
inode fork on the temporary inode used by xfs_fsr was originally
set up during the extent swap, we mistakenly looked at di_nextents
to determine whether all extents fit inline, but this misses extents
generated by speculative preallocation; we should be using if_bytes
instead.
This mistake corrupts the in-memory inode, and code in
xfs_iext_remove_inline eventually gets bad inputs, causing
it to memmove and memset incorrect ranges; this became apparent
because the two values in ifp->if_u2.if_inline_ext[1] contained
what should have been in d_ops and i_itemp; they were memmoved due
to incorrect array indexing and then the original locations
were zeroed with memset, again due to an array overrun.
Fix this by properly using i_df.if_bytes to determine the number
of extents, not di_nextents.
Thanks to dchinner for looking at this with me and spotting the
root cause.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We've had reports of generic/095 causing XFS to BUG() in
__xfs_get_blocks() due to the existence of delalloc blocks on a
direct I/O read. generic/095 issues a mix of various types of I/O,
including direct and memory mapped I/O to a single file. This is
clearly not supported behavior and is known to lead to such
problems. E.g., the lack of exclusion between the direct I/O and
write fault paths means that a write fault can allocate delalloc
blocks in a region of a file that was previously a hole after the
direct read has attempted to flush/inval the file range, but before
it actually reads the block mapping. In turn, the direct read
discovers a delalloc extent and cannot proceed.
While the appropriate solution here is to not mix direct and memory
mapped I/O to the same regions of the same file, the current
BUG_ON() behavior is probably overkill as it can crash the entire
system. Instead, localize the failure to the I/O in question by
returning an error for a direct I/O that cannot be handled safely
due to delalloc blocks. Be careful to allow the case of a direct
write to post-eof delalloc blocks. This can occur due to speculative
preallocation and is safe as post-eof blocks are not accompanied by
dirty pages in pagecache (conversely, preallocation within eof must
have been zeroed, and thus dirtied, before the inode size could have
been increased beyond said blocks).
Finally, provide an additional warning if a direct I/O write occurs
while the file is memory mapped. This may not catch all problematic
scenarios, but provides a hint that some known-to-be-problematic I/O
methods are in use.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The cowblocks background scanner currently clears the cowblocks tag
for inodes without any real allocations in the cow fork. This
excludes inodes with only delalloc blocks in the cow fork. While we
might never expect to clear delalloc blocks from the cow fork in the
background scanner, it is not necessarily correct to clear the
cowblocks tag from such inodes.
For example, if the background scanner happens to process an inode
between a buffered write and writeback, the scanner catches the
inode in a state after delalloc blocks have been allocated to the
cow fork but before the delalloc blocks have been converted to real
blocks by writeback. The background scanner then incorrectly clears
the cowblocks tag, even if part of the aforementioned delalloc
reservation will not be remapped to the data fork (i.e., extra
blocks due to the cowextsize hint). This means that any such
additional blocks in the cow fork might never be reclaimed by the
background scanner and could persist until the inode itself is
reclaimed.
To address this problem, only skip and clear inodes without any cow
fork allocations whatsoever from the background scanner. While we
generally do not want to cancel delalloc reservations from the
background scanner, the pagecache dirty check following the
cowblocks check should prevent that situation. If we do end up with
delalloc cow fork blocks without a dirty address space mapping, this
is probably an indication that something has gone wrong and the
blocks should be reclaimed, as they may never be converted to a real
allocation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the return value of xfs_trans_reserve_quota_nblks for errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the declaration of _dir_ino_validate out of the private
dir2 header file into the public one, since xfsprogs did that
for the benefit of xfs_repair.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Source xfsprogs commit: ee3754254e8c186c99b6cdd4d59f741759d04acb
Kernel commit 5ef828c4 ("xfs: avoid false quotacheck after unclean
shutdown") made xfs_sb_from_disk() also call xfs_sb_quota_from_disk
by default.
However, when this was merged to libxfs, existing separate
calls to libxfs_sb_quota_from_disk remained, and calling it
twice in a row on a V4 superblock leads to issues, because:
if (sbp->sb_qflags & XFS_PQUOTA_ACCT) {
...
sbp->sb_pquotino = sbp->sb_gquotino;
sbp->sb_gquotino = NULLFSINO;
and after the second call, we have set both pquotino and gquotino
to NULLFSINO.
Fix this by making it safe to call twice, and also remove the extra
calls to libxfs_sb_quota_from_disk.
This is only spotted when running xfstests with "-m crc=0" because
the sb_from_disk change came about after V5 became default, and
the above behavior only exists on a V4 superblock.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Refactor the implementations of xfs_dir2_data_freescan into a
routine that takes the raw directory block parameters and
a second function that figures out the raw parameters from the
directory inode. This enables us to use the exact same code
for both userspace and the kernel, since repair knows exactly
which directory block geometry parameters it needs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Change the xfs_attr_shortform_bytesfit declaration to have
struct xfs_inode to avoid tripping up the libxfs-diff scanner.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Fix some whitespace problems that trip up my libxfs-diff script.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The userspace version of _dinode_verify takes a raw inode number
instead of an inode itself. Since neither version actually needs
the inode, port the changes to the kernel. This will also reduce
the libxfs diff noise.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since xfsprogs dropped ushort in favor of unsigned short, do that
here too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Switch xfs_filemap_pmd_fault() from using dax_pmd_fault() to the new and
improved dax_iomap_pmd_fault(). Also, now that it has no more users,
remove xfs_get_blocks_dax_fault().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The recently added DAX functions that use the new struct iomap data
structure were named iomap_dax_rw(), iomap_dax_fault() and
iomap_dax_actor(). These are actually defined in fs/dax.c, though, so
should be part of the "dax" namespace and not the "iomap" namespace.
Rename them to dax_iomap_rw(), dax_iomap_fault() and dax_iomap_actor()
respectively.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add wbc_to_write_flags(), which returns the write modifier flags to use,
based on a struct writeback_control. No functional changes in this
patch, but it prepares us for factoring other wbc fields for write type.
Signed-off-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags
directly. Where applicable this also drops usage of the
bio_set_op_attrs wrapper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
If the deferred ops transaction roll fails, we need to abort the intent
items if we haven't already logged a done item for it, regardless of
whether or not the deferred ops has had a transaction committed. Dave
found this while running generic/388.
Move the tracepoint to make it easier to track object lifetimes.
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The background cowblocks scan job takes care of scanning for inodes with
potentially lingering blocks in the cow fork and clearing them out. If
the background scanner reclaims the cow fork blocks, however, it doesn't
immediately clear the cowblocks tag from the inode. Instead, the inode
remains tagged until the background scanner comes around again,
discovers the inode cow fork has no blocks, clears the tag and fires the
trace_xfs_inode_free_cowblocks_invalid() tracepoint to indicate that the
inode may have been incorrectly tagged.
This is not a major functional problem as the tag is ultimately cleared.
Nonetheless, clear the tag when an inode cow fork is explicitly emptied
to avoid the extra round trip through the background scanner and
spurious "invalid" tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These calls are still using the eofblocks tracepoints. The cowblocks
equivalents are already defined, we just aren't actually calling them.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since no one uses it anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead of doing a full extent list search for each extent that is
to be deleted using xfs_bmapi_read and then doing another one inside
of xfs_bunmapi_cow use the same scheme that xfs_bumapi uses: look
up the last extent to be deleted and then use the extent index to
walk downward until we are outside the range to be deleted.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rewrite xfs_reflink_cancel_cow_blocks so that we only do a search for
the first extent in the extent list and then iterate over the remaining
extents using the extent index, passing the extent we operate on
directly to xfs_bmap_del_extent_delay or xfs_bmap_del_extent_cow instead
of going through xfs_bunmapi and doing yet another extent list lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Split out two helpers for deleting delayed or real extents from the COW fork.
This allows to call them directly from xfs_reflink_cow_end_io once that
function is refactored to iterate the extent tree. It will also allow
to reuse the delalloc deletion from xfs_bunmapi in the future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Instead of reserving space as the first thing in write_begin move it past
reading the extent in the data fork. That way we only have to read from
the data fork once and can reuse that information for trimming the extent
to the shared/unshared boundary. Additionally this allows to easily
limit the actual write size to said boundary, and avoid a roundtrip on the
ilock.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no need to trim an extent into a shared or non-shared one, or
report any flags for plain old reads.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Delalloc extents in the extent list contain the number of reserved
indirect blocks in their startblock value and don't use the magic
DELAYSTARTBLOCK constant. Ensure that xfs_reflink_trim_around_shared
handles them properly by checking for isnullstartblock().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This helpers allows to trim an extent to a subset of it's original range
while making sure the block numbers in it remain valid,
In the future xfs_trim_extent and xfs_bmapi_trim_map should probably be
merged in some form.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: split from a previous patch from Darrick, moved around and added
support for "raw" delayed extents"]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no clear division of responsibility between those functions, so
just merge them into one to keep the code simple. Also move
xfs_file_wait_for_io to xfs_reflink.c together with its only caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
filemap_write_and_wait_range operates on full pages, so there is no
need for the rounding operations. Additionally this allows us to
micro-optimize by skipping the second inode_dio_wait for a
intra-file clone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We need the iolock protection to stabilizie the IS_SWAPFILE and
IS_IMMUTABLE values, as well as preventing new buffered writers
re-dirtying the file data that we just wrote out.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS i_ino is an unsigned long, while XFS inode numbers are 64-bit
wide, so checking i_ino for equality could lead to rate false positives
on 32-bit architectures. Just compare the inode pointers themselves
to be safe.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS already does the check, and the placement of this duplicate
is in the way of the following locking rework.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_repair was not detecting that version 3 inodes are invalid for
for non-CRC filesystems. The result is specific inode corruptions go
undetected and hence aren't repaired if only the version number is
out of range.
The core of the problem is that the XFS_DINODE_GOOD_VERSION() macro
doesn't know that valid inode versions are dependent on a superblock
version number. Fix this in libxfs, and propagate the new function
out into the rest of xfsprogs to fix the issue.
[Darrick: port to kernel from xfsprogs]
Reported-by: Leslie Rhorer <lrhorer@mygrande.net>
Signed-off-by: Roger Willcocks <roger@filmlight.ltd.uk>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The function xfs_calc_dquots_per_chunk takes a parameter in units
of basic blocks. The kernel seems to get the units wrong, but
userspace got 'fixed' by commenting out the unnecessary conversion.
Fix both.
cc: <stable@vger.kernel.org>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
As part of the inode block map intent log item recovery process, we
had to set the IRECOVERY flag to prevent an unlinked inode from
being truncated during the first iput call. This required us to set
MS_ACTIVE so that iput puts the inode on the lru instead of
immediately evicting the inode.
Unfortunately, if the mount fails later on, the inodes that have
been loaded (root dir and realtime) actually need to be evicted
since we're aborting the mount. If we don't clear MS_ACTIVE in the
failure step, those inodes are not evicted and therefore leak. The
leak was found by running xfs/130 and rmmoding xfs immediately after
the test.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The commit:
f65306ea xfs: map an inode's offset to an exact physical block
added a pointless error0: target; remove it.
Addresses-Coverity-Id: 1373865
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS historically took the iolock exclusive when invalidating pages
before direct I/O operations to protect against writeback starvations.
But this writeback starvation issues has been fixed a long time ago
in the core writeback code, and all other file systems manage to do
without the exclusive lock. Convert XFS over to avoid the exclusive
lock in this case, and also move to range invalidations like done
by the other file systems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
sparse reported that several variables and a function were not
forward-declared anywhere and therefore should be 'static'.
Found with sparse by running 'make C=2 CF=-D__CHECK_ENDIAN__ fs/xfs/'
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
with gcc 4.1.2:
fs/xfs/xfs_reflink.c: In function xfs_reflink_reserve_cow_range:
fs/xfs/xfs_reflink.c:327: warning: error may be used uninitialized in this function
Indeed, if "count" is zero, the function will return an uninitialized
error value.
While "count" is unlikely to be zero, this function is called through
the public iomap API. Hence fix this by preinitializing error to zero.
Fixes: 2a06705cd5 ("xfs: create delalloc extents in CoW fork")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove redundant ifp = ifp statement, it does nothing. Found with
static analysis by CoverityScan.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
< XFS has gained super CoW powers! >
----------------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
Included in this update:
- unshare range (FALLOC_FL_UNSHARE) support for fallocate
- copy-on-write extent size hints (FS_XFLAG_COWEXTSIZE) for fsxattr interface
- shared extent support for XFS
- copy-on-write support for shared extents
- copy_file_range support
- clone_file_range support (implements reflink)
- dedupe_file_range support
- defrag support for reverse mapping enabled filesystems
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX/hrZAAoJEK3oKUf0dfodpwcQAKkTerNPhhDcthqWUJ2+jC7w
JIuhKUg2GYojJhIJ4+Ue1knmuBeIusda+PzGls+6gdy7GDGdux/esRIJSe1W7A5G
RNeumiSKVX5iYsZNUEX35O2a/SwUM1Sm5mcIFs4CxUwIRwE/cayNby6vrlVExvz7
Ns6YYOI2bldUHLsxedg8MLG0it1JGTADB9gwGgb98bxQ3bD/UBn3TF9xTlj+ZH22
ebnWsogSJOnUigOOSGeaQsmy1pJAhRIhvt+f481KuZak1pdQcK2feL4RcKw0NpNt
15LCYRqX6RexC684VYgJZxXB4EKyfS2Bma71q41A7dz1x36kw7+wG18xasBqU++p
GZwwL6si02rIGPMz1oD8xxZ0F97ADCGRmkgUHsCJKbP5UmGiP08K6GEN3osr5hAN
xAmn9AxcprXVnV3WmnFxpBeWY/qCEsvSQqJuKSThYqAilqUc8wN2u5g/eEpE6mmg
KEEhzaq5P4ovS/HOIQJWdBu1j5E9Mg2o/ncy87Q6uE+9Fa5AAP6GBWOtGcMwdFSU
adbN7dqjgoHMyNHFrmePqyJYtOZ2hZovDlVndxnYysl5ZBfiBEEDISmr+x6KcSlo
3kyOltYQLjEVu1sLOT3COCddn0jt5Lr1QhGeVepnrMlU2E1h4461viCNMDinJRIp
OYoMOS+J83G2FEFwgXYM
=Sa+Y
-----END PGP SIGNATURE-----
Merge tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
< XFS has gained super CoW powers! >
----------------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
Pull XFS support for shared data extents from Dave Chinner:
"This is the second part of the XFS updates for this merge cycle. This
pullreq contains the new shared data extents feature for XFS.
Given the complexity and size of this change I am expecting - like the
addition of reverse mapping last cycle - that there will be some
follow-up bug fixes and cleanups around the -rc3 stage for issues that
I'm sure will show up once the code hits a wider userbase.
What it is:
At the most basic level we are simply adding shared data extents to
XFS - i.e. a single extent on disk can now have multiple owners. To do
this we have to add new on-disk features to both track the shared
extents and the number of times they've been shared. This is done by
the new "refcount" btree that sits in every allocation group. When we
share or unshare an extent, this tree gets updated.
Along with this new tree, the reverse mapping tree needs to be updated
to track each owner or a shared extent. This also needs to be updated
ever share/unshare operation. These interactions at extent allocation
and freeing time have complex ordering and recovery constraints, so
there's a significant amount of new intent-based transaction code to
ensure that operations are performed atomically from both the runtime
and integrity/crash recovery perspectives.
We also need to break sharing when writes hit a shared extent - this
is where the new copy-on-write implementation comes in. We allocate
new storage and copy the original data along with the overwrite data
into the new location. We only do this for data as we don't share
metadata at all - each inode has it's own metadata that tracks the
shared data extents, the extents undergoing CoW and it's own private
extents.
Of course, being XFS, nothing is simple - we use delayed allocation
for CoW similar to how we use it for normal writes. ENOSPC is a
significant issue here - we build on the reservation code added in
4.8-rc1 with the reverse mapping feature to ensure we don't get
spurious ENOSPC issues part way through a CoW operation. These
mechanisms also help minimise fragmentation due to repeated CoW
operations. To further reduce fragmentation overhead, we've also
introduced a CoW extent size hint, which indicates how large a region
we should allocate when we execute a CoW operation.
With all this functionality in place, we can hook up .copy_file_range,
.clone_file_range and .dedupe_file_range and we gain all the
capabilities of reflink and other vfs provided functionality that
enable manipulation to shared extents. We also added a fallocate mode
that explicitly unshares a range of a file, which we implemented as an
explicit CoW of all the shared extents in a file.
As such, it's a huge chunk of new functionality with new on-disk
format features and internal infrastructure. It warns at mount time as
an experimental feature and that it may eat data (as we do with all
new on-disk features until they stabilise). We have not released
userspace suport for it yet - userspace support currently requires
download from Darrick's xfsprogs repo and build from source, so the
access to this feature is really developer/tester only at this point.
Initial userspace support will be released at the same time the kernel
with this code in it is released.
The new code causes 5-6 new failures with xfstests - these aren't
serious functional failures but things the output of tests changing
slightly due to perturbations in layouts, space usage, etc. OTOH,
we've added 150+ new tests to xfstests that specifically exercise this
new functionality so it's got far better test coverage than any
functionality we've previously added to XFS.
Darrick has done a pretty amazing job getting us to this stage, and
special mention also needs to go to Christoph (review, testing,
improvements and bug fixes) and Brian (caught several intricate bugs
during review) for the effort they've also put in.
Summary:
- unshare range (FALLOC_FL_UNSHARE) support for fallocate
- copy-on-write extent size hints (FS_XFLAG_COWEXTSIZE) for fsxattr
interface
- shared extent support for XFS
- copy-on-write support for shared extents
- copy_file_range support
- clone_file_range support (implements reflink)
- dedupe_file_range support
- defrag support for reverse mapping enabled filesystems"
* tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (71 commits)
xfs: convert COW blocks to real blocks before unwritten extent conversion
xfs: rework refcount cow recovery error handling
xfs: clear reflink flag if setting realtime flag
xfs: fix error initialization
xfs: fix label inaccuracies
xfs: remove isize check from unshare operation
xfs: reduce stack usage of _reflink_clear_inode_flag
xfs: check inode reflink flag before calling reflink functions
xfs: implement swapext for rmap filesystems
xfs: refactor swapext code
xfs: various swapext cleanups
xfs: recognize the reflink feature bit
xfs: simulate per-AG reservations being critically low
xfs: don't mix reflink and DAX mode for now
xfs: check for invalid inode reflink flags
xfs: set a default CoW extent size of 32 blocks
xfs: convert unwritten status of reverse mappings for shared files
xfs: use interval query for rmap alloc operations on shared files
xfs: add shared rmap map/unmap/convert log item types
xfs: increase log reservations for reflink
...
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
Pull vfs xattr updates from Al Viro:
"xattr stuff from Andreas
This completes the switch to xattr_handler ->get()/->set() from
->getxattr/->setxattr/->removexattr"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Remove {get,set,remove}xattr inode operations
xattr: Stop calling {get,set,remove}xattr inode operations
vfs: Check for the IOP_XATTR flag in listxattr
xattr: Add __vfs_{get,set,remove}xattr helpers
libfs: Use IOP_XATTR flag for empty directory handling
vfs: Use IOP_XATTR flag for bad-inode handling
vfs: Add IOP_XATTR inode operations flag
vfs: Move xattr_resolve_name to the front of fs/xattr.c
ecryptfs: Switch to generic xattr handlers
sockfs: Get rid of getxattr iop
sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
kernfs: Switch to generic xattr handlers
hfs: Switch to generic xattr handlers
jffs2: Remove jffs2_{get,set,remove}xattr macros
xattr: Remove unnecessary NULL attribute name check
We need to splice COW blocks we've completed in xfs_end_io_direct_write
into the data fork before converting unwritten extents. Otherwise
xfs_bmapi_write might first allocate blocks for any holes in the data
fork, which isn't only not needed but also harmful as it might cause
reserved block underruns in the transaction.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull splice fixups from Al Viro:
"A couple of fixups for interaction of pipe-backed iov_iter with
O_DIRECT reads + constification of a couple of primitives in uio.h
missed by previous rounds.
Kudos to davej - his fuzzing has caught those bugs"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
[btrfs] fix check_direct_IO() for non-iovec iterators
constify iov_iter_count() and iter_is_iovec()
fix ITER_PIPE interaction with direct_IO
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
by making sure we call iov_iter_advance() on original
iov_iter even if direct_IO (done on its copy) has returned 0.
It's a no-op for old iov_iter flavours and does the right thing
(== truncation of the stuff we'd allocated, but not filled) in
ITER_PIPE case. Failures (e.g. -EIO) get caught and dealt with
by cleanup in generic_file_read_iter().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The error handling in xfs_refcount_recover_cow_leftovers is confused
and can potentially leak memory, so rework it to release resources
correctly on error.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since we can only turn on the rt flag if there are no data extents,
we can safely turn off the reflink flag if the rt flag is being
turned on.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Eric Sandeen reported a gcc complaint about uninitialized error
variables, so fix that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since we don't unlock anything on the way out, change the label.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that fallocate has an explicit unshare flag again, let's try
to remove the inode reflink flag whenever the user unshares any
part of a file since checking is cheap compared to the CoW.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The loop in _reflink_clear_inode_flag isn't necessary since we
jump out if any part of any extent is shared. Remove the loop
and we no longer need two maps, so we can save some stack use.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There are a couple of places where we don't check the inode's
reflink flag before calling into the reflink code. Fix those,
and add some asserts so we don't make this mistake again.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Merge updates from Andrew Morton:
- fsnotify updates
- ocfs2 updates
- all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (127 commits)
console: don't prefer first registered if DT specifies stdout-path
cred: simpler, 1D supplementary groups
CREDITS: update Pavel's information, add GPG key, remove snail mail address
mailmap: add Johan Hovold
.gitattributes: set git diff driver for C source code files
uprobes: remove function declarations from arch/{mips,s390}
spelling.txt: "modeled" is spelt correctly
nmi_backtrace: generate one-line reports for idle cpus
arch/tile: adopt the new nmi_backtrace framework
nmi_backtrace: do a local dump_stack() instead of a self-NMI
nmi_backtrace: add more trigger_*_cpu_backtrace() methods
min/max: remove sparse warnings when they're nested
Documentation/filesystems/proc.txt: add more description for maps/smaps
mm, proc: fix region lost in /proc/self/smaps
proc: fix timerslack_ns CAP_SYS_NICE check when adjusting self
proc: add LSM hook checks to /proc/<tid>/timerslack_ns
proc: relax /proc/<tid>/timerslack_ns capability requirements
meminfo: break apart a very long seq_printf with #ifdefs
seq/proc: modify seq_put_decimal_[u]ll to take a const char *, not char
proc: faster /proc/*/status
...
These inode operations are no longer used; remove them.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
To support DAX pmd mappings with unmodified applications, filesystems
need to align an mmap address by the pmd size.
Call thp_get_unmapped_area() from f_op->get_unmapped_area.
Note, there is no change in behavior for a non-DAX file.
Link: http://lkml.kernel.org/r/1472497881-9323-3-git-send-email-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull VFS splice updates from Al Viro:
"There's a bunch of branches this cycle, both mine and from other folks
and I'd rather send pull requests separately.
This one is the conversion of ->splice_read() to ITER_PIPE iov_iter
(and introduction of such). Gets rid of a lot of code in fs/splice.c
and elsewhere; there will be followups, but these are for the next
cycle... Some pipe/splice-related cleanups from Miklos in the same
branch as well"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
pipe: fix comment in pipe_buf_operations
pipe: add pipe_buf_steal() helper
pipe: add pipe_buf_confirm() helper
pipe: add pipe_buf_release() helper
pipe: add pipe_buf_get() helper
relay: simplify relay_file_read()
switch default_file_splice_read() to use of pipe-backed iov_iter
switch generic_file_splice_read() to use of ->read_iter()
new iov_iter flavour: pipe-backed
fuse_dev_splice_read(): switch to add_to_pipe()
skb_splice_bits(): get rid of callback
new helper: add_to_pipe()
splice: lift pipe_lock out of splice_to_pipe()
splice: switch get_iovec_page_array() to iov_iter
splice_to_pipe(): don't open-code wakeup_pipe_readers()
consistent treatment of EFAULT on O_DIRECT read/write
Implement swapext for filesystems that have reverse mapping. Back in
the reflink patches, we augmented the bmap code with a 'REMAP' flag
that updates only the bmbt and doesn't touch the allocator and
implemented log redo items for those two operations. Now we can
rewrite extent swapping as a (looong) series of remap operations.
This is far less efficient than the fork swapping method implemented
in the past, so we only switch this on for rmap.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Refactor the swapext function to pull out the fork swapping piece
into a separate function. In the next patch we'll add in the bit
we need to make it work with rmap filesystems.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Replace structure typedefs with struct expressions and fix some
whitespace issues that result.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add the reflink feature flag to the set of recognized feature flags.
This enables users to write to reflink filesystems.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an error injection point that enables us to simulate being
critically low on per-AG block reservations. This should enable us to
simulate this specific ENOSPC condition so that we can test falling back
to a regular file copy.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since we don't have a strategy for handling both DAX and reflink,
for now we'll just prohibit both being set at the same time.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We don't support sharing blocks on the realtime device. Flag inodes
with the reflink or cowextsize flags set when the reflink feature is
disabled.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If the admin doesn't set a CoW extent size or a regular extent size
hint, default to creating CoW reservations 32 blocks long to reduce
fragmentation.
Signed-off-by: DarricK J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide a function to convert an unwritten extent to a real one and
vice versa when shared extents are possible.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When it's possible for reverse mappings to overlap (data fork extents
of files on reflink filesystems), use the interval query function to
find the left neighbor of an extent we're trying to add; and be
careful to use the lookup functions to update the neighbors and/or
add new extents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wire up some rmap log redo item type codes to map, unmap, or convert
shared data block extents. The actual log item recovery comes in a
later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Increase the log reservations to handle the increased rolling that
happens at the end of copy-on-write operations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Trim CoW reservations made on behalf of a cowextsz hint if they get too
old or we run low on quota, so long as we don't have dirty data awaiting
writeback or directio operations in progress.
Garbage collection of the cowextsize extents are kept separate from
prealloc extent reaping because setting the CoW prealloc lifetime to a
(much) higher value than the regular prealloc extent lifetime has been
useful for combatting CoW fragmentation on VM hosts where the VMs
experience bursty write behaviors and we can keep the utilization ratios
low enough that we don't start to run out of space. IOWs, it benefits
us to keep the CoW fork reservations around for as long as we can unless
we run out of blocks or hit inode reclaim.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Prior to the introduction of reflink, allocating a block and mapping
it into a file was performed in a single transaction with a single
block reservation, and the allocator was supposed to find enough
blocks to allocate the extent and any BMBT blocks that might be
necessary (unless we're low on space).
However, due to the way copy on write works, allocation and mapping
have been split into two transactions, which means that we must be
able to handle the case where we allocate an extent for CoW but that
AG runs out of free space before the blocks can be mapped into a file,
and the mapping requires a new BMBT block. When this happens, look in
one of the other AGs for a BMBT block instead of taking the FS down.
The same applies to the functions that convert a data fork to extents
and later btree format.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If the AG free space is down to the reserves, refuse to reflink our
way out of space. Hopefully userspace will make a real copy and/or go
elsewhere.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To gracefully handle the situation where a CoW operation turns a
single refcount extent into a lot of tiny ones and then run out of
space when a tree split has to happen, use the per-AG reserved block
pool to pre-allocate all the space we'll ever need for a maximal
btree. For a 4K block size, this only costs an overhead of 0.3% of
available disk space.
When reflink is enabled, we have an unfortunate problem with rmap --
since we can share a block billions of times, this means that the
reverse mapping btree can expand basically infinitely. When an AG is
so full that there are no free blocks with which to expand the rmapbt,
the filesystem will shut down hard.
This is rather annoying to the user, so use the AG reservation code to
reserve a "reasonable" amount of space for rmap. We'll prevent
reflinks and CoW operations if we think we're getting close to
exhausting an AG's free space rather than shutting down, but this
permanent reservation should be enough for "most" users. Hopefully.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch@lst.de: ensure that we invalidate the freed btree buffer]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Create a per-inode extent size allocator hint for copy-on-write. This
hint is separate from the existing extent size hint so that CoW can
take advantage of the fragmentation-reducing properties of extent size
hints without disabling delalloc for regular writes.
The extent size hint that's fed to the allocator during a copy on
write operation is the greater of the cowextsize and regular extsize
hint.
During reflink, if we're sharing the entire source file to the entire
destination file and the destination file doesn't already have a
cowextsize hint, propagate the source file's cowextsize hint to the
destination file.
Furthermore, zero the bulkstat buffer prior to setting the fields
so that we don't copy kernel memory contents into userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Unshare all shared extents if the user calls fallocate with the new
unshare mode flag set, so that we can guarantee that a subsequent
write will not ENOSPC.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: pass inode instead of file to xfs_reflink_dirty_range,
use iomap infrastructure for copy up]
Signed-off-by: Christoph Hellwig <hch@lst.de>
When we're swapping the extents of two inodes, be sure to swap the
reflink inode flag too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Teach xfs_getbmapx how to report shared extents and CoW fork contents
accurately in the bmap output by querying the refcount btree
appropriately.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Define a VFS function which allows userspace to request that the
kernel reflink a range of blocks between two files if the ranges'
contents match. The function fits the new VFS ioctl that standardizes
the checking for the btrfs EXTENT SAME ioctl.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Define two VFS functions which allow userspace to reflink a range of
blocks between two files or to reflink one file's contents to another.
These functions fit the new VFS ioctls that standardize the checking
for the btrfs CLONE and CLONE RANGE ioctls.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reflink extents from one file to another; that is to say, iteratively
remove the mappings from the destination file, copy the mappings from
the source file to the destination file, and increment the reference
count of all the blocks that got remapped.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way the CoW algorithm in XFS works, there's an interval
during which blocks allocated to handle a CoW can be lost -- if the FS
goes down after the blocks are allocated but before the block
remapping takes place. This is exacerbated by the cowextsz hint --
allocated reservations can sit around for a while, waiting to get
used.
Since the refcount btree doesn't normally store records with refcount
of 1, we can use it to record these in-progress extents. In-progress
blocks cannot be shared because they're not user-visible, so there
shouldn't be any conflicts with other programs. This is a better
solution than holding EFIs during writeback because (a) EFIs can't be
relogged currently, (b) even if they could, EFIs are bound by
available log space, which puts an unnecessary upper bound on how much
CoW we can have in flight, and (c) we already have a mechanism to
track blocks.
At mount time, read the refcount records and free anything we find
with a refcount of 1 because those were in-progress when the FS went
down.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When destroying the inode, cancel all pending reservations in the CoW
fork so that all the reserved blocks go back to the free pile. In
theory this sort of cleanup is only needed to clean up after write
errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we're freeing blocks (truncate, punch, etc.), clear all CoW
reservations in the range being freed. If the file block count
drops to zero, also clear the inode reflink flag.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
For O_DIRECT writes to shared blocks, we have to CoW them just like
we would with buffered writes. For writes that are not block-aligned,
just bounce them to the page cache.
For block-aligned writes, however, we can do better than that. Use
the same mechanisms that we employ for buffered CoW to set up a
delalloc reservation, allocate all the blocks at once, issue the
writes against the new blocks and use the same ioend functions to
remap the blocks after the write. This should be fairly performant.
Christoph discovered that xfs_reflink_allocate_cow_range may stumble
over invalid entries in the extent array given that it drops the ilock
but still expects the index to be stable. Simple fixing it to a new
lookup for every iteration still isn't correct given that
xfs_bmapi_allocate will trigger a BUG_ON() if hitting a hole, and
there is nothing preventing a xfs_bunmapi_cow call removing extents
once we dropped the ilock either.
This patch duplicates the inner loop of xfs_bmapi_allocate into a
helper for xfs_reflink_allocate_cow_range so that it can be done under
the same ilock critical section as our CoW fork delayed allocation.
The directio CoW warts will be revisited in a later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Report shared extents through the iomap interface so that FIEMAP flags
shared blocks accurately. Have xfs_vm_bmap return zero for reflinked
files because the bmap-based swap code requires static block mappings,
which is incompatible with copy on write.
NOTE: Existing userspace bmap users such as lilo will have the same
problem with reflink files.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After the write component of a copy-write operation finishes, clean up
the bookkeeping left behind. On error, we simply free the new blocks
and pass the error up. If we succeed, however, then we must remove
the old data fork mapping and move the cow fork mapping to the data
fork.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: Call the CoW failure function during xfs_cancel_ioend]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Create a helper method to remove extents from the CoW fork without
any of the side effects (rmapbt/bmbt updates) of the regular extent
deletion routine. We'll eventually use this to clear out the CoW fork
during ioend processing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Modify the writepage handler to find and convert pending delalloc
extents to real allocations. Furthermore, when we're doing non-cow
writes to a part of a file that already has a CoW reservation (the
cowextsz hint that we set up in a subsequent patch facilitates this),
promote the write to copy-on-write so that the entire extent can get
written out as a single extent on disk, thereby reducing post-CoW
fragmentation.
Christoph moved the CoW support code in _map_blocks to a separate helper
function, refactored other functions, and reduced the number of CoW fork
lookups, so I merged those changes here to reduce churn.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Modify xfs_bmap_add_extent_delay_real() so that we can convert delayed
allocation extents in the CoW fork to real allocations, and wire this
up all the way back to xfs_iomap_write_allocate(). In a subsequent
patch, we'll modify the writepage handler to call this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wire up iomap_begin to detect shared extents and create delayed allocation
extents in the CoW fork:
1) Check if we already have an extent in the COW fork for the area.
If so nothing to do, we can move along.
2) Look up block number for the current extent, and if there is none
it's not shared move along.
3) Unshare the current extent as far as we are going to write into it.
For this we avoid an additional COW fork lookup and use the
information we set aside in step 1) above.
4) Goto 1) unless we've covered the whole range.
Last but not least, this updates the xfs_reflink_reserve_cow_range calling
convention to pass a byte offset and length, as that is what both callers
expect anyway. This patch has been refactored considerably as part of the
iomap transition.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Allow the creation of delayed allocation extents in the CoW fork. In
a subsequent patch we'll wire up iomap_begin to actually do this via
reflink helper functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Introduce a new in-core fork for storing copy-on-write delalloc
reservations and allocated extents that are in the process of being
written out.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Only non-rt files can be reflinked, so check that when we load an
inode. Also, don't leak the attr fork if there's a failure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Report the reflink feature in the XFS geometry so that xfs_info and
friends know the filesystem has this feature.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Define all the tracepoints we need to inspect the runtime operation
of reflink/dedupe/copy-on-write.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Return the range of file blocks that bunmapi didn't free. This hint
is used by CoW and reflink to figure out what part of an extent
actually got freed so that it can set up the appropriate atomic
remapping of just the freed range.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Log recovery will iget an inode to replay BUI items and iput the inode
when it's done. Unfortunately, if the inode was unlinked, the iput
will see that i_nlink == 0 and decide to truncate & free the inode,
which prevents us from replaying subsequent BUIs. We can't skip the
BUIs because we have to replay all the redo items to ensure that
atomic operations complete.
Since unlinked inode recovery will reap the inode anyway, we can
safely introduce a new inode flag to indicate that an inode is in this
'unlinked recovery' state and should not be auto-reaped in the
drop_inode path.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Implement deferred versions of the inode block map/unmap functions.
These will be used in subsequent patches to make reflink operations
atomic.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pass BMAPI_ flags from bunmapi into bmap_del_extent and extend
BMAPI_REMAP (which means "don't touch the allocator or the quota
accounting") to apply to bunmapi as well. This will be used to
implement the unmap operation, which will be used by swapext.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Teach the bmap routine to know how to map a range of file blocks to a
specific range of physical blocks, instead of simply allocating fresh
blocks. This enables reflink to map a file to blocks that are already
in use.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide a mechanism for higher levels to create BUI/BUD items, submit
them to the log, and a stub function to deal with recovered BUI items.
These parts will be connected to the rmapbt in a later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create bmbt update intent/done log items to record redo information in
the log. Because we roll transactions multiple times for reflink
operations, we also have to track the status of the metadata updates
that will be recorded in the post-roll transactions in case we crash
before committing the final transaction. This mechanism enables log
recovery to finish what was already started.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
These functions will be used by the other reflink functions to find
the maximum length of a range of shared blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.coM>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reduce the max AG usable space size so that we always have space for
the refcount btree root.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Identify refcountbt blocks in the log correctly so that we can
validate them during log recovery.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we're unmapping blocks from a reflinked file, decrease the
refcount of the affected blocks and free the extents that are no
longer in use.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Plumb in the upper level interface to schedule and finish deferred
refcount operations via the deferred ops mechanism.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide functions to adjust the reference counts for an extent of
physical blocks stored in the refcount btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Provide a mechanism for higher levels to create CUI/CUD items, submit
them to the log, and a stub function to deal with recovered CUI items.
These parts will be connected to the refcountbt in a later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create refcount update intent/done log items to record redo
information in the log. Because we need to roll transactions between
updating the bmbt mapping and updating the reverse mapping, we also
have to track the status of the metadata updates that will be recorded
in the post-roll transactions, just in case we crash before committing
the final transaction. This mechanism enables log recovery to finish
what was already started.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Implement the generic btree operations required to manipulate refcount
btree blocks. The implementation is similar to the bmapbt, though it
will only allocate and free blocks from the AG.
Since the refcount root and level fields are separate from the
existing roots and levels array, they need a separate logging flag.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: fix logging of AGF refcount btree fields]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Every time we allocate or free a data extent, we might need to split
the refcount btree. Reserve some blocks in the transaction to handle
this possibility. Even though the deferred refcount code can roll a
transaction to avoid overloading the transaction, we can still exceed
the reservation.
Certain pathological workloads (1k blocks, no cowextsize hint, random
directio writes), cause a perfect storm wherein a refcount adjustment
of a large range of blocks causes full tree splits in two separate
extents in two separate refcount tree blocks; allocating new refcount
tree blocks causes rmap btree splits; and all the allocation activity
causes the freespace btrees to split, blowing the reservation.
(Reproduced by generic/167 over NFS atop XFS)
Signed-off-by: Christoph Hellwig <hch@lst.de>
[darrick.wong@oracle.com: add commit message]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Modify the growfs code to initialize new refcount btree blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Start constructing the refcount btree implementation by establishing
the on-disk format and everything needed to read, write, and
manipulate the refcount btree blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since XFS reserves a small amount of space in each AG as the minimum
free space needed for an operation, save some more space in case we
touch the refcount btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add new per-AG refcount btree definitions to the per-AG structures.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Define all the tracepoints we need to inspect the refcount btree
runtime operation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If the size of an inline directory is so small that it doesn't
even cover the required header size, return an error to userspace
instead of ASSERTing and returning 0 like everything's ok.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
After the call to __blkdev_direct_IO the final reference to the file
might have been dropped by aio_complete already, and the call to
file_accessed might cause a use after free.
Instead update the access time before the I/O, similar to how we
update the time stamps before writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-and-tested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.
Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Log recovery has particular rules around buffer submission along with
tricky corner cases where independent transactions can share an LSN. As
such, it can be difficult to follow when/why buffers are submitted
during recovery.
Add a couple tracepoints to post the current LSN of a record when a new
record is being processed and when a buffer is being skipped due to LSN
ordering. Also, update the recover item class to include the LSN of the
current transaction for the item being processed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Log recovery is currently broken for v5 superblocks in that it never
updates the metadata LSN of buffers written out during recovery. The
metadata LSN is recorded in various bits of metadata to provide recovery
ordering criteria that prevents transient corruption states reported by
buffer write verifiers. Without such ordering logic, buffer updates can
be replayed out of order and lead to false positive transient corruption
states. This is generally not a corruption vector on its own, but
corruption detection shuts down the filesystem and ultimately prevents a
mount if it occurs during log recovery. This requires an xfs_repair run
that clears the log and potentially loses filesystem updates.
This problem is avoided in most cases as metadata writes during normal
filesystem operation update the metadata LSN appropriately. The problem
with log recovery not updating metadata LSNs manifests if the system
happens to crash shortly after log recovery itself. In this scenario, it
is possible for log recovery to complete all metadata I/O such that the
filesystem is consistent. If a crash occurs after that point but before
the log tail is pushed forward by subsequent operations, however, the
next mount performs the same log recovery over again. If a buffer is
updated multiple times in the dirty range of the log, an earlier update
in the log might not be valid based on the current state of the
associated buffer after all of the updates in the log had been replayed
(before the previous crash). If a verifier happens to detect such a
problem, the filesystem claims corruption and immediately shuts down.
This commonly manifests in practice as directory block verifier failures
such as the following, likely due to directory verifiers being
particularly detailed in their checks as compared to most others:
...
Mounting V5 Filesystem
XFS (dm-0): Starting recovery (logdev: internal)
XFS (dm-0): Internal error XFS_WANT_CORRUPTED_RETURN at line ... of \
file fs/xfs/libxfs/xfs_dir2_data.c. Caller xfs_dir3_data_verify ...
...
Update log recovery to update the metadata LSN of recovered buffers.
Since metadata LSNs are already updated by write verifer functions via
attached log items, attach a dummy log item to the buffer during
validation and explicitly set the LSN of the current transaction. This
ensures that the metadata LSN of a buffer is updated based on whether
the recovery I/O actually completes, and if so, that subsequent recovery
attempts identify that the buffer is already up to date with respect to
the current transaction.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The log recovery buffer validation function is invoked in cases where a
buffer update may be skipped due to LSN ordering. If the validation
function happens to come across directory conversion situations (e.g., a
dir3 block to data conversion), it may warn about seeing a buffer log
format of one type and a buffer with a magic number of another.
This warning is not valid as the buffer update is ultimately skipped.
This is indicated by a current_lsn of NULLCOMMITLSN provided by the
caller. As such, update xlog_recover_validate_buf_type() to only warn in
such cases when a buffer update is expected.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The current LSN must be available to the buffer validation function to
provide the ability to update the metadata LSN of the buffer. Pass the
current_lsn value down to xlog_recover_validate_buf_type() in
preparation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The fix to log recovery to update the metadata LSN in recovered buffers
introduces the requirement that a buffer is submitted only once per
current LSN. Log recovery currently submits buffers on transaction
boundaries. This is not sufficient as the abstraction between log
records and transactions allows for various scenarios where multiple
transactions can share the same current LSN. If independent transactions
share an LSN and both modify the same buffer, log recovery can
incorrectly skip updates and leave the filesystem in an inconsisent
state.
In preparation for proper metadata LSN updates during log recovery,
update log recovery to submit buffers for write on LSN change boundaries
rather than transaction boundaries. Explicitly track the current LSN in
a new struct xlog field to handle the various corner cases of when the
current LSN may or may not change.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Recently we've had a number of reports where log recovery on a v5
filesystem has reported corruptions that looked to be caused by
recovery being re-run over the top of an already-recovered
metadata. This has uncovered a bug in recovery (fixed elsewhere)
but the vector that caused this was largely unknown.
A kdump test started tripping over this problem - the system
would be crashed, the kdump kernel and environment would boot and
dump the kernel core image, and then the system would reboot. After
reboot, the root filesystem was triggering log recovery and
corruptions were being detected. The metadumps indicated the above
log recovery issue.
What is happening is that the kdump kernel and environment is
mounting the root device read-only to find the binaries needed to do
it's work. The result of this is that it is running log recovery.
However, because there were unlinked files and EFIs to be processed
by recovery, the completion of phase 1 of log recovery could not
mark the log clean. And because it's a read-only mount, the unmount
process does not write records to the log to mark it clean, either.
Hence on the next mount of the filesystem, log recovery was run
again across all the metadata that had already been recovered and
this is what triggered corruption warnings.
To avoid this problem, we need to ensure that a read-only mount
always updates the log when it completes the second phase of
recovery. We already handle this sort of issue with rw->ro remount
transitions, so the solution is as simple as quiescing the
filesystem at the appropriate time during the mount process. This
results in the log being marked clean so the mount behaviour
recorded in the logs on repeated RO mounts will change (i.e. log
recovery will no longer be run on every mount until a RW mount is
done). This is a user visible change in behaviour, but it is
harmless.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When adding a new remote attribute, we write the attribute to the
new extent before the allocation transaction is committed. This
means we cannot reuse busy extents as that violates crash
consistency semantics. Hence we currently treat remote attribute
extent allocation like userdata because it has the same overwrite
ordering constraints as userdata.
Unfortunately, this also allows the allocator to incorrectly apply
extent size hints to the remote attribute extent allocation. This
results in interesting failures, such as transaction block
reservation overruns and in-memory inode attribute fork corruption.
To fix this, we need to separate the busy extent reuse configuration
from the userdata configuration. This changes the definition of
XFS_BMAPI_METADATA slightly - it now means that allocation is
metadata and reuse of busy extents is acceptible due to the metadata
ordering semantics of the journal. If this flag is not set, it
means the allocation is that has unordered data writeback, and hence
busy extent reuse is not allowed. It no longer implies the
allocation is for user data, just that the data write will not be
strictly ordered. This matches the semantics for both user data
and remote attribute block allocation.
As such, This patch changes the "userdata" field to a "datatype"
field, and adds a "no busy reuse" flag to the field.
When we detect an unordered data extent allocation, we immediately set
the no reuse flag. We then set the "user data" flags based on the
inode fork we are allocating the extent to. Hence we only set
userdata flags on data fork allocations now and consider attribute
fork remote extents to be an unordered metadata extent.
The result is that remote attribute extents now have the expected
allocation semantics, and the data fork allocation behaviour is
completely unchanged.
It should be noted that there may be other ways to fix this (e.g.
use ordered metadata buffers for the remote attribute extent data
write) but they are more invasive and difficult to validate both
from a design and implementation POV. Hence this patch takes the
simple, obvious route to fixing the problem...
Reported-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
To avoid clearing of capabilities or security related extended
attributes too early, inode_change_ok() will need to take dentry instead
of inode. Propagate dentry down to functions calling inode_change_ok().
This is rather straightforward except for xfs_set_mode() function which
does not have dentry easily available. Luckily that function does not
call inode_change_ok() anyway so we just have to do a little dance with
function prototypes.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
When file permissions are modified via chmod(2) and the user is not in
the owning group or capable of CAP_FSETID, the setgid bit is cleared in
inode_change_ok(). Setting a POSIX ACL via setxattr(2) sets the file
permissions as well as the new ACL, but doesn't clear the setgid bit in
a similar way; this allows to bypass the check in chmod(2). Fix that.
References: CVE-2016-7097
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Another users of buffer_heads bytes the dust.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rename the current function to __xfs_setfilesize and add a non-static
wrapper that also takes care of creating the transaction. This new
helper will be used by the new iomap-based DAX path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We always just read the extent first, and will later lock exlusively
after first dropping the lock in case we actually allocate blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>