The rcu_expedited and rcu_normal variables are used only by sysctl
and kernel/rcu/update.c, so it does not make sense to their extern
declarations in rcupdate.h. This commit therefore moves these
extern declarations to update.c.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The include/linux/rcupdate.h file is included by more than 200
files, so shrinking it should provide some build-time benefits.
This commit therefore moves several docbook comments from rcupdate.h to
kernel/rcu/update.c, kernel/rcu/tree.c, and kernel/rcu/tree_plugin.h, thus
reducing the number of times that the compiler has to scan these comments.
This likely provides only a small benefit, but every little bit helps.
This commit also fixes a malformed bulleted list noted by the 0day
Test Robot.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Wait/wakeup operations do not guarantee ordering on their own. Instead,
either locking or memory barriers are required. This commit therefore
adds memory barriers to wake_nocb_leader() and nocb_leader_wait().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Krister Johansen <kjlx@templeofstupid.com>
Cc: <stable@vger.kernel.org> # 4.6.x
The RCU_NOGP_WAKE_NOT, RCU_NOGP_WAKE, and RCU_NOGP_WAKE_FORCE flags
are used to mediate wakeups for the no-CBs CPU kthreads. The "NOGP"
really doesn't make any sense, so this commit does s/NOGP/NOCB/.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, doing synchronize_rcu_mult(call_rcu, call_rcu) might
(or might not) wait for two RCU grace periods. One approach is
of course "don't do that!", but in CONFIG_PREEMPT=n kernels,
synchronize_rcu_mult(call_rcu, call_rcu_sched) does exactly that.
This results in an ugly #ifdef in sched_cpu_deactivate().
This commit therefore makes __wait_rcu_gp() check for duplicates,
which in turn allows duplicates to be passed to synchronize_rcu_mult()
without risk of waiting twice on the same type of grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds DEBUG_OBJECTS_RCU_HEAD checking to detect call_srcu()
counterparts to double-free bugs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In Tiny SRCU, __srcu_read_lock() is a trivial function, outweighed by
its EXPORT_SYMBOL_GPL(), and on many architectures, its call sequence.
This commit therefore moves it to srcutiny.h so that it can be inlined.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Comments can be helpful, but assertions carry more force. This commit
therefore adds lockdep_assert_held() and RCU_LOCKDEP_WARN() calls to
enforce lock-held and interrupt-disabled preconditions.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Comments can be helpful, but assertions carry more force. This
commit therefore adds lockdep_assert_held() and RCU_LOCKDEP_WARN()
calls to enforce lock-held and interrupt-disabled preconditions.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit makes srcu_bootup_announce() check for non-default values
of the auto-expedite holdoff time exp_holdoff and print a message if so.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because exp_holdoff is not used outside of srcutree.c, it can be static.
This commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit updates rcu_bootup_announce_oddness() to check additional
Kconfig options and module/boot parameters.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a rcupdate_announce_bootup_oddness() function to
print out non-default values of significant kernel boot parameter
settings to aid in debugging.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds WARN_ON_ONCE() calls that trigger if either
rcu_sched_qs() or rcu_bh_qs() are invoked with preemption enabled.
In the immortal words of Peter Zijlstra: "these are much harder to ignore
than comments".
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a writer_holdoff boot parameter to rcuperf, which is
intended to be used to test Tree SRCU's auto-expediting. This
boot parameter is in microseconds, and defaults to zero (that is,
disabled). Set it to a bit larger than srcutree.exp_holdoff,
keeping the nanosecond/microsecond conversion, to force Tree SRCU
to auto-expedite more aggressively.
This commit also adds documentation for this parameter, and fixes some
alphabetization while in the neighborhood.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Common-case use of rcuperf must set rcuperf.nreaders=0 and if not built
as a module, rcuperf.shutdown. This commit therefore sets the default
for rcuperf.nreaders to zero and sets the default for rcuperf.shutdown
to zero if rcuperf is built as a module and to one otherwise.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit rearranges Tiny SRCU's srcu_struct structure, substitutes
u8 for bool, and shrinks counters down to short.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the only way to tell whether a given kernel is running
Classic, Tiny, or Tree SRCU is to look at the .config file, which
can easily be lost or associated with the wrong kernel. This commit
therefore has Classic and Tree SRCU identify themselves at boot time.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a perf_type of "srcud", which species that rcuperf
test SRCU on a dynamically initialized srcu_struct.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The sync_rcu_preempt_exp_done() function returns a logical expression,
but its return type is nevertheless int. This commit therefore changes
the return type to bool.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit upgrades rcuperf so that it can do performance testing on
asynchronous grace-period primitives such as call_srcu(). There is
a new rcuperf.gp_async module parameter that specifies this new behavior,
with the pre-existing rcuperf.gp_exp testing expedited grace periods such as
synchronize_rcu_expedited, and with the default being to test synchronous
non-expedited grace periods such as synchronize_rcu().
There is also a new rcuperf.gp_async_max module parameter that specifies
the maximum number of outstanding callbacks per writer kthread, defaulting
to 1,000. When this limit is exceeded, the writer thread invokes the
appropriate flavor of rcu_barrier() to wait for callbacks to drain.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Removed the redundant initialization noted by Arnd Bergmann. ]
The synchronize_kernel() primitive was removed in favor of
synchronize_sched() more than a decade ago, and it seems likely that
rather few kernel hackers are familiar with it. Its continued presence
is therefore providing more confusion than enlightenment. This commit
therefore removes the reference from the synchronize_sched() header
comment, and adds the corresponding information to the synchronize_rcu(0
header comment.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Current rcuperf startup checks to see if the user asked to measure
only expedited grace periods, yet constrained all grace periods to be
normal, or if the user asked to measure only normal grace periods, yet
constrained all grace periods to be expedited. Useless tests of this
sort are aborted.
Unfortunately, making RCU work through the mid-boot dead zone [1] puts
RCU into expedited-only mode during that zone. Which happens to also
be the exact time that rcuperf carries out the aforementioned check.
So if the user asks rcuperf to measure only normal grace periods (the
default), rcuperf will now always complain and terminate the test.
This commit therefore moves the checks to rcu_perf_cleanup(). This has
the disadvantage of failing to abort useless tests, but avoids the need to
create yet another kthread and the need to do fiddly checks involving the
holdoff time. (Yes, another approach is to do the checks in a late-stage
init function, but that would require some way to communicate badness
to rcuperf's kthreads, and seems not worth the bother.)
[1] https://lwn.net/Articles/716148/
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although preemptible RCU allows its read-side critical sections to be
preempted, general blocking is forbidden. The reason for this is that
excessive preemption times can be handled by CONFIG_RCU_BOOST=y, but a
voluntarily blocked task doesn't care how high you boost its priority.
Because preemptible RCU is a global mechanism, one ill-behaved reader
hurts everyone. Hence the prohibition against general blocking in
RCU-preempt read-side critical sections. Preemption yes, blocking no.
This commit enforces this prohibition.
There is a special exception for the -rt patchset (which they kindly
volunteered to implement): It is OK to block (as opposed to merely being
preempted) within an RCU-preempt read-side critical section, but only if
the blocking is subject to priority inheritance. This exception permits
CONFIG_RCU_BOOST=y to get -rt RCU readers out of trouble.
Why doesn't this exception also apply to mainline's rt_mutex? Because
of the possibility that someone does general blocking while holding
an rt_mutex. Yes, the priority boosting will affect the rt_mutex,
but it won't help with the task doing general blocking while holding
that rt_mutex.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Earlier versions of Tree SRCU were subject to a counter overflow bug that
could theoretically result in too-short grace periods. This commit
eliminates this problem by adding an update-side memory barrier.
The short explanation is that if the updater sums the unlock counts
too late to see a given __srcu_read_unlock() increment, that CPU's
next __srcu_read_lock() must see the new value of ->srcu_idx, thus
incrementing the other bank of counters. This eliminates the possibility
of destructive counter overflow as long as the srcu_read_lock() nesting
level does not exceed floor(ULONG_MAX/NR_CPUS/2), which should be an
eminently reasonable nesting limit, especially on 64-bit systems.
Reported-by: Lance Roy <ldr709@gmail.com>
Suggested-by: Lance Roy <ldr709@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently rcu_barrier() uses call_rcu() to enqueue new callbacks
on each CPU with a non-empty callback list. This works, but means
that rcu_barrier() forces grace periods that are not otherwise needed.
The key point is that rcu_barrier() never needs to wait for a grace
period, but instead only for all pre-existing callbacks to be invoked.
This means that rcu_barrier()'s new callbacks should be placed in
the callback-list segment containing the last pre-existing callback.
This commit makes this change using the new rcu_segcblist_entrain()
function.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting
down a guest running iperf on a VFIO assigned device. This happens
because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt
context, while a worker thread does the same inside kvm_set_irq(). If the
interrupt happens while the worker thread is executing __srcu_read_lock(),
updates to the Classic SRCU ->lock_count[] field or the Tree SRCU
->srcu_lock_count[] field can be lost.
The docs say you are not supposed to call srcu_read_lock() and
srcu_read_unlock() from irq context, but KVM interrupt injection happens
from (host) interrupt context and it would be nice if SRCU supported the
use case. KVM is using SRCU here not really for the "sleepable" part,
but rather due to its IPI-free fast detection of grace periods. It is
therefore not desirable to switch back to RCU, which would effectively
revert commit 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING",
2014-01-16).
However, the docs are overly conservative. You can have an SRCU instance
only has users in irq context, and you can mix process and irq context
as long as process context users disable interrupts. In addition,
__srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and
Classic SRCU. For those two implementations, only srcu_read_lock()
is unsafe.
When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(),
in commit 5a41344a3d ("srcu: Simplify __srcu_read_unlock() via
this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments.
Therefore it kept __this_cpu_inc(), with preempt_disable/enable in
the caller. Tree SRCU however only does one increment, so on most
architectures it is more efficient for __srcu_read_lock() to use
this_cpu_inc(), and any performance differences appear to be down in
the noise.
Cc: stable@vger.kernel.org
Fixes: 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING")
Reported-by: Linu Cherian <linuc.decode@gmail.com>
Suggested-by: Linu Cherian <linuc.decode@gmail.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting
down a guest running iperf on a VFIO assigned device. This happens
because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt
context, while a worker thread does the same inside kvm_set_irq(). If the
interrupt happens while the worker thread is executing __srcu_read_lock(),
updates to the Classic SRCU ->lock_count[] field or the Tree SRCU
->srcu_lock_count[] field can be lost.
The docs say you are not supposed to call srcu_read_lock() and
srcu_read_unlock() from irq context, but KVM interrupt injection happens
from (host) interrupt context and it would be nice if SRCU supported the
use case. KVM is using SRCU here not really for the "sleepable" part,
but rather due to its IPI-free fast detection of grace periods. It is
therefore not desirable to switch back to RCU, which would effectively
revert commit 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING",
2014-01-16).
However, the docs are overly conservative. You can have an SRCU instance
only has users in irq context, and you can mix process and irq context
as long as process context users disable interrupts. In addition,
__srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and
Classic SRCU. For those two implementations, only srcu_read_lock()
is unsafe.
When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(),
in commit 5a41344a3d ("srcu: Simplify __srcu_read_unlock() via
this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments.
Therefore it kept __this_cpu_inc(), with preempt_disable/enable in
the caller. Tree SRCU however only does one increment, so on most
architectures it is more efficient for __srcu_read_lock() to use
this_cpu_inc(), and any performance differences appear to be down in
the noise.
Unlike Classic and Tree SRCU, Tiny SRCU does increments and decrements on
a single variable. Therefore, as Peter Zijlstra pointed out, Tiny SRCU's
implementation already supports mixed-context use of srcu_read_lock()
and srcu_read_unlock(), at least as long as uses of srcu_read_lock()
and srcu_read_unlock() in each handler are nested and paired properly.
In other words, it is still illegal to (say) invoke srcu_read_lock()
in an interrupt handler and to invoke the matching srcu_read_unlock()
in a softirq handler. Therefore, the only change required for Tiny SRCU
is to its comments.
Fixes: 719d93cd5f ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING")
Reported-by: Linu Cherian <linuc.decode@gmail.com>
Suggested-by: Linu Cherian <linuc.decode@gmail.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paolo Bonzini <pbonzini@redhat.com>
Pull RCU updates from Ingo Molnar:
"The main changes are:
- Debloat RCU headers
- Parallelize SRCU callback handling (plus overlapping patches)
- Improve the performance of Tree SRCU on a CPU-hotplug stress test
- Documentation updates
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
rcu: Open-code the rcu_cblist_n_lazy_cbs() function
rcu: Open-code the rcu_cblist_n_cbs() function
rcu: Open-code the rcu_cblist_empty() function
rcu: Separately compile large rcu_segcblist functions
srcu: Debloat the <linux/rcu_segcblist.h> header
srcu: Adjust default auto-expediting holdoff
srcu: Specify auto-expedite holdoff time
srcu: Expedite first synchronize_srcu() when idle
srcu: Expedited grace periods with reduced memory contention
srcu: Make rcutorture writer stalls print SRCU GP state
srcu: Exact tracking of srcu_data structures containing callbacks
srcu: Make SRCU be built by default
srcu: Fix Kconfig botch when SRCU not selected
rcu: Make non-preemptive schedule be Tasks RCU quiescent state
srcu: Expedite srcu_schedule_cbs_snp() callback invocation
srcu: Parallelize callback handling
kvm: Move srcu_struct fields to end of struct kvm
rcu: Fix typo in PER_RCU_NODE_PERIOD header comment
rcu: Use true/false in assignment to bool
rcu: Use bool value directly
...
Because the rcu_cblist_n_lazy_cbs() just samples the ->len_lazy counter,
and because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_n_lazy_cbs(p) as p->len_lazy, cutting out
a level of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Because the rcu_cblist_n_cbs() just samples the ->len counter, and
because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_n_cbs(p) as p->len, cutting out a level
of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Because the rcu_cblist_empty() just samples the ->head pointer, and
because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_empty(p) as !p->head, cutting out a
level of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
This commit creates a new kernel/rcu/rcu_segcblist.c file that
contains non-trivial segcblist functions. Trivial functions
remain as static inline functions in kernel/rcu/rcu_segcblist.h
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Linus noticed that the <linux/rcu_segcblist.h> has huge inline functions
which should not be inline at all.
As a first step in cleaning this up, move them all to kernel/rcu/ and
only keep an absolute minimum of data type defines in the header:
before: -rw-r--r-- 1 mingo mingo 22284 May 2 10:25 include/linux/rcu_segcblist.h
after: -rw-r--r-- 1 mingo mingo 3180 May 2 10:22 include/linux/rcu_segcblist.h
More can be done, such as uninlining the large functions, which inlining
is unjustified even if it's an RCU internal matter.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The default value for the kernel boot parameter srcutree.exp_holdoff
is 50 microseconds, which is too long for good Tree SRCU performance
(compared to Classic SRCU) on the workloads tested by Mike Galbraith.
This commit therefore sets the default value to 25 microseconds, which
shows excellent results in Mike's testing.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
On small systems, in the absence of readers, expedited SRCU grace
periods can complete in less than a microsecond. This means that an
eight-CPU system can have all CPUs doing synchronize_srcu() in a tight
loop and almost always expedite. This might actually be desirable in
some situations, but in general it is a good way to needlessly burn
CPU cycles. And in those situations where it is desirable, your friend
is the function synchronize_srcu_expedited().
For other situations, this commit adds a kernel parameter that specifies
a holdoff between completing the last SRCU grace period and auto-expediting
the next. If the next grace period starts before the holdoff expires,
auto-expediting is disabled. The holdoff is 50 microseconds by default,
and can be tuned to the desired number of nanoseconds. A value of zero
disables auto-expediting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Classic SRCU in effect expedites the first synchronize_srcu() when SRCU
is idle, and Mike Galbraith demonstrated that some use cases do in fact
rely on this behavior. In particular, Mike showed that Steven Rostedt's
hotplug stress script takes 55 seconds with Classic SRCU and more than
16 -minutes- when running Tree SRCU. Assuming that each Tree SRCU's call
to synchronize_srcu() takes four milliseconds, this implies that Steven's
test invokes synchronize_srcu() in isolation, but more than once per
200 microseconds. Mike used ftrace to demonstrate that the time between
successive calls to synchronize_srcu() ranged from 118 to 342 microseconds,
with one outlier at 80 milliseconds. This data clearly indicates that
Tree SRCU needs to expedite the first invocation of synchronize_srcu()
during an SRCU idle period.
This commit therefor introduces a srcu_might_be_idle() function that
probabilistically checks whether or not SRCU is idle. This function is
used by synchronize_rcu() as an additional criterion in deciding whether
or not to expedite.
(Hat trick to Peter Zijlstra for his earlier suggestion that this might
in fact be a problem. Which for all I know might have motivated Mike to
look into it.)
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Commit f60d231a87 ("srcu: Crude control of expedited grace periods")
introduced a per-srcu_struct atomic counter to track outstanding
requests for grace periods. This works, but represents a memory-contention
bottleneck. This commit therefore uses the srcu_node combining tree
to remove this bottleneck.
This commit adds new ->srcu_gp_seq_needed_exp fields to the
srcu_data, srcu_node, and srcu_struct structures, which track the
farthest-in-the-future grace period that must be expedited, which in
turn requires that all nearer-term grace periods also be expedited.
Requests for expediting start with the srcu_data structure, run up
through the srcu_node tree, and end at the srcu_struct structure.
Note that it may be necessary to expedite a grace period that just
now started, and this is handled by a new srcu_funnel_exp_start()
function, which is invoked when the grace period itself is already
in its way, but when that grace period was not marked as expedited.
A new srcu_get_delay() function returns zero if there is at least one
expedited SRCU grace period in flight, or SRCU_INTERVAL otherwise.
This function is used to calculate delays: Normal grace periods
are allowed to extend in order to cover more requests with a given
grace-period computation, which decreases per-request overhead.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
In the past, SRCU was simple enough that there was little point in
making the rcutorture writer stall messages print the SRCU grace-period
number state. With the advent of Tree SRCU, this has changed. This
commit therefore makes Classic, Tiny, and Tree SRCU report this state
to rcutorture as needed.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
The current Tree SRCU implementation schedules a workqueue for every
srcu_data covered by a given leaf srcu_node structure having callbacks,
even if only one of those srcu_data structures actually contains
callbacks. This is clearly inefficient for workloads that don't feature
callbacks everywhere all the time. This commit therefore adds an array
of masks that are used by the leaf srcu_node structures to track exactly
which srcu_data structures contain callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Currently, a call to schedule() acts as a Tasks RCU quiescent state
only if a context switch actually takes place. However, just the
call to schedule() guarantees that the calling task has moved off of
whatever tracing trampoline that it might have been one previously.
This commit therefore plumbs schedule()'s "preempt" parameter into
rcu_note_context_switch(), which then records the Tasks RCU quiescent
state, but only if this call to schedule() was -not- due to a preemption.
To avoid adding overhead to the common-case context-switch path,
this commit hides the rcu_note_context_switch() check under an existing
non-common-case check.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although Tree SRCU does reduce delays when there is at least one
synchronize_srcu_expedited() invocation pending, srcu_schedule_cbs_snp()
still waits for SRCU_INTERVAL before invoking callbacks. Since
synchronize_srcu_expedited() now posts a callback and waits for
that callback to do a wakeup, this destroys the expedited nature of
synchronize_srcu_expedited(). This destruction became apparent to
Marc Zyngier in the guise of a guest-OS bootup slowdown from five
seconds to no fewer than forty seconds.
This commit therefore invokes callbacks immediately at the end of the
grace period when there is at least one synchronize_srcu_expedited()
invocation pending. This brought Marc's guest-OS bootup times back
into the realm of reason.
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Peter Zijlstra proposed using SRCU to reduce mmap_sem contention [1,2],
however, there are workloads that could result in a high volume of
concurrent invocations of call_srcu(), which with current SRCU would
result in excessive lock contention on the srcu_struct structure's
->queue_lock, which protects SRCU's callback lists. This commit therefore
moves SRCU to per-CPU callback lists, thus greatly reducing contention.
Because a given SRCU instance no longer has a single centralized callback
list, starting grace periods and invoking callbacks are both more complex
than in the single-list Classic SRCU implementation. Starting grace
periods and handling callbacks are now handled using an srcu_node tree
that is in some ways similar to the rcu_node trees used by RCU-bh,
RCU-preempt, and RCU-sched (for example, the srcu_node tree shape is
controlled by exactly the same Kconfig options and boot parameters that
control the shape of the rcu_node tree).
In addition, the old per-CPU srcu_array structure is now named srcu_data
and contains an rcu_segcblist structure named ->srcu_cblist for its
callbacks (and a spinlock to protect this). The srcu_struct gets
an srcu_gp_seq that is used to associate callback segments with the
corresponding completion-time grace-period number. These completion-time
grace-period numbers are propagated up the srcu_node tree so that the
grace-period workqueue handler can determine whether additional grace
periods are needed on the one hand and where to look for callbacks that
are ready to be invoked.
The srcu_barrier() function must now wait on all instances of the per-CPU
->srcu_cblist. Because each ->srcu_cblist is protected by ->lock,
srcu_barrier() can remotely add the needed callbacks. In theory,
it could also remotely start grace periods, but in practice doing so
is complex and racy. And interestingly enough, it is never necessary
for srcu_barrier() to start a grace period because srcu_barrier() only
enqueues a callback when a callback is already present--and it turns out
that a grace period has to have already been started for this pre-existing
callback. Furthermore, it is only the callback that srcu_barrier()
needs to wait on, not any particular grace period. Therefore, a new
rcu_segcblist_entrain() function enqueues the srcu_barrier() function's
callback into the same segment occupied by the last pre-existing callback
in the list. The special case where all the pre-existing callbacks are
on a different list (because they are in the process of being invoked)
is handled by enqueuing srcu_barrier()'s callback into the RCU_DONE_TAIL
segment, relying on the done-callbacks check that takes place after all
callbacks are inovked.
Note that the readers use the same algorithm as before. Note that there
is a separate srcu_idx that tells the readers what counter to increment.
This unfortunately cannot be combined with srcu_gp_seq because they
need to be incremented at different times.
This commit introduces some ugly #ifdefs in rcutorture. These will go
away when I feel good enough about Tree SRCU to ditch Classic SRCU.
Some crude performance comparisons, courtesy of a quickly hacked rcuperf
asynchronous-grace-period capability:
Callback Queuing Overhead
-------------------------
# CPUS Classic SRCU Tree SRCU
------ ------------ ---------
2 0.349 us 0.342 us
16 31.66 us 0.4 us
41 --------- 0.417 us
The times are the 90th percentiles, a statistic that was chosen to reject
the overheads of the occasional srcu_barrier() call needed to avoid OOMing
the test machine. The rcuperf test hangs when running Classic SRCU at 41
CPUs, hence the line of dashes. Despite the hacks to both the rcuperf code
and that statistics, this is a convincing demonstration of Tree SRCU's
performance and scalability advantages.
[1] https://lwn.net/Articles/309030/
[2] https://patchwork.kernel.org/patch/5108281/
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix initialization if synchronize_srcu_expedited() called first. ]
This commit just changes a "the the" to "the" to reduce repetition.
Reported-by: Michalis Kokologiannakis <mixaskok@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit makes the parse_rcu_nocb_poll() function assign true
(rather than the constant 1) to the bool variable rcu_nocb_poll.
Signed-off-by: Nicholas Mc Guire <der.herr@hofr.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The beenonline variable is declared bool so there is no need for an
explicit comparison, especially not against the constant zero.
Signed-off-by: Nicholas Mc Guire <der.herr@hofr.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_nocb_gp_cleanup() function is now invoked elsewhere, so this
commit drags this comment into the year 2017.
Reported-by: Michalis Kokologiannakis <mixaskok@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The TREE_SRCU rewrite is large and a bit on the non-simple side, so
this commit helps reduce risk by allowing the old v4.11 SRCU algorithm
to be selected using a new CLASSIC_SRCU Kconfig option that depends
on RCU_EXPERT. The default is to use the new TREE_SRCU and TINY_SRCU
algorithms, in order to help get these the testing that they need.
However, if your users do not require the update-side scalability that
is to be provided by TREE_SRCU, select RCU_EXPERT and then CLASSIC_SRCU
to revert back to the old classic SRCU algorithm.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>